This file is indexed.

/usr/include/OGRE/OgreAnimationTrack.h is in libogre-1.8-dev 1.8.1+dfsg-0ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
/*
-----------------------------------------------------------------------------
This source file is part of OGRE
    (Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/

Copyright (c) 2000-2012 Torus Knot Software Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/

#ifndef __AnimationTrack_H__
#define __AnimationTrack_H__

#include "OgrePrerequisites.h"
#include "OgreSimpleSpline.h"
#include "OgreRotationalSpline.h"
#include "OgreKeyFrame.h"
#include "OgreAnimable.h"
#include "OgrePose.h"

namespace Ogre 
{
	/** \addtogroup Core
	*  @{
	*/
	/** \addtogroup Animation
	*  @{
	*/
    /** Time index object used to search keyframe at the given position.
    */
    class _OgreExport TimeIndex
    {
    protected:
        /** The time position (in relation to the whole animation sequence)
        */
        Real mTimePos;
        /** The global keyframe index (in relation to the whole animation sequence)
            that used to convert to local keyframe index, or INVALID_KEY_INDEX which
            means global keyframe index unavailable, and then slight slow method will
            used to search local keyframe index.
        */
        uint mKeyIndex;

        /** Indicate it's an invalid global keyframe index.
        */
        static const uint INVALID_KEY_INDEX = (uint)-1;

    public:
        /** Construct time index object by the given time position.
        */
        TimeIndex(Real timePos)
            : mTimePos(timePos)
            , mKeyIndex(INVALID_KEY_INDEX)
        {
        }

        /** Construct time index object by the given time position and
            global keyframe index.
        @note In normally, you don't need to use this constructor directly, use
            Animation::_getTimeIndex instead.
        */
        TimeIndex(Real timePos, uint keyIndex)
            : mTimePos(timePos)
            , mKeyIndex(keyIndex)
        {
        }

        bool hasKeyIndex(void) const
        {
            return mKeyIndex != INVALID_KEY_INDEX;
        }

        Real getTimePos(void) const
        {
            return mTimePos;
        }

        uint getKeyIndex(void) const
        {
            return mKeyIndex;
        }
    };

    /** A 'track' in an animation sequence, i.e. a sequence of keyframes which affect a
        certain type of animable object.
    @remarks
        This class is intended as a base for more complete classes which will actually
        animate specific types of object, e.g. a bone in a skeleton to affect
        skeletal animation. An animation will likely include multiple tracks each of which
        can be made up of many KeyFrame instances. Note that the use of tracks allows each animable
        object to have it's own number of keyframes, i.e. you do not have to have the
        maximum number of keyframes for all animable objects just to cope with the most
        animated one.
    @remarks
        Since the most common animable object is a Node, there are options in this class for associating
        the track with a Node which will receive keyframe updates automatically when the 'apply' method
        is called.
	@remarks
		By default rotation is done using shortest-path algorithm.
		It is possible to change this behaviour using
		setUseShortestRotationPath() method.
    */
	class _OgreExport AnimationTrack : public AnimationAlloc
    {
    public:

		/** Listener allowing you to override certain behaviour of a track, 
			for example to drive animation procedurally.
		*/
		class _OgreExport Listener
		{
		public:
			virtual ~Listener() {}

			/** Get an interpolated keyframe for this track at the given time.
			@return true if the KeyFrame was populated, false if not.
			*/
			virtual bool getInterpolatedKeyFrame(const AnimationTrack* t, const TimeIndex& timeIndex, KeyFrame* kf) = 0;
		};

        /// Constructor
        AnimationTrack(Animation* parent, unsigned short handle);

        virtual ~AnimationTrack();

		/** Get the handle associated with this track. */
		unsigned short getHandle(void) const { return mHandle; }

        /** Returns the number of keyframes in this animation. */
        virtual unsigned short getNumKeyFrames(void) const;

        /** Returns the KeyFrame at the specified index. */
        virtual KeyFrame* getKeyFrame(unsigned short index) const;

        /** Gets the 2 KeyFrame objects which are active at the time given, and the blend value between them.
        @remarks
            At any point in time  in an animation, there are either 1 or 2 keyframes which are 'active',
            1 if the time index is exactly on a keyframe, 2 at all other times i.e. the keyframe before
            and the keyframe after.
        @par
            This method returns those keyframes given a time index, and also returns a parametric
            value indicating the value of 't' representing where the time index falls between them.
            E.g. if it returns 0, the time index is exactly on keyFrame1, if it returns 0.5 it is
            half way between keyFrame1 and keyFrame2 etc.
        @param timeIndex The time index.
        @param keyFrame1 Pointer to a KeyFrame pointer which will receive the pointer to the 
            keyframe just before or at this time index.
        @param keyFrame2 Pointer to a KeyFrame pointer which will receive the pointer to the 
            keyframe just after this time index. 
        @param firstKeyIndex Pointer to an unsigned short which, if supplied, will receive the 
            index of the 'from' keyframe in case the caller needs it.
        @return Parametric value indicating how far along the gap between the 2 keyframes the timeIndex
            value is, e.g. 0.0 for exactly at 1, 0.25 for a quarter etc. By definition the range of this 
            value is:  0.0 <= returnValue < 1.0 .
        */
        virtual Real getKeyFramesAtTime(const TimeIndex& timeIndex, KeyFrame** keyFrame1, KeyFrame** keyFrame2,
            unsigned short* firstKeyIndex = 0) const;

        /** Creates a new KeyFrame and adds it to this animation at the given time index.
        @remarks
            It is better to create KeyFrames in time order. Creating them out of order can result 
            in expensive reordering processing. Note that a KeyFrame at time index 0.0 is always created
            for you, so you don't need to create this one, just access it using getKeyFrame(0);
        @param timePos The time from which this KeyFrame will apply.
        */
        virtual KeyFrame* createKeyFrame(Real timePos);

        /** Removes a KeyFrame by it's index. */
        virtual void removeKeyFrame(unsigned short index);

        /** Removes all the KeyFrames from this track. */
        virtual void removeAllKeyFrames(void);


        /** Gets a KeyFrame object which contains the interpolated transforms at the time index specified.
        @remarks
            The KeyFrame objects held by this class are transformation snapshots at 
            discrete points in time. Normally however, you want to interpolate between these
            keyframes to produce smooth movement, and this method allows you to do this easily.
            In animation terminology this is called 'tweening'. 
        @param timeIndex The time (in relation to the whole animation sequence)
        @param kf Keyframe object to store results
        */
        virtual void getInterpolatedKeyFrame(const TimeIndex& timeIndex, KeyFrame* kf) const = 0;

        /** Applies an animation track to the designated target.
        @param timeIndex The time position in the animation to apply.
        @param weight The influence to give to this track, 1.0 for full influence, less to blend with
          other animations.
	    @param scale The scale to apply to translations and scalings, useful for 
			adapting an animation to a different size target.
        */
        virtual void apply(const TimeIndex& timeIndex, Real weight = 1.0, Real scale = 1.0f) = 0;

        /** Internal method used to tell the track that keyframe data has been 
            changed, which may cause it to rebuild some internal data. */
		virtual void _keyFrameDataChanged(void) const {}

		/** Method to determine if this track has any KeyFrames which are
		doing anything useful - can be used to determine if this track
		can be optimised out.
		*/
		virtual bool hasNonZeroKeyFrames(void) const { return true; }

		/** Optimise the current track by removing any duplicate keyframes. */
		virtual void optimise(void) {}

        /** Internal method to collect keyframe times, in unique, ordered format. */
        virtual void _collectKeyFrameTimes(vector<Real>::type& keyFrameTimes);

        /** Internal method to build keyframe time index map to translate global lower
            bound index to local lower bound index. */
        virtual void _buildKeyFrameIndexMap(const vector<Real>::type& keyFrameTimes);
		
		/** Internal method to re-base the keyframes relative to a given keyframe. */
		virtual void _applyBaseKeyFrame(const KeyFrame* base) {}

		/** Set a listener for this track. */
		virtual void setListener(Listener* l) { mListener = l; }

		/** Returns the parent Animation object for this track. */
		Animation *getParent() const { return mParent; }
    protected:
        typedef vector<KeyFrame*>::type KeyFrameList;
        KeyFrameList mKeyFrames;
        Animation* mParent;
		unsigned short mHandle;
		Listener* mListener;

        /// Map used to translate global keyframe time lower bound index to local lower bound index
        typedef vector<ushort>::type KeyFrameIndexMap;
        KeyFrameIndexMap mKeyFrameIndexMap;

		/// Create a keyframe implementation - must be overridden
		virtual KeyFrame* createKeyFrameImpl(Real time) = 0;

		/// Internal method for clone implementation
		virtual void populateClone(AnimationTrack* clone) const;
		


    };

	/** Specialised AnimationTrack for dealing with generic animable values.
	*/
	class _OgreExport NumericAnimationTrack : public AnimationTrack
	{
	public:
		/// Constructor
		NumericAnimationTrack(Animation* parent, unsigned short handle);
		/// Constructor, associates with an AnimableValue
		NumericAnimationTrack(Animation* parent, unsigned short handle, 
			AnimableValuePtr& target);

        /** Creates a new KeyFrame and adds it to this animation at the given time index.
        @remarks
            It is better to create KeyFrames in time order. Creating them out of order can result 
            in expensive reordering processing. Note that a KeyFrame at time index 0.0 is always created
            for you, so you don't need to create this one, just access it using getKeyFrame(0);
        @param timePos The time from which this KeyFrame will apply.
        */
        virtual NumericKeyFrame* createNumericKeyFrame(Real timePos);

		/// @copydoc AnimationTrack::getInterpolatedKeyFrame
        virtual void getInterpolatedKeyFrame(const TimeIndex& timeIndex, KeyFrame* kf) const;

		/// @copydoc AnimationTrack::apply
		virtual void apply(const TimeIndex& timeIndex, Real weight = 1.0, Real scale = 1.0f);

        /** Applies an animation track to a given animable value.
		@param anim The AnimableValue to which to apply the animation
        @param timeIndex The time position in the animation to apply.
        @param weight The influence to give to this track, 1.0 for full influence, less to blend with
          other animations.
	    @param scale The scale to apply to translations and scalings, useful for 
			adapting an animation to a different size target.
        */
		void applyToAnimable(const AnimableValuePtr& anim, const TimeIndex& timeIndex, 
			Real weight = 1.0, Real scale = 1.0f);

		/** Returns a pointer to the associated animable object (if any). */
		virtual const AnimableValuePtr& getAssociatedAnimable(void) const;

		/** Sets the associated animable object which will be automatically 
			affected by calls to 'apply'. */
		virtual void setAssociatedAnimable(const AnimableValuePtr& val);

		/** Returns the KeyFrame at the specified index. */
		NumericKeyFrame* getNumericKeyFrame(unsigned short index) const;

		/** Clone this track (internal use only) */
		NumericAnimationTrack* _clone(Animation* newParent) const;


	protected:
		/// Target to animate
		AnimableValuePtr mTargetAnim;

		/// @copydoc AnimationTrack::createKeyFrameImpl
		KeyFrame* createKeyFrameImpl(Real time);


	};

	/** Specialised AnimationTrack for dealing with node transforms.
	*/
	class _OgreExport NodeAnimationTrack : public AnimationTrack
	{
	public:
		/// Constructor
		NodeAnimationTrack(Animation* parent, unsigned short handle);
		/// Constructor, associates with a Node
		NodeAnimationTrack(Animation* parent, unsigned short handle, 
			Node* targetNode);
        /// Destructor
        virtual ~NodeAnimationTrack();
        /** Creates a new KeyFrame and adds it to this animation at the given time index.
        @remarks
            It is better to create KeyFrames in time order. Creating them out of order can result 
            in expensive reordering processing. Note that a KeyFrame at time index 0.0 is always created
            for you, so you don't need to create this one, just access it using getKeyFrame(0);
        @param timePos The time from which this KeyFrame will apply.
        */
        virtual TransformKeyFrame* createNodeKeyFrame(Real timePos);
		/** Returns a pointer to the associated Node object (if any). */
		virtual Node* getAssociatedNode(void) const;

		/** Sets the associated Node object which will be automatically affected by calls to 'apply'. */
		virtual void setAssociatedNode(Node* node);

		/** As the 'apply' method but applies to a specified Node instead of associated node. */
		virtual void applyToNode(Node* node, const TimeIndex& timeIndex, Real weight = 1.0, 
			Real scale = 1.0f);

		/** Sets the method of rotation calculation */
		virtual void setUseShortestRotationPath(bool useShortestPath);

		/** Gets the method of rotation calculation */
		virtual bool getUseShortestRotationPath() const;

		/// @copydoc AnimationTrack::getInterpolatedKeyFrame
        virtual void getInterpolatedKeyFrame(const TimeIndex& timeIndex, KeyFrame* kf) const;

		/// @copydoc AnimationTrack::apply
		virtual void apply(const TimeIndex& timeIndex, Real weight = 1.0, Real scale = 1.0f);

		/// @copydoc AnimationTrack::_keyFrameDataChanged
		void _keyFrameDataChanged(void) const;

		/** Returns the KeyFrame at the specified index. */
		virtual TransformKeyFrame* getNodeKeyFrame(unsigned short index) const;


		/** Method to determine if this track has any KeyFrames which are
			doing anything useful - can be used to determine if this track
			can be optimised out.
		*/
		virtual bool hasNonZeroKeyFrames(void) const;

		/** Optimise the current track by removing any duplicate keyframes. */
		virtual void optimise(void);

		/** Clone this track (internal use only) */
		NodeAnimationTrack* _clone(Animation* newParent) const;
		
		void _applyBaseKeyFrame(const KeyFrame* base);
		
	protected:
		/// Specialised keyframe creation
		KeyFrame* createKeyFrameImpl(Real time);
		// Flag indicating we need to rebuild the splines next time
		virtual void buildInterpolationSplines(void) const;

        // Struct for store splines, allocate on demand for better memory footprint
        struct Splines
        {
		    SimpleSpline positionSpline;
		    SimpleSpline scaleSpline;
		    RotationalSpline rotationSpline;
        };

		Node* mTargetNode;
		// Prebuilt splines, must be mutable since lazy-update in const method
		mutable Splines* mSplines;
		mutable bool mSplineBuildNeeded;
		/// Defines if rotation is done using shortest path
		mutable bool mUseShortestRotationPath ;
	};

	/** Type of vertex animation.
		Vertex animation comes in 2 types, morph and pose. The reason
		for the 2 types is that we have 2 different potential goals - to encapsulate
		a complete, flowing morph animation with multiple keyframes (a typical animation,
		but implemented by having snapshots of the vertex data at each keyframe), 
		or to represent a single pose change, for example a facial expression. 
		Whilst both could in fact be implemented using the same system, we choose
		to separate them since the requirements and limitations of each are quite
		different.
	@par
		Morph animation is a simple approach where we have a whole series of 
		snapshots of vertex data which must be interpolated, e.g. a running 
		animation implemented as morph targets. Because this is based on simple
		snapshots, it's quite fast to use when animating an entire mesh because 
		it's a simple linear change between keyframes. However, this simplistic 
		approach does not support blending between multiple morph animations. 
		If you need animation blending, you are advised to use skeletal animation
		for full-mesh animation, and pose animation for animation of subsets of 
		meshes or where skeletal animation doesn't fit - for example facial animation.
		For animating in a vertex shader, morph animation is quite simple and 
		just requires the 2 vertex buffers (one the original position buffer) 
		of absolute position data, and an interpolation factor. Each track in 
		a morph animation references a unique set of vertex data.
	@par
		Pose animation is more complex. Like morph animation each track references
		a single unique set of vertex data, but unlike morph animation, each 
		keyframe references 1 or more 'poses', each with an influence level. 
		A pose is a series of offsets to the base vertex data, and may be sparse - ie it
		may not reference every vertex. Because they're offsets, they can be 
		blended - both within a track and between animations. This set of features
		is very well suited to facial animation.
	@par
		For example, let's say you modelled a face (one set of vertex data), and 
		defined a set of poses which represented the various phonetic positions 
		of the face. You could then define an animation called 'SayHello', containing
		a single track which referenced the face vertex data, and which included 
		a series of keyframes, each of which referenced one or more of the facial 
		positions at different influence levels - the combination of which over
		time made the face form the shapes required to say the word 'hello'. Since
		the poses are only stored once, but can be referenced may times in 
		many animations, this is a very powerful way to build up a speech system.
	@par
		The downside of pose animation is that it can be more difficult to set up.
		Also, since it uses more buffers (one for the base data, and one for each
		active pose), if you're animating in hardware using vertex shaders you need
		to keep an eye on how many poses you're blending at once. You define a
		maximum supported number in your vertex program definition, see the 
		includes_pose_animation material script entry. 
	@par
		So, by partitioning the vertex animation approaches into 2, we keep the
		simple morph technique easy to use, whilst still allowing all 
		the powerful techniques to be used. Note that morph animation cannot
		be blended with other types of vertex animation (pose animation or other
		morph animation); pose animation can be blended with other pose animation
		though, and both types can be combined with skeletal animation. Also note
		that all morph animation can be expressed as pose animation, but not vice
		versa.
	*/
	enum VertexAnimationType
	{
		/// No animation
		VAT_NONE = 0,
		/// Morph animation is made up of many interpolated snapshot keyframes
		VAT_MORPH = 1,
		/// Pose animation is made up of a single delta pose keyframe
		VAT_POSE = 2
	};

	/** Specialised AnimationTrack for dealing with changing vertex position information.
	@see VertexAnimationType
	*/
	class _OgreExport VertexAnimationTrack : public AnimationTrack
	{
	public:
		/** The target animation mode */
		enum TargetMode
		{
			/// Interpolate vertex positions in software
			TM_SOFTWARE, 
			/** Bind keyframe 1 to position, and keyframe 2 to a texture coordinate
				for interpolation in hardware */
			TM_HARDWARE
		};
		/// Constructor
		VertexAnimationTrack(Animation* parent, unsigned short handle, VertexAnimationType animType);
		/// Constructor, associates with target VertexData and temp buffer (for software)
		VertexAnimationTrack(Animation* parent, unsigned short handle, VertexAnimationType animType, 
			VertexData* targetData, TargetMode target = TM_SOFTWARE);

		/** Get the type of vertex animation we're performing. */
		VertexAnimationType getAnimationType(void) const { return mAnimationType; }
		
		/** Whether the vertex animation (if present) includes normals */
		bool getVertexAnimationIncludesNormals() const;

		/** Creates a new morph KeyFrame and adds it to this animation at the given time index.
		@remarks
		It is better to create KeyFrames in time order. Creating them out of order can result 
		in expensive reordering processing. Note that a KeyFrame at time index 0.0 is always created
		for you, so you don't need to create this one, just access it using getKeyFrame(0);
		@param timePos The time from which this KeyFrame will apply.
		*/
		virtual VertexMorphKeyFrame* createVertexMorphKeyFrame(Real timePos);

		/** Creates the single pose KeyFrame and adds it to this animation.
		*/
		virtual VertexPoseKeyFrame* createVertexPoseKeyFrame(Real timePos);

		/** @copydoc AnimationTrack::getInterpolatedKeyFrame
		*/
        virtual void getInterpolatedKeyFrame(const TimeIndex& timeIndex, KeyFrame* kf) const;

		/// @copydoc AnimationTrack::apply
		virtual void apply(const TimeIndex& timeIndex, Real weight = 1.0, Real scale = 1.0f);

		/** As the 'apply' method but applies to specified VertexData instead of 
			associated data. */
		virtual void applyToVertexData(VertexData* data, 
			const TimeIndex& timeIndex, Real weight = 1.0, 
			const PoseList* poseList = 0);


		/** Returns the morph KeyFrame at the specified index. */
		VertexMorphKeyFrame* getVertexMorphKeyFrame(unsigned short index) const;

		/** Returns the pose KeyFrame at the specified index. */
		VertexPoseKeyFrame* getVertexPoseKeyFrame(unsigned short index) const;

		/** Sets the associated VertexData which this track will update. */
		void setAssociatedVertexData(VertexData* data) { mTargetVertexData = data; }
		/** Gets the associated VertexData which this track will update. */
		VertexData* getAssociatedVertexData(void) const { return mTargetVertexData; }

		/// Set the target mode
		void setTargetMode(TargetMode m) { mTargetMode = m; }
		/// Get the target mode
		TargetMode getTargetMode(void) const { return mTargetMode; }

		/** Method to determine if this track has any KeyFrames which are
		doing anything useful - can be used to determine if this track
		can be optimised out.
		*/
		virtual bool hasNonZeroKeyFrames(void) const;

		/** Optimise the current track by removing any duplicate keyframes. */
		virtual void optimise(void);

		/** Clone this track (internal use only) */
		VertexAnimationTrack* _clone(Animation* newParent) const;
		
		void _applyBaseKeyFrame(const KeyFrame* base);

	protected:
		/// Animation type
		VertexAnimationType mAnimationType;
		/// Target to animate
		VertexData* mTargetVertexData;
		/// Mode to apply
		TargetMode mTargetMode;

		/// @copydoc AnimationTrack::createKeyFrameImpl
		KeyFrame* createKeyFrameImpl(Real time);

		/// Utility method for applying pose animation
		void applyPoseToVertexData(const Pose* pose, VertexData* data, Real influence);


	};
	/** @} */
	/** @} */
}

#endif