This file is indexed.

/usr/include/OGRE/Terrain/OgreTerrainQuadTreeNode.h is in libogre-1.8-dev 1.8.1+dfsg-0ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
/*
-----------------------------------------------------------------------------
This source file is part of OGRE
(Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/

Copyright (c) 2000-2012 Torus Knot Software Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/

#ifndef __Ogre_TerrainQuadTreeNode_H__
#define __Ogre_TerrainQuadTreeNode_H__

#include "OgreTerrainPrerequisites.h"
#include "OgreCommon.h"
#include "OgreHardwareIndexBuffer.h"
#include "OgreMovableObject.h"
#include "OgreRenderable.h"



namespace Ogre
{
	class HardwareVertexBufferSharedPtr;
	
	/** \addtogroup Optional Components
	*  @{
	*/
	/** \addtogroup Terrain
	*  Some details on the terrain component
	*  @{
	*/


	/** A node in a quad tree used to store a patch of terrain.
	@remarks
		<b>Algorithm overview:</b>
	@par
		Our goal is to perform traditional chunked LOD with geomorphing. But, 
		instead of just dividing the terrain into tiles, we will divide them into
		a hierarchy of tiles, a quadtree, where any level of the quadtree can 
		be a rendered tile (to the exclusion of its children). The idea is to 
		collect together children into a larger batch with their siblings as LOD 
		decreases, to improve performance.
	@par
		The minBatchSize and maxBatchSize parameters on Terrain a key to 
		defining this behaviour. Both values are expressed in vertices down one axis.
		maxBatchSize determines the number of tiles on one side of the terrain,
		which is numTiles = (terrainSize-1) / (maxBatchSize-1). This in turn determines the depth
		of the quad tree, which is sqrt(numTiles). The minBatchSize determines
		the 'floor' of how low the number of vertices can go in a tile before it
		has to be grouped together with its siblings to drop any lower. We also do not group 
		a tile with its siblings unless all of them are at this minimum batch size, 
		rather than trying to group them when they all end up on the same 'middle' LOD;
		this is for several reasons; firstly, tiles hitting the same 'middle' LOD is
		less likely and more transient if they have different levels of 'roughness',
		and secondly since we're sharing a vertex / index pool between all tiles, 
		only grouping at the min level means that the number of combinations of 
		buffer sizes for any one tile is greatly simplified, making it easier to 
		pool data. To be more specific, any tile / quadtree node can only have
		log2(maxBatchSize-1) - log2(minBatchSize-1) + 1 LOD levels (and if you set them 
		to the same value, LOD can only change by going up/down the quadtree).
		The numbers of vertices / indices in each of these levels is constant for
		the same (relative) LOD index no matter where you are in the tree, therefore
		buffers can potentially be reused more easily.
	*/
	class _OgreTerrainExport TerrainQuadTreeNode : public TerrainAlloc
	{
	public:
		/** Constructor.
		@param terrain The ultimate parent terrain
		@param parent Optional parent node (in which case xoff, yoff are 0 and size must be entire terrain)
		@param xoff,off Offsets from the start of the terrain data in 2D
		@param size The size of the node in vertices at the highest LOD
		@param lod The base LOD level
		@param depth The depth that this node is at in the tree (or convenience)
		@param quadrant The index of the quadrant (0, 1, 2, 3)
		*/
		TerrainQuadTreeNode(Terrain* terrain, TerrainQuadTreeNode* parent, 
			uint16 xoff, uint16 yoff, uint16 size, uint16 lod, uint16 depth, uint16 quadrant);
		virtual ~TerrainQuadTreeNode();

		/// Get the horizontal offset into the main terrain data of this node
		uint16 getXOffset() const { return mOffsetX; }
		/// Get the vertical offset into the main terrain data of this node
		uint16 getYOffset() const { return mOffsetY; }
		/// Is this a leaf node (no children)
		bool isLeaf() const;
		/// Get the base LOD level this node starts at (the highest LOD it handles)
		uint16 getBaseLod() const { return mBaseLod; }
		/// Get the number of LOD levels this node can represent itself (only > 1 for leaf nodes)
		uint16 getLodCount() const;
		/// Get child node
		TerrainQuadTreeNode* getChild(unsigned short child) const;
		/// Get parent node
		TerrainQuadTreeNode* getParent() const;
		/// Get ultimate parent terrain
		Terrain* getTerrain() const;

		/// Prepare node and children (perform CPU tasks, may be background thread)
		void prepare();
		/// Prepare node from a stream
		void prepare(StreamSerialiser& stream);
		/// Load node and children (perform GPU tasks, will be render thread)
		void load();
		/// Unload node and children (perform GPU tasks, will be render thread)
		void unload();
		/// Unprepare node and children (perform CPU tasks, may be background thread)
		void unprepare();
		/// Save node to a stream
		void save(StreamSerialiser& stream);

		struct _OgreTerrainExport LodLevel : public TerrainAlloc
		{
			/// Number of vertices rendered down one side (not including skirts)
			uint16 batchSize;
			/// Index data on the gpu
			IndexData* gpuIndexData;
			/// Maximum delta height between this and the next lower lod
			Real maxHeightDelta;
			/// Temp calc area for max height delta
			Real calcMaxHeightDelta;
			/// The most recently calculated transition distance
			Real lastTransitionDist;
			/// The cFactor value used to calculate transitionDist
			Real lastCFactor;

			LodLevel() : gpuIndexData(0), maxHeightDelta(0), calcMaxHeightDelta(0),
				lastTransitionDist(0), lastCFactor(0) {}
		};
		typedef vector<LodLevel*>::type LodLevelList;

		/** Get the LodLevel information for a given lod.
		@param lod The lod level index relative to this classes own list; if you
			want to use a global lod level, subtract getBaseLod() first. Higher
			LOD levels are lower detail.
		*/
		const LodLevel* getLodLevel(uint16 lod);

		/** Notify the node (and children) that deltas are going to be calculated for a given range.
		@remarks
			Based on this call, we can know whether or not to reset the max height.
		*/
		void preDeltaCalculation(const Rect& rect);

		/** Notify the node (and children) of a height delta value. */
		void notifyDelta(uint16 x, uint16 y, uint16 lod, Real delta);

		/** Notify the node (and children) that deltas have finished being calculated.
		*/
		void postDeltaCalculation(const Rect& rect);

		/** Promote the delta values calculated to the runtime ones (this must
			be called in the main thread). 
		*/
		void finaliseDeltaValues(const Rect& rect);

		/** Assign vertex data to the tree, from a depth and at a given resolution.
		@param treeDepthStart The first depth of tree that should use this data, owns the data
		@param treeDepthEnd The end of the depth that should use this data (exclusive)
		@param resolution The resolution of the data to use (compared to full terrain)
		@param sz The size of the data along one edge
		*/
		void assignVertexData(uint16 treeDepthStart, uint16 treeDepthEnd, uint16 resolution, uint sz);

		/** Tell a node that it should use an anscestor's vertex data.
		@param treeDepthEnd The end of the depth that should use this data (exclusive)
		@param resolution The resolution of the data to use
		*/
		void useAncestorVertexData(TerrainQuadTreeNode* owner, uint16 treeDepthEnd, uint16 resolution);

		/** Tell the node to update its vertex data for a given region. 
		*/
		void updateVertexData(bool positions, bool deltas, const Rect& rect, bool cpuData);



		/** Merge a point (relative to terrain node) into the local bounds, 
			and that of children if applicable.
		@param x,y The point on the terrain to which this position corresponds 
			(affects which nodes update their bounds)
		@param pos The position relative to the terrain centre
		*/
		void mergeIntoBounds(long x, long y, const Vector3& pos);
		/** Reset the bounds of this node and all its children for the region given.
		@param rect The region for which bounds should be reset, in top-level terrain coords
		*/
		void resetBounds(const Rect& rect);
		
		/** Returns true if the given rectangle overlaps the terrain area that
			this node references.
		 @param rect The region in top-level terrain coords
		*/
		bool rectIntersectsNode(const Rect& rect);
		/** Returns true if the given rectangle completely contains the terrain area that
		this node references.
		@param rect The region in top-level terrain coords
		*/
		bool rectContainsNode(const Rect& rect);
		/** Returns true if the given point is in the terrain area that
		 this node references.
		 @param x,y The point in top-level terrain coords
		 */
		bool pointIntersectsNode(long x, long y);

		/// Get the AABB (local coords) of this node
		const AxisAlignedBox& getAABB() const;
		/// Get the bounding radius of this node
		Real getBoundingRadius() const;
		/// Get the local centre of this node, relative to parent terrain centre
		const Vector3& getLocalCentre() const { return mLocalCentre; }
		/// Get the minimum height of the node
		Real getMinHeight() const;
		/// Get the maximum height of the node
		Real getMaxHeight() const;

		/** Calculate appropriate LOD for this node and children
		@param cam The camera to be used (this should already be the LOD camera)
		@param cFactor The cFactor which incorporates the viewport size, max pixel error and lod bias
		@return true if this node or any of its children were selected for rendering
		*/
		bool calculateCurrentLod(const Camera* cam, Real cFactor);

		/// Get the current LOD index (only valid after calculateCurrentLod)
		int getCurrentLod() const { return mCurrentLod; }
		/// Returns whether this node is rendering itself at the current LOD level
		bool isRenderedAtCurrentLod() const;
		/// Returns whether this node or its children are being rendered at the current LOD level
		bool isSelfOrChildRenderedAtCurrentLod() const;
		/// Manually set the current LOD, intended for internal use only
		void setCurrentLod(int lod);
		/// Get the transition state between the current LOD and the next lower one (only valid after calculateCurrentLod)
		float getLodTransition() const { return mLodTransition; }
		/// Manually set the current LOD transition state, intended for internal use only
		void setLodTransition(float t);

		/// Buffer binding used for holding positions
		static unsigned short POSITION_BUFFER;
		/// Buffer binding used for holding delta values
		static unsigned short DELTA_BUFFER;

		/// Returns the internal renderable object for this node
		Renderable *_getRenderable();
	protected:
		Terrain* mTerrain;
		TerrainQuadTreeNode* mParent;
		TerrainQuadTreeNode* mChildren[4];
		LodLevelList mLodLevels;

		uint16 mOffsetX, mOffsetY;
		uint16 mBoundaryX, mBoundaryY;
		/// the number of vertices at the original terrain resolution this node encompasses
		uint16 mSize;
		uint16 mBaseLod;
		uint16 mDepth;
		uint16 mQuadrant;
		Vector3 mLocalCentre; // relative to terrain centre
		AxisAlignedBox mAABB; //relative to mLocalCentre
		Real mBoundingRadius; //relative to mLocalCentre
		int mCurrentLod; // -1 = none (do not render)
		unsigned short mMaterialLodIndex;
		float mLodTransition; // 0-1 transition to lower LOD
		/// The child with the largest height delta 
		TerrainQuadTreeNode* mChildWithMaxHeightDelta;
		bool mSelfOrChildRendered;

		struct VertexDataRecord : public TerrainAlloc
		{
			VertexData* cpuVertexData;
			VertexData* gpuVertexData;
			/// resolution of the data compared to the base terrain data (NOT number of vertices!)
			uint16 resolution;
			/// size of the data along one edge
			uint16 size;
			/// Number of quadtree levels (including this one) this data applies to
			uint16 treeLevels;
			/// Number of rows and columns of skirts
			uint16 numSkirtRowsCols;
			/// The number of rows / cols to skip in between skirts
			uint16 skirtRowColSkip;
			/// Is the GPU vertex data out of date?
			bool gpuVertexDataDirty;

			VertexDataRecord(uint16 res, uint16 sz, uint16 lvls) 
				: cpuVertexData(0), gpuVertexData(0), resolution(res), size(sz),
				treeLevels(lvls), gpuVertexDataDirty(false) {}
		};
		
		TerrainQuadTreeNode* mNodeWithVertexData;
		VertexDataRecord* mVertexDataRecord;

		/** MovableObject implementation to provide the hook to the scene.
		@remarks
			In one sense, it would be most convenient to have a single MovableObject
			to represent the whole Terrain object, and then internally perform
			some quadtree frustum culling to narrow down which specific tiles are rendered.
			However, the one major flaw with that is that exposing the bounds to 
			the SceneManager at that level prevents it from doing anything smarter
			in terms of culling - for example a portal or occlusion culling SceneManager
			would have no opportunity to process the leaf nodes in those terms, and
			a simple frustum cull may give significantly poorer results. 
		@par
			Therefore, we in fact register a MovableObject at every node, and 
			use the LOD factor to determine which one is currently active. LODs
			must be mutually exclusive and to deal with precision errors, we really
			need to evaluate them all at once, rather than as part of the 
			_notifyCurrentCamera function. Therefore the root Terrain registers
			a SceneManager::Listener to precalculate which nodes will be displayed 
			when it comes to purely a LOD basis.
		*/
		class _OgreTerrainExport Movable : public MovableObject
		{
		protected:
			TerrainQuadTreeNode* mParent;
		public:
			Movable(TerrainQuadTreeNode* parent);
			~Movable();
			
	        // necessary overrides
			const String& getMovableType(void) const;
			const AxisAlignedBox& getBoundingBox(void) const;
			Real getBoundingRadius(void) const;
			void _updateRenderQueue(RenderQueue* queue);
			void visitRenderables(Renderable::Visitor* visitor,  bool debugRenderables = false);
			bool isVisible(void) const;
			uint32 getVisibilityFlags(void) const;
			uint32 getQueryFlags(void) const;
			bool getCastShadows(void) const;

		};
		Movable* mMovable;
		friend class Movable;
		SceneNode* mLocalNode;

		/// Hook to the render queue
		class _OgreTerrainExport Rend : public Renderable, public TerrainAlloc
		{
		protected:
			TerrainQuadTreeNode* mParent;
		public:
			Rend(TerrainQuadTreeNode* parent);
			~Rend();

			const MaterialPtr& getMaterial(void) const;
			Technique* getTechnique(void) const;
			void getRenderOperation(RenderOperation& op);
			void getWorldTransforms(Matrix4* xform) const;
			Real getSquaredViewDepth(const Camera* cam) const;
			const LightList& getLights(void) const;
			bool getCastsShadows(void) const;

		};
		Rend* mRend;
		friend class Rend;

		// actual implementation of MovableObject methods
		void updateRenderQueue(RenderQueue* queue);
		void visitRenderables(Renderable::Visitor* visitor,  bool debugRenderables = false);
		// actual implementations of Renderable methods
		const MaterialPtr& getMaterial(void) const;
		Technique* getTechnique(void) const;
		void getRenderOperation(RenderOperation& op);
		void getWorldTransforms(Matrix4* xform) const;
		Real getSquaredViewDepth(const Camera* cam) const;
		const LightList& getLights(void) const;
		bool getCastsShadows(void) const;


		const VertexDataRecord* getVertexDataRecord() const;
		void createCpuVertexData();
		/* Update the vertex buffers - the rect in question is relative to the whole terrain, 
			not the local vertex data (which may use a subset)
		*/
		void updateVertexBuffer(HardwareVertexBufferSharedPtr& posbuf, HardwareVertexBufferSharedPtr& deltabuf, const Rect& rect);
		void destroyCpuVertexData();

		void createGpuVertexData();
		void destroyGpuVertexData();
		void updateGpuVertexData();
		void createGpuIndexData();
		void destroyGpuIndexData();

		void populateIndexData(uint16 batchSize, IndexData* destData);
		void writePosVertex(bool compress, uint16 x, uint16 y, float height, const Vector3& pos, float uvScale, float** ppPos);
		void writeDeltaVertex(bool compress, uint16 x, uint16 y, float delta, float deltaThresh, float** ppDelta);
		
		uint16 calcSkirtVertexIndex(uint16 mainIndex, bool isCol);

	};

	/** @} */
	/** @} */
}

#endif