This file is indexed.

/usr/include/openmeeg/inversers.h is in libopenmeeg-dev 2.0.0.dfsg-5.1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
/*
Project Name : OpenMEEG

© INRIA and ENPC (contributors: Geoffray ADDE, Maureen CLERC, Alexandre 
GRAMFORT, Renaud KERIVEN, Jan KYBIC, Perrine LANDREAU, Théodore PAPADOPOULO,
Emmanuel OLIVI
Maureen.Clerc.AT.sophia.inria.fr, keriven.AT.certis.enpc.fr,
kybic.AT.fel.cvut.cz, papadop.AT.sophia.inria.fr)

The OpenMEEG software is a C++ package for solving the forward/inverse
problems of electroencephalography and magnetoencephalography.

This software is governed by the CeCILL-B license under French law and
abiding by the rules of distribution of free software.  You can  use,
modify and/ or redistribute the software under the terms of the CeCILL-B
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info".

As a counterpart to the access to the source code and  rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty  and the software's authors,  the holders of the
economic rights,  and the successive licensors  have only  limited
liability.

In this respect, the user's attention is drawn to the risks associated
with loading,  using,  modifying and/or developing or reproducing the
software by the user in light of its specific status of free software,
that may mean  that it is complicated to manipulate,  and  that  also
therefore means  that it is reserved for developers  and  experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or
data to be ensured and,  more generally, to use and operate it in the
same conditions as regards security.

The fact that you are presently reading this means that you have had
knowledge of the CeCILL-B license and that you accept its terms.
*/

#ifndef OPENMEEG_INVERSE_H
#define OPENMEEG_INVERSE_H

#include "matrix.h"
#include "symmatrix.h"
#include "vector.h"
#include "sparse_matrix.h"
#include "fast_sparse_matrix.h"

#include "DLLDefinesOpenMEEG.h"

#define EPSILON 1e-6
#define MINRES_TOL 1e-5

namespace OpenMEEG {

    // static double k2;
    // struct tv_evaluator;
    //
    // inline double tik (const double &x)
    // {
    //     return 0.5*x*x;
    // }
    // inline double tikp (const double &x)
    // {
    //     return x;
    // }
    //
    // inline double tikpp (const double &x)
    // {
    //     return 1.0;
    // }
    //
    // inline double ftv (const double &x)
    // {
    //     return x;
    // }
    // inline double ftvp (const double &x)
    // {
    //     return 1.0;
    // }
    //
    // inline double ftvpp (const double &x)
    // {
    //     return 0.0;
    // }
    //
    // inline double pm (const double &x)
    // {
    //     return -0.5*k2*(exp(-(x*x)/k2)-1);
    // }
    //
    // inline double pmp (const double &x)
    // {
    //     return x*exp(-(x*x)/k2);
    // }
    //
    // inline double aub (const double &x)
    // {
    //     return (sqrt(1+x*x*k2)-1);
    // }
    //
    // inline double aubp (const double &x)
    // {
    //     return x/(k2*sqrt((k2+x*x)*k2));
    // }
    //
    // inline double aubpp (const double &x)
    // {
    //     return 1.0/((k2+x*x)*sqrt((k2+x*x)*k2));
    // }
    //
    // static double (*ftab[4]) (const double &)={0,tik,pm,aub};
    // static double (*fptab[4]) (const double &)={0,tikp,pmp,aubp};
    // static double (*fpptab[4]) (const double &)={0,tikpp,0,aubpp};

    inline Vector gentv( Vector x,
                          const FastSparseMatrix &mat,
                          const FastSparseMatrix &mat_t,
                          const Vector &Ai, double *tv=NULL,
                          double (*f) (const double &)=0,
                          double (*fp) (const double&)=0 )
    {
        Vector v = mat * x;
        Vector grad_norms( v.size()/3 );
        Vector grad_norms_inv( v.size()/3 );
        for(size_t i=0;i<grad_norms.size();i++) {
            double *pt=&v(3*i);
            grad_norms(i) = sqrt(pt[0]*pt[0]+pt[1]*pt[1]+pt[2]*pt[2]);
            grad_norms_inv(i) = grad_norms(i)!=0 ? 1.0/(grad_norms(i)+EPSILON) : 0;
            double normaliz = grad_norms_inv(i)*Ai(i);
            if (fp!=0) normaliz *= fp(grad_norms(i));
            pt[0]*=normaliz; pt[1]*=normaliz; pt[2]*=normaliz;
        }

        if (tv!=NULL && f!=0) {*tv=0; for(size_t i=0;i<grad_norms.size();i++) *tv+=f(grad_norms(i))*Ai(i);}
        if (tv!=NULL && f==0) {*tv=0; for(size_t i=0;i<grad_norms.size();i++) *tv+=grad_norms(i)*Ai(i);}

        return mat_t*v;
    }

    inline double compute_one_tv(Vector x,
                              const FastSparseMatrix &mat,
                              const Vector &Ai,
                              double (*f) (const double &)=0)
    {
        double tv = 0;
        Vector v = mat * x;
        Vector grad_norms( v.size()/3 );
        for(size_t i=0;i<grad_norms.size();i++) {
            double *pt = &v(3*i);
            grad_norms(i) = sqrt(pt[0]*pt[0]+pt[1]*pt[1]+pt[2]*pt[2]);
            if (f!=0) {
                tv += f(grad_norms(i))*Ai(i);
            } else {
                tv += grad_norms(i)*Ai(i);
            }
        }
        return tv;
    }

    // ========================================================
    // = Define Hessian matrices for linear inversion methods =
    // ========================================================

    class OPENMEEG_EXPORT MN_Hessian {

        const Matrix &Transfer;
        const double alpha;

    public:

        MN_Hessian(const Matrix &TransferMat, const double &Alpha):Transfer(TransferMat),alpha(Alpha) {}

        inline Vector operator * (const Vector &x) const { return Transfer.tmult(Transfer*x)+alpha*x; }
    };

    class OPENMEEG_EXPORT WMN_Hessian {

        const Matrix &Transfer;
        const double alpha;
        Vector weights;

    public:

        WMN_Hessian(const Matrix &TransferMat, const double &Alpha):Transfer(TransferMat),alpha(Alpha) {
            Vector v(Transfer.ncol());
            for(size_t i = 0; i < weights.size(); ++i) {
                Vector col = Transfer.getcol(i);
                v(i) = pow(col.norm(),2);
            }
            weights = v;
        }

        inline Vector operator * (const Vector &x) const {
            return Transfer.tmult(Transfer*x)+alpha*(weights.kmult(x));
        }

    };

    class OPENMEEG_EXPORT HEAT_Hessian {

        const Matrix &m_transfer;
        const FastSparseMatrix &m_mat;
        const FastSparseMatrix &m_mat_t;
        const double m_alpha;

    public:

        HEAT_Hessian(const Matrix &transfer,
                         const FastSparseMatrix &mat,
                         const FastSparseMatrix &mat_t,
                         const double &alpha):
        m_transfer(transfer),m_mat(mat),m_mat_t(mat_t),m_alpha(alpha) {}

        inline Vector operator * ( const Vector &x) const {
            return m_transfer.tmult(m_transfer*x)+m_alpha*(m_mat_t*(m_mat*x));
        }
    };

    // ========================================================

    template<class T> // T should be a linear operator
    size_t MinRes2(const T& A,const Vector& b,Vector& x0,double tol) {

        size_t n_max=10000;
        size_t n=1; size_t N=x0.size();
        Vector v(N); v.set(0.0);
        Vector v_hat=b-A*x0;
        double beta=v_hat.norm();
        Vector v_old(v.size());
        Vector Av(v.size());
        double c=1; double c_old=1; double s_old=0; double s=0;
        Vector w(N); w.set(0.0);
        Vector w_oold(N); Vector w_old(w,DEEP_COPY);
        double eta=beta;
        Vector xMR=x0;
        double norm_rMR=beta; double norm_r0=beta;
        double c_oold,s_oold,r1_hat,r1,r2,r3,alpha,beta_old;
        while ((n < n_max+1) && (norm_rMR/norm_r0 > tol) ) {
            n=n+1;
            //Lanczos
            v_old=v;
            v=v_hat*(1.0/beta); Av=A*v; alpha=v*Av;
            v_hat=Av-alpha*v-beta*v_old;
            beta_old=beta; beta=v_hat.norm();
            //QR factorization
            c_oold=c_old; c_old=c;  s_oold=s_old; s_old=s;
            r1_hat=c_old*alpha-c_oold*s_old*beta_old;
            r1 = sqrt(r1_hat*r1_hat+beta*beta);
            r2 = s_old*alpha+c_oold*c_old*beta_old;
            r3 = s_oold*beta_old;
            //Givens rotation
            c=r1_hat/r1;
            s=beta/r1;
            //update
            w_oold=w_old; w_old=w;
            w=(v-r3*w_oold-r2*w_old)*(1.0/r1);
            xMR+=c*eta*w; norm_rMR=norm_rMR*fabs(s);
            eta=-s*eta;
        }
        std::cout<<"\r";
        return n;
    }

    // ===========================================
    // = Define all the linear inversion methods =
    // ===========================================

    template<class T>
    void LIN_inverse (Matrix& EstimatedData, const T& hess, const Matrix& GainMatrix, const Matrix& Data) {
        size_t nT = Data.ncol();
        EstimatedData = Matrix(GainMatrix.ncol(),nT);

        #ifdef USE_OMP
        #pragma omp parallel for
        #endif
        for(long frame=0;frame<(long)nT;frame++) { // loop over frame
            Vector m = Data.getcol((size_t) frame);
            Vector v(GainMatrix.ncol()); v.set(0.0);

            //==========  Invert =======================//
            size_t niter = MinRes2(hess,GainMatrix.tmult(m),v,MINRES_TOL);

            for(size_t i=0;i<EstimatedData.nlin();i++) EstimatedData(i,(size_t) frame) = v(i);

            #ifdef USE_OMP
            #pragma omp critical
            #endif
            std::cout << ">> Frame " << frame+1 << " / " << nT
                      << " : Rel. Err. = " << (GainMatrix*v-m).norm()/m.norm()
                      << " : Nb. iter. MinRes = " << niter
                      << std::endl;
        }
    }

    void compute_mn (Matrix& EstimatedData, const Matrix& Data, const Matrix& GainMatrix, double SmoothWeight) {
        Matrix eye(GainMatrix.nlin(),GainMatrix.nlin());
        eye.set(0);
        for (size_t i=0;i<GainMatrix.nlin();++i)
            eye(i,i) = SmoothWeight;
        EstimatedData = GainMatrix.transpose() * (GainMatrix * GainMatrix.transpose() + eye).inverse() * Data;
    }

    // ================= Iterative Mininum norm inversion =======================//

    class IMN_inverse: public Matrix {
    public:
        IMN_inverse (const Matrix& Data, const Matrix& GainMatrix, double SmoothWeight);
        virtual ~IMN_inverse () {};
    };

    IMN_inverse::IMN_inverse (const Matrix& Data, const Matrix& GainMatrix, double SmoothWeight) {
        std::cout << "Running Iterative MN inversion" << std::endl;
        MN_Hessian hess(GainMatrix,SmoothWeight);
        LIN_inverse(*this,hess,GainMatrix,Data);
    }

    // ================= Mininum norm inversion =======================//

    class MN_inverse: public Matrix {
    public:
        MN_inverse (const Matrix& Data, const Matrix& GainMatrix, double SmoothWeight);
        virtual ~MN_inverse () {};
    };

    MN_inverse::MN_inverse (const Matrix& Data, const Matrix& GainMatrix, double SmoothWeight) {
        std::cout << "Running MN inversion" << std::endl;
        compute_mn(*this,Data,GainMatrix,SmoothWeight);
    }

    // ================= Weighted Mininum norm inversion =======================//

    class WMN_inverse: public Matrix {
    public:
        WMN_inverse (const Matrix& Data, const Matrix& GainMatrix, double SmoothWeight);
        virtual ~WMN_inverse () {};
    };

    WMN_inverse::WMN_inverse (const Matrix& Data, const Matrix& GainMatrix, double SmoothWeight) {
        std::cout << "Running WMN inversion" << std::endl;
        WMN_Hessian hess(GainMatrix,SmoothWeight);
        LIN_inverse(*this,hess,GainMatrix,Data);
    }

    // ================= Gradient based Mininum norm inversion ================ //

    class HEAT_inverse: public Matrix {
    public:
        HEAT_inverse (const Matrix& Data, const Matrix& GainMatrix, const SparseMatrix& SmoothMatrix, double SmoothWeight);
        virtual ~HEAT_inverse () {};
    };

    HEAT_inverse::HEAT_inverse (const Matrix& Data, const Matrix& GainMatrix, const SparseMatrix& SmoothMatrix, double SmoothWeight) {
        std::cout << "Running HEAT inversion" << std::endl;
        FastSparseMatrix fastSmoothMatrix(SmoothMatrix);
        FastSparseMatrix fastSmoothMatrix_t(SmoothMatrix.transpose());
        HEAT_Hessian hess(GainMatrix,fastSmoothMatrix,fastSmoothMatrix_t,SmoothWeight);
        LIN_inverse(*this,hess,GainMatrix,Data);
    }

    // ================= Total variation based inversion =================== //

    void compute_tv(Matrix& EstimatedData, const Matrix& Data, const Matrix& GainMatrix, const SparseMatrix& SmoothMatrix, const Vector& AiVector, double SmoothWeight, size_t MaxNbIter, double StoppingTol)
    {
        FastSparseMatrix fastSmoothMatrix(SmoothMatrix);
        FastSparseMatrix fastSmoothMatrix_t(SmoothMatrix.transpose());

        size_t nT = Data.ncol();
        EstimatedData = Matrix(GainMatrix.ncol(),nT);

        // #ifdef USE_OMP
        // #pragma omp parallel for
        // #endif
        for(size_t frame=0;frame<nT;frame++) {
            std::cout << ">> Frame " << frame+1 << " / " << nT << std::endl;
            Vector m = Data.getcol(frame);
            Vector v(EstimatedData.nlin());

            // ====================  initialization of source vector ===================== //
            if(frame==0) v.set(0.0);
            else v = EstimatedData.getcol(frame-1);

            double tv_v = compute_one_tv(v,fastSmoothMatrix,AiVector);

            bool errorTest = true;

            // ========  Backtracking line search parameters for gradient step  ========= //
            double alpha = 0.001;
            double beta = 0.5;
            int max_iter_line_search = 10;

            // ================== Inverse problem via gradient descent ================== //
            size_t t;
            for(t=0;t<MaxNbIter && errorTest;t++) {
                Vector gradtv = gentv(v,fastSmoothMatrix,fastSmoothMatrix_t,AiVector);
                Vector err_vec = GainMatrix*v-m;
                Vector graddata = GainMatrix.tmult(err_vec);
                Vector grad = (-SmoothWeight)*gradtv - graddata;
                double f_v = pow(err_vec.norm(),2) + SmoothWeight*tv_v;

                // ======= Backtracking line search for gradient step ======= //
                double search_slope = alpha*grad.norm();
                double f_v_dv;
                double tv_v_dv;
                Vector v_dv;

                double grad_step = 1.0;

    #define USE_LINE_SEARCH 1

    #if USE_LINE_SEARCH
                int iter_line_search = 0;
                bool stop_line_search = false;
                while ( stop_line_search != true && (++iter_line_search < max_iter_line_search) ) {
                    v_dv = v+grad_step*grad;
                    double f_v_dv_data = pow((m-GainMatrix*(v_dv)).norm(),2);
                    tv_v_dv = compute_one_tv(v_dv,fastSmoothMatrix,AiVector);
                    f_v_dv = f_v_dv_data + SmoothWeight*tv_v_dv;
                    if ( grad_step*search_slope < (f_v - f_v_dv)) {
                        stop_line_search = true;
                    } else {
                        grad_step = beta*grad_step;
                    }
                }
    #else
                v_dv = v+grad_step*grad;
    #endif

                double tol = (v_dv-v).norm()/v.norm();

                v = v_dv;
                tv_v = tv_v_dv;
                errorTest = tol>StoppingTol;// || iter_line_search<max_iter_line_search;

                if ((t%100)==0 || !errorTest || (t == (MaxNbIter-1)))
                    printf("Energy %e   Relative Error %f   TV %f   Tol %e   GradStep %f Iter %d\n",
                           f_v,(err_vec).norm()/m.norm(),tv_v,tol,grad_step,(int)t);
            }
            printf("Total number of iterations : %d\n",(int)t);

            //===========================================================================//
            EstimatedData.setcol(frame,v);
        }
    }

    class TV_inverse: public Matrix {
    public:
        TV_inverse (const Matrix& Data, const Matrix& GainMatrix, const SparseMatrix& SmoothMatrix, const Vector& AiVector, double SmoothWeight, size_t MaxNbIter, double StoppingTol);
        virtual ~TV_inverse () {};
    };

    TV_inverse::TV_inverse (const Matrix& Data, const Matrix& GainMatrix, const SparseMatrix& SmoothMatrix, const Vector& AiVector, double SmoothWeight, size_t MaxNbIter, double StoppingTol) {
        std::cout << "Running TV inversion" << std::endl;
        compute_tv(*this,Data,GainMatrix,SmoothMatrix,AiVector,SmoothWeight,MaxNbIter,StoppingTol);
    }
}

#endif /* OPENMEEG_INVERSE_H */