/usr/include/OpenMS/ANALYSIS/ID/PILISNeutralLossModel.h is in libopenms-dev 1.11.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | // --------------------------------------------------------------------------
// OpenMS -- Open-Source Mass Spectrometry
// --------------------------------------------------------------------------
// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen,
// ETH Zurich, and Freie Universitaet Berlin 2002-2013.
//
// This software is released under a three-clause BSD license:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of any author or any participating institution
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
// For a full list of authors, refer to the file AUTHORS.
// --------------------------------------------------------------------------
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING
// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// --------------------------------------------------------------------------
// $Maintainer: Andreas Bertsch $
// $Authors: Andreas Bertsch $
// --------------------------------------------------------------------------
#ifndef OPENMS_ANALYSIS_ID_PILISNEUTRALLOSSMODEL_H
#define OPENMS_ANALYSIS_ID_PILISNEUTRALLOSSMODEL_H
#include <vector>
#include <OpenMS/KERNEL/StandardTypes.h>
#include <OpenMS/DATASTRUCTURES/Map.h>
#include <OpenMS/DATASTRUCTURES/String.h>
#include <OpenMS/CONCEPT/Types.h>
#include <OpenMS/ANALYSIS/ID/HiddenMarkovModel.h>
#include <OpenMS/DATASTRUCTURES/DefaultParamHandler.h>
namespace OpenMS
{
class AASequence;
/**
@brief This class implements the simulation of the spectra from PILIS
PILIS uses a HMM based structure to model the population of fragment ions
from a peptide. The spectrum generator can be accessed via the getSpectrum
method.
@htmlinclude OpenMS_PILISNeutralLossModel.parameters
@ingroup Analysis_ID
*/
class OPENMS_DLLAPI PILISNeutralLossModel :
public DefaultParamHandler
{
friend class PILISNeutralLossModelGenerator;
public:
/** @name Constructors and destructors
*/
//@{
/// default constructor
PILISNeutralLossModel();
/// copy constructor
PILISNeutralLossModel(const PILISNeutralLossModel & model);
/// destructor
virtual ~PILISNeutralLossModel();
//@}
/// assignment operator
PILISNeutralLossModel & operator=(const PILISNeutralLossModel & mode);
/** @name Accessors
*/
//@{
/// performs a training step; needs as parameters a spectrum with annotated sequence and charge; returns the intensity sum of the matched peaks
DoubleReal train(const RichPeakSpectrum & spec, const AASequence & peptide, DoubleReal ion_weight, UInt charge, DoubleReal peptide_weight);
/// given a peptide (a ion) the model returns the peaks with intensities relative to initial_prob
void getIons(std::vector<RichPeak1D> & peaks, const AASequence & peptide, DoubleReal initial_prob);
/// sets the hidden markov model
void setHMM(const HiddenMarkovModel & model);
/// writes the HMM to the given file in the GraphML format. A detailed description of the GraphML format can be found under http://graphml.graphdrawing.org/
const HiddenMarkovModel & getHMM() const;
/// generates the models
void generateModel();
/// this method evaluates the model after training; it should be called after all training steps with train
void evaluate();
//@}
protected:
/// extracts the precursor and related intensities of a training spectrum
DoubleReal getIntensitiesFromSpectrum_(const RichPeakSpectrum & train_spec, Map<String, DoubleReal> & pre_ints, DoubleReal ion_weight, const AASequence & peptide, UInt charge);
/// trains precursor and related peaks
void trainIons_(DoubleReal initial_probability, const Map<String, DoubleReal> & intensities, const AASequence & peptide);
/// estimates the precursor intensities
void getIons_(Map<String, DoubleReal> & intensities, DoubleReal initial_probability, const AASequence & precursor);
/// enables the states needed for precursor training/simulation
void enableIonStates_(const AASequence & peptide);
/// precursor model used
HiddenMarkovModel hmm_precursor_;
///
UInt num_explicit_;
void updateMembers_();
};
}
#endif
|