/usr/include/OpenMS/MATH/MISC/BilinearInterpolation.h is in libopenms-dev 1.11.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 | // --------------------------------------------------------------------------
// OpenMS -- Open-Source Mass Spectrometry
// --------------------------------------------------------------------------
// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen,
// ETH Zurich, and Freie Universitaet Berlin 2002-2013.
//
// This software is released under a three-clause BSD license:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of any author or any participating institution
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
// For a full list of authors, refer to the file AUTHORS.
// --------------------------------------------------------------------------
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING
// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// --------------------------------------------------------------------------
// $Maintainer: Clemens Groepl $
// $Authors: $
// --------------------------------------------------------------------------
#ifndef OPENMS_MATH_MISC_BILINEARINTERPOLATION_H
#define OPENMS_MATH_MISC_BILINEARINTERPOLATION_H
#include <OpenMS/DATASTRUCTURES/Matrix.h>
namespace OpenMS
{
namespace Math
{
/**
@brief Provides access to bilinearly interpolated values (and
derivatives) from discrete data points. Values beyond the given range
of data points are implicitly taken as zero.
The input is just a vector of values ("Data"). These are interpreted
as the y-coordinates at the x-coordinate positions 0,...,data_.size-1.
The interpolated data can also be <i>scaled</i> and <i>shifted</i> in
the x-dimension by an <em>affine mapping</em>. That is, we have "inside" and
"outside" x-coordinates. The affine mapping can be specified in two
ways:
- using setScale() and setOffset(),
- using setMapping()
.
By default the identity mapping (scale=1, offset=0) is used.
Using the value() and derivative() methods you can sample bilinearly
interpolated values for a given x-coordinate position of the data and
the derivative of the data.
@see LinearInterpolation
@ingroup Math
*/
template <typename Key = double, typename Value = Key>
class BilinearInterpolation
{
public:
///@name Typedefs
//@{
typedef Value value_type;
typedef Key key_type;
typedef Matrix<value_type> container_type;
typedef value_type ValueType;
typedef key_type KeyType;
typedef container_type ContainerType;
//@}
public:
/**@brief Constructors and destructor.
*/
//@{
/// Default constructor
BilinearInterpolation() :
scale_0_(1),
offset_0_(0),
scale_1_(1),
offset_1_(0),
inside_0_(0),
outside_0_(0),
inside_1_(0),
outside_1_(0),
data_()
{}
/// Copy constructor
BilinearInterpolation(BilinearInterpolation const & arg) :
scale_0_(arg.scale_0_),
offset_0_(arg.offset_0_),
scale_1_(arg.scale_1_),
offset_1_(arg.offset_1_),
inside_0_(arg.inside_0_),
outside_0_(arg.outside_0_),
inside_1_(arg.inside_1_),
outside_1_(arg.outside_1_),
data_(arg.data_)
{}
/// Assignment operator
BilinearInterpolation & operator=(BilinearInterpolation const & arg)
{
if (&arg == this)
return *this;
scale_0_ = arg.scale_0_;
offset_0_ = arg.offset_0_;
scale_1_ = arg.scale_1_;
offset_1_ = arg.offset_1_;
inside_0_ = arg.inside_0_;
outside_1_ = arg.outside_1_;
inside_1_ = arg.inside_1_;
outside_0_ = arg.outside_0_;
data_ = arg.data_;
return *this;
}
/// Destructor
~BilinearInterpolation()
{}
//@}
// ----------------------------------------------------------------------
///@name Interpolated data
//@{
/// Returns the interpolated value ("backward resampling")
ValueType value(KeyType arg_pos_0, KeyType arg_pos_1) const
{
// apply the key transformations
KeyType const pos_0 = key2index_0(arg_pos_0);
KeyType const pos_1 = key2index_1(arg_pos_1);
// ???? should use modf() here!
SignedSize const size_0 = data_.rows();
SignedSize const lower_0 = SignedSize(pos_0); // this rounds towards zero
SignedSize const size_1 = data_.cols();
SignedSize const lower_1 = SignedSize(pos_1); // this rounds towards zero
// small pos_0
if (pos_0 <= 0)
{
if (lower_0 != 0)
{
return 0;
}
else // that is: -1 < pos_0 <= 0
{ // small pos_1
if (pos_1 <= 0)
{
if (lower_1 != 0)
{
return 0;
}
else // that is: -1 < pos_1 <= 0
{
return data_(0, 0) * (1. + pos_0) * (1. + pos_1);
}
}
// big pos_1
if (lower_1 >= size_1 - 1)
{
if (lower_1 != size_1 - 1)
{
return 0;
}
else
{
return data_(0, lower_1) * (1. + pos_0) * (size_1 - pos_1);
}
}
// mediumm pos_1
KeyType const factor_1 = pos_1 - KeyType(lower_1);
KeyType const factor_1_complement = KeyType(1.) - factor_1;
return (
data_(0, lower_1 + 1) * factor_1 +
data_(0, lower_1) * factor_1_complement
) * (1. + pos_0);
}
}
// big pos_0
if (lower_0 >= size_0 - 1)
{
if (lower_0 != size_0 - 1)
{
return 0;
}
else // that is: size_0 - 1 <= pos_0 < size_0
{ // small pos_1
if (pos_1 <= 0)
{
if (lower_1 != 0)
{
return 0;
}
else // that is: -1 < pos_1 <= 0
{
return data_(lower_0, 0) * (size_0 - pos_0) * (1. + pos_1);
}
}
// big pos_1
if (lower_1 >= size_1 - 1)
{
if (lower_1 != size_1 - 1)
{
return 0;
}
else
{
return data_(lower_0, lower_1) * (size_0 - pos_0) * (size_1 - pos_1);
}
}
// mediumm pos_1
KeyType const factor_1 = pos_1 - KeyType(lower_1);
KeyType const factor_1_complement = KeyType(1.) - factor_1;
return (
data_(lower_0, lower_1 + 1) * factor_1 +
data_(lower_0, lower_1) * factor_1_complement
)
* (size_0 - pos_0);
}
}
// medium pos_0
{
KeyType const factor_0 = pos_0 - KeyType(lower_0);
KeyType const factor_0_complement = KeyType(1.) - factor_0;
// small pos_1
if (pos_1 <= 0)
{
if (lower_1 != 0)
{
return 0;
}
else // that is: -1 < pos_1 <= 0
{
return (
data_(lower_0 + 1, 0) * factor_0
+
data_(lower_0, 0) * factor_0_complement
)
* (1. + pos_1);
}
}
// big pos_1
if (lower_1 >= size_1 - 1)
{
if (lower_1 != size_1 - 1)
{
return 0;
}
else
{
return (
data_(lower_0 + 1, lower_1) * factor_0
+
data_(lower_0, lower_1) * factor_0_complement
)
* (size_1 - pos_1);
}
}
KeyType const factor_1 = pos_1 - KeyType(lower_1);
KeyType const factor_1_complement = KeyType(1.) - factor_1;
// medium pos_0 and medium pos_1 --> "within" the matrix
return (
data_(lower_0 + 1, lower_1 + 1) * factor_0
+
data_(lower_0, lower_1 + 1) * factor_0_complement
)
* factor_1
+
(
data_(lower_0 + 1, lower_1) * factor_0
+
data_(lower_0, lower_1) * factor_0_complement
)
* factor_1_complement;
}
}
/**@brief Performs bilinear resampling. The arg_value is split up and
added to the data points around arg_pos. ("forward resampling")
*/
void addValue(KeyType arg_pos_0, KeyType arg_pos_1, ValueType arg_value)
{
typedef typename container_type::difference_type DiffType;
// apply key transformation _0
KeyType const pos_0 = key2index_0(arg_pos_0);
KeyType lower_0_key;
KeyType const frac_0 = std::modf(pos_0, &lower_0_key);
DiffType const lower_0 = DiffType(lower_0_key);
// Small pos_0 ?
if (pos_0 < 0)
{
if (lower_0)
{
return;
}
else // lower_0 == 0
{ // apply key transformation _1
KeyType const pos_1 = key2index_1(arg_pos_1);
KeyType lower_1_key;
KeyType const frac_1 = std::modf(pos_1, &lower_1_key);
DiffType const lower_1 = DiffType(lower_1_key);
// Small pos_1 ?
if (pos_1 < 0)
{
if (lower_1)
{
return;
}
else // lower_1 == 0
{
data_(0, 0) += arg_value * (1 + frac_0) * (1 + frac_1);
return;
}
}
else // pos_1 >= 0
{
DiffType const back_1 = data_.cols() - 1;
// big pos_1
if (lower_1 >= back_1)
{
if (lower_1 != back_1)
{
return;
}
else // lower_1 == back_1
{
data_(0, lower_1) += arg_value * (1 + frac_0) * (1 - frac_1);
return;
}
}
else
{
// medium pos_1
KeyType const tmp_prod = KeyType(arg_value * (1. + frac_0));
data_(0, lower_1 + 1) += tmp_prod * frac_1;
data_(0, lower_1) += tmp_prod * (1. - frac_1);
return;
}
}
}
}
else // pos_0 >= 0
{
DiffType const back_0 = data_.rows() - 1;
if (lower_0 >= back_0)
{
if (lower_0 != back_0)
{
return;
}
else // lower_0 == back_0
{
KeyType const tmp_prod = KeyType(arg_value * (1. - frac_0));
// apply key transformation _1
KeyType const pos_1 = key2index_1(arg_pos_1);
KeyType lower_1_key;
KeyType const frac_1 = std::modf(pos_1, &lower_1_key);
DiffType const lower_1 = DiffType(lower_1_key);
// Small pos_1 ?
if (pos_1 < 0)
{
if (lower_1)
{
return;
}
else // lower_1 == 0
{
data_(lower_0, 0) += tmp_prod * (1 + frac_1);
return;
}
}
else // pos_1 >= 0
{
DiffType const back_1 = data_.cols() - 1;
// big pos_1
if (lower_1 >= back_1)
{
if (lower_1 != back_1)
{
return;
}
else // lower_1 == back_1
{
data_(lower_0, lower_1) += tmp_prod * (1 - frac_1);
return;
}
}
else
{
// medium pos_1
data_(lower_0, lower_1 + 1) += tmp_prod * frac_1;
data_(lower_0, lower_1) += tmp_prod * (1 - frac_1);
return;
}
}
}
}
else // lower_0 < back_0
{
// Medium pos_0 !
// apply key transformation _1
KeyType const pos_1 = key2index_1(arg_pos_1);
KeyType lower_1_key;
KeyType const frac_1 = std::modf(pos_1, &lower_1_key);
DiffType const lower_1 = DiffType(lower_1_key);
// Small pos_1 ?
if (pos_1 < 0)
{
if (lower_1)
{
return;
}
else // lower_1 == 0
{
KeyType const tmp_prod = KeyType(arg_value * (1 + frac_1));
data_(lower_0 + 1, 0) += tmp_prod * frac_0;
data_(lower_0, 0) += tmp_prod * (1 - frac_0);
return;
}
}
else // pos_1 >= 0
{
DiffType const back_1 = data_.cols() - 1;
// big pos_1
if (lower_1 >= back_1)
{
if (lower_1 != back_1)
{
return;
}
else // lower_1 == back_1
{
KeyType const tmp_prod = KeyType(arg_value * (1 - frac_1));
data_(lower_0 + 1, lower_1) += tmp_prod * frac_0;
data_(lower_0, lower_1) += tmp_prod * (1 - frac_0);
return;
}
}
else
{
// Medium pos_1 !
// medium pos_0 and medium pos_1 --> "within" the matrix
KeyType tmp_prod = KeyType(arg_value * frac_0);
data_(lower_0 + 1, lower_1 + 1) += tmp_prod * frac_1;
data_(lower_0 + 1, lower_1) += tmp_prod * (1 - frac_1);
tmp_prod = KeyType(arg_value * (1 - frac_0));
data_(lower_0, lower_1 + 1) += tmp_prod * frac_1;
data_(lower_0, lower_1) += tmp_prod * (1 - frac_1);
return;
}
}
}
}
}
//@}
// ----------------------------------------------------------------------
///@name Discrete (non-interpolated) data
//@{
/// Returns the internal random access container storing the data.
ContainerType & getData()
{
return data_;
}
/// Returns the internal random access container storing the data.
ContainerType const & getData() const
{
return data_;
}
/**@brief Assigns data to the internal random access container storing
the data.
SourceContainer must be assignable to ContainerType.
*/
template <typename SourceContainer>
void setData(SourceContainer const & data)
{
data_ = data;
}
/// Returns \c true if getData() is empty.
bool empty() const
{
return data_.empty();
}
//@}
// ----------------------------------------------------------------------
///\name Transformation
//@{
/// The transformation from "outside" to "inside" coordinates.
KeyType key2index_0(KeyType pos) const
{
if (scale_0_)
{
pos -= offset_0_;
pos /= scale_0_;
return pos;
}
else
{
return 0;
}
}
/// The transformation from "inside" to "outside" coordinates.
KeyType index2key_0(KeyType pos) const
{
pos *= scale_0_;
pos += offset_0_;
return pos;
}
/// The transformation from "outside" to "inside" coordinates.
KeyType key2index_1(KeyType pos) const
{
if (scale_1_)
{
pos -= offset_1_;
pos /= scale_1_;
return pos;
}
else
{
return 0;
}
}
/// The transformation from "inside" to "outside" coordinates.
KeyType index2key_1(KeyType pos) const
{
pos *= scale_1_;
pos += offset_1_;
return pos;
}
/// Accessor. "Scale" is the difference (in "outside" units) between consecutive entries in "Data".
KeyType const & getScale_0() const
{
return scale_0_;
}
/// Accessor. "Scale" is the difference (in "outside" units) between consecutive entries in "Data".
KeyType const & getScale_1() const
{
return scale_1_;
}
/**@brief Accessor. "Scale" is the difference (in "outside" units) between consecutive entries in "Data".
<b>Note:</b> Using this invalidates the inside and outside reference
points.
*/
void setScale_0(KeyType const & scale)
{
scale_0_ = scale;
}
/**@brief Accessor. "Scale" is the difference (in "outside" units) between consecutive entries in "Data".
<b>Note:</b> Using this invalidates the inside and outside reference
points.
*/
void setScale_1(KeyType const & scale)
{
scale_1_ = scale;
}
/// Accessor. "Offset" is the point (in "outside" units) which corresponds to "Data(0,0)".
KeyType const & getOffset_0() const
{
return offset_0_;
}
/// Accessor. "Offset" is the point (in "outside" units) which corresponds to "Data(0,0)".
KeyType const & getOffset_1() const
{
return offset_1_;
}
/**@brief Accessor. "Offset" is the point (in "outside" units) which
corresponds to "Data(0,0)".
<b>Note:</b> Using this invalidates the inside and outside reference
points.
*/
void setOffset_0(KeyType const & offset)
{
offset_0_ = offset;
}
/**@brief Accessor. "Offset" is the point (in "outside" units) which
corresponds to "Data(0,0)".
<b>Note:</b> Using this invalidates the inside and outside reference
points.
*/
void setOffset_1(KeyType const & offset)
{
offset_1_ = offset;
}
/**@brief Specifies the mapping from "outside" to "inside" coordinates by the following data:
- <code>scale</code>: the difference in outside coordinates between consecutive values in the data vector.
- <code>inside</code> and <code>outside</code>: these axis positions are mapped onto each other.
For example, when you have a complicated probability distribution
which is in fact centered around zero (but you cannot have negative
indices in the data vector), then you can arrange things such that
inside is the mean of the pre-computed, shifted density values of that
distribution and outside is the centroid position of, say, a peak in
the real world which you want to model by a scaled and shifted version
of the probability distribution.
*/
void setMapping_0(KeyType const & scale, KeyType const & inside_low, KeyType const & outside_low)
{
scale_0_ = scale;
inside_0_ = inside_low;
outside_0_ = outside_low;
offset_0_ = outside_low - scale * inside_low;
return;
}
/**@brief Specifies the mapping from "outside" to "inside" coordinates by the following data:
- <code>inside_low</code> and <code>outside_low</code>: these axis positions are mapped onto each other.
- <code>inside_high</code> and <code>outside_high</code>: these axis positions are mapped onto each other.
This four argument version is just a convenience overload for the three argument version, which see.
*/
void setMapping_0(KeyType const & inside_low, KeyType const & outside_low,
KeyType const & inside_high, KeyType const & outside_high)
{
if (inside_high != inside_low)
{
setMapping_0((outside_high - outside_low) / (inside_high - inside_low),
inside_low, outside_low);
}
else
{
setMapping_0(0, inside_low, outside_low);
}
return;
}
/**@brief Specifies the mapping from "outside" to "inside" coordinates by the following data:
- <code>scale</code>: the difference in outside coordinates between consecutive values in the data vector.
- <code>inside</code> and <code>outside</code>: these axis positions are mapped onto each other.
For example, when you have a complicated probability distribution
which is in fact centered around zero (but you cannot have negative
indices in the data vector), then you can arrange things such that
inside is the mean of the pre-computed, shifted density values of that
distribution and outside is the centroid position of, say, a peak in
the real world which you want to model by a scaled and shifted version
of the probability distribution.
*/
void setMapping_1(KeyType const & scale, KeyType const & inside_low, KeyType const & outside_low)
{
scale_1_ = scale;
inside_1_ = inside_low;
outside_1_ = outside_low;
offset_1_ = outside_low - scale * inside_low;
return;
}
/**@brief Specifies the mapping from "outside" to "inside" coordinates by the following data:
- <code>inside_low</code> and <code>outside_low</code>: these axis positions are mapped onto each other.
- <code>inside_high</code> and <code>outside_high</code>: these axis positions are mapped onto each other.
This four argument version is just a convenience overload for the three argument version, which see.
*/
void setMapping_1(KeyType const & inside_low, KeyType const & outside_low,
KeyType const & inside_high, KeyType const & outside_high)
{
if (inside_high != inside_low)
{
setMapping_1((outside_high - outside_low) / (inside_high - inside_low),
inside_low, outside_low);
}
else
{
setMapping_1(0, inside_low, outside_low);
}
return;
}
/// Accessor. See setMapping().
KeyType const & getInsideReferencePoint_0() const
{
return inside_0_;
}
/// Accessor. See setMapping().
KeyType const & getInsideReferencePoint_1() const
{
return inside_1_;
}
/// Accessor. See setMapping().
KeyType const & getOutsideReferencePoint_0() const
{
return outside_0_;
}
/// Accessor. See setMapping().
KeyType const & getOutsideReferencePoint_1() const
{
return outside_1_;
}
/// Lower boundary of the support, in "outside" coordinates.
KeyType supportMin_0() const
{
return index2key_0(empty() ? KeyType(0.) : KeyType(-1.));
}
/// Lower boundary of the support, in "outside" coordinates.
KeyType supportMin_1() const
{
return index2key_1(empty() ? KeyType(0.) : KeyType(-1.));
}
/// Upper boundary of the support, in "outside" coordinates.
KeyType supportMax_0() const
{
return index2key_0(KeyType(data_.rows()));
}
/// Upper boundary of the support, in "outside" coordinates.
KeyType supportMax_1() const
{
return index2key_1(KeyType(data_.cols()));
}
//@}
protected:
/**@brief Data members*/
//@{
KeyType scale_0_;
KeyType offset_0_;
KeyType scale_1_;
KeyType offset_1_;
KeyType inside_0_;
KeyType outside_0_;
KeyType inside_1_;
KeyType outside_1_;
ContainerType data_;
//@}
};
} // namespace Math
} // namespace OpenMS
#endif // OPENMS_MATH_MISC_BILINEARINTERPOLATION_H
|