This file is indexed.

/usr/include/OpenMS/MATH/MISC/BilinearInterpolation.h is in libopenms-dev 1.11.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
// --------------------------------------------------------------------------
//                   OpenMS -- Open-Source Mass Spectrometry
// --------------------------------------------------------------------------
// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen,
// ETH Zurich, and Freie Universitaet Berlin 2002-2013.
//
// This software is released under a three-clause BSD license:
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//  * Neither the name of any author or any participating institution
//    may be used to endorse or promote products derived from this software
//    without specific prior written permission.
// For a full list of authors, refer to the file AUTHORS.
// --------------------------------------------------------------------------
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING
// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// --------------------------------------------------------------------------
// $Maintainer: Clemens Groepl $
// $Authors: $
// --------------------------------------------------------------------------

#ifndef OPENMS_MATH_MISC_BILINEARINTERPOLATION_H
#define OPENMS_MATH_MISC_BILINEARINTERPOLATION_H

#include <OpenMS/DATASTRUCTURES/Matrix.h>

namespace OpenMS
{

  namespace Math
  {

    /**
         @brief Provides access to bilinearly interpolated values (and
         derivatives) from discrete data points.  Values beyond the given range
         of data points are implicitly taken as zero.

         The input is just a vector of values ("Data").  These are interpreted
         as the y-coordinates at the x-coordinate positions 0,...,data_.size-1.

         The interpolated data can also be <i>scaled</i> and <i>shifted</i> in
         the x-dimension by an <em>affine mapping</em>.  That is, we have "inside" and
         "outside" x-coordinates.  The affine mapping can be specified in two
         ways:
         - using setScale() and setOffset(),
         - using setMapping()
         .
         By default the identity mapping (scale=1, offset=0) is used.

         Using the value() and derivative() methods you can sample bilinearly
         interpolated values for a given x-coordinate position of the data and
         the derivative of the data.

         @see LinearInterpolation


         @ingroup Math
    */
    template <typename Key = double, typename Value = Key>
    class BilinearInterpolation
    {

public:

      ///@name Typedefs
      //@{
      typedef Value value_type;

      typedef Key key_type;
      typedef Matrix<value_type> container_type;

      typedef value_type ValueType;
      typedef key_type KeyType;
      typedef container_type ContainerType;
      //@}

public:

      /**@brief Constructors and destructor.
      */
      //@{

      /// Default constructor
      BilinearInterpolation() :
        scale_0_(1),
        offset_0_(0),
        scale_1_(1),
        offset_1_(0),
        inside_0_(0),
        outside_0_(0),
        inside_1_(0),
        outside_1_(0),
        data_()
      {}

      /// Copy constructor
      BilinearInterpolation(BilinearInterpolation const & arg) :
        scale_0_(arg.scale_0_),
        offset_0_(arg.offset_0_),
        scale_1_(arg.scale_1_),
        offset_1_(arg.offset_1_),
        inside_0_(arg.inside_0_),
        outside_0_(arg.outside_0_),
        inside_1_(arg.inside_1_),
        outside_1_(arg.outside_1_),
        data_(arg.data_)
      {}

      /// Assignment operator
      BilinearInterpolation & operator=(BilinearInterpolation const & arg)
      {
        if (&arg == this)
          return *this;

        scale_0_ = arg.scale_0_;
        offset_0_ = arg.offset_0_;
        scale_1_ = arg.scale_1_;
        offset_1_ = arg.offset_1_;
        inside_0_ = arg.inside_0_;
        outside_1_ = arg.outside_1_;
        inside_1_ = arg.inside_1_;
        outside_0_ = arg.outside_0_;
        data_ = arg.data_;
        return *this;
      }

      /// Destructor
      ~BilinearInterpolation()
      {}

      //@}

      // ----------------------------------------------------------------------

      ///@name Interpolated data
      //@{

      /// Returns the interpolated value ("backward resampling")
      ValueType value(KeyType arg_pos_0, KeyType arg_pos_1) const
      {
        // apply the key transformations
        KeyType const pos_0 = key2index_0(arg_pos_0);
        KeyType const pos_1 = key2index_1(arg_pos_1);

        // ???? should use modf() here!

        SignedSize const size_0 = data_.rows();
        SignedSize const lower_0 = SignedSize(pos_0);           // this rounds towards zero
        SignedSize const size_1 = data_.cols();
        SignedSize const lower_1 = SignedSize(pos_1);           // this rounds towards zero

        // small pos_0
        if (pos_0 <= 0)
        {
          if (lower_0 != 0)
          {
            return 0;
          }
          else        // that is: -1 < pos_0 <= 0
          {             // small pos_1
            if (pos_1 <= 0)
            {
              if (lower_1 != 0)
              {
                return 0;
              }
              else            // that is: -1 < pos_1 <= 0
              {
                return data_(0, 0) * (1. + pos_0) * (1. + pos_1);
              }
            }

            // big pos_1
            if (lower_1 >= size_1 - 1)
            {
              if (lower_1 != size_1 - 1)
              {
                return 0;
              }
              else
              {
                return data_(0, lower_1) * (1. + pos_0) * (size_1 - pos_1);
              }
            }

            // mediumm pos_1
            KeyType const factor_1 = pos_1 - KeyType(lower_1);
            KeyType const factor_1_complement = KeyType(1.) - factor_1;
            return (
                     data_(0, lower_1 + 1) * factor_1 +
                     data_(0, lower_1) * factor_1_complement
                     ) * (1. + pos_0);
          }
        }

        // big pos_0
        if (lower_0 >= size_0 - 1)
        {
          if (lower_0 != size_0 - 1)
          {
            return 0;
          }
          else        // that is: size_0 - 1 <= pos_0 < size_0
          {             // small pos_1
            if (pos_1 <= 0)
            {
              if (lower_1 != 0)
              {
                return 0;
              }
              else            // that is: -1 < pos_1 <= 0
              {
                return data_(lower_0, 0) * (size_0 - pos_0) * (1. + pos_1);
              }
            }

            // big pos_1
            if (lower_1 >= size_1 - 1)
            {
              if (lower_1 != size_1 - 1)
              {
                return 0;
              }
              else
              {
                return data_(lower_0, lower_1) * (size_0 - pos_0) * (size_1 - pos_1);
              }
            }

            // mediumm pos_1
            KeyType const factor_1 = pos_1 - KeyType(lower_1);
            KeyType const factor_1_complement = KeyType(1.) - factor_1;
            return (
                     data_(lower_0, lower_1 + 1) * factor_1 +
                     data_(lower_0, lower_1) * factor_1_complement
                     )
                   * (size_0 - pos_0);
          }
        }

        // medium pos_0
        {
          KeyType const factor_0 = pos_0 - KeyType(lower_0);
          KeyType const factor_0_complement = KeyType(1.) - factor_0;

          // small pos_1
          if (pos_1 <= 0)
          {
            if (lower_1 != 0)
            {
              return 0;
            }
            else          // that is: -1 < pos_1 <= 0
            {
              return (
                       data_(lower_0 + 1, 0) * factor_0
                       +
                       data_(lower_0, 0) * factor_0_complement
                       )
                     * (1. + pos_1);
            }
          }

          // big pos_1
          if (lower_1 >= size_1 - 1)
          {
            if (lower_1 != size_1 - 1)
            {
              return 0;
            }
            else
            {
              return (
                       data_(lower_0 + 1, lower_1) * factor_0
                       +
                       data_(lower_0, lower_1) * factor_0_complement
                       )
                     * (size_1 - pos_1);
            }
          }
          KeyType const factor_1 = pos_1 - KeyType(lower_1);
          KeyType const factor_1_complement = KeyType(1.) - factor_1;

          // medium pos_0 and medium pos_1 --> "within" the matrix
          return (
                   data_(lower_0 + 1, lower_1 + 1) * factor_0
                   +
                   data_(lower_0, lower_1 + 1) * factor_0_complement
                   )
                 * factor_1
                 +
                 (
                   data_(lower_0 + 1, lower_1) * factor_0
                   +
                   data_(lower_0, lower_1) * factor_0_complement
                 )
                 * factor_1_complement;
        }
      }

      /**@brief Performs bilinear resampling.  The arg_value is split up and
           added to the data points around arg_pos.  ("forward resampling")
      */
      void addValue(KeyType arg_pos_0, KeyType arg_pos_1, ValueType arg_value)
      {

        typedef typename container_type::difference_type DiffType;

        // apply key transformation _0
        KeyType const pos_0 = key2index_0(arg_pos_0);
        KeyType lower_0_key;
        KeyType const frac_0 = std::modf(pos_0, &lower_0_key);
        DiffType const lower_0 = DiffType(lower_0_key);

        // Small pos_0 ?
        if (pos_0 < 0)
        {
          if (lower_0)
          {
            return;
          }
          else        // lower_0 == 0
          {             // apply key transformation _1
            KeyType const pos_1 = key2index_1(arg_pos_1);
            KeyType lower_1_key;
            KeyType const frac_1 = std::modf(pos_1, &lower_1_key);
            DiffType const lower_1 = DiffType(lower_1_key);

            // Small pos_1 ?
            if (pos_1 < 0)
            {
              if (lower_1)
              {
                return;
              }
              else            // lower_1 == 0
              {
                data_(0, 0) += arg_value * (1 + frac_0) * (1 + frac_1);
                return;
              }
            }
            else             // pos_1 >= 0
            {
              DiffType const back_1 = data_.cols() - 1;
              // big pos_1
              if (lower_1 >= back_1)
              {
                if (lower_1 != back_1)
                {
                  return;
                }
                else                 // lower_1 == back_1
                {
                  data_(0, lower_1) += arg_value * (1 + frac_0) * (1 - frac_1);
                  return;
                }
              }
              else
              {
                // medium pos_1
                KeyType const tmp_prod = KeyType(arg_value * (1. + frac_0));
                data_(0, lower_1 + 1) += tmp_prod * frac_1;
                data_(0, lower_1) += tmp_prod * (1. - frac_1);
                return;
              }
            }
          }
        }
        else         // pos_0 >= 0
        {
          DiffType const back_0 = data_.rows() - 1;
          if (lower_0 >= back_0)
          {
            if (lower_0 != back_0)
            {
              return;
            }
            else             // lower_0 == back_0
            {

              KeyType const tmp_prod = KeyType(arg_value * (1. - frac_0));

              // apply key transformation _1
              KeyType const pos_1 = key2index_1(arg_pos_1);
              KeyType lower_1_key;
              KeyType const frac_1 = std::modf(pos_1, &lower_1_key);
              DiffType const lower_1 = DiffType(lower_1_key);

              // Small pos_1 ?
              if (pos_1 < 0)
              {
                if (lower_1)
                {
                  return;
                }
                else              // lower_1 == 0
                {
                  data_(lower_0, 0) += tmp_prod * (1 + frac_1);
                  return;
                }
              }
              else               // pos_1 >= 0
              {
                DiffType const back_1 = data_.cols() - 1;
                // big pos_1
                if (lower_1 >= back_1)
                {
                  if (lower_1 != back_1)
                  {
                    return;
                  }
                  else                   // lower_1 == back_1
                  {
                    data_(lower_0, lower_1) += tmp_prod * (1 - frac_1);
                    return;
                  }
                }
                else
                {
                  // medium pos_1
                  data_(lower_0, lower_1 + 1) += tmp_prod * frac_1;
                  data_(lower_0, lower_1) += tmp_prod * (1 - frac_1);
                  return;
                }
              }
            }
          }
          else           // lower_0 < back_0
          {

            // Medium pos_0 !

            // apply key transformation _1
            KeyType const pos_1 = key2index_1(arg_pos_1);
            KeyType lower_1_key;
            KeyType const frac_1 = std::modf(pos_1, &lower_1_key);
            DiffType const lower_1 = DiffType(lower_1_key);

            // Small pos_1 ?
            if (pos_1 < 0)
            {
              if (lower_1)
              {
                return;
              }
              else            // lower_1 == 0
              {
                KeyType const tmp_prod = KeyType(arg_value * (1 + frac_1));
                data_(lower_0 + 1, 0) += tmp_prod * frac_0;
                data_(lower_0, 0) += tmp_prod * (1 - frac_0);
                return;
              }
            }
            else             // pos_1 >= 0
            {
              DiffType const back_1 = data_.cols() - 1;
              // big pos_1
              if (lower_1 >= back_1)
              {
                if (lower_1 != back_1)
                {
                  return;
                }
                else                 // lower_1 == back_1
                {
                  KeyType const tmp_prod = KeyType(arg_value * (1 - frac_1));
                  data_(lower_0 + 1, lower_1) += tmp_prod * frac_0;
                  data_(lower_0, lower_1) += tmp_prod * (1 - frac_0);
                  return;
                }
              }
              else
              {
                // Medium pos_1 !

                // medium pos_0 and medium pos_1 --> "within" the matrix
                KeyType tmp_prod = KeyType(arg_value * frac_0);
                data_(lower_0 + 1, lower_1 + 1) += tmp_prod * frac_1;
                data_(lower_0 + 1, lower_1) += tmp_prod * (1 - frac_1);
                tmp_prod = KeyType(arg_value * (1 - frac_0));
                data_(lower_0, lower_1 + 1) += tmp_prod * frac_1;
                data_(lower_0, lower_1) += tmp_prod * (1 - frac_1);
                return;
              }
            }
          }
        }
      }

      //@}

      // ----------------------------------------------------------------------

      ///@name Discrete (non-interpolated) data
      //@{

      /// Returns the internal random access container storing the data.
      ContainerType & getData()
      {
        return data_;
      }

      /// Returns the internal random access container storing the data.
      ContainerType const & getData() const
      {
        return data_;
      }

      /**@brief Assigns data to the internal random access container storing
           the data.

           SourceContainer must be assignable to ContainerType.
      */
      template <typename SourceContainer>
      void setData(SourceContainer const & data)
      {
        data_ = data;
      }

      /// Returns \c true if getData() is empty.
      bool empty() const
      {
        return data_.empty();
      }

      //@}

      // ----------------------------------------------------------------------

      ///\name Transformation
      //@{

      /// The transformation from "outside" to "inside" coordinates.
      KeyType key2index_0(KeyType pos) const
      {
        if (scale_0_)
        {
          pos -= offset_0_;
          pos /= scale_0_;
          return pos;
        }
        else
        {
          return 0;
        }
      }

      /// The transformation from "inside" to "outside" coordinates.
      KeyType index2key_0(KeyType pos) const
      {
        pos *= scale_0_;
        pos += offset_0_;
        return pos;
      }

      /// The transformation from "outside" to "inside" coordinates.
      KeyType key2index_1(KeyType pos) const
      {
        if (scale_1_)
        {
          pos -= offset_1_;
          pos /= scale_1_;
          return pos;
        }
        else
        {
          return 0;
        }
      }

      /// The transformation from "inside" to "outside" coordinates.
      KeyType index2key_1(KeyType pos) const
      {
        pos *= scale_1_;
        pos += offset_1_;
        return pos;
      }

      /// Accessor.  "Scale" is the difference (in "outside" units) between consecutive entries in "Data".
      KeyType const & getScale_0() const
      {
        return scale_0_;
      }

      /// Accessor.  "Scale" is the difference (in "outside" units) between consecutive entries in "Data".
      KeyType const & getScale_1() const
      {
        return scale_1_;
      }

      /**@brief Accessor.  "Scale" is the difference (in "outside" units) between consecutive entries in "Data".

      <b>Note:</b> Using this invalidates the inside and outside reference
      points.
      */
      void setScale_0(KeyType const & scale)
      {
        scale_0_ = scale;
      }

      /**@brief Accessor.  "Scale" is the difference (in "outside" units) between consecutive entries in "Data".

      <b>Note:</b> Using this invalidates the inside and outside reference
      points.
      */
      void setScale_1(KeyType const & scale)
      {
        scale_1_ = scale;
      }

      /// Accessor.  "Offset" is the point (in "outside" units) which corresponds to "Data(0,0)".
      KeyType const & getOffset_0() const
      {
        return offset_0_;
      }

      /// Accessor.  "Offset" is the point (in "outside" units) which corresponds to "Data(0,0)".
      KeyType const & getOffset_1() const
      {
        return offset_1_;
      }

      /**@brief Accessor.  "Offset" is the point (in "outside" units) which
           corresponds to "Data(0,0)".

           <b>Note:</b> Using this invalidates the inside and outside reference
           points.
      */
      void setOffset_0(KeyType const & offset)
      {
        offset_0_ = offset;
      }

      /**@brief Accessor.  "Offset" is the point (in "outside" units) which
           corresponds to "Data(0,0)".

           <b>Note:</b> Using this invalidates the inside and outside reference
           points.
      */
      void setOffset_1(KeyType const & offset)
      {
        offset_1_ = offset;
      }

      /**@brief Specifies the mapping from "outside" to "inside" coordinates by the following data:
           - <code>scale</code>: the difference in outside coordinates between consecutive values in the data vector.
           - <code>inside</code> and <code>outside</code>: these axis positions are mapped onto each other.

           For example, when you have a complicated probability distribution
           which is in fact centered around zero (but you cannot have negative
           indices in the data vector), then you can arrange things such that
           inside is the mean of the pre-computed, shifted density values of that
           distribution and outside is the centroid position of, say, a peak in
           the real world which you want to model by a scaled and shifted version
           of the probability distribution.

      */
      void setMapping_0(KeyType const & scale, KeyType const & inside_low, KeyType const & outside_low)
      {
        scale_0_ = scale;
        inside_0_ = inside_low;
        outside_0_ = outside_low;
        offset_0_ = outside_low - scale * inside_low;
        return;
      }

      /**@brief Specifies the mapping from "outside" to "inside" coordinates by the following data:
           - <code>inside_low</code> and <code>outside_low</code>: these axis positions are mapped onto each other.
           - <code>inside_high</code> and <code>outside_high</code>: these axis positions are mapped onto each other.

           This four argument version is just a convenience overload for the three argument version, which see.
      */
      void setMapping_0(KeyType const & inside_low, KeyType const & outside_low,
                        KeyType const & inside_high, KeyType const & outside_high)
      {
        if (inside_high != inside_low)
        {
          setMapping_0((outside_high - outside_low) / (inside_high - inside_low),
                       inside_low, outside_low);
        }
        else
        {
          setMapping_0(0, inside_low, outside_low);
        }
        return;
      }

      /**@brief Specifies the mapping from "outside" to "inside" coordinates by the following data:
           - <code>scale</code>: the difference in outside coordinates between consecutive values in the data vector.
           - <code>inside</code> and <code>outside</code>: these axis positions are mapped onto each other.

           For example, when you have a complicated probability distribution
           which is in fact centered around zero (but you cannot have negative
           indices in the data vector), then you can arrange things such that
           inside is the mean of the pre-computed, shifted density values of that
           distribution and outside is the centroid position of, say, a peak in
           the real world which you want to model by a scaled and shifted version
           of the probability distribution.

      */
      void setMapping_1(KeyType const & scale, KeyType const & inside_low, KeyType const & outside_low)
      {
        scale_1_ = scale;
        inside_1_ = inside_low;
        outside_1_ = outside_low;
        offset_1_ = outside_low - scale * inside_low;
        return;
      }

      /**@brief Specifies the mapping from "outside" to "inside" coordinates by the following data:
           - <code>inside_low</code> and <code>outside_low</code>: these axis positions are mapped onto each other.
           - <code>inside_high</code> and <code>outside_high</code>: these axis positions are mapped onto each other.

           This four argument version is just a convenience overload for the three argument version, which see.
      */
      void setMapping_1(KeyType const & inside_low, KeyType const & outside_low,
                        KeyType const & inside_high, KeyType const & outside_high)
      {
        if (inside_high != inside_low)
        {
          setMapping_1((outside_high - outside_low) / (inside_high - inside_low),
                       inside_low, outside_low);
        }
        else
        {
          setMapping_1(0, inside_low, outside_low);
        }
        return;
      }

      /// Accessor.  See setMapping().
      KeyType const & getInsideReferencePoint_0() const
      {
        return inside_0_;
      }

      /// Accessor.  See setMapping().
      KeyType const & getInsideReferencePoint_1() const
      {
        return inside_1_;
      }

      /// Accessor.  See setMapping().
      KeyType const & getOutsideReferencePoint_0() const
      {
        return outside_0_;
      }

      /// Accessor.  See setMapping().
      KeyType const & getOutsideReferencePoint_1() const
      {
        return outside_1_;
      }

      /// Lower boundary of the support, in "outside" coordinates.
      KeyType supportMin_0() const
      {
        return index2key_0(empty() ? KeyType(0.) : KeyType(-1.));
      }

      /// Lower boundary of the support, in "outside" coordinates.
      KeyType supportMin_1() const
      {
        return index2key_1(empty() ? KeyType(0.) : KeyType(-1.));
      }

      /// Upper boundary of the support, in "outside" coordinates.
      KeyType supportMax_0() const
      {
        return index2key_0(KeyType(data_.rows()));
      }

      /// Upper boundary of the support, in "outside" coordinates.
      KeyType supportMax_1() const
      {
        return index2key_1(KeyType(data_.cols()));
      }

      //@}

protected:

      /**@brief Data members*/
      //@{
      KeyType scale_0_;
      KeyType offset_0_;
      KeyType scale_1_;
      KeyType offset_1_;
      KeyType inside_0_;
      KeyType outside_0_;
      KeyType inside_1_;
      KeyType outside_1_;
      ContainerType data_;
      //@}
    };

  }   // namespace Math

} // namespace OpenMS

#endif // OPENMS_MATH_MISC_BILINEARINTERPOLATION_H