/usr/include/OpenMS/MATH/MISC/LinearInterpolation.h is in libopenms-dev 1.11.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 | // --------------------------------------------------------------------------
// OpenMS -- Open-Source Mass Spectrometry
// --------------------------------------------------------------------------
// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen,
// ETH Zurich, and Freie Universitaet Berlin 2002-2013.
//
// This software is released under a three-clause BSD license:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of any author or any participating institution
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
// For a full list of authors, refer to the file AUTHORS.
// --------------------------------------------------------------------------
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING
// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// --------------------------------------------------------------------------
// $Maintainer: Clemens Groepl $
// $Authors: $
// --------------------------------------------------------------------------
#ifndef OPENMS_MATH_MISC_LINEARINTERPOLATION_H
#define OPENMS_MATH_MISC_LINEARINTERPOLATION_H
#include <OpenMS/CONCEPT/Types.h>
#include <cmath> // for modf() (which is an overloaded function in C++)
#include <vector>
namespace OpenMS
{
namespace Math
{
/**
@brief Provides access to linearly interpolated values (and
derivatives) from discrete data points. Values beyond the given range
of data points are implicitly taken as zero.
The input is just a vector of values ("Data"). These are interpreted
as the y-coordinates at the x-coordinate positions 0,...,data_.size-1.
The interpolated data can also be <i>scaled</i> and <i>shifted</i> in
the x-dimension by an <em>affine mapping</em>. That is, we have "inside" and
"outside" x-coordinates. The affine mapping can be specified in two
ways:
- using setScale() and setOffset(),
- using setMapping()
.
By default the identity mapping (scale=1, offset=0) is used.
Using the value() and derivative() methods you can sample linearly
interpolated values for a given x-coordinate position of the data and
the derivative of the data.
@see BilinearInterpolation
@ingroup Math
*/
template <typename Key = DoubleReal, typename Value = Key>
class LinearInterpolation
{
public:
///\name Typedefs
//@{
typedef Value value_type;
typedef Key key_type;
typedef std::vector<value_type> container_type;
typedef value_type ValueType;
typedef key_type KeyType;
typedef container_type ContainerType;
//@}
public:
/**@brief Constructors and destructor.
The first argument is the scale which is applied to the arguments of
value() and derivative() before looking up the interpolated values in
the container. The second argument is the offset, which is
subtracted before everything else.
*/
LinearInterpolation(KeyType scale = 1., KeyType offset = 0.) :
scale_(scale),
offset_(offset),
inside_(),
outside_(),
data_()
{}
/// Copy constructor.
LinearInterpolation(LinearInterpolation const & arg) :
scale_(arg.scale_),
offset_(arg.offset_),
inside_(arg.inside_),
outside_(arg.outside_),
data_(arg.data_)
{}
/// Assignment operator
LinearInterpolation & operator=(LinearInterpolation const & arg)
{
if (&arg == this)
return *this;
scale_ = arg.scale_;
offset_ = arg.offset_;
inside_ = arg.inside_;
outside_ = arg.outside_;
data_ = arg.data_;
return *this;
}
/// Destructor.
~LinearInterpolation() {}
// ----------------------------------------------------------------------
///@name Interpolated data
//@{
/// Returns the interpolated value.
ValueType value(KeyType arg_pos) const
{
typedef typename container_type::difference_type DiffType;
// apply the key transformation
KeyType left_key;
KeyType pos = key2index(arg_pos);
KeyType frac = std::modf(pos, &left_key);
DiffType const left = DiffType(left_key);
// At left margin?
if (pos < 0)
{
if (left /* <= -1 */)
{
return 0;
}
else // left == 0
{
return data_[0] * (1 + frac);
}
}
else // pos >= 0
{
// At right margin?
DiffType const back = data_.size() - 1;
if (left >= back)
{
if (left != back)
{
return 0;
}
else
{
return data_[left] * (1 - frac);
}
}
else
{
// In between!
return data_[left + 1] * frac + data_[left] * (1 - frac);
}
}
}
/**@brief Performs linear resampling. The arg_value is split up and
added to the data points around arg_pos.
*/
void addValue(KeyType arg_pos, ValueType arg_value)
{
typedef typename container_type::difference_type DiffType;
// apply the key transformation
KeyType left_key;
KeyType const pos = key2index(arg_pos);
KeyType const frac = std::modf(pos, &left_key);
DiffType const left = DiffType(left_key);
// At left margin?
if (pos < 0)
{
if (left /* <= -1 */)
{
return;
}
else // left == 0
{
data_[0] += (1 + frac) * arg_value;
return;
}
}
else // pos >= 0
{
// At right margin?
DiffType const back = data_.size() - 1;
if (left >= back)
{
if (left != back)
{
return;
}
else // left == back
{
data_[left] += (1 - frac) * arg_value;
return;
}
}
else
{
// In between!
data_[left + 1] += frac * arg_value;
data_[left] += (1 - frac) * arg_value;
return;
}
}
}
/**@brief Returns the interpolated derivative.
Please drop me (= the maintainer) a message if you are using this.
*/
ValueType derivative(KeyType arg_pos) const
{
// apply the key transformation
KeyType const pos = key2index(arg_pos);
SignedSize const size_ = data_.size();
SignedSize const left = int(pos + 0.5); // rounds towards zero
if (left < 0) // quite small
{
return 0;
}
else
{
if (left == 0) // at the border
{
if (pos >= -0.5) // that is: -0.5 <= pos < +0.5
{
return (data_[1] - data_[0]) * (pos + 0.5) + (data_[0]) * (0.5 - pos);
}
else // that is: -1.5 <= pos < -0.5
{
return (data_[0]) * (pos + 1.5);
}
}
}
// "else" case: to the right of the left margin
KeyType factor = KeyType(left) - pos + KeyType(0.5);
if (left > size_) // quite large
{
return 0;
}
else
{
if (left < size_ - 1) // to the left of the right margin
{
// weighted average of derivatives for adjacent intervals
return (data_[left] - data_[left - 1]) * factor + (data_[left + 1] - data_[left]) * (1. - factor);
}
else // somewhat at the border
{
// at the border, first case
if (left == size_ - 1)
{
return (data_[left] - data_[left - 1]) * factor + (-data_[left]) * (1. - factor);
}
}
}
// else // that is: left == size_
// We pull the last remaining case out of the "if" tree to avoid a
// compiler warning ...
// at the border, second case
return (-data_[left - 1]) * factor;
}
//@}
// ----------------------------------------------------------------------
///@name Discrete (non-interpolated) data
//@{
/// Returns the internal random access container from which interpolated values are being sampled.
ContainerType & getData()
{
return data_;
}
/// Returns the internal random access container from which interpolated values are being sampled.
ContainerType const & getData() const
{
return data_;
}
/**@brief Assigns data to the internal random access container from
which interpolated values are being sampled.
SourceContainer must be assignable to ContainerType.
*/
template <typename SourceContainer>
void setData(SourceContainer const & data)
{
data_ = data;
}
/// Returns \c true if getData() is empty.
bool empty() const
{
return data_.empty();
}
//@}
// ----------------------------------------------------------------------
///\name Transformation
//@{
/// The transformation from "outside" to "inside" coordinates.
KeyType key2index(KeyType pos) const
{
if (scale_)
{
pos -= offset_;
pos /= scale_;
return pos;
}
else
{
return 0;
}
}
/// The transformation from "inside" to "outside" coordinates.
KeyType index2key(KeyType pos) const
{
pos *= scale_;
pos += offset_;
return pos;
}
/// Accessor. "Scale" is the difference (in "outside" units) between consecutive entries in "Data".
KeyType const & getScale() const
{
return scale_;
}
/**@brief Accessor. "Scale" is the difference (in "outside" units) between consecutive entries in "Data".
<b>Note:</b> Using this invalidates the inside and outside reference
points.
*/
void setScale(KeyType const & scale)
{
scale_ = scale;
}
/// Accessor. "Offset" is the point (in "outside" units) which corresponds to "Data[0]".
KeyType const & getOffset() const
{
return offset_;
}
/**@brief Accessor. "Offset" is the point (in "outside" units) which
corresponds to "Data[0]".
<b>Note:</b> Using this invalidates the inside and outside reference
points.
*/
void setOffset(KeyType const & offset)
{
offset_ = offset;
}
/**@brief Specifies the mapping from "outside" to "inside" coordinates by the following data:
- <code>scale</code>: the difference in outside coordinates between consecutive values in the data vector.
- <code>inside</code> and <code>outside</code>: these x-axis positions are mapped onto each other.
For example, when you have a complicated probability distribution
which is in fact centered around zero (but you cannot have negative
indices in the data vector), then you can arrange things such that
inside is the mean of the pre-computed, shifted density values of that
distribution and outside is the centroid position of, say, a peak in
the real world which you want to model by a scaled and shifted version
of the probability distribution.
*/
void setMapping(KeyType const & scale, KeyType const & inside, KeyType const & outside)
{
scale_ = scale;
inside_ = inside;
outside_ = outside;
offset_ = outside - scale * inside;
}
/**@brief Specifies the mapping from "outside" to "inside" coordinates by the following data:
- <code>inside_low</code> and <code>outside_low</code>: these axis positions are mapped onto each other.
- <code>inside_high</code> and <code>outside_high</code>: these axis positions are mapped onto each other.
This four argument version is just a convenience overload for the three argument version, which see.
*/
void setMapping(KeyType const & inside_low, KeyType const & outside_low,
KeyType const & inside_high, KeyType const & outside_high)
{
if (inside_high != inside_low)
{
setMapping((outside_high - outside_low) / (inside_high - inside_low),
inside_low, outside_low);
}
else
{
setMapping(0, inside_low, outside_low);
}
return;
}
/// Accessor. See setMapping().
KeyType const & getInsideReferencePoint() const
{
return inside_;
}
/// Accessor. See setMapping().
KeyType const & getOutsideReferencePoint() const
{
return outside_;
}
/// Lower boundary of the support, in "outside" coordinates.
KeyType supportMin() const
{
return index2key(KeyType(empty() ? 0 : -1));
}
/// Upper boundary of the support, in "outside" coordinates.
KeyType supportMax() const
{
return index2key(KeyType(data_.size()));
}
//@}
protected:
KeyType scale_;
KeyType offset_;
KeyType inside_;
KeyType outside_;
ContainerType data_;
};
} // namespace Math
} // namespace OpenMS
#endif // OPENMS_MATH_MISC_LINEARINTERPOLATION_H
|