This file is indexed.

/usr/include/OpenMS/MATH/MISC/LinearInterpolation.h is in libopenms-dev 1.11.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
// --------------------------------------------------------------------------
//                   OpenMS -- Open-Source Mass Spectrometry
// --------------------------------------------------------------------------
// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen,
// ETH Zurich, and Freie Universitaet Berlin 2002-2013.
//
// This software is released under a three-clause BSD license:
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//  * Neither the name of any author or any participating institution
//    may be used to endorse or promote products derived from this software
//    without specific prior written permission.
// For a full list of authors, refer to the file AUTHORS.
// --------------------------------------------------------------------------
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING
// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// --------------------------------------------------------------------------
// $Maintainer: Clemens Groepl $
// $Authors: $
// --------------------------------------------------------------------------

#ifndef OPENMS_MATH_MISC_LINEARINTERPOLATION_H
#define OPENMS_MATH_MISC_LINEARINTERPOLATION_H

#include <OpenMS/CONCEPT/Types.h>

#include <cmath> // for modf() (which is an overloaded function in C++)
#include <vector>

namespace OpenMS
{

  namespace Math
  {

    /**
    @brief Provides access to linearly interpolated values (and
    derivatives) from discrete data points.  Values beyond the given range
    of data points are implicitly taken as zero.

    The input is just a vector of values ("Data").  These are interpreted
    as the y-coordinates at the x-coordinate positions 0,...,data_.size-1.

    The interpolated data can also be <i>scaled</i> and <i>shifted</i> in
    the x-dimension by an <em>affine mapping</em>.  That is, we have "inside" and
    "outside" x-coordinates.  The affine mapping can be specified in two
    ways:
    - using setScale() and setOffset(),
    - using setMapping()
    .
    By default the identity mapping (scale=1, offset=0) is used.

    Using the value() and derivative() methods you can sample linearly
    interpolated values for a given x-coordinate position of the data and
    the derivative of the data.

    @see BilinearInterpolation

    @ingroup Math
    */
    template <typename Key = DoubleReal, typename Value = Key>
    class LinearInterpolation
    {

public:

      ///\name Typedefs
      //@{
      typedef Value value_type;

      typedef Key key_type;
      typedef std::vector<value_type> container_type;

      typedef value_type      ValueType;
      typedef key_type        KeyType;
      typedef container_type  ContainerType;
      //@}

public:

      /**@brief Constructors and destructor.

      The first argument is the scale which is applied to the arguments of
      value() and derivative() before looking up the interpolated values in
      the container.  The second argument is the offset, which is
      subtracted before everything else.
      */
      LinearInterpolation(KeyType scale = 1., KeyType offset = 0.) :
        scale_(scale),
        offset_(offset),
        inside_(),
        outside_(),
        data_()
      {}

      /// Copy constructor.
      LinearInterpolation(LinearInterpolation const & arg) :
        scale_(arg.scale_),
        offset_(arg.offset_),
        inside_(arg.inside_),
        outside_(arg.outside_),
        data_(arg.data_)
      {}

      /// Assignment operator
      LinearInterpolation & operator=(LinearInterpolation const & arg)
      {
        if (&arg == this)
          return *this;

        scale_   = arg.scale_;
        offset_  = arg.offset_;
        inside_  = arg.inside_;
        outside_ = arg.outside_;
        data_    = arg.data_;

        return *this;
      }

      /// Destructor.
      ~LinearInterpolation() {}

      // ----------------------------------------------------------------------

      ///@name Interpolated data
      //@{

      /// Returns the interpolated value.
      ValueType value(KeyType arg_pos) const
      {

        typedef typename container_type::difference_type DiffType;

        // apply the key transformation
        KeyType left_key;
        KeyType pos = key2index(arg_pos);
        KeyType frac = std::modf(pos, &left_key);
        DiffType const left = DiffType(left_key);

        // At left margin?
        if (pos < 0)
        {
          if (left /* <= -1 */)
          {
            return 0;
          }
          else        // left == 0
          {
            return data_[0] * (1 + frac);
          }
        }
        else         // pos >= 0
        {
          // At right margin?
          DiffType const back = data_.size() - 1;
          if (left >= back)
          {
            if (left != back)
            {
              return 0;
            }
            else
            {
              return data_[left] * (1 - frac);
            }
          }
          else
          {
            // In between!
            return data_[left + 1] * frac + data_[left] * (1 - frac);
          }
        }
      }

      /**@brief Performs linear resampling.  The arg_value is split up and
      added to the data points around arg_pos.
      */
      void addValue(KeyType arg_pos, ValueType arg_value)
      {

        typedef typename container_type::difference_type DiffType;

        // apply the key transformation
        KeyType left_key;
        KeyType const pos = key2index(arg_pos);
        KeyType const frac = std::modf(pos, &left_key);
        DiffType const left = DiffType(left_key);

        // At left margin?
        if (pos < 0)
        {
          if (left /* <= -1 */)
          {
            return;
          }
          else        // left == 0
          {
            data_[0] += (1 + frac) * arg_value;
            return;
          }
        }
        else         // pos >= 0
        {
          // At right margin?
          DiffType const back = data_.size() - 1;
          if (left >= back)
          {
            if (left != back)
            {
              return;
            }
            else             // left == back
            {
              data_[left] += (1 - frac) * arg_value;
              return;
            }
          }
          else
          {
            // In between!
            data_[left + 1] += frac * arg_value;
            data_[left] += (1 - frac) * arg_value;
            return;
          }
        }
      }

      /**@brief Returns the interpolated derivative.

      Please drop me (= the maintainer) a message if you are using this.
      */
      ValueType derivative(KeyType arg_pos) const
      {

        // apply the key transformation
        KeyType const pos = key2index(arg_pos);

        SignedSize const size_ = data_.size();
        SignedSize const left = int(pos + 0.5);       // rounds towards zero

        if (left < 0)           // quite small
        {
          return 0;
        }
        else
        {
          if (left == 0)             // at the border
          {
            if (pos >= -0.5)               // that is: -0.5 <= pos < +0.5
            {
              return (data_[1] - data_[0]) * (pos + 0.5) + (data_[0]) * (0.5 - pos);
            }
            else             // that is: -1.5 <= pos < -0.5
            {
              return (data_[0]) * (pos + 1.5);
            }
          }
        }
        // "else" case: to the right of the left margin


        KeyType factor = KeyType(left) - pos + KeyType(0.5);

        if (left > size_)           // quite large
        {
          return 0;
        }
        else
        {
          if (left < size_ - 1)             // to the left of the right margin
          {
            // weighted average of derivatives for adjacent intervals
            return (data_[left] - data_[left - 1]) * factor + (data_[left + 1] - data_[left]) * (1. - factor);
          }
          else           // somewhat at the border
          {
            // at the border, first case
            if (left == size_ - 1)
            {
              return (data_[left] - data_[left - 1]) * factor + (-data_[left]) * (1. - factor);
            }
          }
        }
        // else // that is: left == size_

        // We pull the last remaining case out of the "if" tree to avoid a
        // compiler warning ...

        // at the border, second case
        return (-data_[left - 1]) * factor;
      }

      //@}

      // ----------------------------------------------------------------------

      ///@name Discrete (non-interpolated) data
      //@{

      /// Returns the internal random access container from which interpolated values are being sampled.
      ContainerType & getData()
      {
        return data_;
      }

      /// Returns the internal random access container from which interpolated values are being sampled.
      ContainerType const & getData() const
      {
        return data_;
      }

      /**@brief Assigns data to the internal random access container from
      which interpolated values are being sampled.

      SourceContainer must be assignable to ContainerType.
      */
      template <typename SourceContainer>
      void setData(SourceContainer const & data)
      {
        data_ = data;
      }

      /// Returns \c true if getData() is empty.
      bool empty() const
      {
        return data_.empty();
      }

      //@}

      // ----------------------------------------------------------------------

      ///\name Transformation
      //@{

      /// The transformation from "outside" to "inside" coordinates.
      KeyType key2index(KeyType pos) const
      {
        if (scale_)
        {
          pos -= offset_;
          pos /= scale_;
          return pos;
        }
        else
        {
          return 0;
        }
      }

      /// The transformation from "inside" to "outside" coordinates.
      KeyType index2key(KeyType pos) const
      {
        pos *= scale_;
        pos += offset_;
        return pos;
      }

      /// Accessor.  "Scale" is the difference (in "outside" units) between consecutive entries in "Data".
      KeyType const & getScale() const
      {
        return scale_;
      }

      /**@brief Accessor.  "Scale" is the difference (in "outside" units) between consecutive entries in "Data".

      <b>Note:</b> Using this invalidates the inside and outside reference
      points.
      */
      void setScale(KeyType const & scale)
      {
        scale_ = scale;
      }

      /// Accessor.  "Offset" is the point (in "outside" units) which corresponds to "Data[0]".
      KeyType const & getOffset() const
      {
        return offset_;
      }

      /**@brief Accessor.  "Offset" is the point (in "outside" units) which
      corresponds to "Data[0]".

      <b>Note:</b> Using this invalidates the inside and outside reference
      points.
      */
      void setOffset(KeyType const & offset)
      {
        offset_ = offset;
      }

      /**@brief Specifies the mapping from "outside" to "inside" coordinates by the following data:
      - <code>scale</code>: the difference in outside coordinates between consecutive values in the data vector.
      - <code>inside</code> and <code>outside</code>: these x-axis positions are mapped onto each other.

      For example, when you have a complicated probability distribution
      which is in fact centered around zero (but you cannot have negative
      indices in the data vector), then you can arrange things such that
      inside is the mean of the pre-computed, shifted density values of that
      distribution and outside is the centroid position of, say, a peak in
      the real world which you want to model by a scaled and shifted version
      of the probability distribution.

      */
      void setMapping(KeyType const & scale, KeyType const & inside, KeyType const & outside)
      {
        scale_   = scale;
        inside_  = inside;
        outside_ = outside;
        offset_  = outside - scale * inside;
      }

      /**@brief Specifies the mapping from "outside" to "inside" coordinates by the following data:
      - <code>inside_low</code> and <code>outside_low</code>: these axis positions are mapped onto each other.
      - <code>inside_high</code> and <code>outside_high</code>: these axis positions are mapped onto each other.

      This four argument version is just a convenience overload for the three argument version, which see.
      */
      void setMapping(KeyType const & inside_low, KeyType const & outside_low,
                      KeyType const & inside_high, KeyType const & outside_high)
      {
        if (inside_high != inside_low)
        {
          setMapping((outside_high - outside_low) / (inside_high - inside_low),
                     inside_low, outside_low);
        }
        else
        {
          setMapping(0, inside_low, outside_low);
        }
        return;
      }

      /// Accessor.  See setMapping().
      KeyType const & getInsideReferencePoint() const
      {
        return inside_;
      }

      /// Accessor.  See setMapping().
      KeyType const & getOutsideReferencePoint() const
      {
        return outside_;
      }

      /// Lower boundary of the support, in "outside" coordinates.
      KeyType supportMin() const
      {
        return index2key(KeyType(empty() ? 0 : -1));
      }

      /// Upper boundary of the support, in "outside" coordinates.
      KeyType supportMax() const
      {
        return index2key(KeyType(data_.size()));
      }

      //@}

protected:

      KeyType scale_;
      KeyType offset_;
      KeyType inside_;
      KeyType outside_;

      ContainerType data_;

    };

  }   // namespace Math

} // namespace OpenMS

#endif // OPENMS_MATH_MISC_LINEARINTERPOLATION_H