/usr/include/OpenMS/TRANSFORMATIONS/RAW2PEAK/OptimizePick.h is in libopenms-dev 1.11.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | // --------------------------------------------------------------------------
// OpenMS -- Open-Source Mass Spectrometry
// --------------------------------------------------------------------------
// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen,
// ETH Zurich, and Freie Universitaet Berlin 2002-2013.
//
// This software is released under a three-clause BSD license:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of any author or any participating institution
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
// For a full list of authors, refer to the file AUTHORS.
// --------------------------------------------------------------------------
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING
// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// --------------------------------------------------------------------------
// $Maintainer: Alexandra Zerck $
// $Authors: Eva Lange $
// --------------------------------------------------------------------------
#ifndef OPENMS_TRANSFORMATIONS_RAW2PEAK_OPTIMIZEPICK_H
#define OPENMS_TRANSFORMATIONS_RAW2PEAK_OPTIMIZEPICK_H
#include <OpenMS/TRANSFORMATIONS/RAW2PEAK/PeakShape.h>
#include <OpenMS/KERNEL/Peak1D.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_multifit_nlin.h>
#include <gsl/gsl_blas.h>
#include <iostream>
#include <fstream>
#include <vector>
namespace OpenMS
{
/** @brief Namespace for all functions and classes needed for the gsl levenberg-marquard algorithm.
We have to use function pointers for the gsl and can't put them into
a class, so we provide an extra namespace.
*/
namespace OptimizationFunctions
{
/// Raw data vector type
typedef std::vector<Peak1D> RawDataVector;
/// Raw data iterator type
typedef RawDataVector::iterator PeakIterator;
/** @brief Class for the penalty factors used during the optimization.
A great deviation (squared deviation) of a peak shape's position or its left or right width parameter can be penalised.
In each iteration the penalty (for each peak shape) is computed by:
penalty = penalty_pos * pow(p_position - old_position, 2)
+ penalty_lwidth * pow(p_width_l - old_width_l, 2)
+ penalty_rwidth * pow(p_width_r - old_width_r, 2);
*/
struct OPENMS_DLLAPI PenaltyFactors
{
PenaltyFactors() :
pos(0), lWidth(0), rWidth(0) {}
PenaltyFactors(const PenaltyFactors & p) :
pos(p.pos), lWidth(p.lWidth), rWidth(p.rWidth) {}
inline PenaltyFactors & operator=(const PenaltyFactors & p)
{
pos = p.pos;
lWidth = p.lWidth;
rWidth = p.rWidth;
return *this;
}
~PenaltyFactors(){}
/// Penalty factor for the peak shape's position
double pos;
/// Penalty factor for the peak shape's left width parameter
double lWidth;
/// Penalty factor for the peak shape's right width parameter
double rWidth;
};
/// Evaluation of the target function for nonlinear optimization.
int residual(const gsl_vector * x, void * params, gsl_vector * f);
/// Compute the Jacobian of the residual, where each row of the matrix corresponds to a point in the data.
int jacobian(const gsl_vector * x, void * params, gsl_matrix * J);
/// Driver function for the evaluation of function and jacobian.
int evaluate(const gsl_vector * x, void * params, gsl_vector * f, gsl_matrix * J);
/// Print all peak shapes
void printSignal(const gsl_vector * x, void * param, float resolution = 0.25);
}
/**
@brief This class provides the non-linear optimization of the peak parameters.
Given a vector of peak shapes, this class optimizes all peak shapes parameters using a non-linear optimization.
For the non-linear optimization we use the Levenberg-Marquardt algorithm provided by the gsl.
*/
class OPENMS_DLLAPI OptimizePick
{
public:
struct Data
{
/// Positions and intensity values of the raw data
std::vector<double> positions;
std::vector<double> signal;
/// This container contains the peak shapes to be optimized
std::vector<PeakShape> peaks;
OptimizationFunctions::PenaltyFactors penalties;
};
/// Raw data vector type
typedef std::vector<Peak1D> RawDataVector;
/// Raw data iterator type
typedef RawDataVector::iterator PeakIterator;
/// Constructor
OptimizePick() :
max_iteration_(0),
eps_abs_(0),
eps_rel_(0) {}
/// Constructor to set the penalty factors, the number of optimization iterations as well as the threshold for the absolute and the relative error.
OptimizePick(const struct OptimizationFunctions::PenaltyFactors & penalties_,
const int max_iteration_,
const double eps_abs_,
const double eps_rel_);
/// Destructor
~OptimizePick();
/// Non-mutable access to the penalty factors
inline const struct OptimizationFunctions::PenaltyFactors & getPenalties() const { return penalties_; }
/// Mutable access to the penalty factors
inline struct OptimizationFunctions::PenaltyFactors & getPenalties() { return penalties_; }
/// Mutable access to the penalty factors
inline void setPenalties(const struct OptimizationFunctions::PenaltyFactors & penalties) { penalties_ = penalties; }
/// Non-mutable access to the number of iterations
inline UInt getNumberIterations() const { return max_iteration_; }
/// Mutable access to the number of iterations
inline unsigned int & getNumberIterations() { return max_iteration_; }
/// Mutable access to the number of iterations
inline void setNumberIterations(const int max_iteration) { max_iteration_ = max_iteration; }
/// Non-mutable access to the maximum absolute error
inline DoubleReal getMaxAbsError() const { return eps_abs_; }
/// Mutable access to the maximum absolute error
inline double & getMaxAbsError() { return eps_abs_; }
/// Mutable access to the maximum absolute error
inline void setMaxAbsError(double eps_abs) { eps_abs_ = eps_abs; }
/// Non-mutable access to the maximum relative error
inline DoubleReal getMaxRelError() const { return eps_rel_; }
/// Mutable access to the maximum relative error
inline double & getMaxRelError() { return eps_rel_; }
/// Mutable access to the maximum relative error
inline void setMaxRelError(double eps_rel) { eps_rel_ = eps_rel; }
/// Start the optimization of the peak shapes peaks. The original peak shapes will be subsituted by the optimized peak shapes.
void optimize(std::vector<PeakShape> & peaks, Data & data);
protected:
/// Penalty factors
struct OptimizationFunctions::PenaltyFactors penalties_;
/// Maximum number of iterations during optimization
unsigned int max_iteration_;
/// Maximum absolute and relative error used in the optimization.
double eps_abs_;
double eps_rel_;
// /** @brief Returns the squared pearson coefficient.
// Computes the correlation of the peak and the original data given by the peak enpoints.
// If the value is near 1, the fitted peakshape and the raw data are expected to be very similar.
// */
// double correlate_(const PeakShape& peak,
// double left_endpoint,
// double right_endpoint,Data& data);
};
}
#endif
|