/usr/include/openturns/EllipticalDistribution.hxx is in libopenturns-dev 1.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 | // -*- C++ -*-
/**
* @file EllipticalDistribution.hxx
* @brief Abstract top-level class for elliptical distributions
*
* Copyright (C) 2005-2013 EDF-EADS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* @author schueller
* @date 2012-04-18 17:56:46 +0200 (Wed, 18 Apr 2012)
*/
#ifndef OPENTURNS_ELLIPTICALDISTRIBUTIONIMPLEMENTATION_HXX
#define OPENTURNS_ELLIPTICALDISTRIBUTIONIMPLEMENTATION_HXX
#include "ContinuousDistribution.hxx"
#include "CorrelationMatrix.hxx"
BEGIN_NAMESPACE_OPENTURNS
/**
* @class EllipticalDistribution
*
* A subclass for elliptical usual distributions.
*/
class EllipticalDistribution
: public ContinuousDistribution
{
CLASSNAME;
public:
// Numerical precision for computing the quantile
/** Default constructor */
explicit EllipticalDistribution(const NumericalPoint & mean,
const NumericalPoint & sigma,
const CorrelationMatrix & R,
const NumericalScalar covarianceNormalizationFactor,
const String & name = DefaultName);
/** Parameter constructor */
explicit EllipticalDistribution(const String & name = DefaultName);
/** Virtual copy constructor */
virtual EllipticalDistribution * clone() const;
/** Comparison operator */
Bool operator ==(const EllipticalDistribution & other) const;
/** String converter */
String __repr__() const;
/** Tell if the distribution is elliptical */
Bool isElliptical() const;
/** Tell if the distribution has elliptical copula */
Bool hasEllipticalCopula() const;
/** Get the DDF of the distribution */
using ContinuousDistribution::computeDDF;
NumericalPoint computeDDF(const NumericalPoint & point) const;
/** Get the PDF of the distribution */
using ContinuousDistribution::computePDF;
NumericalScalar computePDF(const NumericalPoint & point) const;
/** Get the PDF gradient of the distribution */
NumericalPoint computePDFGradient(const NumericalPoint & point) const;
/** Compute the density generator of the elliptical distribution, i.e.
* the function phi such that the density of the distribution can
* be written as p(x) = phi(t(x-mu)R^{-1}(x-mu)) */
virtual NumericalScalar computeDensityGenerator(const NumericalScalar betaSquare) const;
virtual NumericalScalar computeLogDensityGenerator(const NumericalScalar betaSquare) const;
/** Compute the derivative of the density generator */
virtual NumericalScalar computeDensityGeneratorDerivative(const NumericalScalar betaSquare) const;
/** Compute the second derivative of the density generator */
virtual NumericalScalar computeDensityGeneratorSecondDerivative(const NumericalScalar betaSquare) const;
/** Mean point accessor */
void setMean(const NumericalPoint & mean);
/** Sigma vector accessor */
void setSigma(const NumericalPoint & sigma);
/** Sigma vector accessor */
NumericalPoint getSigma() const;
/** Get the standard deviation of the distribution */
NumericalPoint getStandardDeviation() const;
/** Correlation matrix accessor */
void setCorrelation(const CorrelationMatrix & R);
/** Correlation matrix accessor */
CorrelationMatrix getCorrelation() const;
protected:
/** Compute the mean of the distribution */
void computeMean() const;
/** Compute the covariance of the distribution */
void computeCovariance() const;
public:
/** Normalize the given point u_i = (x_i - mu_i) / sigma_i */
NumericalPoint normalize(const NumericalPoint & x) const;
/** Denormalize the given point x_i = mu_i + sigma_i * x_i */
NumericalPoint denormalize(const NumericalPoint & u) const;
/** Inverse correlation matrix accessor */
SquareMatrix getInverseCorrelation() const;
/** Cholesky factor of the correlation matrix accessor */
SquareMatrix getCholesky() const;
/** Inverse of the Cholesky factor of the correlation matrix accessor */
SquareMatrix getInverseCholesky() const;
/** Get the isoprobabilist transformation */
IsoProbabilisticTransformation getIsoProbabilisticTransformation() const;
/** Get the inverse isoprobabilist transformation */
InverseIsoProbabilisticTransformation getInverseIsoProbabilisticTransformation() const;
/** Get the standard distribution, i.e. a distribution of the same kind but with zero mean,
* unit marginal standard distribution and identity correlation */
Implementation getStandardDistribution() const;
/** Parameters value and description accessor */
NumericalPointWithDescriptionCollection getParametersCollection() const;
using ContinuousDistribution::setParametersCollection;
void setParametersCollection(const NumericalPointCollection & parametersCollection);
/** Method save() stores the object through the StorageManager */
void save(Advocate & adv) const;
/** Method load() reloads the object from the StorageManager */
void load(Advocate & adv);
protected:
/** The sigma vector of the distribution */
mutable NumericalPoint sigma_;
/** The correlation matrix (Rij) of the distribution */
mutable CorrelationMatrix R_;
/** The shape matrix of the distribution = Diag(sigma_) * R_ * Diag(sigma_) */
mutable CovarianceMatrix shape_;
/** The inverse of the correlation matrix of the distribution */
SymmetricMatrix inverseR_;
/** The Cholesky factor of the shape matrix shape_ = cholesky_ * cholesky_.transpose() */
SquareMatrix cholesky_;
/** The inverse Cholesky factor of the covariance matrix */
SquareMatrix inverseCholesky_;
/** The normalization factor of the distribution */
NumericalScalar normalizationFactor_;
/** The scaling factor of the covariance matrix covariance = covarianceScalingFactor_ * shape_*/
NumericalScalar covarianceScalingFactor_;
private:
/** Compute the value of the auxiliary attributes */
void update();
}; /* class EllipticalDistribution */
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_ELLIPTICALDISTRIBUTIONIMPLEMENTATION_HXX */
|