This file is indexed.

/usr/include/openvdb/tools/GridOperators.h is in libopenvdb-dev 2.1.0-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2013 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @file GridOperators.h
///
/// @brief Applies an operator on an input grid to produce an output
/// grid with the same topology but potentially different value type.

#ifndef OPENVDB_TOOLS_GRID_OPERATORS_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_GRID_OPERATORS_HAS_BEEN_INCLUDED

#include <openvdb/Grid.h>
#include <openvdb/math/Operators.h>
#include <openvdb/util/NullInterrupter.h>
#include <openvdb/tree/LeafManager.h>
#include <openvdb/tree/ValueAccessor.h>
#include <tbb/parallel_for.h>


namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {

/// @brief VectorToScalarConverter<VectorGridType>::Type is the type of a grid
/// having the same tree configuration as VectorGridType but a scalar value type, T,
/// where T is the type of the original vector components.
/// @details For example, VectorToScalarConverter<Vec3DGrid>::Type is equivalent to DoubleGrid.
template<typename VectorGridType> struct VectorToScalarConverter {
    typedef typename VectorGridType::ValueType::value_type VecComponentValueT;
    typedef typename VectorGridType::template ValueConverter<VecComponentValueT>::Type Type;
};

/// @brief ScalarToVectorConverter<ScalarGridType>::Type is the type of a grid
/// having the same tree configuration as ScalarGridType but value type Vec3<T>
/// where T is ScalarGridType::ValueType.
/// @details For example, ScalarToVectorConverter<DoubleGrid>::Type is equivalent to Vec3DGrid.
template<typename ScalarGridType> struct ScalarToVectorConverter {
    typedef math::Vec3<typename ScalarGridType::ValueType> VectorValueT;
    typedef typename ScalarGridType::template ValueConverter<VectorValueT>::Type Type;
};


/// @brief Compute the Closest-Point Transform (CPT) from a distance field.
/// @return a new vector-valued grid with the same numerical precision as the input grid
///     (for example, if the input grid is a DoubleGrid, the output grid will be a Vec3DGrid)
/// When a mask grid is specified, the solution is calculated only in the intersection of
/// the mask active topology and the input active topology independent of the 
/// transforms associated with either grid.
/// @note The current implementation assumes all the input distance values
/// are represented by leaf voxels and not tiles.  This is true for all
/// narrow-band level sets, which this class was originally developed for.
/// In the future we will expand this class to also handle tile values.
template<typename GridType, typename InterruptT> inline
typename ScalarToVectorConverter<GridType>::Type::Ptr
cpt(const GridType& grid, bool threaded, InterruptT* interrupt);

template<typename GridType, typename MaskT, typename InterruptT> inline
typename ScalarToVectorConverter<GridType>::Type::Ptr
cpt(const GridType& grid, const MaskT& mask, bool threaded, InterruptT* interrupt);

    
template<typename GridType> inline
typename ScalarToVectorConverter<GridType>::Type::Ptr
cpt(const GridType& grid, bool threaded = true)
{
    return cpt<GridType, util::NullInterrupter>(grid, threaded, NULL);
}

    
template<typename GridType, typename MaskT> inline
typename ScalarToVectorConverter<GridType>::Type::Ptr
cpt(const GridType& grid, const MaskT& mask, bool threaded = true)
{
    return cpt<GridType, MaskT, util::NullInterrupter>(grid, mask, threaded, NULL);
}


/// @brief Compute the curl of the given vector-valued grid.
/// @return a new vector-valued grid
/// When a mask grid is specified, the solution is calculated only in the intersection of
/// the mask active topology and the input active topology independent of the 
/// transforms associated with either grid.
template<typename GridType, typename InterruptT> inline
typename GridType::Ptr
curl(const GridType& grid, bool threaded, InterruptT* interrupt);

template<typename GridType, typename MaskT, typename InterruptT> inline
typename GridType::Ptr
curl(const GridType& grid, const MaskT& mask, bool threaded, InterruptT* interrupt);
    
template<typename GridType> inline
typename GridType::Ptr
curl(const GridType& grid, bool threaded = true)
{
    return curl<GridType, util::NullInterrupter>(grid, threaded, NULL);
}

template<typename GridType, typename MaskT> inline
typename GridType::Ptr
curl(const GridType& grid, const MaskT& mask, bool threaded = true)
{
    return curl<GridType, MaskT, util::NullInterrupter>(grid, mask, threaded, NULL);
}

/// @brief Compute the divergence of the given vector-valued grid.
/// @return a new scalar-valued grid with the same numerical precision as the input grid
///     (for example, if the input grid is a Vec3DGrid, the output grid will be a DoubleGrid)
/// When a mask grid is specified, the solution is calculated only in the intersection of
/// the mask active topology and the input active topology independent of the 
/// transforms associated with either grid.
template<typename GridType, typename InterruptT> inline
typename VectorToScalarConverter<GridType>::Type::Ptr
divergence(const GridType& grid, bool threaded, InterruptT* interrupt);

template<typename GridType, typename MaskT, typename InterruptT> inline
typename VectorToScalarConverter<GridType>::Type::Ptr
divergence(const GridType& grid, const MaskT& mask, bool threaded, InterruptT* interrupt);
    
template<typename GridType> inline
typename VectorToScalarConverter<GridType>::Type::Ptr
divergence(const GridType& grid, bool threaded = true)
{
    return divergence<GridType, util::NullInterrupter>(grid, threaded, NULL);
}

template<typename GridType, typename MaskT> inline
typename VectorToScalarConverter<GridType>::Type::Ptr
divergence(const GridType& grid, const MaskT& mask, bool threaded = true)
{
    return divergence<GridType, MaskT, util::NullInterrupter>(grid, mask, threaded, NULL);
}

/// @brief Compute the gradient of the given scalar grid.
/// @return a new vector-valued grid with the same numerical precision as the input grid
///     (for example, if the input grid is a DoubleGrid, the output grid will be a Vec3DGrid)
/// When a mask grid is specified, the solution is calculated only in the intersection of
/// the mask active topology and the input active topology independent of the 
/// transforms associated with either grid.
template<typename GridType, typename InterruptT> inline
typename ScalarToVectorConverter<GridType>::Type::Ptr
gradient(const GridType& grid, bool threaded, InterruptT* interrupt);

template<typename GridType, typename MaskT, typename InterruptT> inline
typename ScalarToVectorConverter<GridType>::Type::Ptr
gradient(const GridType& grid, const MaskT& mask, bool threaded, InterruptT* interrupt);

template<typename GridType> inline
typename ScalarToVectorConverter<GridType>::Type::Ptr
gradient(const GridType& grid, bool threaded = true)
{
    return gradient<GridType, util::NullInterrupter>(grid, threaded, NULL);
}


template<typename GridType, typename MaskT> inline
typename ScalarToVectorConverter<GridType>::Type::Ptr
gradient(const GridType& grid, const MaskT& mask, bool threaded = true)
{
    return gradient<GridType, MaskT, util::NullInterrupter>(grid, mask, threaded, NULL);
}


/// @brief Compute the Laplacian of the given scalar grid.
/// @return a new scalar grid
/// When a mask grid is specified, the solution is calculated only in the intersection of
/// the mask active topology and the input active topology independent of the 
/// transforms associated with either grid.
template<typename GridType, typename InterruptT> inline
typename GridType::Ptr
laplacian(const GridType& grid, bool threaded, InterruptT* interrupt);

template<typename GridType, typename MaskT, typename InterruptT> inline
typename GridType::Ptr
laplacian(const GridType& grid, const MaskT& mask, bool threaded, InterruptT* interrupt);

template<typename GridType> inline
typename GridType::Ptr
laplacian(const GridType& grid, bool threaded = true)
{
    return laplacian<GridType, util::NullInterrupter>(grid, threaded, NULL);
}

template<typename GridType, typename MaskT> inline
typename GridType::Ptr
laplacian(const GridType& grid, const MaskT mask, bool threaded = true)
{
    return laplacian<GridType, MaskT, util::NullInterrupter>(grid, mask, threaded, NULL);
}
    
/// @brief Compute the mean curvature of the given grid.
/// @return a new grid
/// When a mask grid is specified, the solution is calculated only in the intersection of
/// the mask active topology and the input active topology independent of the 
/// transforms associated with either grid.
template<typename GridType, typename InterruptT> inline
typename GridType::Ptr
meanCurvature(const GridType& grid, bool threaded, InterruptT* interrupt);

template<typename GridType, typename MaskT, typename InterruptT> inline
typename GridType::Ptr
meanCurvature(const GridType& grid, const MaskT& mask, bool threaded, InterruptT* interrupt);

template<typename GridType> inline
typename GridType::Ptr
meanCurvature(const GridType& grid, bool threaded = true)    
{
    return meanCurvature<GridType, util::NullInterrupter>(grid, threaded, NULL);
}

template<typename GridType, typename MaskT> inline
typename GridType::Ptr
meanCurvature(const GridType& grid, const MaskT& mask, bool threaded = true)    
{
    return meanCurvature<GridType, MaskT, util::NullInterrupter>(grid, mask, threaded, NULL);
}

/// @brief Compute the magnitudes of the vectors of the given vector-valued grid.
/// @return a new scalar-valued grid with the same numerical precision as the input grid
///     (for example, if the input grid is a Vec3DGrid, the output grid will be a DoubleGrid)
/// When a mask grid is specified, the solution is calculated only in the intersection of
/// the mask active topology and the input active topology independent of the 
/// transforms associated with either grid.
template<typename GridType, typename InterruptT> inline
typename VectorToScalarConverter<GridType>::Type::Ptr
magnitude(const GridType& grid, bool threaded, InterruptT* interrupt);

template<typename GridType, typename MaskT, typename InterruptT> inline
typename VectorToScalarConverter<GridType>::Type::Ptr
magnitude(const GridType& grid, const MaskT& mask, bool threaded, InterruptT* interrupt);
    
template<typename GridType> inline
typename VectorToScalarConverter<GridType>::Type::Ptr
magnitude(const GridType& grid, bool threaded = true) 
{
    return magnitude<GridType, util::NullInterrupter>(grid, threaded, NULL);
}

template<typename GridType, typename MaskT> inline
typename VectorToScalarConverter<GridType>::Type::Ptr
magnitude(const GridType& grid, const MaskT& mask, bool threaded = true) 
{
    return magnitude<GridType, MaskT, util::NullInterrupter>(grid, mask, threaded, NULL);
}
    
/// @brief Normalize the vectors of the given vector-valued grid.
/// @return a new vector-valued grid
/// When a mask grid is specified, the solution is calculated only in the intersection of
/// the mask active topology and the input active topology independent of the 
/// transforms associated with either grid.
template<typename GridType, typename InterruptT> inline
typename GridType::Ptr
normalize(const GridType& grid, bool threaded, InterruptT* interrupt);

template<typename GridType, typename MaskT, typename InterruptT> inline
typename GridType::Ptr
normalize(const GridType& grid, const MaskT& mask, bool threaded, InterruptT* interrupt);

template<typename GridType> inline
typename GridType::Ptr
normalize(const GridType& grid, bool threaded = true)
{
    return normalize<GridType, util::NullInterrupter>(grid, threaded, NULL);
}

template<typename GridType, typename MaskT> inline
typename GridType::Ptr
normalize(const GridType& grid, const MaskT& mask, bool threaded = true)
{
    return normalize<GridType, MaskT, util::NullInterrupter>(grid, mask, threaded, NULL);
}
    
////////////////////////////////////////


namespace {

/// @brief Apply an operator on an input grid to produce an output grid
/// with the same topology but a possibly different value type.
/// @details To facilitate inlining, this class is also templated on a Map type.
///
/// @note This is a helper class and should never be used directly.
///
/// @note The current implementation assumes all the input
/// values are represented by leaf voxels and not tiles. In the
/// future we will expand this class to also handle tile values.
template<typename InGridT, typename MaskGridType, typename OutGridT, typename MapT, typename OperatorT, typename InterruptT = util::NullInterrupter>
class GridOperator
{
public:
    typedef typename OutGridT::TreeType           OutTreeT;
    typedef typename OutTreeT::LeafNodeType       OutLeafT;
    typedef typename tree::LeafManager<OutTreeT>  LeafManagerT;
  
    GridOperator(const InGridT& grid, const MaskGridType* mask, const MapT& map, InterruptT* interrupt = NULL):
        mAcc(grid.getConstAccessor()), mMap(map), mInterrupt(interrupt), mMask(mask)
    {
    }
  
    virtual ~GridOperator() {}
    typename OutGridT::Ptr process(bool threaded = true)
    {
        if (mInterrupt) mInterrupt->start("Processing grid");

        // Derive background value of the output grid
        typename InGridT::TreeType tmp(mAcc.tree().background());
        typename OutGridT::ValueType backg = OperatorT::result(mMap, tmp, math::Coord(0));

        // output tree = topology copy of input tree!
        typename OutTreeT::Ptr tree(new OutTreeT(mAcc.tree(), backg, TopologyCopy()));
        
        
        // create grid with output tree and unit transform
        typename OutGridT::Ptr result(new OutGridT(tree));
        
        // Modify the solution area if a mask was supplied.
        if (mMask) {
            result->topologyIntersection(*mMask); 
        }

        // transform of output grid = transform of input grid
        result->setTransform(math::Transform::Ptr(new math::Transform( mMap.copy() )));
       
        LeafManagerT leafManager(*tree);
        
        if (threaded) {
            tbb::parallel_for(leafManager.leafRange(), *this);
        } else {
            (*this)(leafManager.leafRange());
        }
        
        if (mInterrupt) mInterrupt->end();
        return result;
    }

    /// @brief Iterate sequentially over LeafNodes and voxels in the output
    /// grid and compute the laplacian using a valueAccessor for the
    /// input grid.
    ///
    /// @note Never call this public method directly - it is called by
    /// TBB threads only!
    void operator()(const typename LeafManagerT::LeafRange& range) const
    {
        if (util::wasInterrupted(mInterrupt)) tbb::task::self().cancel_group_execution();
        
        for (typename LeafManagerT::LeafRange::Iterator leaf=range.begin(); leaf; ++leaf) {
            for (typename OutLeafT::ValueOnIter value=leaf->beginValueOn(); value; ++value) {
                value.setValue(OperatorT::result(mMap, mAcc, value.getCoord()));
            }
        }
    }

protected:
    
    typedef typename InGridT::ConstAccessor  AccessorT;
    mutable AccessorT   mAcc;
    const MapT&         mMap;
    InterruptT*         mInterrupt;
    const MaskGridType* mMask;
}; // end of GridOperator class

} //end of anonymous namespaceo


////////////////////////////////////////


/// @brief Compute the closest-point transform of a scalar grid.
template<typename InGridT, typename MaskGridType = BoolGrid, typename InterruptT = util::NullInterrupter>
class Cpt
{
public:
    typedef InGridT                                         InGridType;
    typedef typename ScalarToVectorConverter<InGridT>::Type OutGridType;

    Cpt(const InGridType& grid, InterruptT* interrupt = NULL):
        mInputGrid(grid), mInterrupt(interrupt), mMask(NULL)
    {
    }


    Cpt(const InGridType& grid, const MaskGridType& mask, InterruptT* interrupt = NULL):
        mInputGrid(grid), mInterrupt(interrupt), mMask(&mask)
    {
    }


    typename OutGridType::Ptr process(bool threaded = true, bool useWorldTransform = true)
    {
        Functor functor(mInputGrid, mMask, threaded, useWorldTransform, mInterrupt);
        processTypedMap(mInputGrid.transform(), functor);
        return functor.mOutputGrid;
    }
private:
    struct IsOpT
    {
        template<typename MapT, typename AccT>
        static typename OutGridType::ValueType
        result(const MapT& map, const AccT& acc, const Coord& xyz)
        {
            return math::CPT<MapT, math::CD_2ND>::result(map, acc, xyz);
        }
    };
    struct WsOpT
    {
        template<typename MapT, typename AccT>
        static typename OutGridType::ValueType
        result(const MapT& map, const AccT& acc, const Coord& xyz)
        {
            return math::CPT_RANGE<MapT, math::CD_2ND>::result(map, acc, xyz);
        }
    };
    struct Functor
    {
        Functor(const InGridType& grid, const MaskGridType* mask, bool threaded, bool worldspace, InterruptT* interrupt):
            mThreaded(threaded), mWorldSpace(worldspace), mInputGrid(grid), mInterrupt(interrupt), mMask(mask){}
        template<typename MapT>
        void operator()(const MapT& map)
        {
            if (mWorldSpace) {
                GridOperator<InGridType, MaskGridType, OutGridType, MapT, WsOpT, InterruptT> op(mInputGrid, mMask, map, mInterrupt);
                mOutputGrid = op.process(mThreaded); // cache the result
            } else {
                GridOperator<InGridType, MaskGridType, OutGridType, MapT, IsOpT, InterruptT> op(mInputGrid, mMask, map, mInterrupt);
                mOutputGrid = op.process(mThreaded); // cache the result
            }
        }
        const bool                mThreaded;
        const bool                mWorldSpace;
        const InGridType&         mInputGrid;
        typename OutGridType::Ptr mOutputGrid;
        InterruptT*               mInterrupt;
        const MaskGridType*       mMask;
    };
    const InGridType&   mInputGrid;
    InterruptT*         mInterrupt;
    const MaskGridType* mMask;
}; // end of Cpt class


////////////////////////////////////////


/// @brief Compute the curl of a scalar grid.
template<typename GridT, typename MaskGridType = BoolGrid, typename InterruptT = util::NullInterrupter>
class Curl
{
public:
    typedef GridT  InGridType;
    typedef GridT  OutGridType;
    Curl(const GridT& grid, InterruptT* interrupt = NULL):
        mInputGrid(grid), mInterrupt(interrupt), mMask(NULL)
    {
    }
    Curl(const GridT& grid, const MaskGridType& mask, InterruptT* interrupt = NULL):
        mInputGrid(grid), mInterrupt(interrupt), mMask(&mask)
    {
    }

    typename GridT::Ptr process(bool threaded = true)
    {
        Functor functor(mInputGrid, mMask, threaded, mInterrupt);
        processTypedMap(mInputGrid.transform(), functor);
        return functor.mOutputGrid;
    }

private:
    struct Functor
    {
        Functor(const GridT& grid, const MaskGridType* mask, 
                bool threaded, InterruptT* interrupt):
            mThreaded(threaded), mInputGrid(grid), mInterrupt(interrupt), mMask(mask){}
        template<typename MapT>
        void operator()(const MapT& map)
        {
            typedef math::Curl<MapT, math::CD_2ND> OpT;
            GridOperator<GridT, MaskGridType, GridT, MapT, OpT, InterruptT> op(mInputGrid, mMask, map, mInterrupt);
            mOutputGrid = op.process(mThreaded); // cache the result
        }
        const bool           mThreaded;
        const GridT&         mInputGrid;
        typename GridT::Ptr  mOutputGrid;
        InterruptT*          mInterrupt;
        const MaskGridType*  mMask;
    }; // Private Functor

    const GridT&         mInputGrid;
    InterruptT*          mInterrupt;
    const MaskGridType*  mMask;
}; // end of Curl class


////////////////////////////////////////


/// @brief Computes the Divergence of a scalar grid
template<typename InGridT, typename MaskGridType = BoolGrid, typename InterruptT = util::NullInterrupter>
class Divergence
{
public:
    typedef InGridT                                         InGridType;
    typedef typename VectorToScalarConverter<InGridT>::Type OutGridType;

    Divergence(const InGridT& grid, InterruptT* interrupt = NULL):
        mInputGrid(grid), mInterrupt(interrupt), mMask(NULL)
    {
    }

    Divergence(const InGridT& grid, const MaskGridType& mask, InterruptT* interrupt = NULL):
        mInputGrid(grid), mInterrupt(interrupt), mMask(&mask)
    {
    }
    typename OutGridType::Ptr process(bool threaded = true)
    {
        if( mInputGrid.getGridClass() == GRID_STAGGERED ) {
            Functor<math::FD_1ST> functor(mInputGrid, mMask, threaded, mInterrupt);
            processTypedMap(mInputGrid.transform(), functor);
            return functor.mOutputGrid;
        }
        else {
            Functor<math::CD_2ND> functor(mInputGrid, mMask, threaded, mInterrupt);
            processTypedMap(mInputGrid.transform(), functor);
            return functor.mOutputGrid;
        }
    }

protected:
    template<math::DScheme DiffScheme>
    struct Functor
    {
        Functor(const InGridT& grid, const MaskGridType* mask, bool threaded, InterruptT* interrupt):
            mThreaded(threaded), mInputGrid(grid), mInterrupt(interrupt), mMask(mask) {}
        template<typename MapT>
        void operator()(const MapT& map)
        {
            typedef math::Divergence<MapT, DiffScheme> OpT;
            GridOperator<InGridType, MaskGridType, OutGridType, MapT, OpT, InterruptT> op(mInputGrid, mMask, map, mInterrupt);
            mOutputGrid = op.process(mThreaded); // cache the result
        }
        const bool                 mThreaded;
        const InGridType&          mInputGrid;
        typename OutGridType::Ptr  mOutputGrid;
        InterruptT*                mInterrupt;
        const MaskGridType*        mMask;
    }; // Private Functor

    const InGridType&    mInputGrid;
    InterruptT*          mInterrupt;
    const MaskGridType*  mMask;
}; // end of Divergence class


////////////////////////////////////////


/// @brief Computes the Gradient of a scalar grid
template<typename InGridT, typename MaskGridType = BoolGrid, typename InterruptT = util::NullInterrupter>
class Gradient
{
public:
    typedef InGridT                                         InGridType;
    typedef typename ScalarToVectorConverter<InGridT>::Type OutGridType;

    Gradient(const InGridT& grid, InterruptT* interrupt = NULL):
        mInputGrid(grid), mInterrupt(interrupt), mMask(NULL)
    {
    }
    Gradient(const InGridT& grid, const MaskGridType& mask, InterruptT* interrupt = NULL):
        mInputGrid(grid), mInterrupt(interrupt), mMask(&mask)
    {
    }
    typename OutGridType::Ptr process(bool threaded = true)
    {
        Functor functor(mInputGrid, mMask, threaded, mInterrupt);
        processTypedMap(mInputGrid.transform(), functor);
        return functor.mOutputGrid;
    }

protected:
    struct Functor
    {
        Functor(const InGridT& grid, const MaskGridType* mask, bool threaded, InterruptT* interrupt):
            mThreaded(threaded), mInputGrid(grid), mInterrupt(interrupt), mMask(mask) {}
        template<typename MapT>
        void operator()(const MapT& map)
        {
            typedef math::Gradient<MapT, math::CD_2ND> OpT;
            GridOperator<InGridType, MaskGridType, OutGridType, MapT, OpT, InterruptT> op(mInputGrid, mMask, map, mInterrupt);
            mOutputGrid = op.process(mThreaded); // cache the result
        }
        const bool                 mThreaded;
        const InGridT&             mInputGrid;
        typename OutGridType::Ptr  mOutputGrid;
        InterruptT*                mInterrupt;
        const MaskGridType*        mMask;
    }; // Private Functor

    const InGridT&       mInputGrid;
    InterruptT*          mInterrupt;
    const MaskGridType*  mMask;
}; // end of Gradient class


////////////////////////////////////////


/// @brief Computes the Laplacian of a scalar grid
template<typename GridT, typename MaskGridType = BoolGrid, typename InterruptT = util::NullInterrupter>
class Laplacian
{
public:
    typedef GridT  InGridType;
    typedef GridT  OutGridType;
    Laplacian(const GridT& grid, InterruptT* interrupt = NULL):
        mInputGrid(grid), mInterrupt(interrupt), mMask(NULL)
    {
    }
    
    Laplacian(const GridT& grid, const MaskGridType& mask, InterruptT* interrupt = NULL):
        mInputGrid(grid), mInterrupt(interrupt), mMask(&mask)
    {
    }
    typename GridT::Ptr process(bool threaded = true)
    {
        Functor functor(mInputGrid, mMask, threaded, mInterrupt);
        processTypedMap(mInputGrid.transform(), functor);
        return functor.mOutputGrid;
    }

protected:
    struct Functor
    {
        Functor(const GridT& grid, const MaskGridType* mask, bool threaded, InterruptT* interrupt):
            mThreaded(threaded), mInputGrid(grid), mInterrupt(interrupt), mMask(mask) {}
        template<typename MapT>
        void operator()(const MapT& map)
        {
            typedef math::Laplacian<MapT, math::CD_SECOND> OpT;
            GridOperator<GridT, MaskGridType, GridT, MapT, OpT, InterruptT> op(mInputGrid, mMask, map);
            mOutputGrid = op.process(mThreaded); // cache the result
        }
        const bool           mThreaded;
        const GridT&         mInputGrid;
        typename GridT::Ptr  mOutputGrid;
        InterruptT*          mInterrupt;
        const MaskGridType*  mMask;
    }; // Private Functor

    const GridT&        mInputGrid;
    InterruptT*         mInterrupt;
    const MaskGridType* mMask;
}; // end of Laplacian class


////////////////////////////////////////


template<typename GridT, typename MaskGridType = BoolGrid, typename InterruptT = util::NullInterrupter>
class MeanCurvature
{
public:
    typedef GridT  InGridType;
    typedef GridT  OutGridType;
    MeanCurvature(const GridT& grid, InterruptT* interrupt = NULL):
        mInputGrid(grid), mInterrupt(interrupt), mMask(NULL)
    {
    }
    MeanCurvature(const GridT& grid, const MaskGridType& mask, InterruptT* interrupt = NULL):
        mInputGrid(grid), mInterrupt(interrupt), mMask(&mask)
    {
    }

    typename GridT::Ptr process(bool threaded = true)
    {
        Functor functor(mInputGrid, mMask, threaded, mInterrupt);
        processTypedMap(mInputGrid.transform(), functor);
        return functor.mOutputGrid;
    }

protected:
    struct Functor
    {
        Functor(const GridT& grid, const MaskGridType* mask, bool threaded, InterruptT* interrupt):
            mThreaded(threaded), mInputGrid(grid), mInterrupt(interrupt), mMask(mask) {}
        template<typename MapT>
        void operator()(const MapT& map)
        {
            typedef math::MeanCurvature<MapT, math::CD_SECOND, math::CD_2ND> OpT;
            GridOperator<GridT, MaskGridType, GridT, MapT, OpT, InterruptT> op(mInputGrid, mMask, map);
            mOutputGrid = op.process(mThreaded); // cache the result
        }
        const bool           mThreaded;
        const GridT&         mInputGrid;
        typename GridT::Ptr  mOutputGrid;
        InterruptT*          mInterrupt;
        const MaskGridType*  mMask; 
    }; // Private Functor

    const GridT&        mInputGrid;
    InterruptT*         mInterrupt;
    const MaskGridType* mMask;
}; // end of MeanCurvature class


////////////////////////////////////////


template<typename InGridT, typename MaskGridType = BoolGrid, typename InterruptT = util::NullInterrupter>
class Magnitude
{
public:
    typedef InGridT                                         InGridType;
    typedef typename VectorToScalarConverter<InGridT>::Type OutGridType;
    Magnitude(const InGridType& grid, InterruptT* interrupt = NULL):
        mInputGrid(grid), mInterrupt(interrupt), mMask(NULL)
    {
    }
    Magnitude(const InGridType& grid, const MaskGridType& mask, InterruptT* interrupt = NULL):
        mInputGrid(grid), mInterrupt(interrupt), mMask(&mask)
    {
    }
    typename OutGridType::Ptr process(bool threaded = true)
    {
        Functor functor(mInputGrid, mMask, threaded, mInterrupt);
        processTypedMap(mInputGrid.transform(), functor);
        return functor.mOutputGrid;
    }

protected:
    struct OpT
    {
        template<typename MapT, typename AccT>
        static typename OutGridType::ValueType
        result(const MapT&, const AccT& acc, const Coord& xyz) { return acc.getValue(xyz).length();}
    };
    struct Functor
    {
        Functor(const InGridT& grid, const MaskGridType* mask, bool threaded, InterruptT* interrupt):
            mThreaded(threaded), mInputGrid(grid), mInterrupt(interrupt), mMask(mask) {}
        template<typename MapT>
        void operator()(const MapT& map)
        {
            GridOperator<InGridType, MaskGridType, OutGridType, MapT, OpT, InterruptT> op(mInputGrid, mMask, map);
            mOutputGrid = op.process(mThreaded); // cache the result
        }
        const bool                 mThreaded;
        const InGridType&          mInputGrid;
        typename OutGridType::Ptr  mOutputGrid;
        InterruptT*                mInterrupt;
        const MaskGridType*        mMask;
    }; // Private Functor

    const InGridType&    mInputGrid;
    InterruptT*          mInterrupt;
    const MaskGridType*  mMask;
}; // end of Magnitude class


////////////////////////////////////////


template<typename GridT, typename MaskGridType = BoolGrid, typename InterruptT = util::NullInterrupter>
class Normalize
{
public:
    typedef GridT  InGridType;
    typedef GridT  OutGridType;
    Normalize(const GridT& grid, InterruptT* interrupt = NULL):
        mInputGrid(grid), mInterrupt(interrupt), mMask(NULL)
    {
    }
    Normalize(const GridT& grid, const MaskGridType& mask, InterruptT* interrupt = NULL):
        mInputGrid(grid), mInterrupt(interrupt), mMask(&mask)
    {
    }
  
    typename GridT::Ptr process(bool threaded = true)
    {
        Functor functor(mInputGrid, mMask, threaded, mInterrupt);
        processTypedMap(mInputGrid.transform(), functor);
        return functor.mOutputGrid;
    }

protected:
    struct OpT
    {
        template<typename MapT, typename AccT>
        static typename OutGridType::ValueType
        result(const MapT&, const AccT& acc, const Coord& xyz)
        {
            typename OutGridType::ValueType vec = acc.getValue(xyz);
            if ( !vec.normalize() ) vec.setZero();
            return vec;
        }
    };
    struct Functor
    {
        Functor(const GridT& grid, const MaskGridType* mask, bool threaded, InterruptT* interrupt):
            mThreaded(threaded), mInputGrid(grid), mInterrupt(interrupt), mMask(mask) {}
        template<typename MapT>
        void operator()(const MapT& map)
        {
            GridOperator<GridT, MaskGridType, GridT, MapT, OpT, InterruptT> op(mInputGrid, mMask,map);
            mOutputGrid = op.process(mThreaded); // cache the result
        }
        const bool           mThreaded;
        const GridT&         mInputGrid;
        typename GridT::Ptr  mOutputGrid;
        InterruptT*          mInterrupt;
        const MaskGridType*  mMask;
    }; // Private Functor

    const GridT&        mInputGrid;
    InterruptT*         mInterrupt;
    const MaskGridType* mMask;
}; // end of Normalize class


////////////////////////////////////////


template<typename GridType, typename InterruptT> inline
typename ScalarToVectorConverter<GridType>::Type::Ptr
cpt(const GridType& grid, bool threaded, InterruptT* interrupt)
{
    Cpt<GridType, BoolGrid, InterruptT> op(grid, interrupt);
    return op.process(threaded);
}

template<typename GridType, typename MaskT, typename InterruptT> inline
typename ScalarToVectorConverter<GridType>::Type::Ptr
cpt(const GridType& grid, const MaskT& mask, bool threaded, InterruptT* interrupt)
{
    Cpt<GridType, MaskT, InterruptT> op(grid, mask, interrupt);
    return op.process(threaded);
}

template<typename GridType, typename InterruptT> inline
typename GridType::Ptr
curl(const GridType& grid, bool threaded, InterruptT* interrupt)
{
    Curl<GridType, BoolGrid, InterruptT> op(grid, interrupt);
    return op.process(threaded);
}


template<typename GridType, typename MaskT, typename InterruptT> inline
typename GridType::Ptr
curl(const GridType& grid, const MaskT& mask, bool threaded, InterruptT* interrupt)
{
    Curl<GridType, MaskT, InterruptT> op(grid, mask, interrupt);
    return op.process(threaded);
}

template<typename GridType, typename InterruptT> inline
typename VectorToScalarConverter<GridType>::Type::Ptr
divergence(const GridType& grid, bool threaded, InterruptT* interrupt)
{
    Divergence<GridType, BoolGrid, InterruptT> op(grid, interrupt);
    return op.process(threaded);
}

template<typename GridType, typename MaskT, typename InterruptT> inline
typename VectorToScalarConverter<GridType>::Type::Ptr
divergence(const GridType& grid, const MaskT& mask, bool threaded, InterruptT* interrupt)
{
    Divergence<GridType, MaskT, InterruptT> op(grid, mask, interrupt);
    return op.process(threaded);
}

template<typename GridType, typename InterruptT> inline
typename ScalarToVectorConverter<GridType>::Type::Ptr
gradient(const GridType& grid, bool threaded, InterruptT* interrupt)
{
    Gradient<GridType, BoolGrid, InterruptT> op(grid, interrupt);
    return op.process(threaded);
}

template<typename GridType, typename MaskT, typename InterruptT> inline
typename ScalarToVectorConverter<GridType>::Type::Ptr
gradient(const GridType& grid, const MaskT& mask, bool threaded, InterruptT* interrupt)
{
    Gradient<GridType, MaskT, InterruptT> op(grid, mask, interrupt);
    return op.process(threaded);
}

template<typename GridType, typename InterruptT> inline
typename GridType::Ptr
laplacian(const GridType& grid, bool threaded, InterruptT* interrupt)
{
    Laplacian<GridType, BoolGrid, InterruptT> op(grid, interrupt);
    return op.process(threaded);
}

template<typename GridType, typename MaskT, typename InterruptT> inline
typename GridType::Ptr
laplacian(const GridType& grid, const MaskT& mask, bool threaded, InterruptT* interrupt)
{
    Laplacian<GridType, MaskT, InterruptT> op(grid, mask, interrupt);
    return op.process(threaded);
}

template<typename GridType, typename InterruptT> inline
typename GridType::Ptr
meanCurvature(const GridType& grid, bool threaded, InterruptT* interrupt)
{
    MeanCurvature<GridType, BoolGrid, InterruptT> op(grid, interrupt);
    return op.process(threaded);
}

template<typename GridType, typename MaskT, typename InterruptT> inline
typename GridType::Ptr
meanCurvature(const GridType& grid, const MaskT& mask, bool threaded, InterruptT* interrupt)
{
    MeanCurvature<GridType, MaskT, InterruptT> op(grid, mask, interrupt);
    return op.process(threaded);
}

template<typename GridType, typename InterruptT> inline
typename VectorToScalarConverter<GridType>::Type::Ptr
magnitude(const GridType& grid, bool threaded, InterruptT* interrupt)
{
    Magnitude<GridType, BoolGrid, InterruptT> op(grid, interrupt);
    return op.process(threaded);
}

template<typename GridType, typename MaskT, typename InterruptT> inline
typename VectorToScalarConverter<GridType>::Type::Ptr
magnitude(const GridType& grid, const MaskT& mask, bool threaded, InterruptT* interrupt)
{
    Magnitude<GridType, MaskT, InterruptT> op(grid, mask, interrupt);
    return op.process(threaded);
}

template<typename GridType, typename InterruptT> inline
typename GridType::Ptr
normalize(const GridType& grid, bool threaded, InterruptT* interrupt)
{
    Normalize<GridType, BoolGrid, InterruptT> op(grid, interrupt);
    return op.process(threaded);
}

template<typename GridType, typename MaskT, typename InterruptT> inline
typename GridType::Ptr
normalize(const GridType& grid, const MaskT& mask, bool threaded, InterruptT* interrupt)
{
    Normalize<GridType, MaskT, InterruptT> op(grid, mask, interrupt);
    return op.process(threaded);
}

} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_TOOLS_GRID_OPERATORS_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2013 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )