This file is indexed.

/usr/share/pari/pari.desc is in libpari-dev 2.5.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
 6964
 6965
 6966
 6967
 6968
 6969
 6970
 6971
 6972
 6973
 6974
 6975
 6976
 6977
 6978
 6979
 6980
 6981
 6982
 6983
 6984
 6985
 6986
 6987
 6988
 6989
 6990
 6991
 6992
 6993
 6994
 6995
 6996
 6997
 6998
 6999
 7000
 7001
 7002
 7003
 7004
 7005
 7006
 7007
 7008
 7009
 7010
 7011
 7012
 7013
 7014
 7015
 7016
 7017
 7018
 7019
 7020
 7021
 7022
 7023
 7024
 7025
 7026
 7027
 7028
 7029
 7030
 7031
 7032
 7033
 7034
 7035
 7036
 7037
 7038
 7039
 7040
 7041
 7042
 7043
 7044
 7045
 7046
 7047
 7048
 7049
 7050
 7051
 7052
 7053
 7054
 7055
 7056
 7057
 7058
 7059
 7060
 7061
 7062
 7063
 7064
 7065
 7066
 7067
 7068
 7069
 7070
 7071
 7072
 7073
 7074
 7075
 7076
 7077
 7078
 7079
 7080
 7081
 7082
 7083
 7084
 7085
 7086
 7087
 7088
 7089
 7090
 7091
 7092
 7093
 7094
 7095
 7096
 7097
 7098
 7099
 7100
 7101
 7102
 7103
 7104
 7105
 7106
 7107
 7108
 7109
 7110
 7111
 7112
 7113
 7114
 7115
 7116
 7117
 7118
 7119
 7120
 7121
 7122
 7123
 7124
 7125
 7126
 7127
 7128
 7129
 7130
 7131
 7132
 7133
 7134
 7135
 7136
 7137
 7138
 7139
 7140
 7141
 7142
 7143
 7144
 7145
 7146
 7147
 7148
 7149
 7150
 7151
 7152
 7153
 7154
 7155
 7156
 7157
 7158
 7159
 7160
 7161
 7162
 7163
 7164
 7165
 7166
 7167
 7168
 7169
 7170
 7171
 7172
 7173
 7174
 7175
 7176
 7177
 7178
 7179
 7180
 7181
 7182
 7183
 7184
 7185
 7186
 7187
 7188
 7189
 7190
 7191
 7192
 7193
 7194
 7195
 7196
 7197
 7198
 7199
 7200
 7201
 7202
 7203
 7204
 7205
 7206
 7207
 7208
 7209
 7210
 7211
 7212
 7213
 7214
 7215
 7216
 7217
 7218
 7219
 7220
 7221
 7222
 7223
 7224
 7225
 7226
 7227
 7228
 7229
 7230
 7231
 7232
 7233
 7234
 7235
 7236
 7237
 7238
 7239
 7240
 7241
 7242
 7243
 7244
 7245
 7246
 7247
 7248
 7249
 7250
 7251
 7252
 7253
 7254
 7255
 7256
 7257
 7258
 7259
 7260
 7261
 7262
 7263
 7264
 7265
 7266
 7267
 7268
 7269
 7270
 7271
 7272
 7273
 7274
 7275
 7276
 7277
 7278
 7279
 7280
 7281
 7282
 7283
 7284
 7285
 7286
 7287
 7288
 7289
 7290
 7291
 7292
 7293
 7294
 7295
 7296
 7297
 7298
 7299
 7300
 7301
 7302
 7303
 7304
 7305
 7306
 7307
 7308
 7309
 7310
 7311
 7312
 7313
 7314
 7315
 7316
 7317
 7318
 7319
 7320
 7321
 7322
 7323
 7324
 7325
 7326
 7327
 7328
 7329
 7330
 7331
 7332
 7333
 7334
 7335
 7336
 7337
 7338
 7339
 7340
 7341
 7342
 7343
 7344
 7345
 7346
 7347
 7348
 7349
 7350
 7351
 7352
 7353
 7354
 7355
 7356
 7357
 7358
 7359
 7360
 7361
 7362
 7363
 7364
 7365
 7366
 7367
 7368
 7369
 7370
 7371
 7372
 7373
 7374
 7375
 7376
 7377
 7378
 7379
 7380
 7381
 7382
 7383
 7384
 7385
 7386
 7387
 7388
 7389
 7390
 7391
 7392
 7393
 7394
 7395
 7396
 7397
 7398
 7399
 7400
 7401
 7402
 7403
 7404
 7405
 7406
 7407
 7408
 7409
 7410
 7411
 7412
 7413
 7414
 7415
 7416
 7417
 7418
 7419
 7420
 7421
 7422
 7423
 7424
 7425
 7426
 7427
 7428
 7429
 7430
 7431
 7432
 7433
 7434
 7435
 7436
 7437
 7438
 7439
 7440
 7441
 7442
 7443
 7444
 7445
 7446
 7447
 7448
 7449
 7450
 7451
 7452
 7453
 7454
 7455
 7456
 7457
 7458
 7459
 7460
 7461
 7462
 7463
 7464
 7465
 7466
 7467
 7468
 7469
 7470
 7471
 7472
 7473
 7474
 7475
 7476
 7477
 7478
 7479
 7480
 7481
 7482
 7483
 7484
 7485
 7486
 7487
 7488
 7489
 7490
 7491
 7492
 7493
 7494
 7495
 7496
 7497
 7498
 7499
 7500
 7501
 7502
 7503
 7504
 7505
 7506
 7507
 7508
 7509
 7510
 7511
 7512
 7513
 7514
 7515
 7516
 7517
 7518
 7519
 7520
 7521
 7522
 7523
 7524
 7525
 7526
 7527
 7528
 7529
 7530
 7531
 7532
 7533
 7534
 7535
 7536
 7537
 7538
 7539
 7540
 7541
 7542
 7543
 7544
 7545
 7546
 7547
 7548
 7549
 7550
 7551
 7552
 7553
 7554
 7555
 7556
 7557
 7558
 7559
 7560
 7561
 7562
 7563
 7564
 7565
 7566
 7567
 7568
 7569
 7570
 7571
 7572
 7573
 7574
 7575
 7576
 7577
 7578
 7579
 7580
 7581
 7582
 7583
 7584
 7585
 7586
 7587
 7588
 7589
 7590
 7591
 7592
 7593
 7594
 7595
 7596
 7597
 7598
 7599
 7600
 7601
 7602
 7603
 7604
 7605
 7606
 7607
 7608
 7609
 7610
 7611
 7612
 7613
 7614
 7615
 7616
 7617
 7618
 7619
 7620
 7621
 7622
 7623
 7624
 7625
 7626
 7627
 7628
 7629
 7630
 7631
 7632
 7633
 7634
 7635
 7636
 7637
 7638
 7639
 7640
 7641
 7642
 7643
 7644
 7645
 7646
 7647
 7648
 7649
 7650
 7651
 7652
 7653
 7654
 7655
 7656
 7657
 7658
 7659
 7660
 7661
 7662
 7663
 7664
 7665
 7666
 7667
 7668
 7669
 7670
 7671
 7672
 7673
 7674
 7675
 7676
 7677
 7678
 7679
 7680
 7681
 7682
 7683
 7684
 7685
 7686
 7687
 7688
 7689
 7690
 7691
 7692
 7693
 7694
 7695
 7696
 7697
 7698
 7699
 7700
 7701
 7702
 7703
 7704
 7705
 7706
 7707
 7708
 7709
 7710
 7711
 7712
 7713
 7714
 7715
 7716
 7717
 7718
 7719
 7720
 7721
 7722
 7723
 7724
 7725
 7726
 7727
 7728
 7729
 7730
 7731
 7732
 7733
 7734
 7735
 7736
 7737
 7738
 7739
 7740
 7741
 7742
 7743
 7744
 7745
 7746
 7747
 7748
 7749
 7750
 7751
 7752
 7753
 7754
 7755
 7756
 7757
 7758
 7759
 7760
 7761
 7762
 7763
 7764
 7765
 7766
 7767
 7768
 7769
 7770
 7771
 7772
 7773
 7774
 7775
 7776
 7777
 7778
 7779
 7780
 7781
 7782
 7783
 7784
 7785
 7786
 7787
 7788
 7789
 7790
 7791
 7792
 7793
 7794
 7795
 7796
 7797
 7798
 7799
 7800
 7801
 7802
 7803
 7804
 7805
 7806
 7807
 7808
 7809
 7810
 7811
 7812
 7813
 7814
 7815
 7816
 7817
 7818
 7819
 7820
 7821
 7822
 7823
 7824
 7825
 7826
 7827
 7828
 7829
 7830
 7831
 7832
 7833
 7834
 7835
 7836
 7837
 7838
 7839
 7840
 7841
 7842
 7843
 7844
 7845
 7846
 7847
 7848
 7849
 7850
 7851
 7852
 7853
 7854
 7855
 7856
 7857
 7858
 7859
 7860
 7861
 7862
 7863
 7864
 7865
 7866
 7867
 7868
 7869
 7870
 7871
 7872
 7873
 7874
 7875
 7876
 7877
 7878
 7879
 7880
 7881
 7882
 7883
 7884
 7885
 7886
 7887
 7888
 7889
 7890
 7891
 7892
 7893
 7894
 7895
 7896
 7897
 7898
 7899
 7900
 7901
 7902
 7903
 7904
 7905
 7906
 7907
 7908
 7909
 7910
 7911
 7912
 7913
 7914
 7915
 7916
 7917
 7918
 7919
 7920
 7921
 7922
 7923
 7924
 7925
 7926
 7927
 7928
 7929
 7930
 7931
 7932
 7933
 7934
 7935
 7936
 7937
 7938
 7939
 7940
 7941
 7942
 7943
 7944
 7945
 7946
 7947
 7948
 7949
 7950
 7951
 7952
 7953
 7954
 7955
 7956
 7957
 7958
 7959
 7960
 7961
 7962
 7963
 7964
 7965
 7966
 7967
 7968
 7969
 7970
 7971
 7972
 7973
 7974
 7975
 7976
 7977
 7978
 7979
 7980
 7981
 7982
 7983
 7984
 7985
 7986
 7987
 7988
 7989
 7990
 7991
 7992
 7993
 7994
 7995
 7996
 7997
 7998
 7999
 8000
 8001
 8002
 8003
 8004
 8005
 8006
 8007
 8008
 8009
 8010
 8011
 8012
 8013
 8014
 8015
 8016
 8017
 8018
 8019
 8020
 8021
 8022
 8023
 8024
 8025
 8026
 8027
 8028
 8029
 8030
 8031
 8032
 8033
 8034
 8035
 8036
 8037
 8038
 8039
 8040
 8041
 8042
 8043
 8044
 8045
 8046
 8047
 8048
 8049
 8050
 8051
 8052
 8053
 8054
 8055
 8056
 8057
 8058
 8059
 8060
 8061
 8062
 8063
 8064
 8065
 8066
 8067
 8068
 8069
 8070
 8071
 8072
 8073
 8074
 8075
 8076
 8077
 8078
 8079
 8080
 8081
 8082
 8083
 8084
 8085
 8086
 8087
 8088
 8089
 8090
 8091
 8092
 8093
 8094
 8095
 8096
 8097
 8098
 8099
 8100
 8101
 8102
 8103
 8104
 8105
 8106
 8107
 8108
 8109
 8110
 8111
 8112
 8113
 8114
 8115
 8116
 8117
 8118
 8119
 8120
 8121
 8122
 8123
 8124
 8125
 8126
 8127
 8128
 8129
 8130
 8131
 8132
 8133
 8134
 8135
 8136
 8137
 8138
 8139
 8140
 8141
 8142
 8143
 8144
 8145
 8146
 8147
 8148
 8149
 8150
 8151
 8152
 8153
 8154
 8155
 8156
 8157
 8158
 8159
 8160
 8161
 8162
 8163
 8164
 8165
 8166
 8167
 8168
 8169
 8170
 8171
 8172
 8173
 8174
 8175
 8176
 8177
 8178
 8179
 8180
 8181
 8182
 8183
 8184
 8185
 8186
 8187
 8188
 8189
 8190
 8191
 8192
 8193
 8194
 8195
 8196
 8197
 8198
 8199
 8200
 8201
 8202
 8203
 8204
 8205
 8206
 8207
 8208
 8209
 8210
 8211
 8212
 8213
 8214
 8215
 8216
 8217
 8218
 8219
 8220
 8221
 8222
 8223
 8224
 8225
 8226
 8227
 8228
 8229
 8230
 8231
 8232
 8233
 8234
 8235
 8236
 8237
 8238
 8239
 8240
 8241
 8242
 8243
 8244
 8245
 8246
 8247
 8248
 8249
 8250
 8251
 8252
 8253
 8254
 8255
 8256
 8257
 8258
 8259
 8260
 8261
 8262
 8263
 8264
 8265
 8266
 8267
 8268
 8269
 8270
 8271
 8272
 8273
 8274
 8275
 8276
 8277
 8278
 8279
 8280
 8281
 8282
 8283
 8284
 8285
 8286
 8287
 8288
 8289
 8290
 8291
 8292
 8293
 8294
 8295
 8296
 8297
 8298
 8299
 8300
 8301
 8302
 8303
 8304
 8305
 8306
 8307
 8308
 8309
 8310
 8311
 8312
 8313
 8314
 8315
 8316
 8317
 8318
 8319
 8320
 8321
 8322
 8323
 8324
 8325
 8326
 8327
 8328
 8329
 8330
 8331
 8332
 8333
 8334
 8335
 8336
 8337
 8338
 8339
 8340
 8341
 8342
 8343
 8344
 8345
 8346
 8347
 8348
 8349
 8350
 8351
 8352
 8353
 8354
 8355
 8356
 8357
 8358
 8359
 8360
 8361
 8362
 8363
 8364
 8365
 8366
 8367
 8368
 8369
 8370
 8371
 8372
 8373
 8374
 8375
 8376
 8377
 8378
 8379
 8380
 8381
 8382
 8383
 8384
 8385
 8386
 8387
 8388
 8389
 8390
 8391
 8392
 8393
 8394
 8395
 8396
 8397
 8398
 8399
 8400
 8401
 8402
 8403
 8404
 8405
 8406
 8407
 8408
 8409
 8410
 8411
 8412
 8413
 8414
 8415
 8416
 8417
 8418
 8419
 8420
 8421
 8422
 8423
 8424
 8425
 8426
 8427
 8428
 8429
 8430
 8431
 8432
 8433
 8434
 8435
 8436
 8437
 8438
 8439
 8440
 8441
 8442
 8443
 8444
 8445
 8446
 8447
 8448
 8449
 8450
 8451
 8452
 8453
 8454
 8455
 8456
 8457
 8458
 8459
 8460
 8461
 8462
 8463
 8464
 8465
 8466
 8467
 8468
 8469
 8470
 8471
 8472
 8473
 8474
 8475
 8476
 8477
 8478
 8479
 8480
 8481
 8482
 8483
 8484
 8485
 8486
 8487
 8488
 8489
 8490
 8491
 8492
 8493
 8494
 8495
 8496
 8497
 8498
 8499
 8500
 8501
 8502
 8503
 8504
 8505
 8506
 8507
 8508
 8509
 8510
 8511
 8512
 8513
 8514
 8515
 8516
 8517
 8518
 8519
 8520
 8521
 8522
 8523
 8524
 8525
 8526
 8527
 8528
 8529
 8530
 8531
 8532
 8533
 8534
 8535
 8536
 8537
 8538
 8539
 8540
 8541
 8542
 8543
 8544
 8545
 8546
 8547
 8548
 8549
 8550
 8551
 8552
 8553
 8554
 8555
 8556
 8557
 8558
 8559
 8560
 8561
 8562
 8563
 8564
 8565
 8566
 8567
 8568
 8569
 8570
 8571
 8572
 8573
 8574
 8575
 8576
 8577
 8578
 8579
 8580
 8581
 8582
 8583
 8584
 8585
 8586
 8587
 8588
 8589
 8590
 8591
 8592
 8593
 8594
 8595
 8596
 8597
 8598
 8599
 8600
 8601
 8602
 8603
 8604
 8605
 8606
 8607
 8608
 8609
 8610
 8611
 8612
 8613
 8614
 8615
 8616
 8617
 8618
 8619
 8620
 8621
 8622
 8623
 8624
 8625
 8626
 8627
 8628
 8629
 8630
 8631
 8632
 8633
 8634
 8635
 8636
 8637
 8638
 8639
 8640
 8641
 8642
 8643
 8644
 8645
 8646
 8647
 8648
 8649
 8650
 8651
 8652
 8653
 8654
 8655
 8656
 8657
 8658
 8659
 8660
 8661
 8662
 8663
 8664
 8665
 8666
 8667
 8668
 8669
 8670
 8671
 8672
 8673
 8674
 8675
 8676
 8677
 8678
 8679
 8680
 8681
 8682
 8683
 8684
 8685
 8686
 8687
 8688
 8689
 8690
 8691
 8692
 8693
 8694
 8695
 8696
 8697
 8698
 8699
 8700
 8701
 8702
 8703
 8704
 8705
 8706
 8707
 8708
 8709
 8710
 8711
 8712
 8713
 8714
 8715
 8716
 8717
 8718
 8719
 8720
 8721
 8722
 8723
 8724
 8725
 8726
 8727
 8728
 8729
 8730
 8731
 8732
 8733
 8734
 8735
 8736
 8737
 8738
 8739
 8740
 8741
 8742
 8743
 8744
 8745
 8746
 8747
 8748
 8749
 8750
 8751
 8752
 8753
 8754
 8755
 8756
 8757
 8758
 8759
 8760
 8761
 8762
 8763
 8764
 8765
 8766
 8767
 8768
 8769
 8770
 8771
 8772
 8773
 8774
 8775
 8776
 8777
 8778
 8779
 8780
 8781
 8782
 8783
 8784
 8785
 8786
 8787
 8788
 8789
 8790
 8791
 8792
 8793
 8794
 8795
 8796
 8797
 8798
 8799
 8800
 8801
 8802
 8803
 8804
 8805
 8806
 8807
 8808
 8809
 8810
 8811
 8812
 8813
 8814
 8815
 8816
 8817
 8818
 8819
 8820
 8821
 8822
 8823
 8824
 8825
 8826
 8827
 8828
 8829
 8830
 8831
 8832
 8833
 8834
 8835
 8836
 8837
 8838
 8839
 8840
 8841
 8842
 8843
 8844
 8845
 8846
 8847
 8848
 8849
 8850
 8851
 8852
 8853
 8854
 8855
 8856
 8857
 8858
 8859
 8860
 8861
 8862
 8863
 8864
 8865
 8866
 8867
 8868
 8869
 8870
 8871
 8872
 8873
 8874
 8875
 8876
 8877
 8878
 8879
 8880
 8881
 8882
 8883
 8884
 8885
 8886
 8887
 8888
 8889
 8890
 8891
 8892
 8893
 8894
 8895
 8896
 8897
 8898
 8899
 8900
 8901
 8902
 8903
 8904
 8905
 8906
 8907
 8908
 8909
 8910
 8911
 8912
 8913
 8914
 8915
 8916
 8917
 8918
 8919
 8920
 8921
 8922
 8923
 8924
 8925
 8926
 8927
 8928
 8929
 8930
 8931
 8932
 8933
 8934
 8935
 8936
 8937
 8938
 8939
 8940
 8941
 8942
 8943
 8944
 8945
 8946
 8947
 8948
 8949
 8950
 8951
 8952
 8953
 8954
 8955
 8956
 8957
 8958
 8959
 8960
 8961
 8962
 8963
 8964
 8965
 8966
 8967
 8968
 8969
 8970
 8971
 8972
 8973
 8974
 8975
 8976
 8977
 8978
 8979
 8980
 8981
 8982
 8983
 8984
 8985
 8986
 8987
 8988
 8989
 8990
 8991
 8992
 8993
 8994
 8995
 8996
 8997
 8998
 8999
 9000
 9001
 9002
 9003
 9004
 9005
 9006
 9007
 9008
 9009
 9010
 9011
 9012
 9013
 9014
 9015
 9016
 9017
 9018
 9019
 9020
 9021
 9022
 9023
 9024
 9025
 9026
 9027
 9028
 9029
 9030
 9031
 9032
 9033
 9034
 9035
 9036
 9037
 9038
 9039
 9040
 9041
 9042
 9043
 9044
 9045
 9046
 9047
 9048
 9049
 9050
 9051
 9052
 9053
 9054
 9055
 9056
 9057
 9058
 9059
 9060
 9061
 9062
 9063
 9064
 9065
 9066
 9067
 9068
 9069
 9070
 9071
 9072
 9073
 9074
 9075
 9076
 9077
 9078
 9079
 9080
 9081
 9082
 9083
 9084
 9085
 9086
 9087
 9088
 9089
 9090
 9091
 9092
 9093
 9094
 9095
 9096
 9097
 9098
 9099
 9100
 9101
 9102
 9103
 9104
 9105
 9106
 9107
 9108
 9109
 9110
 9111
 9112
 9113
 9114
 9115
 9116
 9117
 9118
 9119
 9120
 9121
 9122
 9123
 9124
 9125
 9126
 9127
 9128
 9129
 9130
 9131
 9132
 9133
 9134
 9135
 9136
 9137
 9138
 9139
 9140
 9141
 9142
 9143
 9144
 9145
 9146
 9147
 9148
 9149
 9150
 9151
 9152
 9153
 9154
 9155
 9156
 9157
 9158
 9159
 9160
 9161
 9162
 9163
 9164
 9165
 9166
 9167
 9168
 9169
 9170
 9171
 9172
 9173
 9174
 9175
 9176
 9177
 9178
 9179
 9180
 9181
 9182
 9183
 9184
 9185
 9186
 9187
 9188
 9189
 9190
 9191
 9192
 9193
 9194
 9195
 9196
 9197
 9198
 9199
 9200
 9201
 9202
 9203
 9204
 9205
 9206
 9207
 9208
 9209
 9210
 9211
 9212
 9213
 9214
 9215
 9216
 9217
 9218
 9219
 9220
 9221
 9222
 9223
 9224
 9225
 9226
 9227
 9228
 9229
 9230
 9231
 9232
 9233
 9234
 9235
 9236
 9237
 9238
 9239
 9240
 9241
 9242
 9243
 9244
 9245
 9246
 9247
 9248
 9249
 9250
 9251
 9252
 9253
 9254
 9255
 9256
 9257
 9258
 9259
 9260
 9261
 9262
 9263
 9264
 9265
 9266
 9267
 9268
 9269
 9270
 9271
 9272
 9273
 9274
 9275
 9276
 9277
 9278
 9279
 9280
 9281
 9282
 9283
 9284
 9285
 9286
 9287
 9288
 9289
 9290
 9291
 9292
 9293
 9294
 9295
 9296
 9297
 9298
 9299
 9300
 9301
 9302
 9303
 9304
 9305
 9306
 9307
 9308
 9309
 9310
 9311
 9312
 9313
 9314
 9315
 9316
 9317
 9318
 9319
 9320
 9321
 9322
 9323
 9324
 9325
 9326
 9327
 9328
 9329
 9330
 9331
 9332
 9333
 9334
 9335
 9336
 9337
 9338
 9339
 9340
 9341
 9342
 9343
 9344
 9345
 9346
 9347
 9348
 9349
 9350
 9351
 9352
 9353
 9354
 9355
 9356
 9357
 9358
 9359
 9360
 9361
 9362
 9363
 9364
 9365
 9366
 9367
 9368
 9369
 9370
 9371
 9372
 9373
 9374
 9375
 9376
 9377
 9378
 9379
 9380
 9381
 9382
 9383
 9384
 9385
 9386
 9387
 9388
 9389
 9390
 9391
 9392
 9393
 9394
 9395
 9396
 9397
 9398
 9399
 9400
 9401
 9402
 9403
 9404
 9405
 9406
 9407
 9408
 9409
 9410
 9411
 9412
 9413
 9414
 9415
 9416
 9417
 9418
 9419
 9420
 9421
 9422
 9423
 9424
 9425
 9426
 9427
 9428
 9429
 9430
 9431
 9432
 9433
 9434
 9435
 9436
 9437
 9438
 9439
 9440
 9441
 9442
 9443
 9444
 9445
 9446
 9447
 9448
 9449
 9450
 9451
 9452
 9453
 9454
 9455
 9456
 9457
 9458
 9459
 9460
 9461
 9462
 9463
 9464
 9465
 9466
 9467
 9468
 9469
 9470
 9471
 9472
 9473
 9474
 9475
 9476
 9477
 9478
 9479
 9480
 9481
 9482
 9483
 9484
 9485
 9486
 9487
 9488
 9489
 9490
 9491
 9492
 9493
 9494
 9495
 9496
 9497
 9498
 9499
 9500
 9501
 9502
 9503
 9504
 9505
 9506
 9507
 9508
 9509
 9510
 9511
 9512
 9513
 9514
 9515
 9516
 9517
 9518
 9519
 9520
 9521
 9522
 9523
 9524
 9525
 9526
 9527
 9528
 9529
 9530
 9531
 9532
 9533
 9534
 9535
 9536
 9537
 9538
 9539
 9540
 9541
 9542
 9543
 9544
 9545
 9546
 9547
 9548
 9549
 9550
 9551
 9552
 9553
 9554
 9555
 9556
 9557
 9558
 9559
 9560
 9561
 9562
 9563
 9564
 9565
 9566
 9567
 9568
 9569
 9570
 9571
 9572
 9573
 9574
 9575
 9576
 9577
 9578
 9579
 9580
 9581
 9582
 9583
 9584
 9585
 9586
 9587
 9588
 9589
 9590
 9591
 9592
 9593
 9594
 9595
 9596
 9597
 9598
 9599
 9600
 9601
 9602
 9603
 9604
 9605
 9606
 9607
 9608
 9609
 9610
 9611
 9612
 9613
 9614
 9615
 9616
 9617
 9618
 9619
 9620
 9621
 9622
 9623
 9624
 9625
 9626
 9627
 9628
 9629
 9630
 9631
 9632
 9633
 9634
 9635
 9636
 9637
 9638
 9639
 9640
 9641
 9642
 9643
 9644
 9645
 9646
 9647
 9648
 9649
 9650
 9651
 9652
 9653
 9654
 9655
 9656
 9657
 9658
 9659
 9660
 9661
 9662
 9663
 9664
 9665
 9666
 9667
 9668
 9669
 9670
 9671
 9672
 9673
 9674
 9675
 9676
 9677
 9678
 9679
 9680
 9681
 9682
 9683
 9684
 9685
 9686
 9687
 9688
 9689
 9690
 9691
 9692
 9693
 9694
 9695
 9696
 9697
 9698
 9699
 9700
 9701
 9702
 9703
 9704
 9705
 9706
 9707
 9708
 9709
 9710
 9711
 9712
 9713
 9714
 9715
 9716
 9717
 9718
 9719
 9720
 9721
 9722
 9723
 9724
 9725
 9726
 9727
 9728
 9729
 9730
 9731
 9732
 9733
 9734
 9735
 9736
 9737
 9738
 9739
 9740
 9741
 9742
 9743
 9744
 9745
 9746
 9747
 9748
 9749
 9750
 9751
 9752
 9753
 9754
 9755
 9756
 9757
 9758
 9759
 9760
 9761
 9762
 9763
 9764
 9765
 9766
 9767
 9768
 9769
 9770
 9771
 9772
 9773
 9774
 9775
 9776
 9777
 9778
 9779
 9780
 9781
 9782
 9783
 9784
 9785
 9786
 9787
 9788
 9789
 9790
 9791
 9792
 9793
 9794
 9795
 9796
 9797
 9798
 9799
 9800
 9801
 9802
 9803
 9804
 9805
 9806
 9807
 9808
 9809
 9810
 9811
 9812
 9813
 9814
 9815
 9816
 9817
 9818
 9819
 9820
 9821
 9822
 9823
 9824
 9825
 9826
 9827
 9828
 9829
 9830
 9831
 9832
 9833
 9834
 9835
 9836
 9837
 9838
 9839
 9840
 9841
 9842
 9843
 9844
 9845
 9846
 9847
 9848
 9849
 9850
 9851
 9852
 9853
 9854
 9855
 9856
 9857
 9858
 9859
 9860
 9861
 9862
 9863
 9864
 9865
 9866
 9867
 9868
 9869
 9870
 9871
 9872
 9873
 9874
 9875
 9876
 9877
 9878
 9879
 9880
 9881
 9882
 9883
 9884
 9885
 9886
 9887
 9888
 9889
 9890
 9891
 9892
 9893
 9894
 9895
 9896
 9897
 9898
 9899
 9900
 9901
 9902
 9903
 9904
 9905
 9906
 9907
 9908
 9909
 9910
 9911
 9912
 9913
 9914
 9915
 9916
 9917
 9918
 9919
 9920
 9921
 9922
 9923
 9924
 9925
 9926
 9927
 9928
 9929
 9930
 9931
 9932
 9933
 9934
 9935
 9936
 9937
 9938
 9939
 9940
 9941
 9942
 9943
 9944
 9945
 9946
 9947
 9948
 9949
 9950
 9951
 9952
 9953
 9954
 9955
 9956
 9957
 9958
 9959
 9960
 9961
 9962
 9963
 9964
 9965
 9966
 9967
 9968
 9969
 9970
 9971
 9972
 9973
 9974
 9975
 9976
 9977
 9978
 9979
 9980
 9981
 9982
 9983
 9984
 9985
 9986
 9987
 9988
 9989
 9990
 9991
 9992
 9993
 9994
 9995
 9996
 9997
 9998
 9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
Function: !_
Class: basic
Section: symbolic_operators
C-Name: gnot
Prototype: G
Help: !_
Description: 
 (negbool):bool:parens                $1
 (bool):negbool:parens                $1

Function: #_
Class: basic
Section: symbolic_operators
C-Name: glength
Prototype: lG
Help: #x: number of non code words in x, number of characters for a string.
Description: 
 (vecsmall):lg      lg($1)
 (vec):lg           lg($1)
 (pol):small        lgpol($1)
 (gen):small        glength($1)

Function: %
Class: basic
Section: symbolic_operators
C-Name: pari_get_hist
Prototype: D0,L,
Help: last history item.

Function: +_
Class: basic
Section: symbolic_operators
Help: +_
Description: 
 (small):small:parens                      $1
 (int):int:parens:copy                     $1
 (real):real:parens:copy                   $1
 (mp):mp:parens:copy                       $1
 (gen):gen:parens:copy                     $1

Function: -_
Class: basic
Section: symbolic_operators
C-Name: gneg
Prototype: G
Help: -_
Description: 
 (small):small:parens           -$(1)
 (int):int                      negi($1)
 (real):real                    negr($1)
 (mp):mp                        mpneg($1)
 (gen):gen                      gneg($1)

Function: Col
Class: basic
Section: conversions
C-Name: gtocol
Prototype: DG
Help: Col({x=[]}): transforms the object x into a column vector.
 Empty vector if x is omitted.
Description: 
 ():vec        cgetg(1,t_COL)
 (gen):vec     gtocol($1)
Doc: 
 transforms the object $x$ into a column vector.
 The vector has a single component , except when $x$ is
 
 \item a vector or a quadratic form (in which case the resulting vector is
 simply the initial object considered as a column vector),
 
 \item a matrix (the column of row vectors comprising the matrix is
 returned),
 
 \item a character string (a column of individual characters is returned),
 
 \item a polynomial or a power series. In the case of a polynomial, the
 coefficients of the vector start with the leading coefficient of the
 polynomial, while for power series only the significant coefficients are
 taken into account, but this time by increasing order of degree. In this last
 case, \kbd{Col} is the reciprocal function of \kbd{Pol} and \kbd{Ser}
 respectively.
 
 Note that the function \kbd{Colrev} does not exist, use \kbd{Vecrev}.

Function: Euler
Class: basic
Section: transcendental
C-Name: mpeuler
Prototype: p
Help: Euler=Euler(): Euler's constant with current precision.
Description: 
 ():real:prec        mpeuler(prec)
Doc: Euler's constant $\gamma=0.57721\cdots$. Note that
 \kbd{Euler} is one of the few special reserved names which cannot be used for
 variables (the others are \kbd{I} and \kbd{Pi}, as well as all function
 names).

Function: I
Class: basic
Section: transcendental
C-Name: gen_I
Prototype: 
Help: I=I(): square root of -1.
Description: 
Doc: the complex number $\sqrt{-1}$.

Function: List
Class: basic
Section: conversions
C-Name: gtolist
Prototype: DG
Help: List({x=[]}): transforms the vector or list x into a list. Empty list
 if x is omitted.
Description: 
 ():list           listcreate()
 (gen):list        gtolist($1)
Doc: 
 transforms a (row or column) vector $x$ into a list, whose components are
 the entries of $x$. Similarly for a list, but rather useless in this case.
 For other types, creates a list with the single element $x$. Note that,
 except when $x$ is omitted, this function creates a small memory leak; so,
 either initialize all lists to the empty list, or use them sparingly.
Variant: The variant \fun{GEN}{listcreate}{void} creates an empty list.

Function: Mat
Class: basic
Section: conversions
C-Name: gtomat
Prototype: DG
Help: Mat({x=[]}): transforms any GEN x into a matrix. Empty matrix if x is
 omitted.
Doc: 
 transforms the object $x$ into a matrix.
 If $x$ is already a matrix, a copy of $x$ is created.
 If $x$ is a row (resp. column) vector, this creates a 1-row (resp.
 1-column) matrix, \emph{unless} all elements are column (resp.~row) vectors
 of the same length, in which case the vectors are concatenated sideways
 and the associated big matrix is returned.
 If $x$ is a binary quadratic form, creates the associated $2\times 2$
 matrix. Otherwise, this creates a $1\times 1$ matrix containing $x$.
 
 \bprog
 ? Mat(x + 1)
 %1 =
 [x + 1]
 ? Vec( matid(3) )
 %2 = [[1, 0, 0]~, [0, 1, 0]~, [0, 0, 1]~]
 ? Mat(%)
 %3 =
 [1 0 0]
 
 [0 1 0]
 
 [0 0 1]
 ? Col( [1,2; 3,4] )
 %4 = [[1, 2], [3, 4]]~
 ? Mat(%)
 %5 =
 [1 2]
 
 [3 4]
 ? Mat(Qfb(1,2,3))
 %6 =
 [1 1]
 
 [1 3]
 @eprog

Function: Mod
Class: basic
Section: conversions
C-Name: gmodulo
Prototype: GG
Help: Mod(x,y): creates 'x modulo y'.
Description: 
 (small, small):gen         gmodulss($1, $2)
 (small, gen):gen           gmodulsg($1, $2)
 (gen, gen):gen             gmodulo($1, $2)
Doc: 
 creates the PARI object
 $(x \mod y)$, i.e.~an intmod or a polmod. $y$ must be an integer or a
 polynomial. If $y$ is an integer, $x$ must be an integer, a rational
 number, or a $p$-adic number compatible with the modulus $y$. If $y$ is a
 polynomial, $x$ must be a scalar (which is not a polmod), a polynomial, a
 rational function, or a power series.
 
 This function is not the same as $x$ \kbd{\%} $y$, the result of which is an
 integer or a polynomial.

Function: O
Class: basic
Section: polynomials
C-Name: ggrando
Prototype: 
Help: O(p^e): p-adic or power series zero with precision given by e
Doc: if $p$ is an integer
 greater than $2$, returns a $p$-adic $0$ of precision $e$. In all other
 cases, returns a power series zero with precision given by $e v$, where $v$
 is the $X$-adic valuation of $p$ with respect to its main variable.
Variant: \fun{GEN}{zeropadic}{GEN p, long e} for a $p$-adic and
 \fun{GEN}{zeroser}{long v, long e} for a power series zero in variable $v$.

Function: O(_^_)
Class: basic
Section: programming/internals
C-Name: ggrando
Prototype: GD1,L,
Help: O(p^e): p-adic or power series zero with precision given by e.
Description: 
 (gen):gen          ggrando($1, 1)
 (1,small):gen      ggrando(gen_1, $2)
 (int,small):gen    zeropadic($1, $2)
 (gen,small):gen    ggrando($1, $2)
 (var,small):gen    zeroser($1, $2)

Function: Pi
Class: basic
Section: transcendental
C-Name: mppi
Prototype: p
Help: Pi=Pi(): the constant pi, with current precision.
Description: 
 ():real:prec        mppi(prec)
Doc: the constant $\pi$ ($3.14159\cdots$).

Function: Pol
Class: basic
Section: conversions
C-Name: gtopoly
Prototype: GDn
Help: Pol(x,{v=x}): convert x (usually a vector or a power series) into a
 polynomial with variable v, starting with the leading coefficient.
Description: 
 (gen,?var):pol  gtopoly($1, $2)
Doc: 
 transforms the object $x$ into a polynomial with main variable $v$. If $x$
 is a scalar, this gives a constant polynomial. If $x$ is a power series with
 non-negative valuation or a rational function, the effect is similar to
 \kbd{truncate}, i.e.~we chop off the $O(X^k)$ or compute the Euclidean
 quotient of the numerator by the denominator, then change the main variable
 of the result to $v$.
 
 The main use of this function is when $x$ is a vector: it creates the
 polynomial whose coefficients are given by $x$, with $x[1]$ being the leading
 coefficient (which can be zero). It is much faster to evaluate
 \kbd{Pol} on a vector of coefficients in this way, than the corresponding
 formal expression $a_n X^n + \dots + a_0$, which is evaluated naively exactly
 as written (linear versus quadratic time in $n$). \tet{Polrev} can be used if
 one wants $x[1]$ to be the constant coefficient:
 \bprog
 ? Pol([1,2,3])
 %1 = x^2 + 2*x + 3
 ? Polrev([1,2,3])
 %2 = 3*x^2 + 2*x + 1
 @eprog\noindent
 The reciprocal function of \kbd{Pol} (resp.~\kbd{Polrev}) is \kbd{Vec} (resp.~
 \kbd{Vecrev}).
 \bprog
 ? Vec(Pol([1,2,3]))
 %1 = [1, 2, 3]
 ? Vecrev( Polrev([1,2,3]) )
 %2 = [1, 2, 3]
 @eprog\noindent
 
 \misctitle{Warning} This is \emph{not} a substitution function. It will not
 transform an object containing variables of higher priority than~$v$.
 \bprog
 ? Pol(x + y, y)
   ***   at top-level: Pol(x+y,y)
   ***                 ^----------
   *** Pol: variable must have higher priority in gtopoly.
 @eprog

Function: Polrev
Class: basic
Section: conversions
C-Name: gtopolyrev
Prototype: GDn
Help: Polrev(x,{v=x}): convert x (usually a vector or a power series) into a
 polynomial with variable v, starting with the constant term.
Description: 
 (gen,?var):pol  gtopolyrev($1, $2)
Doc: 
 transform the object $x$ into a polynomial
 with main variable $v$. If $x$ is a scalar, this gives a constant polynomial.
 If $x$ is a power series, the effect is identical to \kbd{truncate}, i.e.~it
 chops off the $O(X^k)$.
 
 The main use of this function is when $x$ is a vector: it creates the
 polynomial whose coefficients are given by $x$, with $x[1]$ being the
 constant term. \tet{Pol} can be used if one wants $x[1]$ to be the leading
 coefficient:
 \bprog
 ? Polrev([1,2,3])
 %1 = 3*x^2 + 2*x + 1
 ? Pol([1,2,3])
 %2 = x^2 + 2*x + 3
 @eprog
 The reciprocal function of \kbd{Pol} (resp.~\kbd{Polrev}) is \kbd{Vec} (resp.~
 \kbd{Vecrev}).

Function: Qfb
Class: basic
Section: conversions
C-Name: Qfb0
Prototype: GGGDGp
Help: Qfb(a,b,c,{D=0.}): binary quadratic form a*x^2+b*x*y+c*y^2. D is
 optional (0.0 by default) and initializes Shanks's distance if b^2-4*a*c>0.
Doc: creates the binary quadratic form\sidx{binary quadratic form}
 $ax^2+bxy+cy^2$. If $b^2-4ac>0$, initialize \idx{Shanks}' distance
 function to $D$. Negative definite forms are not implemented,
 use their positive definite counterpart instead.
Variant: Also available are
 \fun{GEN}{qfi}{GEN a, GEN b, GEN c} (assumes $b^2-4ac<0$) and
 \fun{GEN}{qfr}{GEN a, GEN b, GEN c, GEN D} (assumes $b^2-4ac>0$).

Function: Ser
Class: basic
Section: conversions
C-Name: gtoser
Prototype: GDnDP
Help: Ser(s,{v=x},{d=seriesprecision}): convert s into a power series with
 variable v and precision d, starting with the constant coefficient.
Doc: transforms the object $s$ into a power series with main variable $v$
 ($x$ by default) and precision (number of significant terms) equal to
 $d$ (= the default \kbd{seriesprecision} by default). If $s$ is a
 scalar, this gives a constant power series with precision \kbd{d}. If $s$
 is a polynomial, the precision is the maximum of \kbd{d} and the degree of
 the polynomial. If $s$ is a vector, the
 coefficients of the vector are understood to be the coefficients of the power
 series starting from the constant term (as in \tet{Polrev}$(x)$), and the
 precision $d$ is ignored.
 \bprog
 ? Ser(x^2,, 5)
 %1 = x^2 + O(x^7)
 ? Ser([1,2,3], t)
 %2 = 1 + 2*t + 3*t^2 + O(t^3)
 @eprog\noindent
 The warning given for \kbd{Pol} also applies here: this is not a substitution
 function.

Function: Set
Class: basic
Section: conversions
C-Name: gtoset
Prototype: DG
Help: Set({x=[]}): convert x into a set, i.e. a row vector with strictly
 increasing coefficients. Empty set if x is omitted.
Description: 
 ():vec           cgetg(1,t_VEC)
 (gen):vec        gtoset($1)
Doc: 
 converts $x$ into a set, i.e.~into a row
 vector of character strings, with strictly increasing entries with respect to
 lexicographic ordering. The components of $x$ are put in canonical form (type
 \typ{STR}) so as to be easily sorted. To recover an ordinary \kbd{GEN} from
 such an element, you can apply \tet{eval} to it.
 
 Note that most set functions also accept ordinary vectors, provided their
 components can be compared with \kbd{<}. Sets as created by this function
 are only useful when e.g. polynomial or vector entries are involved.

Function: Str
Class: basic
Section: conversions
C-Name: Str
Prototype: s*
Help: Str({x}*): concatenates its (string) argument into a single string.
Description: 
 (gen):genstr:copy:parens        $genstr:1
Doc: 
 converts its argument list into a
 single character string (type \typ{STR}, the empty string if $x$ is omitted).
 To recover an ordinary \kbd{GEN} from a string, apply \kbd{eval} to it. The
 arguments of \kbd{Str} are evaluated in string context, see \secref{se:strings}.
 
 \bprog
 ? x2 = 0; i = 2; Str(x, i)
 %1 = "x2"
 ? eval(%)
 %2 = 0
 @eprog\noindent
 This function is mostly useless in library mode. Use the pair
 \tet{strtoGEN}/\tet{GENtostr} to convert between \kbd{GEN} and \kbd{char*}.
 The latter returns a malloced string, which should be freed after usage.
 %\syn{NO}

Function: Strchr
Class: basic
Section: conversions
C-Name: Strchr
Prototype: G
Help: Strchr(x): converts x to a string, translating each integer into a
 character.
Doc: 
 converts $x$ to a string, translating each integer
 into a character.
 \bprog
 ? Strchr(97)
 %1 = "a"
 ? Vecsmall("hello world")
 %2 = Vecsmall([104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100])
 ? Strchr(%)
 %3 = "hello world"
 @eprog

Function: Strexpand
Class: basic
Section: conversions
C-Name: Strexpand
Prototype: s*
Help: Strexpand({x}*): concatenates its (string) argument into a single
 string, performing tilde expansion.
Doc: 
 converts its argument list into a
 single character string (type \typ{STR}, the empty string if $x$ is omitted).
 Then perform \idx{environment expansion}, see \secref{se:envir}.
 This feature can be used to read \idx{environment variable} values.
 \bprog
 ? Strexpand("$HOME/doc")
 %1 = "/home/pari/doc"
 @eprog
 
 The individual arguments are read in string context, see \secref{se:strings}.
 %\syn{NO}

Function: Strprintf
Class: basic
Section: programming/specific
C-Name: Strprintf
Prototype: ss*
Help: Strprintf(fmt,{x}*): returns a string built from the remaining
 arguments according to the format fmt.
Doc: returns a string built from the remaining arguments according to the
 format fmt. The format consists of ordinary characters (not \%), printed
 unchanged, and conversions specifications. See \kbd{printf}.
 %\syn{NO}

Function: Strtex
Class: basic
Section: conversions
C-Name: Strtex
Prototype: s*
Help: Strtex({x}*): translates its (string) arguments to TeX format and
 returns the resulting string.
Doc: 
 translates its arguments to TeX
 format, and concatenates the results into a single character string (type
 \typ{STR}, the empty string if $x$ is omitted).
 
 The individual arguments are read in string context, see \secref{se:strings}.
 %\syn{NO}

Function: Vec
Class: basic
Section: conversions
C-Name: gtovec
Prototype: DG
Help: Vec({x=[]}): transforms the object x into a vector.
 Empty vector if x is omitted.
Description: 
 ():vec           cgetg(1,t_VEC)
 (gen):vec        gtovec($1)
Doc: 
 transforms the object $x$ into a row vector.
 That vector has a single component, except when $x$ is
 
 \item a vector or a quadratic form (in which case the resulting vector
 is simply the initial object considered as a row vector),
 
 \item a matrix (the vector of columns comprising the matrix is return),
 
 \item a character string (a vector of individual
 characters is returned),
 
 \item a polynomial or a power series. In the case of a polynomial, the
 coefficients of the vector start with the leading coefficient of the
 polynomial, while for power series only the significant coefficients are
 taken into account, but this time by increasing order of degree.
 In this last case, \kbd{Vec} is the reciprocal function of \kbd{Pol} and
 \kbd{Ser} respectively.

Function: Vecrev
Class: basic
Section: conversions
C-Name: gtovecrev
Prototype: DG
Help: Vecrev({x=[]}): transforms the object x into a vector.
 Empty vector if x is omitted.
Description: 
 ():vec        cgetg(1,t_VEC)
 (gen):vec     gtovecrev($1)
Doc: 
 as $\kbd{Vec}(x)$, then reverse the result. In particular
 In this case, \kbd{Vecrev} is the reciprocal function of \kbd{Polrev}: the
 coefficients of the vector start with the constant coefficient of the
 polynomial and the others follow by increasing degree.

Function: Vecsmall
Class: basic
Section: conversions
C-Name: gtovecsmall
Prototype: DG
Help: Vecsmall({x=[]}): transforms the object x into a VECSMALL. Empty
 vector if x is omitted.
Description: 
 (gen):vecsmall                gtovecsmall($1)
Doc: 
 transforms the object $x$ into a row
 vector of type \typ{VECSMALL}. This acts as \kbd{Vec}, but only on a
 limited set of objects (the result must be representable as a vector of small
 integers). In particular, polynomials and power series are forbidden.
 If $x$ is a character string, a vector of individual characters in ASCII
 encoding is returned (\tet{Strchr} yields back the character string).

Function: _!
Class: basic
Section: symbolic_operators
C-Name: mpfact
Prototype: L
Help: n!: factorial of n.
Description: 
 (small):int                        mpfact($1)

Function: _!=_
Class: basic
Section: symbolic_operators
C-Name: gne
Prototype: GG
Help: _!=_
Description: 
 (small, small):bool:parens             $(1) != $(2)
 (lg, lg):bool:parens                   $(1) != $(2)
 (small, int):bool:parens               cmpsi($1, $2) != 0
 (int, small):bool:parens               cmpis($1, $2) != 0
 (int, 1):negbool                       equali1($1)
 (int, -1):negbool                      equalim1($1)
 (int, int):negbool                     equalii($1, $2)
 (real,real):bool                       cmprr($1, $2) != 0
 (mp, mp):bool:parens                   mpcmp($1, $2) != 0
 (typ, typ):bool:parens                 $(1) != $(2)
 (typ, #str):bool:parens                $(1) != $(typ:2)
 (#str, typ):bool:parens                $(typ:1) != $(2)
 (str, str):bool                        strcmp($1, $2)
 (typ, typ):bool:parens                 $(1) != $(2)
 (small, gen):negbool                   gequalsg($1, $2)
 (gen, small):negbool                   gequalgs($1, $2)
 (gen, gen):negbool                     gequal($1, $2)

Function: _%=_
Class: basic
Section: symbolic_operators
C-Name: gmode
Prototype: &G
Help: x%=y: shortcut for x=x%y.
Description: 
 (*small, small):small:parens            $1 = smodss($1, $2)
 (*int, small):int:parens                $1 = modis($1, $2)
 (*int, int):int:parens                  $1 = modii($1, $2)
 (*pol, gen):gen:parens                  $1 = gmod($1, $2)
 (*gen, small):gen:parens                $1 = gmodgs($1, $2)
 (*gen, gen):gen:parens                  $1 = gmod($1, $2)

Function: _%_
Class: basic
Section: symbolic_operators
C-Name: gmod
Prototype: GG
Help: x%y: Euclidean remainder of x and y.
Description: 
 (small, small):small            smodss($1, $2)
 (small, int):int                modsi($1, $2)
 (int, small):small              smodis($1, $2)
 (int, int):int                  modii($1, $2)
 (gen, small):gen                gmodgs($1, $2)
 (small, gen):gen                gmodsg($1, $2)
 (gen, gen):gen                  gmod($1, $2)

Function: _&&_
Class: basic
Section: symbolic_operators
C-Name: andpari
Prototype: GE
Help: _&&_
Description: 
 (bool, bool):bool:parens               $(1) && $(2)

Function: _'
Class: basic
Section: symbolic_operators
C-Name: deriv
Prototype: GDn
Help: x': derivative of x with respect to the main variable.
Description: 
 (gen):gen                      deriv($1,-1)

Function: _(_)
Class: symbolic_operators
Help: f(a,b,...): evaluates the function f on a,b,...
Description: 
 (gen):gen          closure_callgenall($1, 0)
 (gen,gen):gen      closure_callgen1($1, $2)
 (gen,gen,gen):gen  closure_callgen2($1, $2, $3)
 (gen,gen,...):gen  closure_callgenall($1, ${nbarg 1 sub}, $3)

Function: _*=_
Class: basic
Section: symbolic_operators
C-Name: gmule
Prototype: &G
Help: x*=y: shortcut for x=x*y.
Description: 
 (*small, small):small:parens             $1 *= $(2)
 (*int, small):int:parens                 $1 = mulis($1, $2)
 (*int, int):int:parens                   $1 = mulii($1, $2)
 (*real, small):real:parens               $1 = mulrs($1, $2)
 (*real, int):real:parens                 $1 = mulri($1, $2)
 (*real, real):real:parens                $1 = mulrr($1, $2)
 (*mp, mp):mp:parens                      $1 = mpmul($1, $2)
 (*pol, small):gen:parens                 $1 = gmulgs($1, $2)
 (*pol, gen):gen:parens                   $1 = gmul($1, $2)
 (*vec, gen):gen:parens                   $1 = gmul($1, $2)
 (*gen, small):gen:parens                 $1 = gmulgs($1, $2)
 (*gen, gen):gen:parens                   $1 = gmul($1, $2)

Function: _*_
Class: basic
Section: symbolic_operators
C-Name: gmul
Prototype: GG
Help: x*y: product of x and y.
Description: 
 (small, small):small:parens     $(1)*$(2)
 (int, small):int                mulis($1, $2)
 (small, int):int                mulsi($1, $2)
 (int, int):int                  mulii($1, $2)
 (0, mp):small                   ($2, 0)/*for side effect*/
 (#small, real):real             mulsr($1, $2)
 (small, real):mp                mulsr($1, $2)
 (real, small):mp                mulrs($1, $2)
 (real, real):real               mulrr($1, $2)
 (mp, mp):mp                     mpmul($1, $2)
 (gen, small):gen                gmulgs($1, $2)
 (small, gen):gen                gmulsg($1, $2)
 (vecsmall, vecsmall):vecsmall   perm_mul($1, $2)
 (gen, gen):gen                  gmul($1, $2)

Function: _++
Class: basic
Section: symbolic_operators
C-Name: gadd1e
Prototype: &
Help: x++
Description: 
 (*bptr):bptr                            ++$1
 (*small):small                          ++$1
 (*lg):lg                                ++$1
 (*int):int:parens                       $1 = addis($1, 1)
 (*real):real:parens                     $1 = addrs($1, 1)
 (*mp):mp:parens                         $1 = mpadd($1, gen_1)
 (*pol):pol:parens                       $1 = gaddgs($1, 1)
 (*gen):gen:parens                       $1 = gaddgs($1, 1)

Function: _+=_
Class: basic
Section: symbolic_operators
C-Name: gadde
Prototype: &G
Help: x+=y: shortcut for x=x+y.
Description: 
 (*small, small):small:parens             $1 += $(2)
 (*lg, small):lg:parens                   $1 += $(2)
 (*int, small):int:parens                 $1 = addis($1, $2)
 (*int, int):int:parens                   $1 = addii($1, $2)
 (*real, small):real:parens               $1 = addrs($1, $2)
 (*real, int):real:parens                 $1 = addir($2, $1)
 (*real, real):real:parens                $1 = addrr($1, $2)
 (*mp, mp):mp:parens                      $1 = mpadd($1, $2)
 (*pol, small):gen:parens                 $1 = gaddgs($1, $2)
 (*pol, gen):gen:parens                   $1 = gadd($1, $2)
 (*vec, gen):gen:parens                   $1 = gadd($1, $2)
 (*gen, small):gen:parens                 $1 = gaddgs($1, $2)
 (*gen, gen):gen:parens                   $1 = gadd($1, $2)

Function: _+_
Class: basic
Section: symbolic_operators
C-Name: gadd
Prototype: GG
Help: x+y: sum of x and y.
Description: 
 (lg, 1):small:parens            $(1)
 (small, small):small:parens     $(1) + $(2)
 (lg, small):lg:parens           $(1) + $(2)
 (small, lg):lg:parens           $(1) + $(2)
 (int, small):int                addis($1, $2)
 (small, int):int                addsi($1, $2)
 (int, int):int                  addii($1, $2)
 (real, small):real              addrs($1, $2)
 (small, real):real              addsr($1, $2)
 (real, real):real               addrr($1, $2)
 (mp, real):real                 mpadd($1, $2)
 (real, mp):real                 mpadd($1, $2)
 (mp, mp):mp                     mpadd($1, $2)
 (gen, small):gen                gaddgs($1, $2)
 (small, gen):gen                gaddsg($1, $2)
 (gen, gen):gen                  gadd($1, $2)

Function: _--
Class: basic
Section: symbolic_operators
C-Name: gsub1e
Prototype: &
Help: x--
Description: 
 (*bptr):bptr                          --$1
 (*small):small                        --$1
 (*lg):lg                              --$1
 (*int):int:parens                     $1 = subis($1, 1)
 (*real):real:parens                   $1 = subrs($1, 1)
 (*mp):mp:parens                       $1 = mpsub($1, gen_1)
 (*pol):pol:parens                     $1 = gsubgs($1, 1)
 (*gen):gen:parens                     $1 = gsubgs($1, 1)

Function: _-=_
Class: basic
Section: symbolic_operators
C-Name: gsube
Prototype: &G
Help: x-=y: shortcut for x=x-y.
Description: 
 (*small, small):small:parens             $1 -= $(2)
 (*lg, small):lg:parens                   $1 -= $(2)
 (*int, small):int:parens                 $1 = subis($1, $2)
 (*int, int):int:parens                   $1 = subii($1, $2)
 (*real, small):real:parens               $1 = subrs($1, $2)
 (*real, int):real:parens                 $1 = subri($1, $2)
 (*real, real):real:parens                $1 = subrr($1, $2)
 (*mp, mp):mp:parens                      $1 = mpsub($1, $2)
 (*pol, small):gen:parens                 $1 = gsubgs($1, $2)
 (*pol, gen):gen:parens                   $1 = gsub($1, $2)
 (*vec, gen):gen:parens                   $1 = gsub($1, $2)
 (*gen, small):gen:parens                 $1 = gsubgs($1, $2)
 (*gen, gen):gen:parens                   $1 = gsub($1, $2)

Function: _-_
Class: basic
Section: symbolic_operators
C-Name: gsub
Prototype: GG
Help: x-y: difference of x and y.
Description: 
 (small, small):small:parens     $(1) - $(2)
 (lg, small):lg:parens           $(1) - $(2)
 (int, small):int                subis($1, $2)
 (small, int):int                subsi($1, $2)
 (int, int):int                  subii($1, $2)
 (real, small):real              subrs($1, $2)
 (small, real):real              subsr($1, $2)
 (real, real):real               subrr($1, $2)
 (mp, real):real                 mpsub($1, $2)
 (real, mp):real                 mpsub($1, $2)
 (mp, mp):mp                     mpsub($1, $2)
 (gen, small):gen                gsubgs($1, $2)
 (small, gen):gen                gsubsg($1, $2)
 (gen, gen):gen                  gsub($1, $2)

Function: _.a1
Class: basic
Section: member_functions
C-Name: member_a1
Prototype: mG
Help: _.a1
Description: 
 (ell):gen:copy        ell_get_a1($1)

Function: _.a2
Class: basic
Section: member_functions
C-Name: member_a2
Prototype: mG
Help: _.a2
Description: 
 (ell):gen:copy        ell_get_a2($1)

Function: _.a3
Class: basic
Section: member_functions
C-Name: member_a3
Prototype: mG
Help: _.a3
Description: 
 (ell):gen:copy        ell_get_a3($1)

Function: _.a4
Class: basic
Section: member_functions
C-Name: member_a4
Prototype: mG
Help: _.a4
Description: 
 (ell):gen:copy        ell_get_a4($1)

Function: _.a6
Class: basic
Section: member_functions
C-Name: member_a6
Prototype: mG
Help: _.a6
Description: 
 (ell):gen:copy         ell_get_a6($1)

Function: _.area
Class: basic
Section: member_functions
C-Name: member_area
Prototype: mG
Help: _.area
Description: 
 (bell):gen:copy        gel($1, 19)

Function: _.b2
Class: basic
Section: member_functions
C-Name: member_b2
Prototype: mG
Help: _.b2
Description: 
 (ell):gen:copy         ell_get_b2($1)

Function: _.b4
Class: basic
Section: member_functions
C-Name: member_b4
Prototype: mG
Help: _.b4
Description: 
 (ell):gen:copy        ell_get_b4($1)

Function: _.b6
Class: basic
Section: member_functions
C-Name: member_b6
Prototype: mG
Help: _.b6
Description: 
 (ell):gen:copy               ell_get_b6($1)

Function: _.b8
Class: basic
Section: member_functions
C-Name: member_b8
Prototype: mG
Help: _.b8
Description: 
 (ell):gen:copy        ell_get_b8($1)

Function: _.bid
Class: basic
Section: member_functions
C-Name: member_bid
Prototype: mG
Help: _.bid
Description: 
 (bnr):gen:copy                 bnr_get_bid($1)
 (gen):gen:copy                 member_bid($1)

Function: _.bnf
Class: basic
Section: member_functions
C-Name: member_bnf
Prototype: mG
Help: _.bnf
Description: 
 (bnf):bnf:parens               $1
 (bnr):bnf:copy:parens          $bnf:1
 (gen):bnf:copy                 member_bnf($1)

Function: _.c4
Class: basic
Section: member_functions
C-Name: member_c4
Prototype: mG
Help: _.c4
Description: 
 (ell):gen:copy        ell_get_c4($1)

Function: _.c6
Class: basic
Section: member_functions
C-Name: member_c6
Prototype: mG
Help: _.c6
Description: 
 (ell):gen:copy        ell_get_c6($1)

Function: _.clgp
Class: basic
Section: member_functions
C-Name: member_clgp
Prototype: mG
Help: _.clgp
Description: 
 (bnf):clgp:copy:parens         $clgp:1
 (bnr):clgp:copy:parens         $clgp:1
 (clgp):clgp:parens             $1
 (gen):clgp:copy                member_clgp($1)

Function: _.codiff
Class: basic
Section: member_functions
C-Name: member_codiff
Prototype: mG
Help: _.codiff

Function: _.cyc
Class: basic
Section: member_functions
C-Name: member_cyc
Prototype: mG
Help: _.cyc
Description: 
 (bnr):vec:copy                 bnr_get_cyc($1)
 (bnf):vec:copy                 bnf_get_cyc($1)
 (clgp):vec:copy                gel($1, 2)
 (gen):vec:copy                 member_cyc($1)

Function: _.diff
Class: basic
Section: member_functions
C-Name: member_diff
Prototype: mG
Help: _.diff
Description: 
 (nf):gen:copy                  nf_get_diff($1)
 (gen):gen:copy                 member_diff($1)

Function: _.disc
Class: basic
Section: member_functions
C-Name: member_disc
Prototype: mG
Help: _.disc
Description: 
 (nf):int:copy                  nf_get_disc($1)
 (ell):gen:copy                 ell_get_disc($1)
 (gen):gen:copy                 member_disc($1)

Function: _.e
Class: basic
Section: member_functions
C-Name: member_e
Prototype: mG
Help: _.e
Description: 
 (prid):small        pr_get_e($1)

Function: _.eta
Class: basic
Section: member_functions
C-Name: member_eta
Prototype: mG
Help: _.eta

Function: _.f
Class: basic
Section: member_functions
C-Name: member_f
Prototype: mG
Help: _.f
Description: 
 (prid):small       pr_get_f($1)

Function: _.fu
Class: basic
Section: member_functions
C-Name: member_fu
Prototype: G
Help: _.fu
Description: 
 (bnr):void                $"ray units not implemented"
 (bnf):gen:copy         bnf_get_fu($1)
 (gen):gen              member_fu($1)

Function: _.futu
Class: basic
Section: member_functions
C-Name: member_futu
Prototype: mG
Help: _.futu

Function: _.gen
Class: basic
Section: member_functions
C-Name: member_gen
Prototype: mG
Help: _.gen
Description: 
 (bnr):vec:copy        bnr_get_gen($1)
 (bnf):vec:copy        bnf_get_gen($1)
 (gal):vec:copy        gal_get_gen($1)
 (clgp):vec:copy       gel($1, 3)
 (prid):gen:copy       pr_get_gen($1)
 (gen):gen:copy        member_gen($1)

Function: _.group
Class: basic
Section: member_functions
C-Name: member_group
Prototype: mG
Help: _.group
Description: 
 (gal):vec:copy        gal_get_group($1)
 (gen):vec:copy        member_group($1)

Function: _.index
Class: basic
Section: member_functions
C-Name: member_index
Prototype: mG
Help: _.index
Description: 
 (nf):int:copy                  nf_get_index($1)
 (gen):int:copy                 member_index($1)

Function: _.j
Class: basic
Section: member_functions
C-Name: member_j
Prototype: mG
Help: _.j
Description: 
 (ell):gen:copy        ell_get_j($1)

Function: _.mod
Class: basic
Section: member_functions
C-Name: member_mod
Prototype: mG
Help: _.mod

Function: _.nf
Class: basic
Section: member_functions
C-Name: member_nf
Prototype: mG
Help: _.nf
Description: 
 (nf):nf:parens                $1
 (gen):nf:copy                 member_nf($1)

Function: _.no
Class: basic
Section: member_functions
C-Name: member_no
Prototype: mG
Help: _.no
Description: 
 (bnr):int:copy                 bnr_get_no($1)
 (bnf):int:copy                 bnf_get_no($1)
 (clgp):int:copy                gel($1, 1)
 (gen):int:copy                 member_no($1)

Function: _.omega
Class: basic
Section: member_functions
C-Name: member_omega
Prototype: mG
Help: _.omega

Function: _.orders
Class: basic
Section: member_functions
C-Name: member_orders
Prototype: mG
Help: _.orders
Description: 
 (gal):vecsmall:copy   gal_get_orders($1)

Function: _.p
Class: basic
Section: member_functions
C-Name: member_p
Prototype: mG
Help: _.p
Description: 
 (gal):int:copy                 gal_get_p($1)
 (prid):int:copy                pr_get_p($1)
 (gen):int:copy                 member_p($1)

Function: _.pol
Class: basic
Section: member_functions
C-Name: member_pol
Prototype: mG
Help: _.pol
Description: 
 (gal):gen:copy                 gal_get_pol($1)
 (nf):gen:copy                  nf_get_pol($1)
 (gen):gen:copy                 member_pol($1)

Function: _.r1
Class: basic
Section: member_functions
C-Name: member_r1
Prototype: mG
Help: _.r1
Description: 
 (nf):small                     nf_get_r1($1)
 (gen):int:copy                 member_r1($1)

Function: _.r2
Class: basic
Section: member_functions
C-Name: member_r2
Prototype: mG
Help: _.r2
Description: 
 (nf):small                     nf_get_r2($1)
 (gen):int:copy                 member_r2($1)

Function: _.reg
Class: basic
Section: member_functions
C-Name: member_reg
Prototype: mG
Help: _.reg
Description: 
 (bnr):real             $"ray regulator not implemented"
 (bnf):real:copy        bnf_get_reg($1)
 (gen):real:copy        member_reg($1)

Function: _.roots
Class: basic
Section: member_functions
C-Name: member_roots
Prototype: mG
Help: _.roots
Description: 
 (gal):vec:copy                 gal_get_roots($1)
 (bell):vec:copy                ell_get_roots($1)
 (nf):vec:copy                  nf_get_roots($1)
 (gen):vec:copy                 member_roots($1)

Function: _.sign
Class: basic
Section: member_functions
C-Name: member_sign
Prototype: mG
Help: _.sign
Description: 
 (nf):vec:copy                  gel($1, 2)
 (gen):vec:copy                 member_sign($1)

Function: _.t2
Class: basic
Section: member_functions
C-Name: member_t2
Prototype: G
Help: _.t2
Description: 
 (gen):vec                      member_t2($1)

Function: _.tate
Class: basic
Section: member_functions
C-Name: member_tate
Prototype: mG
Help: _.tate

Function: _.tu
Class: basic
Section: member_functions
C-Name: member_tu
Prototype: G
Help: _.tu
Description: 
 (gen):gen:copy        member_tu($1)

Function: _.tufu
Class: basic
Section: member_functions
C-Name: member_tufu
Prototype: mG
Help: _.tufu

Function: _.w
Class: basic
Section: member_functions
C-Name: member_w
Prototype: mG
Help: _.w
Description: 
 (bell):gen:copy       gel($1, 18)

Function: _.zk
Class: basic
Section: member_functions
C-Name: member_zk
Prototype: mG
Help: _.zk
Description: 
 (nf):vec:copy         nf_get_zk($1)
 (gen):vec:copy        member_zk($1)

Function: _.zkst
Class: basic
Section: member_functions
C-Name: member_zkst
Prototype: mG
Help: _.zkst
Description: 
 (bnr):gen:copy        bnr_get_bid($1)

Function: _/=_
Class: basic
Section: symbolic_operators
C-Name: gdive
Prototype: &G
Help: x/=y: shortcut for x=x/y.
Description: 
 (*small, gen):void                $"cannot divide small: use \= instead."
 (*int, gen):void                  $"cannot divide int: use \= instead."
 (*real, real):real:parens               $1 = divrr($1, $2)
 (*real, small):real:parens              $1 = divrs($1, $2)
 (*real, mp):real:parens                 $1 = mpdiv($1, $2)
 (*mp, real):mp:parens                   $1 = mpdiv($1, $2)
 (*pol, gen):gen:parens                  $1 = gdiv($1, $2)
 (*vec, gen):gen:parens                  $1 = gdiv($1, $2)
 (*gen, small):gen:parens                $1 = gdivgs($1, $2)
 (*gen, gen):gen:parens                  $1 = gdiv($1, $2)

Function: _/_
Class: basic
Section: symbolic_operators
C-Name: gdiv
Prototype: GG
Help: x/y: quotient of x and y.
Description: 
 (0, mp):small                   ($2, 0)/*for side effect*/
 (1, real):real                  invr($2)
 (#small, real):real             divsr($1, $2)
 (small, real):mp                divsr($1, $2)
 (real, small):real              divrs($1, $2)
 (real, real):real               divrr($1, $2)
 (real, mp):real                 mpdiv($1, $2)
 (mp, real):mp                   mpdiv($1, $2)
 (1, gen):gen                    ginv($2)
 (gen, small):gen                gdivgs($1, $2)
 (small, gen):gen                gdivsg($1, $2)
 (gen, gen):gen                  gdiv($1, $2)

Function: _<<=_
Class: basic
Section: symbolic_operators
C-Name: gshiftle
Prototype: &L
Help: x<<=y: shortcut for x=x<<y.
Description: 
 (*small, small):small:parens             $1 <<= $(2)
 (*int, small):int:parens                 $1 = shifti($1, $2)
 (*mp, small):mp:parens                   $1 = mpshift($1, $2)
 (*gen, small):mp:parens                  $1 = gshift($1, $2)

Function: _<<_
Class: basic
Section: symbolic_operators
C-Name: gshift
Prototype: GL
Help: x<<y
Description: 
 (int, small):int               shifti($1, $2)
 (mp, small):mp                 mpshift($1, $2)
 (gen, small):mp                gshift($1, $2)

Function: _<=_
Class: basic
Section: symbolic_operators
C-Name: gle
Prototype: GG
Help: _<=_
Description: 
 (small, small):bool:parens              $(1) <= $(2)
 (small, lg):bool:parens                 $(1) < $(2)
 (lg, lg):bool:parens                    $(1) <= $(2)
 (small, int):bool:parens                cmpsi($1, $2) <= 0
 (int, lg):bool:parens                   cmpis($1, $2) < 0
 (int, small):bool:parens                cmpis($1, $2) <= 0
 (int, int):bool:parens                  cmpii($1, $2) <= 0
 (mp, mp):bool:parens                    mpcmp($1, $2) <= 0
 (str, str):bool:parens                  strcmp($1, $2) <= 0
 (small, gen):bool:parens                gcmpsg($1, $2) <= 0
 (gen, small):bool:parens                gcmpgs($1, $2) <= 0
 (gen, gen):bool:parens                  gcmp($1, $2) <= 0

Function: _<_
Class: basic
Section: symbolic_operators
C-Name: glt
Prototype: GG
Help: _<_
Description: 
 (small, small):bool:parens              $(1) < $(2)
 (lg, lg):bool:parens                    $(1) < $(2)
 (lg, small):bool:parens                 $(1) <= $(2)
 (small, int):bool:parens                cmpsi($1, $2) < 0
 (int, small):bool:parens                cmpis($1, $2) < 0
 (int, int):bool:parens                  cmpii($1, $2) < 0
 (mp, mp):bool:parens                    mpcmp($1, $2) < 0
 (str, str):bool:parens                  strcmp($1, $2) < 0
 (small, gen):bool:parens                gcmpsg($1, $2) < 0
 (gen, small):bool:parens                gcmpgs($1, $2) < 0
 (gen, gen):bool:parens                  gcmp($1, $2) < 0

Function: _===_
Class: basic
Section: symbolic_operators
C-Name: gidentical
Prototype: iGG
Help: a === b : true if a and b are identical

Function: _==_
Class: basic
Section: symbolic_operators
C-Name: geq
Prototype: GG
Help: _==_
Description: 
 (small, small):bool:parens             $(1) == $(2)
 (lg, lg):bool:parens                   $(1) == $(2)
 (small, int):bool:parens               cmpsi($1, $2) == 0
 (mp, 0):bool                           !signe($1)
 (int, 1):bool                          equali1($1)
 (int, -1):bool                         equalim1($1)
 (int, small):bool:parens               cmpis($1, $2) == 0
 (int, int):bool                        equalii($1, $2)
 (gen, 0):bool                          gequal0($1)
 (gen, 1):bool                          gequal1($1)
 (gen, -1):bool                         gequalm1($1)
 (real,real):bool                       cmprr($1, $2) == 0
 (mp, mp):bool:parens                   mpcmp($1, $2) == 0
 (typ, typ):bool:parens                 $(1) == $(2)
 (typ, #str):bool:parens                $(1) == $(typ:2)
 (#str, typ):bool:parens                $(typ:1) == $(2)
 (str, str):negbool                     strcmp($1, $2)
 (small, gen):bool                      gequalsg($1, $2)
 (gen, small):bool                      gequalgs($1, $2)
 (gen, gen):bool                        gequal($1, $2)

Function: _=_
Class: basic
Section: symbolic_operators
C-Name: gstore
Prototype: m&G
Help: x=y: store value y in variable x.

Function: _>=_
Class: basic
Section: symbolic_operators
C-Name: gge
Prototype: GG
Help: _>=_
Description: 
 (small, small):bool:parens              $(1) >= $(2)
 (lg, lg):bool:parens                    $(1) >= $(2)
 (lg, small):bool:parens                 $(1) > $(2)
 (small, int):bool:parens                cmpsi($1, $2) >= 0
 (int, small):bool:parens                cmpis($1, $2) >= 0
 (int, int):bool:parens                  cmpii($1, $2) >= 0
 (mp, mp):bool:parens                    mpcmp($1, $2) >= 0
 (str, str):bool:parens                  strcmp($1, $2) >= 0
 (small, gen):bool:parens                gcmpsg($1, $2) >= 0
 (gen, small):bool:parens                gcmpgs($1, $2) >= 0
 (gen, gen):bool:parens                  gcmp($1, $2) >= 0

Function: _>>=_
Class: basic
Section: symbolic_operators
C-Name: gshiftre
Prototype: &L
Help: x>>=y: shortcut for x=x>>y.
Description: 
 (*small, small):small:parens             $1 >>= $(2)
 (*int, small):int:parens                 $1 = shifti($1, -$(2))
 (*mp, small):mp:parens                   $1 = mpshift($1, -$(2))
 (*gen, small):mp:parens                  $1 = gshift($1, -$(2))

Function: _>>_
Class: basic
Section: symbolic_operators
C-Name: gshift_right
Prototype: GL
Help: x>>y
Description: 
 (small, small):small:parens     $(1)>>$(2)
 (int, small):int                shifti($1, -$(2))
 (mp, small):mp                  mpshift($1, -$(2))
 (gen, small):mp                 gshift($1, -$(2))

Function: _>_
Class: basic
Section: symbolic_operators
C-Name: ggt
Prototype: GG
Help: _>_
Description: 
 (small, small):bool:parens              $(1) > $(2)
 (lg, lg):bool:parens                    $(1) > $(2)
 (small, lg):bool:parens                 $(1) >= $(2)
 (small, int):bool:parens                cmpsi($1, $2) > 0
 (int, small):bool:parens                cmpis($1, $2) > 0
 (int, int):bool:parens                  cmpii($1, $2) > 0
 (mp, mp):bool:parens                    mpcmp($1, $2) > 0
 (str, str):bool:parens                  strcmp($1, $2) > 0
 (small, gen):bool:parens                gcmpsg($1, $2) > 0
 (gen, small):bool:parens                gcmpgs($1, $2) > 0
 (gen, gen):bool:parens                  gcmp($1, $2) > 0

Function: _[_,]
Class: symbolic_operators
Help: x[y,]: y-th row of x.
Description: 
 (mp,small):gen                 $"Scalar has no rows"
 (vec,small):vec                rowcopy($1, $2)
 (gen,small):vec                rowcopy($1, $2)

Function: _[_,_]
Class: symbolic_operators
Description: 
 (mp,small):gen                 $"Scalar has no components"
 (mp,small,small):gen           $"Scalar has no components"
 (vecsmall,small):small         $(1)[$2]
 (vecsmall,small,small):gen     $"Vecsmall are single-dimensional"
 (list,small):gen:copy          gel(list_data($1), $2)
 (vec,small):gen:copy           gel($1, $2)
 (vec,small,small):gen:copy     gcoeff($1, $2, $3)
 (gen,small):gen:copy           gel($1, $2)
 (gen,small,small):gen:copy     gcoeff($1, $2, $3)

Function: _\/=_
Class: basic
Section: symbolic_operators
C-Name: gdivrounde
Prototype: &G
Help: x\/=y: shortcut for x=x\/y.
Description: 
 (*int, int):int:parens                         $1 = gdivround($1, $2)
 (*pol, gen):gen:parens                         $1 = gdivround($1, $2)
 (*gen, gen):gen:parens                         $1 = gdivround($1, $2)

Function: _\/_
Class: basic
Section: symbolic_operators
C-Name: gdivround
Prototype: GG
Help: x\/y: rounded Euclidean quotient of x and y.
Description: 
 (int, int):int                        gdivround($1, $2)
 (gen, gen):gen                        gdivround($1, $2)

Function: _\=_
Class: basic
Section: symbolic_operators
C-Name: gdivente
Prototype: &G
Help: x\=y: shortcut for x=x\y.
Description: 
 (*small, small):small:parens                   $1 /= $(2)
 (*int, int):int:parens                         $1 = gdivent($1, $2)
 (*pol, gen):gen:parens                         $1 = gdivent($1, $2)
 (*gen, gen):gen:parens                         $1 = gdivent($1, $2)

Function: _\_
Class: basic
Section: symbolic_operators
C-Name: gdivent
Prototype: GG
Help: x\y: Euclidean quotient of x and y.
Description: 
 (small, small):small:parens             $(1)/$(2)
 (int, small):int                        truedivis($1, $2)
 (small, int):int                        gdiventsg($1, $2)
 (int, int):int                          truedivii($1, $2)
 (gen, small):gen                        gdiventgs($1, $2)
 (small, gen):gen                        gdiventsg($1, $2)
 (gen, gen):gen                          gdivent($1, $2)

Function: _^_
Class: basic
Section: symbolic_operators
C-Name: gpow
Prototype: GGp
Help: x^y: compute x to the power y.
Description: 
 (int, 2):int                sqri($1)
 (int, 3):int                powiu($1, 3)
 (int, 4):int                powiu($1, 4)
 (int, 5):int                powiu($1, 5)
 (real, -1):real             invr($1)
 (mp, -1):mp                 ginv($1)
 (gen, -1):gen               ginv($1)
 (real, 2):real              sqrr($1)
 (mp, 2):mp                  mpsqr($1)
 (gen, 2):gen                gsqr($1)
 (int, small):gen            powis($1, $2)
 (real, small):real          gpowgs($1, $2)
 (gen, small):gen            gpowgs($1, $2)
 (real, int):real            powgi($1, $2)
 (gen, int):gen              powgi($1, $2)
 (gen, gen):gen:prec         gpow($1, $2, prec)

Function: _^s
Class: basic
Section: programming/internals
C-Name: gpowgs
Prototype: GL
Help: return x^n where n is a small integer

Function: __
Class: basic
Section: symbolic_operators
Help: __
Description: 
 (genstr, genstr):genstr                concat($1, $2)
 (genstr, gen):genstr                   concat($1, $2)
 (gen, genstr):genstr                   concat($1, $2)
 (gen, gen):genstr                      concat($genstr:1, $2)

Function: _avma
Class: gp2c_internal
Description: 
 ():pari_sp                avma

Function: _badtype
Class: gp2c_internal
Help: Code to check types. If not void, will be used as if(...).
Description: 
 (int):bool:parens              typ($1) != t_INT
 (real):bool:parens             typ($1) != t_REAL
 (mp):negbool                   is_intreal_t(typ($1))
 (vec):negbool                  is_matvec_t(typ($1))
 (vecsmall):bool:parens         typ($1) != t_VECSMALL
 (pol):bool:parens              typ($1) != t_POL
 (*nf):void:parens              $1 = checknf($1)
 (*bnf):void:parens             $1 = checkbnf($1)
 (bnr):void                     checkbnr($1)
 (prid):void                    checkprid($1)
 (@clgp):bool:parens            lg($1) != 3 || typ($(1)[2]) != t_POLMOD
 (ell):void                     checksmallell($1)
 (bell):void                    checkell($1)
 (*gal):gal:parens              $1 = checkgal($1)

Function: _call_GG
Class: gp2c_internal
Help: Call a function with proto GG on two GENs.
Description: 
 (func_GG, gen, gen):gen         $(1)($2, $3)

Function: _cast
Class: gp2c_internal
Help: (type1):type2 : cast expression of type1 to type2
Description: 
 (void):bool           0
 (#negbool):bool       ${1 value not}
 (negbool):bool        !$(1)
 (small_int):bool
 (small):bool
 (lg):bool:parens      $(1)!=1
 (bptr):bool           *$(1)
 (gen):bool            !gequal0($1)
 (real):bool           signe($1)
 (int):bool            signe($1)
 (mp):bool             signe($1)
 (pol):bool            signe($1)
 
 (void):negbool        1
 (#bool):negbool       ${1 value not}
 (bool):negbool        !$(1)
 (lg):negbool:parens   $(1)==1
 (bptr):negbool        !*$(1)
 (gen):negbool         gequal0($1)
 (int):negbool         !signe($1)
 (real):negbool        !signe($1)
 (mp):negbool          !signe($1)
 (pol):negbool         !signe($1)
 
 (bool):small_int
 (typ):small_int
 (small):small_int
 
 (bool):small
 (typ):small
 (small_int):small
 (bptr):small           *$(1)
 (int):small            itos($1)
 (#lg):small:parens     ${1 value 1 sub}
 (lg):small:parens      $(1)-1
 (gen):small            gtos($1)
 
 (void):int             gen_0
 (-2):int               gen_m2
 (-1):int               gen_m1
 (0):int                gen_0
 (1):int                gen_1
 (2):int                gen_2
 (bool):int             stoi($1)
 (small):int            stoi($1)
 (mp):int
 (gen):int
 
 (mp):real
 (gen):real
 
 (int):mp
 (real):mp
 (gen):mp
 
 (#bool):lg:parens             ${1 1 value add}
 (bool):lg:parens              $(1)+1
 (#small):lg:parens            ${1 1 value add}
 (small):lg:parens             $(1)+1
 
 (gen):closure
 (gen):vecsmall
 
 (nf):vec
 (bnf):vec
 (bnr):vec
 (ell):vec
 (bell):vec
 (clgp):vec
 (prid):vec
 (gal):vec
 (gen):vec
 
 (gen):list
 
 (pol):var      varn($1)
 (gen):var      gvar($1)
 
 (var):pol      pol_x($1)
 (gen):pol
 
 (int):gen
 (mp):gen
 (vecsmall):gen
 (vec):gen
 (list):gen
 (pol):gen
 (genstr):gen
 (closure):gen
 
 (gen):genstr GENtoGENstr($1)
 (str):genstr strtoGENstr($1)
 
 (genstr):str GSTR($1)
 (typ):str type_name($1)
 
 (#str):typ  ${1 str_format}
 
 (bnf):nf              bnf_get_nf($1)
 (gen):nf
 (bnr):bnf             bnr_get_bnf($1)
 (gen):bnf
 (gen):bnr
 (bnf):clgp            bnf_get_clgp($1)
 (bnr):clgp            bnr_get_clgp($1)
 (gen):clgp
 (bell):ell
 (gen):ell
 (gen):bell
 (gen):gal
 (gen):prid

Function: _cgetg
Class: gp2c_internal
Description: 
 (lg,#str):gen              cgetg($1, ${2 str_raw})
 (gen,lg,#str):gen          $1 = cgetg($2, ${3 str_raw})

Function: _const_expr
Class: gp2c_internal
Description: 
 (str):gen       readseq($1)

Function: _const_quote
Class: gp2c_internal
Description: 
 (str):var       fetch_user_var($1)

Function: _const_real
Class: gp2c_internal
Description: 
 (str):real:prec       strtor($1, prec)

Function: _const_smallreal
Class: gp2c_internal
Description: 
 (0):real:prec       real_0(prec)
 (1):real:prec       real_1(prec)
 (-1):real:prec      real_m1(prec)
 (small):real:prec   stor($1, prec)

Function: _decl_base
Class: gp2c_internal
Description: 
 (C!void)          void
 (C!long)          long
 (C!int)           int
 (C!GEN)           GEN
 (C!char*)         char
 (C!byteptr)       byteptr
 (C!pari_sp)       pari_sp
 (C!func_GG)       GEN

Function: _decl_ext
Class: gp2c_internal
Description: 
 (C!char*)         *$1
 (C!func_GG)       (*$1)(GEN, GEN)

Function: _def_TeXstyle
Class: default
Section: default
C-Name: sd_TeXstyle
Prototype: 
Help: 
Doc: the bits of this default allow
 \kbd{gp} to use less rigid TeX formatting commands in the logfile. This
 default is only taken into account when $\kbd{log} = 3$. The bits of
 \kbd{TeXstyle} have the following meaning
 
 2: insert \kbd{\bs right} / \kbd{\bs left} pairs where appropriate.
 
 4: insert discretionary breaks in polynomials, to enhance the probability of
 a good line break.
 
 The default value is \kbd{0}.

Function: _def_breakloop
Class: gp_default
Section: default
C-Name: sd_breakloop
Prototype: 
Help: 
Doc: if true, enables the ``break loop'' debugging mode, see
 \secref{se:break_loop}.
 
 The default value is \kbd{1} if we are running an interactive \kbd{gp}
 session, and \kbd{0} otherwise.

Function: _def_colors
Class: default
Section: default
C-Name: sd_colors
Prototype: 
Help: 
Doc: this default is only usable if \kbd{gp}
 is running within certain color-capable terminals. For instance \kbd{rxvt},
 \kbd{color\_xterm} and modern versions of \kbd{xterm} under X Windows, or
 standard Linux/DOS text consoles. It causes \kbd{gp} to use a small palette of
 colors for its output. With xterms, the colormap used corresponds to the
 resources \kbd{Xterm*color$n$} where $n$ ranges from $0$ to $15$ (see the
 file \kbd{misc/color.dft} for an example). Accepted values for this
 default are strings \kbd{"$a_1$,\dots,$a_k$"} where $k\le7$ and each
 $a_i$ is either
 
 \noindent $\bullet$ the keyword \kbd{no} (use the default color, usually
 black on transparent background)
 
 \noindent $\bullet$ an integer between 0 and 15 corresponding to the
 aforementioned colormap
 
 \noindent $\bullet$ a triple $[c_0,c_1,c_2]$ where $c_0$ stands for foreground
 color, $c_1$ for background color, and $c_2$ for attributes (0 is default, 1
 is bold, 4 is underline).
 
 The output objects thus affected are respectively error messages,
 history numbers, prompt, input line, output, help messages, timer (that's
 seven of them). If $k < 7$, the remaining $a_i$ are assumed to be $no$. For
 instance
 %
 \bprog
 default(colors, "9, 5, no, no, 4")
 @eprog
 \noindent
 typesets error messages in color $9$, history numbers in color $5$, output in
 color $4$, and does not affect the rest.
 
 A set of default colors for dark (reverse video or PC console) and light
 backgrounds respectively is activated when \kbd{colors} is set to
 \kbd{darkbg}, resp.~\kbd{lightbg} (or any proper prefix: \kbd{d} is
 recognized as an abbreviation for \kbd{darkbg}). A bold variant of
 \kbd{darkbg}, called \kbd{boldfg}, is provided if you find the former too
 pale.
 
 \emacs In the present version, this default is incompatible with PariEmacs.
 Changing it will just fail silently (the alternative would be to display
 escape sequences as is, since Emacs will refuse to interpret them).
 You must customize color highlighting from the PariEmacs side, see its
 documentation.
 
 The default value is \kbd{""} (no colors).

Function: _def_compatible
Class: default
Section: default
C-Name: sd_compatible
Prototype: 
Help: 
Doc: The GP function names and syntax
 have changed tremendously between versions 1.xx and 2.00. To help you cope
 with this we provide some kind of backward compatibility, depending on the
 value of this default:
 
 \quad \kbd{compatible} = 0: no backward compatibility. In this mode, a very
 handy function, to be described in \secref{se:whatnow}, is \kbd{whatnow},
 which tells you what has become of your favourite functions, which \kbd{gp}
 suddenly can't seem to remember.
 
 \quad \kbd{compatible} = 1: warn when using obsolete functions, but
 otherwise accept them. The output uses the new conventions though, and
 there may be subtle incompatibilities between the behavior of former and
 current functions, even when they share the same name (the current function
 is used in such cases, of course!). We thought of this one as a transitory
 help for \kbd{gp} old-timers. Thus, to encourage switching to \kbd{compatible}=0,
 it is not possible to disable the warning.
 
 \quad \kbd{compatible} = 2: use only the old function naming scheme (as
 used up to version 1.39.15), but \emph{taking case into account}. Thus
 \kbd{I} (${}=\sqrt{-1}$) is not the same as \kbd{i} (user variable, unbound
 by default), and you won't get an error message using \kbd{i} as a loop
 index as used to be the case.
 
 \quad \kbd{compatible} = 3: try to mimic exactly the former behavior. This
 is not always possible when functions have changed in a fundamental way.
 But these differences are usually for the better (they were meant to,
 anyway), and will probably not be discovered by the casual user.
 
 One adverse side effect is that any user functions and aliases that have
 been defined \emph{before} changing \kbd{compatible} will get erased if this
 change modifies the function list, i.e.~if you move between groups
 $\{0,1\}$ and $\{2,3\}$ (variables are unaffected). We of course strongly
 encourage you to try and get used to the setting \kbd{compatible}=0.
 
 Note that the default \tet{new_galois_format} is another compatibility setting,
 which is completely independent of \kbd{compatible}.
 
 The default value is \kbd{0}.

Function: _def_datadir
Class: default
Section: default
C-Name: sd_datadir
Prototype: 
Help: 
Doc: the name of directory containing the optional data files. For now,
 this includes the \kbd{elldata}, \kbd{galdata}, \kbd{galpol}, \kbd{seadata}
 packages.
 
 The default value is \datadir (the location of installed precomputed data,
 can be specified via \kbd{Configure --datadir=}).

Function: _def_debug
Class: default
Section: default
C-Name: sd_debug
Prototype: 
Help: 
Doc: debugging level. If it is non-zero, some extra messages may be printed,
 according to what is going on (see~\b{g}).
 
 The default value is \kbd{0} (no debugging messages).

Function: _def_debugfiles
Class: default
Section: default
C-Name: sd_debugfiles
Prototype: 
Help: 
Doc: file usage debugging level. If it is non-zero, \kbd{gp} will print
 information on file descriptors in use, from PARI's point of view
 (see~\b{gf}).
 
 The default value is \kbd{0} (no debugging messages).

Function: _def_debugmem
Class: default
Section: default
C-Name: sd_debugmem
Prototype: 
Help: 
Doc: memory debugging level. If it is non-zero, \kbd{gp} will regularly print
 information on memory usage. If it's greater than 2, it will indicate any
 important garbage collecting and the function it is taking place in
 (see~\b{gm}).
 
 \noindent {\bf Important Note:} As it noticeably slows down the performance,
 the first functionality (memory usage) is disabled if you're not running a
 version compiled for debugging (see Appendix~A).
 
 The default value is \kbd{0} (no debugging messages).

Function: _def_echo
Class: gp_default
Section: default
C-Name: sd_echo
Prototype: 
Help: 
Doc: this toggle is either 1 (on) or 0 (off). When \kbd{echo}
 mode is on, each command is reprinted before being executed. This can be
 useful when reading a file with the \b{r} or \kbd{read} commands. For
 example, it is turned on at the beginning of the test files used to check
 whether \kbd{gp} has been built correctly (see \b{e}).
 
 The default value is \kbd{0} (no echo).

Function: _def_factor_add_primes
Class: default
Section: default
C-Name: sd_factor_add_primes
Prototype: 
Help: 
Doc: this toggle is either 1 (on) or 0 (off). If on,
 the integer factorization machinery calls \tet{addprimes} on primes
 factor that were difficult to find (larger than $2^24$), so they are
 automatically tried first in other factorizations. If a routine is performing
 (or has performed) a factorization and is interrupted by an error or via
 Control-C, this lets you recover the prime factors already found. The
 downside is that a huge \kbd{addprimes} table unrelated to the current
 computations will slow down arithmetic functions relying on integer
 factorization; one should then empty the table using \tet{removeprimes}.
 
 The defaut value is \kbd{0}.

Function: _def_factor_proven
Class: default
Section: default
C-Name: sd_factor_proven
Prototype: 
Help: 
Doc: this toggle is either 1 (on) or 0 (off). By
 default, the factors output by the integer factorization machinery are
 only pseudo-primes, not proven primes. If this toggle is
 set, a primality proof is done for each factor and all results depending on
 integer factorization are fully proven. This flag does not affect partial
 factorization when it is explicitly requested. It also does not affect the
 private table managed by \tet{addprimes}: its entries are included as is in
 factorizations, without being tested for primality.
 
 The defaut value is \kbd{0}.

Function: _def_format
Class: default
Section: default
C-Name: sd_format
Prototype: 
Help: 
Doc: of the form x$.n$, where x (conversion style)
 is a letter in $\{\kbd{e},\kbd{f},\kbd{g}\}$, and $n$ (precision) is an
 integer; this affects the way real numbers are printed:
 
 \item If the conversion style is \kbd{e}, real numbers are printed in
 \idx{scientific format}, always with an explicit exponent,
 e.g.~\kbd{3.3 E-5}.
 
 \item In style \kbd{f}, real numbers are generally printed in \idx{fixed
 floating point format} without exponent, e.g.~\kbd{0.000033}. A large
 real number, whose integer part is not well defined (not enough significant
 digits), is printed in style~\kbd{e}. For instance \kbd{10.\pow 100} known to
 ten significant digits is always printed in style \kbd{e}.
 
 \item In style \kbd{g}, non-zero real numbers are printed in \kbd{f} format,
 except when their decimal exponent is $< -4$, in which case they are printed in
 \kbd{e} format. Real zeroes (of arbitrary exponent) are printed in \kbd{e}
 format.
 
 The precision $n$ is the number of significant digits printed for real
 numbers, except if $n<0$ where all the significant digits will be printed
 (initial default 28, or 38 for 64-bit machines). For more powerful formatting
 possibilities, see \tet{printf} and \tet{Strprintf}.
 
 The default value is \kbd{"g.28"} and \kbd{"g.38"} on 32-bit and
 64-bit machines, respectively.

Function: _def_graphcolormap
Class: gp_default
Section: default
C-Name: sd_graphcolormap
Prototype: 
Help: 
Doc: a vector of colors, to be
 used by hi-res graphing routines. Its length is arbitrary, but it must
 contain at least 3 entries: the first 3 colors are used for background,
 frame/ticks and axes respectively. All colors in the colormap may be freely
 used in \tet{plotcolor} calls.
 
 A color is either given as in the default by character strings or by an RGB
 code. For valid character strings, see the standard \kbd{rgb.txt} file in X11
 distributions, where we restrict to lowercase letters and remove all
 whitespace from color names. An RGB code is a vector with 3 integer entries
 between 0 and 255. For instance \kbd{[250, 235, 215]} and \kbd{"antique
 white"} represent the same color. RGB codes are a little cryptic but often
 easier to generate.
 
 The default value is [\kbd{"white"}, \kbd{"black"}, \kbd{"blue"},
 \kbd{"violetred"}, \kbd{"red"}, \kbd{"green"}, \kbd{"grey"},
 \kbd{"gainsboro"}].

Function: _def_graphcolors
Class: gp_default
Section: default
C-Name: sd_graphcolors
Prototype: 
Help: 
Doc: entries in the
 \tet{graphcolormap} that will be used to plot multi-curves. The successive
 curves are drawn in colors
 
 \kbd{graphcolormap[graphcolors[1]]}, \kbd{graphcolormap[graphcolors[2]]},
   \dots
 
 cycling when the \kbd{graphcolors} list is exhausted.
 
 The default value is \kbd{[4,5]}.

Function: _def_help
Class: gp_default
Section: default
C-Name: sd_help
Prototype: 
Help: 
Doc: name of the external help program which will be used from within
 \kbd{gp} when extended help is invoked, usually through a \kbd{??} or
 \kbd{???} request (see \secref{se:exthelp}), or \kbd{M-H} under readline (see
 \secref{se:readline}).
 
 The default value is the local of the \kbd{gphelp} script.

Function: _def_histfile
Class: gp_default
Section: default
C-Name: sd_histfile
Prototype: 
Help: 
Doc: name of a file where
 \kbd{gp} will keep a history of all \emph{input} commands (results are
 omitted). If this file exists when the value of \kbd{histfile} changes,
 it is read in and becomes part of the session history. Thus, setting this
 default in your gprc saves your readline history between sessions. Setting
 this default to the empty string \kbd{""} changes it to
 \kbd{$<$undefined$>$}
 
 The default value is \kbd{$<$undefined$>$} (no history file).

Function: _def_histsize
Class: default
Section: default
C-Name: sd_histsize
Prototype: 
Help: 
Doc: \kbd{gp} keeps a history of the last
 \kbd{histsize} results computed so far, which you can recover using the
 \kbd{\%} notation (see \secref{se:history}). When this number is exceeded,
 the oldest values are erased. Tampering with this default is the only way to
 get rid of the ones you do not need anymore.
 
 The default value is \kbd{5000}.

Function: _def_lines
Class: gp_default
Section: default
C-Name: sd_lines
Prototype: 
Help: 
Doc: if set to a positive value, \kbd{gp} prints at
 most that many lines from each result, terminating the last line shown with
 \kbd{[+++]} if further material has been suppressed. The various \kbd{print}
 commands (see \secref{se:gp_program}) are unaffected, so you can always type
 \kbd{print(\%)} or \b{a} to view the full result. If the actual screen width
 cannot be determined, a ``line'' is assumed to be 80 characters long.
 
 The default value is \kbd{0}.

Function: _def_log
Class: default
Section: default
C-Name: sd_log
Prototype: 
Help: 
Doc: this can be either 0 (off) or 1, 2, 3
 (on, see below for the various modes). When logging mode is turned on, \kbd{gp}
 opens a log file, whose exact name is determined by the \kbd{logfile}
 default. Subsequently, all the commands and results will be written to that
 file (see \b{l}). In case a file with this precise name already existed, it
 will not be erased: your data will be \emph{appended} at the end.
 
 The specific positive values of \kbd{log} have the following meaning
 
 1: plain logfile
 
 2: emit color codes to the logfile (if \kbd{colors} is set).
 
 3: write LaTeX output to the logfile (can be further customized using
 \tet{TeXstyle}).
 
 The default value is \kbd{0}.

Function: _def_logfile
Class: default
Section: default
C-Name: sd_logfile
Prototype: 
Help: 
Doc: name of the log file to be used when the \kbd{log} toggle is on.
 Environment and time expansion are performed.
 
 The default value is \kbd{"pari.log"}.

Function: _def_new_galois_format
Class: default
Section: default
C-Name: sd_new_galois_format
Prototype: 
Help: 
Doc: this toggle is either 1 (on) or 0 (off). If on,
 the \tet{polgalois} command will use a different, more
 consistent, naming scheme for Galois groups. This default is provided to
 ensure that scripts can control this behavior and do not break unexpectedly.
 
 The defaut value is \kbd{0}. This value will change to $1$ (set) in the next
 major version.

Function: _def_output
Class: default
Section: default
C-Name: sd_output
Prototype: 
Help: 
Doc: there are three possible values: 0
 (=~\var{raw}), 1 (=~\var{prettymatrix}), or 3
 (=~\var{external} \var{prettyprint}). This
 means that, independently of the default \kbd{format} for reals which we
 explained above, you can print results in three ways:
 
 $\bullet$ \tev{raw format}, i.e.~a format which is equivalent to what you
 input, including explicit multiplication signs, and everything typed on a
 line instead of two dimensional boxes. This can have several advantages, for
 instance it allows you to pick the result with a mouse or an editor, and to
 paste it somewhere else.
 
 $\bullet$ \tev{prettymatrix format}: this is identical to raw format, except
 that matrices are printed as boxes instead of horizontally. This is
 prettier, but takes more space and cannot be used for input. Column vectors
 are still printed horizontally.
 
 $\bullet$ \tev{external prettyprint}: pipes all \kbd{gp}
 output in TeX format to an external prettyprinter, according to the value of
 \tet{prettyprinter}. The default script (\tet{tex2mail}) converts its input
 to readable two-dimensional text.
 
 Independently of the setting of this default, an object can be printed
 in any of the three formats at any time using the commands \b{a} and \b{m}
 and \b{B} respectively.
 
 The default value is \kbd{1} (\var{prettymatrix}).

Function: _def_parisize
Class: default
Section: default
C-Name: sd_parisize
Prototype: 
Help: 
Doc: \kbd{gp}, and in fact any program using the PARI
 library, needs a \tev{stack} in which to do its computations. \kbd{parisize}
 is the stack size, in bytes. It is strongly recommended you increase this
 default (using the \kbd{-s} command-line switch, or a \tet{gprc}) if you can
 afford it. Don't increase it beyond the actual amount of RAM installed on
 your computer or \kbd{gp} will spend most of its time paging.
 
 In case of emergency, you can use the \tet{allocatemem} function to
 increase \kbd{parisize}, once the session is started.
 
 The default value is 4M, resp.~8M on a 32-bit, resp.~64-bit machine.

Function: _def_path
Class: default
Section: default
C-Name: sd_path
Prototype: 
Help: 
Doc: this is a list of directories, separated by colons ':'
 (semicolons ';' in the DOS world, since colons are preempted for drive names).
 When asked to read a file whose name is not given by an absolute path
 (does not start with \kbd{/}, \kbd{./} or \kbd{../}), \kbd{gp} will look for
 it in these directories, in the order they were written in \kbd{path}. Here,
 as usual, \kbd{.} means the current directory, and \kbd{..} its immediate
 parent. Environment expansion is performed.
 
 The default value is \kbd{".:\til:\til/gp"} on UNIX systems,
 \kbd{".;C:\bs;C:\bs GP"} on DOS, OS/2 and Windows, and \kbd{"."} otherwise.

Function: _def_prettyprinter
Class: default
Section: default
C-Name: sd_prettyprinter
Prototype: 
Help: 
Doc: the name of an external prettyprinter to use when
 \kbd{output} is~3 (alternate prettyprinter). Note that the default
 \tet{tex2mail} looks much nicer than the built-in ``beautified
 format'' ($\kbd{output} = 2$).
 
 The default value is \kbd{"tex2mail -TeX -noindent -ragged -by\_par"}.

Function: _def_primelimit
Class: default
Section: default
C-Name: sd_primelimit
Prototype: 
Help: 
Doc: \kbd{gp} precomputes a list of
 all primes less than \kbd{primelimit} at initialization time. These are used
 by many arithmetic functions, usually for trial division purposes. If you do
 not plan to invoke any of them, you can just set this to 1. The maximal value
 is a little less than $2^{32}$ (resp $2^{64}$) on a 32-bit (resp.~64-bit)
 machine.
 
 Since almost all arithmetic functions eventually require some table of prime
 numbers, PARI currently guarantees that the first 6547 primes, up to and
 including 65557, are precomputed, even if \kbd{primelimit} is $1$.
 
 The default value is \kbd{500k}.

Function: _def_prompt
Class: gp_default
Section: default
C-Name: sd_prompt
Prototype: 
Help: 
Doc: a string that will be printed as
 prompt. Note that most usual escape sequences are available there: \b{e} for
 Esc, \b{n} for Newline, \dots, \kbd{\bs\bs} for \kbd{\bs}. Time expansion is
 performed.
 
 This string is sent through the library function \tet{strftime} (on a
 Unix system, you can try \kbd{man strftime} at your shell prompt). This means
 that \kbd{\%} constructs have a special meaning, usually related to the time
 and date. For instance, \kbd{\%H} = hour (24-hour clock) and \kbd{\%M} =
 minute [00,59] (use \kbd{\%\%} to get a real \kbd{\%}).
 
 If you use \kbd{readline}, escape sequences in your prompt will result in
 display bugs. If you have a relatively recent \kbd{readline} (see the comment
 at the end of \secref{se:def,colors}), you can brace them with special sequences
 (\kbd{\bs[} and \kbd{\bs]}), and you will be safe. If these just result in
 extra spaces in your prompt, then you'll have to get a more recent
 \kbd{readline}. See the file \kbd{misc/gprc.dft} for an example.
 
 \emacs {\bf Caution}: PariEmacs needs to know about the prompt pattern to
 separate your input from previous \kbd{gp} results, without ambiguity. It is
 not a trivial problem to adapt automatically this regular expression to an
 arbitrary prompt (which can be self-modifying!). See PariEmacs's
 documentation.
 
 The default value is \kbd{"? "}.

Function: _def_prompt_cont
Class: gp_default
Section: default
C-Name: sd_prompt_cont
Prototype: 
Help: 
Doc: a string that will be printed
 to prompt for continuation lines (e.g. in between braces, or after a
 line-terminating backslash). Everything that applies to \kbd{prompt}
 applies to \kbd{prompt\_cont} as well.
 
 The defaut value is \kbd{""}.

Function: _def_psfile
Class: gp_default
Section: default
C-Name: sd_psfile
Prototype: 
Help: 
Doc: name of the default file where
 \kbd{gp} is to dump its PostScript drawings (these are appended, so that no
 previous data are lost). Environment and time expansion are performed.
 
 The default value is \kbd{"pari.ps"}.

Function: _def_readline
Class: gp_default
Section: default
C-Name: sd_readline
Prototype: 
Help: 
Doc: switches readline line-editing
 facilities on and off. This may be useful if you are running \kbd{gp} in a Sun
 \tet{cmdtool}, which interacts badly with readline. Of course, until readline
 is switched on again, advanced editing features like automatic completion
 and editing history are not available.
 
 The default value is \kbd{1}.

Function: _def_realprecision
Class: default
Section: default
C-Name: sd_realprecision
Prototype: 
Help: 
Doc: 
 \subsecidx{realprecision} : the number of significant digits and, at the same
 time, the number of printed digits of real numbers (see~\b{p}). Note that
 PARI internal precision works on a word basis (32 or 64 bits), hence may not
 coincide with the number of decimal digits you input. For instance to get 2
 decimal digits you need one word of precision which, on a 32-bit machine,
 actually gives you 9 digits ($9 < \log_{10}(2^{32}) < 10$):
 
 \bprog
 ? default(realprecision, 2)
       realprecision = 9 significant digits (2 digits displayed)
 @eprog
 
 The default value is \kbd{28}, resp.~\kbd{38} on a 32-bit, resp~.64-bit,
 machine.

Function: _def_recover
Class: gp_default
Section: default
C-Name: sd_recover
Prototype: 
Help: 
Doc: this toggle is either 1 (on) or 0 (off). If you change this to $0$, any
 error becomes fatal and causes the gp interpreter to exit immediately. Can be
 useful in batch job scripts.
 
 The default value is \kbd{1}.

Function: _def_secure
Class: default
Section: default
C-Name: sd_secure
Prototype: 
Help: 
Doc: this toggle is either 1 (on) or 0 (off). If on, the \tet{system} and
 \tet{extern} command are disabled. These two commands are potentially
 dangerous when you execute foreign scripts since they let \kbd{gp} execute
 arbitrary UNIX commands. \kbd{gp} will ask for confirmation before letting
 you (or a script) unset this toggle.
 
 The default value is \kbd{0}.

Function: _def_seriesprecision
Class: default
Section: default
C-Name: sd_seriesprecision
Prototype: 
Help: 
Doc: number of significant terms
 when converting a polynomial or rational function to a power series
 (see~\b{ps}).
 
 The default value is \kbd{16}.

Function: _def_simplify
Class: default
Section: default
C-Name: sd_simplify
Prototype: 
Help: 
Doc: this toggle is either 1 (on) or 0 (off). When the PARI library computes
 something, the type of the
 result is not always the simplest possible. The only type conversions which
 the PARI library does automatically are rational numbers to integers (when
 they are of type \typ{FRAC} and equal to integers), and similarly rational
 functions to polynomials (when they are of type \typ{RFRAC} and equal to
 polynomials). This feature is useful in many cases, and saves time, but can
 be annoying at times. Hence you can disable this and, whenever you feel like
 it, use the function \kbd{simplify} (see Chapter 3) which allows you to
 simplify objects to the simplest possible types recursively (see~\b{y}).
 \sidx{automatic simplification}
 
 The default value is \kbd{1}.

Function: _def_strictmatch
Class: default
Section: default
C-Name: sd_strictmatch
Prototype: 
Help: 
Doc: this toggle is either 1 (on) or 0 (off). If on, unused characters after a
 sequence has been
 processed will produce an error. Otherwise just a warning is printed. This
 can be useful when you are unsure how many parentheses you have to close
 after complicated nested loops. Please do not use this; find a decent
 text-editor instead.
 
 The default value is \kbd{1}.

Function: _def_timer
Class: gp_default
Section: default
C-Name: sd_timer
Prototype: 
Help: 
Doc: this toggle is either 1 (on) or 0 (off). If on, every instruction
 sequence (anything ended by a
 newline in your input) is timed, to some accuracy depending on the hardware
 and operating system. The time measured is the user \idx{CPU time},
 \emph{not} including the time for printing the results (see \kbd{\#} and
 \kbd{\#\#}).
 
 The default value is \kbd{0}.

Function: _default_check
Class: gp2c_internal
Help: Code to check for the default marker
Description: 
 (C!GEN):bool    !$(1)
 (var):bool      $(1) == -1

Function: _default_marker
Class: gp2c_internal
Help: Code for default value of GP function
Description: 
 (C!GEN)      NULL
 (var)        -1
 (small)      0
 (str)        ""

Function: _derivfun
Class: basic
Section: programming/internals
C-Name: derivfun0
Prototype: GGp
Help: _derivfun(closure,[args]) numerical derivation of closure with respect to
 the first variable at (args).

Function: _diffptr
Class: gp2c_internal
Help: Table of difference of primes.
Description: 
 ():bptr        diffptr

Function: _err_primes
Class: gp2c_internal
Description: 
 ():void  pari_err(primer1)

Function: _err_type
Class: gp2c_internal
Description: 
 (str):void  pari_err(typeer, $1)

Function: _eval_mnemonic
Class: basic
Section: programming/internals
C-Name: eval_mnemonic
Prototype: lGs
Help: Convert a mnemonic string to a flag.

Function: _factor_Aurifeuille
Class: basic
Section: programming/internals
C-Name: factor_Aurifeuille
Prototype: GL
Help: _factor_Aurifeuille(a,d): return an algebraic factor of Phi_d(a), a != 0

Function: _factor_Aurifeuille_prime
Class: basic
Section: programming/internals
C-Name: factor_Aurifeuille_prime
Prototype: GL
Help: _factor_Aurifeuille_prime(p,d): return an algebraic factor of Phi_d(p), p prime

Function: _formatcode
Class: gp2c_internal
Description: 
 (#small):void                    $1
 (small):small                    %ld
 (#str):void                      $%1
 (str):str                        %s
 (gen):gen                        %Ps

Function: _forprime_next
Class: gp2c_internal
Help: Compute the next prime from the diffptr table.
Description: 
 (*small,*bptr):void  NEXT_PRIME_VIADIFF($1, $2)

Function: _forvec_start
Class: gp2c_internal
Help: Initializes parameters for forvec_start.
Description: 
 (gen, small, &gen, &func_GG):vec    forvec_start($1, $2, &$3, &$4)

Function: _gerepileall
Class: gp2c_internal
Description: 
 (pari_sp,gen):void:parens    $2 = gerepilecopy($1, $2)
 (pari_sp,gen,...):void       gerepileall($1, ${nbarg 1 sub}, ${stdref 3 code})

Function: _gerepileupto
Class: gp2c_internal
Description: 
 (pari_sp, int):int               gerepileuptoint($1, $2)
 (pari_sp, mp):mp                 gerepileuptoleaf($1, $2)
 (pari_sp, vecsmall):vecsmall     gerepileuptoleaf($1, $2)
 (pari_sp, vec):vec               gerepileupto($1, $2)
 (pari_sp, gen):gen               gerepileupto($1, $2)

Function: _low_stack_lim
Class: gp2c_internal
Description: 
 (pari_sp,pari_sp):bool        low_stack($1, stack_lim($2, 1))

Function: _maxprime
Class: gp2c_internal
Description: 
 ():small                maxprime()

Function: _proto_code
Class: gp2c_internal
Help: Code for argument of a function
Description: 
 (var)          n
 (C!long)       L
 (C!GEN)        G
 (C!char*)      s

Function: _proto_max_args
Class: gp2c_internal
Help: Max number of arguments supported by install.
Description: 
 (20)

Function: _proto_ret
Class: gp2c_internal
Help: Code for return value of functions
Description: 
 (C!void)       v
 (C!int)        i
 (C!long)       l
 (C!GEN)

Function: _stack_lim
Class: gp2c_internal
Description: 
 (pari_sp,small):pari_sp       stack_lim($1, $2)

Function: _strtoclosure
Class: gp2c_internal
Description: 
 (str):closure               strtofunction($1)
 (str,gen,...):closure       strtoclosure($1, ${nbarg 1 sub}, $3)

Function: _toGENstr
Class: gp2c_internal
Description: 
 (str):genstr           strtoGENstr($1)
 (gen):genstr           GENtoGENstr($1)

Function: _tovec
Class: gp2c_internal
Help: Create a vector holding the arguments (shallow)
Description: 
 ():vec                  cgetg(1, t_VEC)
 (gen):vec               mkvec($1)
 (gen,gen):vec           mkvec2($1, $2)
 (gen,gen,gen):vec       mkvec3($1, $2, $3)
 (gen,gen,gen,gen):vec   mkvec4($1, $2, $3, $4)
 (gen,...):vec           mkvecn($#, $2)

Function: _tovecprec
Class: gp2c_internal
Help: Create a vector holding the arguments and prec (shallow)
Description: 
 ():vec:prec             mkvecs(prec)
 (gen):vec:prec          mkvec2($1, stoi(prec))
 (gen,gen):vec:prec      mkvec3($1, $2, stoi(prec))
 (gen,gen,gen):vec:prec  mkvec4($1, $2, $3, stoi(prec))
 (gen,...):vec:prec      mkvecn(${nbarg 1 add}, $2, stoi(prec))

Function: _type_preorder
Class: gp2c_internal
Help: List of chains of type preorder.
Description: 
 (empty, void, bool, small, int, mp, gen)
 (empty, real, mp)
 (empty, bptr, small)
 (empty, bool, lg, small)
 (empty, bool, small_int, small)
 (empty, void, negbool, bool)
 (empty, typ, str, genstr,gen)
 (empty, vecsmall, gen)
 (empty, vec, gen)
 (empty, list, gen)
 (empty, closure, gen)
 (empty, bnr, bnf, nf, vec)
 (empty, bnr, bnf, clgp, vec)
 (empty, bell, ell, vec)
 (empty, prid, vec)
 (empty, gal, vec)
 (empty, var, pol, gen)

Function: _typedef
Class: gp2c_internal
Description: 
 (empty)        void
 (void)         void
 (negbool)      long
 (bool)         long
 (small_int)    int
 (small)        long
 (int)          GEN
 (real)         GEN
 (mp)           GEN
 (lg)           long
 (vecsmall)     GEN
 (vec)          GEN
 (list)         GEN
 (var)          long
 (pol)          GEN
 (gen)          GEN
 (closure)      GEN
 (genstr)       GEN
 (str)          char*
 (bptr)         byteptr
 (func_GG)      func_GG
 (pari_sp)      pari_sp
 (typ)          long
 (nf)           GEN
 (bnf)          GEN
 (bnr)          GEN
 (ell)          GEN
 (bell)         GEN
 (clgp)         GEN
 (prid)         GEN
 (gal)          GEN

Function: _void_if
Class: basic
Section: programming/internals
C-Name: ifpari_void
Prototype: vGDIDI
Help: internal variant of if() that does not return a value.

Function: _wrap_G
Class: gp2c_internal
C-Name: gp_call
Prototype: G
Description: 
  (gen):gen    $1

Function: _wrap_bG
Class: gp2c_internal
C-Name: gp_callbool
Prototype: lG
Description: 
  (bool):bool   $1

Function: _wrap_vG
Class: gp2c_internal
C-Name: gp_callvoid
Prototype: lG
Description: 
  (void):small  0

Function: _||_
Class: basic
Section: symbolic_operators
C-Name: orpari
Prototype: GE
Help: x||y: inclusive OR.
Description: 
 (bool, bool):bool:parens               $(1) || $(2)

Function: _~
Class: basic
Section: symbolic_operators
C-Name: gtrans
Prototype: G
Help: x~: transpose of x.
Description: 
 (vec):vec                        gtrans($1)
 (gen):gen                        gtrans($1)

Function: abs
Class: basic
Section: transcendental
C-Name: gabs
Prototype: Gp
Help: abs(x): absolute value (or modulus) of x.
Description: 
 (small):small    labs($1)
 (int):int        mpabs($1)
 (real):real      mpabs($1)
 (mp):mp          mpabs($1)
 (gen):gen:prec        gabs($1, prec)
Doc: absolute value of $x$ (modulus if $x$ is complex).
 Rational functions are not allowed. Contrary to most transcendental
 functions, an exact argument is \emph{not} converted to a real number before
 applying \kbd{abs} and an exact result is returned if possible.
 \bprog
 ? abs(-1)
 %1 = 1
 ? abs(3/7 + 4/7*I)
 %2 = 5/7
 ? abs(1 + I)
 %3 = 1.414213562373095048801688724
 @eprog\noindent
 If $x$ is a polynomial, returns $-x$ if the leading coefficient is
 real and negative else returns $x$. For a power series, the constant
 coefficient is considered instead.

Function: acos
Class: basic
Section: transcendental
C-Name: gacos
Prototype: Gp
Help: acos(x): arc cosine of x.
Doc: principal branch of $\text{cos}^{-1}(x) = -i \log (x + i\sqrt{1-x^2})$.
 In particular, $\text{Re(acos}(x))\in [0,\pi]$ and if $x\in \R$ and $|x|>1$,
 then $\text{acos}(x)$ is complex. The branch cut is in two pieces:
 $]-\infty,-1]$ , continuous with quadrant II, and $[1,+\infty[$, continuous
 with quadrant IV. We have $\text{acos}(x) = \pi/2 - \text{asin}(x)$ for all
 $x$.

Function: acosh
Class: basic
Section: transcendental
C-Name: gach
Prototype: Gp
Help: acosh(x): inverse hyperbolic cosine of x.
Doc: principal branch of $\text{cosh}^{-1}(x) = 2
  \log(\sqrt{(x+1)/2} + \sqrt{(x-1)/2})$. In particular,
 $\text{Re}(\text{acosh}(x))\geq 0$ and
 $\text{In}(\text{acosh}(x))\in ]-\pi,\pi]0$; if $x\in \R$ and $x<1$, then
 $\text{acosh}(x)$ is complex.

Function: addhelp
Class: basic
Section: programming/specific
C-Name: addhelp
Prototype: vrs
Help: addhelp(sym,str): add/change help message for the symbol sym.
Doc: changes the help message for the symbol \kbd{sym}. The string \var{str} is
 expanded on the spot and stored as the online help for \kbd{sym}. If \kbd{sym}
 is a function \emph{you} have defined, its definition will still be printed
 before the message \var{str}.  It is recommended that you document global
 variables and user functions in this way. Of course \kbd{gp} will not protest
 if you skip this.  It is possible to attach a help text to an alias, but it
 will never be shown: aliases are expanded by the \kbd{?} help operator and we
 get the help of the functions the alias points to.
 
 Nothing prevents you from modifying the help of built-in PARI
 functions. But if you do, we would like to hear why you needed to do it!

Function: addprimes
Class: basic
Section: number_theoretical
C-Name: addprimes
Prototype: DG
Help: addprimes({x=[]}): add primes in the vector x to the prime table to
 be used in trial division. x may also be a single integer. Composite
 "primes" are NOT allowed!
Doc: adds the integers contained in the
 vector $x$ (or the single integer $x$) to a special table of
 ``user-defined primes'', and returns that table. Whenever \kbd{factor} is
 subsequently called, it will trial divide by the elements in this table.
 If $x$ is empty or omitted, just returns the current list of extra
 primes.
 
 The entries in $x$ must be primes: there is no internal check, even if
 the \tet{factor_proven} default is set. To remove primes from the list use
 \kbd{removeprimes}.

Function: agm
Class: basic
Section: transcendental
C-Name: agm
Prototype: GGp
Help: agm(x,y): arithmetic-geometric mean of x and y.
Doc: arithmetic-geometric mean of $x$ and $y$. In the
 case of complex or negative numbers, the principal square root is always
 chosen. $p$-adic or power series arguments are also allowed. Note that
 a $p$-adic agm exists only if $x/y$ is congruent to 1 modulo $p$ (modulo
 16 for $p=2$). $x$ and $y$ cannot both be vectors or matrices.

Function: alarm
Class: gp
Section: programming/specific
C-Name: alarm0
Prototype: vD0,L,
Help: alarm({s = 0}): trigger an "alarmer" exception after s seconds,
 cancelling any previously set alarm. Stop a pending alarm if s = 0 or is
 omitted.
Doc: trigger an \var{alarmer} exception after $s$ seconds, cancelling any
 previously set alarm. Stop a pending alarm if s = 0 or is omitted.
 
 For example, the function \kbd{timefact(N,sec)} below
 will try to factor $N$ and give up after \var{sec} seconds,
 returning a partial factorisation.
 
 \bprog
 default(factor_add_primes,1);
 default(primelimit,16777216);
 timefact(N,sec)=
 {
   trap(alarmer,factor(N,0),alarm(sec);my(F=factor(N));alarm(0);F);
 }
 @eprog

Function: algdep
Class: basic
Section: linear_algebra
C-Name: algdep0
Prototype: GLD0,L,
Help: algdep(x,k,{flag=0}): algebraic relations up to degree n of x, using
 lindep([1,x,...,x^(k-1)], flag).
Doc: \sidx{algebraic dependence}
 $x$ being real/complex, or $p$-adic, finds a polynomial of degree at most
 $k$ with integer coefficients having $x$ as approximate root. Note that the
 polynomial which is obtained is not necessarily the ``correct'' one. In fact
 it is not even guaranteed to be irreducible. One can check the closeness
 either by a polynomial evaluation (use \tet{subst}), or by computing the
 roots of the polynomial given by \kbd{algdep} (use \tet{polroots}).
 
 Internally, \tet{lindep}$([1,x,\ldots,x^k], \fl)$ is used. If
 \tet{lindep} is not able to find a relation and returns a lower bound for the
 sup norm of the smallest relation, \tet{algdep} returns that bound instead.
 A non-zero value of $\fl$ may improve on the default behavior
 if the input number is known to a \emph{huge} accuracy, and you suspect the
 last bits are incorrect  (this truncates the number, throwing away the least
 significant bits), but default values are usually sufficient:
 \bprog
 \\\\\\\\\ LLL
 ? \p200
 ? algdep(2^(1/6)+3^(1/5), 30);      \\ wrong in 0.8s
 ? algdep(2^(1/6)+3^(1/5), 30, 100); \\ wrong in 0.4s
 ? algdep(2^(1/6)+3^(1/5), 30, 170); \\ right in 0.8s
 ? algdep(2^(1/6)+3^(1/5), 30, 200); \\ wrong in 1.0s
 ? \p250
 ? algdep(2^(1/6)+3^(1/5), 30);      \\ right in 1.0s
 ? algdep(2^(1/6)+3^(1/5), 30, 200); \\ right in 1.0s
 ? \p500
 ? algdep(2^(1/6)+3^(1/5), 30);      \\ right in 2.9s
 ? \p1000
 ? algdep(2^(1/6)+3^(1/5), 30);      \\ right in 10.6s
 \\\\\\\\\ PSLQ
 ? \p200
 ? algdep(2^(1/6)+3^(1/5), 30, -3);  \\ failure in 15s
 ? \p250
 ? algdep(2^(1/6)+3^(1/5), 30, -3);  \\ right in 20s
 ? \p500
 ? algdep(2^(1/6)+3^(1/5), 30, -3);  \\ right in 52s
 ? \p1000
 ? algdep(2^(1/6)+3^(1/5), 30, -3);  \\ right in 164s
 @eprog\noindent
 The changes in \kbd{defaultprecision} only affect the quality of the
 initial approximation to $2^{1/6} + 3^{1/5}$, \kbd{algdep} itself uses
 exact operations (the size of its operands depend on the accuracy of the
 input of course: more accurate input means slower operations).
 
 Proceeding by increments of 5 digits of accuracy, \kbd{algdep} with default
 flag produces its first correct result at 205 digits, and from then on a
 steady stream of correct results. Interestingly enough, our PSLQ also
 reliably succeeds from 205 digits on (and is 15 times slower at that
 accuracy).
 
 The above example is the test case studied in a 2000 paper by Borwein and
 Lisonek: Applications of integer relation algorithms, \emph{Discrete Math.},
 {\bf 217}, p.~65--82. The paper concludes in the superiority of the PSLQ
 algorithm, which either shows that PARI's implementation of PSLQ is lacking,
 or that its LLL is extremely good. The version of PARI tested there was
 1.39, which succeeded reliably from precision 265 on, in about 200 as much
 time as the current version.
Variant: Also available is \fun{GEN}{algdep}{GEN x, long k} ($\fl=0$).

Function: alias
Class: basic
Section: programming/specific
C-Name: alias0
Prototype: vrr
Help: alias(newsym,sym): defines the symbol newsym as an alias for the symbol
 sym.
Doc: defines the symbol \var{newsym} as an alias for the the symbol \var{sym}:
 \bprog
 ? alias("det", "matdet");
 ? det([1,2;3,4])
 %1 = -2
 @eprog\noindent
 You are not restricted to ordinary functions, as in the above example:
 to alias (from/to) member functions, prefix them with `\kbd{\_.}';
 to alias operators, use their internal name, obtained by writing
 \kbd{\_} in lieu of the operators argument: for instance, \kbd{\_!} and
 \kbd{!\_} are the internal names of the factorial and the
 logical negation, respectively.
 \bprog
 ? alias("mod", "_.mod");
 ? alias("add", "_+_");
 ? alias("_.sin", "sin");
 ? mod(Mod(x,x^4+1))
 %2 = x^4 + 1
 ? add(4,6)
 %3 = 10
 ? Pi.sin
 %4 = 0.E-37
 @eprog
 Alias expansion is performed directly by the internal GP compiler.
 Note that since alias is performed at compilation-time, it does not
 require any run-time processing, however it only affects GP code
 compiled \emph{after} the alias command is evaluated. A slower but more
 flexible alternative is to use variables. Compare
 \bprog
 ? fun = sin;
 ? g(a,b) = intnum(t=a,b,fun(t));
 ? g(0, Pi)
 %3 = 2.0000000000000000000000000000000000000
 ? fun = cos;
 ? g(0, Pi)
 %5 = 1.8830410776607851098 E-39
 @eprog\noindent
 with
 \bprog
 ? alias(fun, sin);
 ? g(a,b) = intnum(t=a,b,fun(t));
 ? g(0,Pi)
 %2 = 2.0000000000000000000000000000000000000
 ? alias(fun, cos);  \\ Oops. Does not affect *previous* definition!
 ? g(0,Pi)
 %3 = 2.0000000000000000000000000000000000000
 ? g(a,b) = intnum(t=a,b,fun(t)); \\ Redefine, taking new alias into account
 ? g(0,Pi)
 %5 = 1.8830410776607851098 E-39
 @eprog
 
 A sample alias file \kbd{misc/gpalias} is provided with
 the standard distribution.

Function: allocatemem
Class: gp
Section: programming/specific
C-Name: allocatemem0
Prototype: vDG
Help: allocatemem({s=0}): allocates a new stack of s bytes. doubles the
 stack if s is omitted.
Doc: this very special operation
 allows the user to change the stack size \emph{after} initialization. $x$
 must be a non-negative integer. If $x \neq 0$, a new stack of size
 $16*\ceil{x/16}$ bytes is allocated. If $x=0$, the size of
 the new stack is twice the size of the old one. The old stack is discarded.
 
 \misctitle{Warning} This function should be typed at the \kbd{gp} prompt in
 interactive usage, or left by itself at the start of batch files.
 It cannot be used meaningfully in loop-like constructs, or as part of a
 larger expression sequence, e.g
 \bprog
    allocatemem(); x = 1;   \\@com This will not set \kbd{x}!
 @eprog\noindent
 In fact, all loops are immediately exited, user functions terminated, and
 the rest of the sequence following \kbd{allocatemem()} is silently
 discarded, as well as all pending sequences of instructions. We just go on
 reading the next instruction sequence from the file we're in (or from the
 user). In particular, we have the following possibly unexpected behavior: in
 \bprog
    read("file.gp"); x = 1
 @eprog\noindent were \kbd{file.gp} contains an \kbd{allocatemem} statement,
 the \kbd{x = 1} is never executed, since all pending instructions in the
 current sequence are discarded.
 
 The technical reason is that this routine moves the stack, so temporary
 objects created during the current expression evaluation are not correct
 anymore. (In particular byte-compiled expressions, which are allocated on
 the stack.) To avoid accessing obsolete pointers to the old stack, this
 routine ends by a \kbd{longjmp}.

Function: apply
Class: basic
Section: programming/specific
C-Name: apply0
Prototype: GG
Help: apply(f, A): apply function f to each entry in A.
Wrapper: (G)
Description: 
  (closure,gen):gen    genapply(${1 cookie}, ${1 wrapper}, $2)
Doc: Apply the \typ{CLOSURE} \kbd{f} to the entries of \kbd{A}. If \kbd{A}
 is a scalar, return \kbd{f(A)}. If \kbd{A} is a polynomial or power series,
 apply \kbd{f} on all coefficients. If \kbd{A} is a vector or list, return
 the elements $f(x)$ where $x$ runs through \kbd{A}. If \kbd{A} is a matrix,
 return the matrix whose entries are the $f(\kbd{A[i,j]})$.
 \bprog
 ? apply(x->x^2, [1,2,3,4])
 %1 = [1, 4, 9, 16]
 ? apply(x->x^2, [1,2;3,4])
 %2 =
 [1 4]
 
 [9 16]
 ? apply(x->x^2, 4*x^2 + 3*x+ 2)
 %3 = 16*x^2 + 9*x + 4
 @eprog\noindent Note that many functions already act componentwise on
 vectors or matrices, but they almost never act on lists; in this
 case, \kbd{apply} is a good solution:
 \bprog
 ? L = List([Mod(1,3), Mod(2,4)]);
 ? lift(L)
   ***   at top-level: lift(L)
   ***                 ^-------
   *** lift: incorrect type in lift.
 ? apply(lift, L);
 %2 = List([1, 2])
 @eprog
 
 \synt{genapply}{void *E, GEN (*fun)(void*,GEN), GEN a}.

Function: arg
Class: basic
Section: transcendental
C-Name: garg
Prototype: Gp
Help: arg(x): argument of x,such that -pi<arg(x)<=pi.
Doc: argument of the complex number $x$, such that $-\pi<\text{arg}(x)\le\pi$.

Function: asin
Class: basic
Section: transcendental
C-Name: gasin
Prototype: Gp
Help: asin(x): arc sine of x.
Doc: principal branch of $\text{sin}^{-1}(x) = -i \log(ix + \sqrt{1 - x^2})$.
 In particular, $\text{Re(asin}(x))\in [-\pi/2,\pi/2]$ and if $x\in \R$ and
 $|x|>1$ then $\text{asin}(x)$ is complex. The branch cut is in two pieces:
 $]-\infty,-1]$, continuous with quadrant II, and $[1,+\infty[$ continuous
 with quadrant IV. The function satisfies $i \text{asin}(x) =
 \text{asinh}(ix)$.

Function: asinh
Class: basic
Section: transcendental
C-Name: gash
Prototype: Gp
Help: asinh(x): inverse hyperbolic sine of x.
Doc: principal branch of $\text{sinh}^{-1}(x) = \log(x + \sqrt{1+x^2})$. In
 particular $\text{Im(asinh}(x))\in [-\pi/2,\pi/2]$.
 The branch cut is in two pieces: [-i oo ,-i],  continuous with quadrant III
 and [i,+i oo [ continuous with quadrant I.

Function: atan
Class: basic
Section: transcendental
C-Name: gatan
Prototype: Gp
Help: atan(x): arc tangent of x.
Doc: principal branch of $\text{tan}^{-1}(x) = \log ((1+ix)/(1-ix)) /
 2i$. In particular the real part of $\text{atan}(x))$ belongs to
 $]-\pi/2,\pi/2[$.
 The branch cut is in two pieces:
 $]-i\infty,-i[$, continuous with quadrant IV, and $]i,+i \infty[$ continuous
 with quadrant II. The function satisfies $i \text{atan}(x) =
 -i\text{atanh}(ix)$ for all $x\neq \pm i$.

Function: atanh
Class: basic
Section: transcendental
C-Name: gath
Prototype: Gp
Help: atanh(x): inverse hyperbolic tangent of x.
Doc: principal branch of $\text{tanh}^{-1}(x) = log ((1+x)/(1-x)) / 2$. In
 particular the imaginary part of $\text{atanh}(x)$ belongs to
 $[-\pi/2,\pi/2]$; if $x\in \R$ and $|x|>1$ then $\text{atanh}(x)$ is complex.

Function: bernfrac
Class: basic
Section: transcendental
C-Name: bernfrac
Prototype: L
Help: bernfrac(x): Bernoulli number B_x, as a rational number.
Doc: Bernoulli number\sidx{Bernoulli numbers} $B_x$,
 where $B_0=1$, $B_1=-1/2$, $B_2=1/6$,\dots, expressed as a rational number.
 The argument $x$ should be of type integer.

Function: bernreal
Class: basic
Section: transcendental
C-Name: bernreal
Prototype: Lp
Help: bernreal(x): Bernoulli number B_x, as a real number with the current
 precision.
Doc: Bernoulli number\sidx{Bernoulli numbers}
 $B_x$, as \kbd{bernfrac}, but $B_x$ is returned as a real number
 (with the current precision).

Function: bernvec
Class: basic
Section: transcendental
C-Name: bernvec
Prototype: L
Help: bernvec(x): Vector of rational Bernoulli numbers B_0, B_2,...up to
 B_(2x).
Doc: creates a vector containing, as rational numbers,
 the \idx{Bernoulli numbers} $B_0$, $B_2$,\dots, $B_{2x}$.
 This routine is obsolete. Use \kbd{bernfrac} instead each time you need a
 Bernoulli number in exact form.
 
 \misctitle{Note} This routine is implemented using repeated independent
 calls to \kbd{bernfrac}, which is faster than the standard recursion in exact
 arithmetic. It is only kept for backward compatibility: it is not faster than
 individual calls to \kbd{bernfrac}, its output uses a lot of memory space,
 and coping with the index shift is awkward.

Function: besselh1
Class: basic
Section: transcendental
C-Name: hbessel1
Prototype: GGp
Help: besselh1(nu,x): H^1-bessel function of index nu and argument x.
Doc: $H^1$-Bessel function of index \var{nu} and argument $x$.

Function: besselh2
Class: basic
Section: transcendental
C-Name: hbessel2
Prototype: GGp
Help: besselh2(nu,x): H^2-bessel function of index nu and argument x.
Doc: $H^2$-Bessel function of index \var{nu} and argument $x$.

Function: besseli
Class: basic
Section: transcendental
C-Name: ibessel
Prototype: GGp
Help: besseli(nu,x): I-bessel function of index nu and argument x.
Doc: $I$-Bessel function of index \var{nu} and
 argument $x$. If $x$ converts to a power series, the initial factor
 $(x/2)^\nu/\Gamma(\nu+1)$ is omitted (since it cannot be represented in PARI
 when $\nu$ is not integral).

Function: besselj
Class: basic
Section: transcendental
C-Name: jbessel
Prototype: GGp
Help: besselj(nu,x): J-bessel function of index nu and argument x.
Doc: $J$-Bessel function of index \var{nu} and
 argument $x$. If $x$ converts to a power series, the initial factor
 $(x/2)^\nu/\Gamma(\nu+1)$ is omitted (since it cannot be represented in PARI
 when $\nu$ is not integral).

Function: besseljh
Class: basic
Section: transcendental
C-Name: jbesselh
Prototype: GGp
Help: besseljh(n,x): J-bessel function of index n+1/2 and argument x, where
 n is a non-negative integer.
Doc: $J$-Bessel function of half integral index.
 More precisely, $\kbd{besseljh}(n,x)$ computes $J_{n+1/2}(x)$ where $n$
 must be of type integer, and $x$ is any element of $\C$. In the
 present version \vers, this function is not very accurate when $x$ is small.

Function: besselk
Class: basic
Section: transcendental
C-Name: kbessel
Prototype: GGp
Help: besselk(nu,x): K-bessel function of index nu and argument x.
Doc: $K$-Bessel function of index \var{nu} and argument $x$.

Function: besseln
Class: basic
Section: transcendental
C-Name: nbessel
Prototype: GGp
Help: besseln(nu,x): N-bessel function of index nu and argument x.
Doc: $N$-Bessel function of index \var{nu} and argument $x$.

Function: bestappr
Class: basic
Section: number_theoretical
C-Name: bestappr0
Prototype: GDGDG
Help: bestappr(x, {A},{B}): if x is real, gives the best approximation to x with
 denominator less or equal to A. If x is an intmod, returns a rational number
 congruent to x with numerator less than A and denominator less than B, which
 must be given. If x is a polmod, returns a rational functions congruent to x
 with numerator degree less than A and denominator degree less than B, which
 must be given.  Otherwise applies recursively to all components.
Doc: if $B$ is omitted, finds the best rational approximation to $x\in\R$
 using continued fractions. If $A$ is omitted, return the best approximation
 affordable given the input accuracy; otherwise make sure that denominator is
 at most equal to $A$.
 
 If $B$ is
 present perform rational modular reconstruction (see below). In both cases,
 the function applies recursively to components of complex objects
 (polynomials, vectors, \dots).
 \bprog
 ? bestappr(Pi, 100)
 %1 = 22/7
 ? bestappr(0.1428571428571428571428571429)
 %2 = 1/7
 ? bestappr([Pi, sqrt(2) + 'x], 10^3)
 %3 = [355/113, x + 1393/985]
 @eprog
 By definition, $n/d$ is the best rational approximation to $x$ if
 $|d x - n| < |v x - u|$ for all integers $(u,v)$ with $v \leq A$. (Which
 implies that $n/d$ is a convergent of the continued fraction of $x$.)
 
 If $x$ is an \typ{INTMOD},  (or a recursive combination of
 those), modulo $N$ say, $B$ must be present. The routine then returns the
 unique rational number $a/b$ in coprime integers $a\leq A$ and $b\leq B$ which
 is congruent to $x$ modulo $N$. If $N \leq 2AB$, uniqueness is not guaranteed
 and the function fails with an error message. If rational reconstruction is not
 possible (no such $a/b$ exists for at least one component of $x$), returns
 $-1$.
 
 \bprog
 ? bestappr(Mod(18526731858, 11^10), 10^10, 10^10)
  ***   at top-level: bestappr(Mod(1852673
  ***                 ^--------------------
  *** bestappr: ratlift: must have 2*amax*bmax < m, found
        amax=10000000000
        bmax=10000000000
        m=25937424601
 ? bestappr(Mod(18526731858, 11^10), 10^5, 10^5)
 %1 = 1/7
 ? bestappr(Mod(18526731858, 11^20), 10^10, 10^10)
 %2 = -1
 @eprog\noindent In most concrete uses, $B$ is a prime power and we performed
 Hensel lifting to obtain $x$.
 
 If $x$ is a \typ{POLMOD}, modulo $T$ say, $B$ must be present. The routine
 then returns the unique rational function $P/Q$ with  $\deg P\leq A$ and $\deg
 Q\leq B$ which is congruent to $x$ modulo $T$. If $\deg T \leq A+B$, uniqueness
 is not guaranteed and the function fails with an error message. If rational
 reconstruction is not possible, returns $-1$.
Variant: Also available is \fun{GEN}{bestappr}{GEN x, GEN A}.

Function: bezout
Class: basic
Section: number_theoretical
C-Name: vecbezout
Prototype: GG
Help: bezout(x,y): returns [u,v,d] such that d=gcd(x,y) and u*x+v*y=d.
Doc: Returns $[u,v,d]$ such that $d$ is the gcd of $x,y$,
 $x*u+y*v=\gcd(x,y)$, and $u$ and $v$ minimal in a natural sense.
 The arguments must be integers or polynomials. \sidx{extended gcd}
 
 If $x,y$ are polynomials in the same variable and \emph{inexact}
 coefficients, then compute $u,v,d$ such that $x*u+y*v = d$, where $d$
 approximately divides both and $x$ and $y$; in particular, we do not obtain
 \kbd{gcd(x,y)} which is \emph{defined} to be a scalar in this case:
 \bprog
 ? a = x + 0.0; gcd(a,a)
 %1 = 1
 
 ? bezout(a,a)
 %2 = [0, 1, x + 0.E-28]
 
 ? bezout(x-Pi,6*x^2-zeta(2))
 %3 = [-6*x - 18.8495559, 1, 57.5726923]
 @eprog\noindent For inexact inputs, the output is thus not well defined
 mathematically, but you obtain explicit polynomials to check whether the
 approximation is close enough for your needs.

Function: bezoutres
Class: basic
Section: number_theoretical
C-Name: vecbezoutres
Prototype: GG
Help: bezoutres(x,y): gives a 3-dimensional row vector [u,v,d] such that
 d=resultant(x,y) and u*x+v*y=d, where x and y are polynomials.
Doc: finds $u$ and $v$ such that $x*u + y*v = d$, where $d$ is the resultant
 of $x$ and $y$. The result is the row vector $[u,v,d]$. \sidx{extended gcd}
 The algorithm used (subresultant) assumes that the base ring is a domain.

Function: bigomega
Class: basic
Section: number_theoretical
C-Name: gbigomega
Prototype: G
Help: bigomega(x): number of prime divisors of x, counted with multiplicity.
Description: 
 (int):small      bigomega($1)
 (gen):gen        gbigomega($1)
Doc: number of prime divisors of the integer $|x|$ counted with
 multiplicity:
 \bprog
 ? factor(392)
 %1 =
 [2 3]
 
 [7 2]
 
 ? bigomega(392)
 %2 = 5;  \\ = 3+2
 ? omega(392)
 %3 = 2;  \\ without multiplicity
 @eprog
 The function accepts vector/matrices arguments, and is then applied
 componentwise.
Variant: For a \typ{INT} $x$, the variant
 \fun{long}{bigomega}{GEN n} is generally easier to use.

Function: binary
Class: basic
Section: conversions
C-Name: binaire
Prototype: G
Help: binary(x): gives the vector formed by the binary digits of x (x
 integer).
Doc: 
 outputs the vector of the binary digits of $|x|$.
 Here $x$ can be an integer, a real number (in which case the result has two
 components, one for the integer part, one for the fractional part) or a
 vector/matrix.

Function: binomial
Class: basic
Section: number_theoretical
C-Name: binomial
Prototype: GL
Help: binomial(x,y): binomial coefficient x*(x-1)...*(x-y+1)/y! defined for
 y in Z and any x.
Doc: \idx{binomial coefficient} $\binom{x}{y}$.
 Here $y$ must be an integer, but $x$ can be any PARI object.
Variant: The function
 \fun{GEN}{binomialuu}{ulong n, ulong k} is also available, and so is
 \fun{GEN}{vecbinome}{long n}, which returns a vector $v$
 with $n+1$ components such that $v[k+1] = \kbd{binomial}(n,k)$ for $k$ from
 $0$ up to $n$.

Function: bitand
Class: basic
Section: conversions
C-Name: gbitand
Prototype: GG
Help: bitand(x,y): bitwise "and" of two integers x and y. Negative numbers
 behave as if modulo big power of 2.
Description: 
 (small, small):small:parens        $(1)&$(2)
 (gen, gen):int        gbitand($1, $2)
Doc: 
 bitwise \tet{and}
 \sidx{bitwise and}of two integers $x$ and $y$, that is the integer
 $$\sum_i (x_i~\kbd{and}~y_i) 2^i$$
 
 Negative numbers behave $2$-adically, i.e.~the result is the $2$-adic limit
 of \kbd{bitand}$(x_n,y_n)$, where $x_n$ and $y_n$ are non-negative integers
 tending to $x$ and $y$ respectively. (The result is an ordinary integer,
 possibly negative.)
 
 \bprog
 ? bitand(5, 3)
 %1 = 1
 ? bitand(-5, 3)
 %2 = 3
 ? bitand(-5, -3)
 %3 = -7
 @eprog
Variant: Also available is
 \fun{GEN}{ibitand}{GEN x, GEN y}, which returns the bitwise \emph{and}
 of $|x|$ and $|y|$, two integers.

Function: bitneg
Class: basic
Section: conversions
C-Name: gbitneg
Prototype: GD-1,L,
Help: bitneg(x,{n=-1}): bitwise negation of an integers x truncated to n
 bits. n=-1 means represent infinite sequences of bit 1 as negative numbers.
 Negative numbers behave as if modulo big power of 2.
Doc: 
 \idx{bitwise negation} of an integer $x$,
 truncated to $n$ bits, that is the integer $$\sum_{i=0}^{n-1} \kbd{not}(x_i)
 2^i$$ The special case $n=-1$ means no truncation: an infinite sequence of
 leading $1$ is then represented as a negative number.
 
 See \secref{se:bitand} for the behavior for negative arguments.

Function: bitnegimply
Class: basic
Section: conversions
C-Name: gbitnegimply
Prototype: GG
Help: bitnegimply(x,y): bitwise "negated imply" of two integers x and y,
 in other words, x BITAND BITNEG(y). Negative numbers behave as if modulo big
 power of 2.
Description: 
 (small, small):small:parens        $(1)&~$(2)
 (gen, gen):int        gbitnegimply($1, $2)
Doc: 
 bitwise negated imply of two integers $x$ and
 $y$ (or \kbd{not} $(x \Rightarrow y)$), that is the integer $$\sum
 (x_i~\kbd{and not}(y_i)) 2^i$$
 
 See \secref{se:bitand} for the behavior for negative arguments.
Variant: Also available is
 \fun{GEN}{ibitnegimply}{GEN x, GEN y}, which returns the bitwise negated
 imply of $|x|$ and $|y|$, two integers.

Function: bitor
Class: basic
Section: conversions
C-Name: gbitor
Prototype: GG
Help: bitor(x,y): bitwise "or" of two integers x and y. Negative numbers
 behave as if modulo big power of 2.
Description: 
 (small, small):small:parens        $(1)|$(2)
 (gen, gen):int        gbitor($1, $2)
Doc: 
 \sidx{bitwise inclusive or}bitwise (inclusive)
 \tet{or} of two integers $x$ and $y$, that is the integer $$\sum
 (x_i~\kbd{or}~y_i) 2^i$$
 
 See \secref{se:bitand} for the behavior for negative arguments.
Variant: Also available is
 \fun{GEN}{ibitor}{GEN x, GEN y}, which returns the bitwise \emph{ir}
 of $|x|$ and $|y|$, two integers.

Function: bittest
Class: basic
Section: conversions
C-Name: gbittest
Prototype: GL
Help: bittest(x,n): gives bit number n (coefficient of 2^n) of the integer x.
 Negative numbers behave as if modulo big power of 2.
Description: 
 (small, small):bool:parens     ($(1)>>$(2))&1
 (int, small):bool              bittest($1, $2)
 (gen, small):gen               gbittest($1, $2)
Doc: 
 outputs the $n^{\text{th}}$ bit of $x$ starting
 from the right (i.e.~the coefficient of $2^n$ in the binary expansion of $x$).
 The result is 0 or 1.
 \bprog
 ? bittest(7, 3)
 %1 = 1 \\ the 3rd bit is 1
 ? bittest(7, 4)
 %2 = 0 \\ the 4th bit is 0
 @eprog\noindent
 See \secref{se:bitand} for the behavior at negative arguments.
Variant: For a \typ{INT} $x$, the variant \fun{long}{bittest}{GEN x, long n} is
 generally easier to use.

Function: bitxor
Class: basic
Section: conversions
C-Name: gbitxor
Prototype: GG
Help: bitxor(x,y): bitwise "exclusive or" of two integers x and y.
 Negative numbers behave as if modulo big power of 2.
Description: 
 (small, small):small:parens        $(1)^$(2)
 (gen, gen):int        gbitxor($1, $2)
Doc: 
 bitwise (exclusive) \tet{or}
 \sidx{bitwise exclusive or}of two integers $x$ and $y$, that is the integer
 $$\sum (x_i~\kbd{xor}~y_i) 2^i$$
 
 See \secref{se:bitand} for the behavior for negative arguments.
Variant: Also available is
 \fun{GEN}{ibitxor}{GEN x, GEN y}, which returns the bitwise \emph{xor}
 of $|x|$ and $|y|$, two integers.

Function: bnfcertify
Class: basic
Section: number_fields
C-Name: bnfcertify0
Prototype: lGD0,L,
Help: bnfcertify(bnf,{flag = 0}): certify the correctness (i.e. remove the GRH) of the bnf data output by bnfinit. If flag is present, only certify that the class group is a quotient of the one computed in bnf (much simpler in general).
Doc: $\var{bnf}$ being as output by
 \kbd{bnfinit}, checks whether the result is correct, i.e.~whether it is
 possible to remove the assumption of the Generalized Riemann
 Hypothesis\sidx{GRH}. It is correct if and only if the answer is 1. If it is
 incorrect, the program may output some error message, or loop indefinitely.
 You can check its progress by increasing the debug level.
 
 If flag is present, only certify that the class group is a quotient of the
 one computed in bnf (much simpler in general).
Variant: Also available is  \fun{GEN}{bnfcertify}{GEN bnf} ($\fl=0$).

Function: bnfcompress
Class: basic
Section: number_fields
C-Name: bnfcompress
Prototype: G
Help: bnfcompress(bnf): converts bnf to a much smaller sbnf, containing the
 same information. Use bnfinit(sbnf) to recover a true bnf.
Doc: computes a compressed version of \var{bnf} (from \tet{bnfinit}), a
 ``small Buchmann's number field'' (or \var{sbnf} for short) which contains
 enough information to recover a full $\var{bnf}$ vector very rapidly, but
 which is much smaller and hence easy to store and print. Calling
 \kbd{bnfinit} on the result recovers a true \kbd{bnf}, in general different
 from the original. Note that an \tev{snbf} is useless for almost all
 purposes besides storage, and must be converted back to \tev{bnf} form
 before use; for instance, no \kbd{nf*}, \kbd{bnf*} or member function
 accepts them.
 
 An \var{sbnf} is a 12 component vector $v$, as follows. Let \kbd{bnf} be
 the result of a full \kbd{bnfinit}, complete with units. Then $v[1]$ is
 \kbd{bnf.pol}, $v[2]$ is the number of real embeddings \kbd{bnf.sign[1]},
 $v[3]$ is \kbd{bnf.disc}, $v[4]$ is \kbd{bnf.zk}, $v[5]$ is the list of roots
 \kbd{bnf.roots}, $v[7]$ is the matrix $\kbd{W} = \kbd{bnf[1]}$,
 $v[8]$ is the matrix $\kbd{matalpha}=\kbd{bnf[2]}$,
 $v[9]$ is the prime ideal factor base \kbd{bnf[5]} coded in a compact way,
 and ordered according to the permutation \kbd{bnf[6]}, $v[10]$ is the
 2-component vector giving the number of roots of unity and a generator,
 expressed on the integral basis, $v[11]$ is the list of fundamental units,
 expressed on the integral basis, $v[12]$ is a vector containing the algebraic
 numbers alpha corresponding to the columns of the matrix \kbd{matalpha},
 expressed on the integral basis.
 
 All the components are exact (integral or rational), except for the roots in
 $v[5]$.

Function: bnfdecodemodule
Class: basic
Section: number_fields
C-Name: decodemodule
Prototype: GG
Help: bnfdecodemodule(nf,m): given a coded module m as in bnrdisclist,
 gives the true module.
Doc: if $m$ is a module as output in the
 first component of an extension given by \kbd{bnrdisclist}, outputs the
 true module.

Function: bnfinit
Class: basic
Section: number_fields
C-Name: bnfinit0
Prototype: GD0,L,DGp
Help: bnfinit(P,{flag=0},{tech=[]}): compute the necessary data for future
 use in ideal and unit group computations, including fundamental units if
 they are not too large. flag and tech are both optional. flag can be any of
 0: default, 1: insist on having fundamental units.
 See manual for details about tech.
Description: 
 (gen):bnf:prec           Buchall($1, 0, prec)
 (gen, 0):bnf:prec        Buchall($1, 0, prec)
 (gen, 1):bnf:prec        Buchall($1, nf_FORCE, prec)
 (gen, ?small, ?gen):bnf:prec        bnfinit0($1, $2, $3, prec)
Doc: initializes a
 \var{bnf} structure. Used in programs such as \kbd{bnfisprincipal},
 \kbd{bnfisunit} or \kbd{bnfnarrow}. By default, the results are conditional
 on the GRH, see \ref{se:GRHbnf}. The result is a
 10-component vector \var{bnf}.
 
 This implements \idx{Buchmann}'s sub-exponential algorithm for computing the
 class group, the regulator and a system of \idx{fundamental units} of the
 general algebraic number field $K$ defined by the irreducible polynomial $P$
 with integer coefficients.
 
 If the precision becomes insufficient, \kbd{gp} does not strive to compute
 the units by default ($\fl=0$).
 
 When $\fl=1$, we insist on finding the fundamental units exactly. Be
 warned that this can take a very long time when the coefficients of the
 fundamental units on the integral basis are very large. If the fundamental
 units are simply too large to be represented in this form, an error message
 is issued. They could be obtained using the so-called compact representation
 of algebraic numbers as a formal product of algebraic integers. The latter is
 implemented internally but not publicly accessible yet.
 
 $\var{tech}$ is a technical vector (empty by default, see \ref{se:GRHbnf}).
 Careful use of this parameter may speed up your computations,
 but it is mostly obsolete and you should leave it alone.
 
 \smallskip
 
 The components of a \var{bnf} or \var{sbnf} are technical and never used by
 the casual user. In fact: \emph{never access a component directly, always use
 a proper member function.} However, for the sake of completeness and internal
 documentation, their description is as follows. We use the notations
 explained in the book by H. Cohen, \emph{A Course in Computational Algebraic
 Number Theory}, Graduate Texts in Maths \key{138}, Springer-Verlag, 1993,
 Section 6.5, and subsection 6.5.5 in particular.
 
 $\var{bnf}[1]$ contains the matrix $W$, i.e.~the matrix in Hermite normal
 form giving relations for the class group on prime ideal generators
 $(\goth{p}_i)_{1\le i\le r}$.
 
 $\var{bnf}[2]$ contains the matrix $B$, i.e.~the matrix containing the
 expressions of the prime ideal factorbase in terms of the $\goth{p}_i$.
 It is an $r\times c$ matrix.
 
 $\var{bnf}[3]$ contains the complex logarithmic embeddings of the system of
 fundamental units which has been found. It is an $(r_1+r_2)\times(r_1+r_2-1)$
 matrix.
 
 $\var{bnf}[4]$ contains the matrix $M''_C$ of Archimedean components of the
 relations of the matrix $(W|B)$.
 
 $\var{bnf}[5]$ contains the prime factor base, i.e.~the list of prime
 ideals used in finding the relations.
 
 $\var{bnf}[6]$ used to contain a permutation of the prime factor base, but
 has been obsoleted. It contains a dummy $0$.
 
 $\var{bnf}[7]$ or \kbd{\var{bnf}.nf} is equal to the number field data
 $\var{nf}$ as would be given by \kbd{nfinit}.
 
 $\var{bnf}[8]$ is a vector containing the classgroup \kbd{\var{bnf}.clgp}
 as a finite abelian group, the regulator \kbd{\var{bnf}.reg}, a $1$ (used to
 contain an obsolete ``check number''), the number of roots of unity and a
 generator \kbd{\var{bnf}.tu}, the fundamental units \kbd{\var{bnf}.fu}.
 
 $\var{bnf}[9]$ is a 3-element row vector used in \tet{bnfisprincipal} only
 and obtained as follows. Let $D = U W V$ obtained by applying the
 \idx{Smith normal form} algorithm to the matrix $W$ (= $\var{bnf}[1]$) and
 let $U_r$ be the reduction of $U$ modulo $D$. The first elements of the
 factorbase are given (in terms of \kbd{bnf.gen}) by the columns of $U_r$,
 with Archimedean component $g_a$; let also $GD_a$ be the Archimedean
 components of the generators of the (principal) ideals defined by the
 \kbd{bnf.gen[i]\pow bnf.cyc[i]}. Then $\var{bnf}[9]=[U_r, g_a, GD_a]$.
 
 $\var{bnf}[10]$ is by default unused and set equal to 0. This field is used
 to store further information about the field as it becomes available, which
 is rarely needed, hence would be too expensive to compute during the initial
 \kbd{bnfinit} call. For instance, the generators of the principal ideals
 \kbd{bnf.gen[i]\pow bnf.cyc[i]} (during a call to \tet{bnrisprincipal}), or
 those corresponding to the relations in $W$ and $B$ (when the \kbd{bnf}
 internal precision needs to be increased).
Variant: 
 Also available is \fun{GEN}{Buchall}{GEN P, long flag, long prec},
 corresponding to \kbd{tech = NULL}, where
 \kbd{flag} is either $0$ (default) or \tet{nf_FORCE} (insist on finding
 fundamental units). The function
 \fun{GEN}{Buchall_param}{GEN P, double c1, double c2, long nrpid, long
 flag, long prec} gives direct access to the technical parameters.

Function: bnfisintnorm
Class: basic
Section: number_fields
C-Name: bnfisintnorm
Prototype: GG
Help: bnfisintnorm(bnf,x): compute a complete system of solutions (modulo
 units of positive norm) of the absolute norm equation N(a)=x, where a
 belongs to the maximal order of big number field bnf (if bnf is not
 certified, this depends on GRH).
Doc: computes a complete system of
 solutions (modulo units of positive norm) of the absolute norm equation
 $\Norm(a)=x$,
 where $a$ is an integer in $\var{bnf}$. If $\var{bnf}$ has not been certified,
 the correctness of the result depends on the validity of \idx{GRH}.
 
 See also \tet{bnfisnorm}.

Function: bnfisnorm
Class: basic
Section: number_fields
C-Name: bnfisnorm
Prototype: GGD1,L,
Help: bnfisnorm(bnf,x,{flag=1}): Tries to tell whether x (in Q) is the norm
 of some fractional y (in bnf). Returns a vector [a,b] where x=Norm(a)*b.
 Looks for a solution which is a S-unit, with S a certain list of primes (in
 bnf) containing (among others) all primes dividing x. If bnf is known to be
 Galois, set flag=0 (in this case, x is a norm iff b=1). If flag is non zero
 the program adds to S all the primes : dividing flag if flag<0, or less than
 flag if flag>0. The answer is guaranteed (i.e x norm iff b=1) under GRH, if
 S contains all primes less than 12.log(disc(Bnf))^2, where Bnf is the Galois
 closure of bnf.
Doc: tries to tell whether the
 rational number $x$ is the norm of some element y in $\var{bnf}$. Returns a
 vector $[a,b]$ where $x=Norm(a)*b$. Looks for a solution which is an $S$-unit,
 with $S$ a certain set of prime ideals containing (among others) all primes
 dividing $x$. If $\var{bnf}$ is known to be \idx{Galois}, set $\fl=0$ (in
 this case, $x$ is a norm iff $b=1$). If $\fl$ is non zero the program adds to
 $S$ the following prime ideals, depending on the sign of $\fl$. If $\fl>0$,
 the ideals of norm less than $\fl$. And if $\fl<0$ the ideals dividing $\fl$.
 
 Assuming \idx{GRH}, the answer is guaranteed (i.e.~$x$ is a norm iff $b=1$),
 if $S$ contains all primes less than $12\log(\disc(\var{Bnf}))^2$, where
 $\var{Bnf}$ is the Galois closure of $\var{bnf}$.
 
 See also \tet{bnfisintnorm}.

Function: bnfisprincipal
Class: basic
Section: number_fields
C-Name: bnfisprincipal0
Prototype: GGD1,L,
Help: bnfisprincipal(bnf,x,{flag=1}): bnf being output by bnfinit (with
 flag<=2), gives [v,alpha], where v is the vector of exponents on
 the class group generators and alpha is the generator of the resulting
 principal ideal. In particular x is principal if and only if v is the zero
 vector. flag is optional, whose binary digits mean 1: output [v,alpha] (only v
 if unset); 2: increase precision until alpha can be computed (do not insist
 if unset).
Doc: $\var{bnf}$ being the \sidx{principal ideal}
 number field data output by \kbd{bnfinit}, and $x$ being an ideal, this
 function tests whether the ideal is principal or not. The result is more
 complete than a simple true/false answer and solves general discrete
 logarithm problem. Assume the class group is $\oplus (\Z/d_i\Z)g_i$
 (where the generators $g_i$ and their orders $d_i$ are respectively given by
 \kbd{bnf.gen} and \kbd{bnf.cyc}). The routine returns a row vector $[e,t]$,
 where $e$ is a vector of exponents $0 \leq e_i < d_i$, and $t$ is a number
 field element such that
 $$ x = (t) \prod_i  g_i^{e_i}.$$
 For \emph{given} $g_i$ (i.e. for a given \kbd{bnf}), the $e_i$ are unique,
 and $t$ is unique modulo units.
 
 In particular, $x$ is principal if and only if $e$ is the zero vector. Note
 that the empty vector, which is returned when the class number is $1$, is
 considered to be a zero vector (of dimension $0$).
 \bprog
 ? K = bnfinit(y^2+23);
 ? K.cyc
 %2 = [3]
 ? K.gen
 %3 = [[2, 0; 0, 1]]          \\ a prime ideal above 2
 ? P = idealprimedec(K,3)[1]; \\ a prime ideal above 3
 ? v = bnfisprincipal(K, P)
 %5 = [[2]~, [3/4, 1/4]~]
 ? idealmul(K, v[2], idealfactorback(K, K.gen, v[1]))
 %6 =
 [3 0]
 
 [0 1]
 ? % == idealhnf(K, P)
 %7 = 1
 @eprog
 
 \noindent The binary digits of \fl mean:
 
 \item $1$: If set, outputs $[e,t]$ as explained above, otherwise returns
 only $e$, which is much easier to compute. The following idiom only tests
 whether an ideal is principal:
 \bprog
   is_principal(bnf, x) = !bnfisprincipal(bnf,x,0);
 @eprog
 
 \item $2$: It may not be possible to recover $t$, given the initial accuracy
 to which \kbd{bnf} was computed. In that case, a warning is printed and $t$ is
 set equal to the empty vector \kbd{[]\til}. If this bit is set,
 increase the precision and recompute needed quantities until $t$ can be
 computed. Warning: setting this may induce \emph{very} lengthy computations.
Variant: Instead of the above hardcoded numerical flags, one should
 rather use an or-ed combination of the symbolic flags \tet{nf_GEN} (include
 generators, possibly a place holder if too difficult) and \tet{nf_FORCE}
 (insist on finding the generators).

Function: bnfissunit
Class: basic
Section: number_fields
C-Name: bnfissunit
Prototype: GGG
Help: bnfissunit(bnf,sfu,x): bnf being output by bnfinit (with flag<=2), sfu
 by bnfsunit, gives the column vector of exponents of x on the fundamental
 S-units and the roots of unity if x is a unit, the empty vector otherwise.
Doc: $\var{bnf}$ being output by
 \kbd{bnfinit}, \var{sfu} by \kbd{bnfsunit}, gives the column vector of
 exponents of $x$ on the fundamental $S$-units and the roots of unity.
 If $x$ is not a unit, outputs an empty vector.

Function: bnfisunit
Class: basic
Section: number_fields
C-Name: bnfisunit
Prototype: GG
Help: bnfisunit(bnf,x): bnf being output by bnfinit, gives
 the column vector of exponents of x on the fundamental units and the roots
 of unity if x is a unit, the empty vector otherwise.
Doc: \var{bnf} being the number field data
 output by \kbd{bnfinit} and $x$ being an algebraic number (type integer,
 rational or polmod), this outputs the decomposition of $x$ on the fundamental
 units and the roots of unity if $x$ is a unit, the empty vector otherwise.
 More precisely, if $u_1$,\dots,$u_r$ are the fundamental units, and $\zeta$
 is the generator of the group of roots of unity (\kbd{bnf.tu}), the output is
 a vector $[x_1,\dots,x_r,x_{r+1}]$ such that $x=u_1^{x_1}\cdots
 u_r^{x_r}\cdot\zeta^{x_{r+1}}$. The $x_i$ are integers for $i\le r$ and is an
 integer modulo the order of $\zeta$ for $i=r+1$.
 
 Note that \var{bnf} need not contain the fundamental unit explicitly:
 \bprog
 ? setrand(1); bnf = bnfinit(x^2-x-100000);
 ? bnf.fu
   ***   at top-level: bnf.fu
   ***                     ^--
   *** _.fu: missing units in .fu.
 ? u = [119836165644250789990462835950022871665178127611316131167, \
        379554884019013781006303254896369154068336082609238336]~;
 ? bnfisunit(bnf, u)
 %3 = [-1, Mod(0, 2)]~
 @eprog\noindent The given $u$ is the inverse of the fundamental unit
 implicitly stored in \var{bnf}. In this case, the fundamental unit was not
 computed and stored in algebraic form since the default accuracy was too
 low. (Re-run the command at \bs g1 or higher to see such diagnostics.)

Function: bnfnarrow
Class: basic
Section: number_fields
C-Name: buchnarrow
Prototype: G
Help: bnfnarrow(bnf): given a big number field as output by bnfinit, gives
 as a 3-component vector the structure of the narrow class group.
Doc: $\var{bnf}$ being as output by
 \kbd{bnfinit}, computes the narrow class group of $\var{bnf}$. The output is
 a 3-component row vector $v$ analogous to the corresponding class group
 component \kbd{\var{bnf}.clgp} (\kbd{\var{bnf}[8][1]}): the first component
 is the narrow class number \kbd{$v$.no}, the second component is a vector
 containing the SNF\sidx{Smith normal form} cyclic components \kbd{$v$.cyc} of
 the narrow class group, and the third is a vector giving the generators of
 the corresponding \kbd{$v$.gen} cyclic groups. Note that this function is a
 special case of \kbd{bnrinit}.

Function: bnfsignunit
Class: basic
Section: number_fields
C-Name: signunits
Prototype: G
Help: bnfsignunit(bnf): matrix of signs of the real embeddings of the system
 of fundamental units found by bnfinit.
Doc: $\var{bnf}$ being as output by
 \kbd{bnfinit}, this computes an $r_1\times(r_1+r_2-1)$ matrix having $\pm1$
 components, giving the signs of the real embeddings of the fundamental units.
 The following functions compute generators for the totally positive units:
 
 \bprog
 /* exponents of totally positive units generators on bnf.tufu */
 tpuexpo(bnf)=
 { my(S,d,K);
 
   S = bnfsignunit(bnf); d = matsize(S);
   S = matrix(d[1],d[2], i,j, if (S[i,j] < 0, 1,0));
   S = concat(vectorv(d[1],i,1), S);   \\ add sign(-1)
   K = lift(matker(S * Mod(1,2)));
   if (K, mathnfmodid(K, 2), 2*matid(d[1]))
 }
 
 /* totally positive units */
 tpu(bnf)=
 { my(vu = bnf.tufu, ex = tpuexpo(bnf));
 
   vector(#ex-1, i, factorback(vu, ex[,i+1]))  \\ ex[,1] is 1
 }
 @eprog

Function: bnfsunit
Class: basic
Section: number_fields
C-Name: bnfsunit
Prototype: GGp
Help: bnfsunit(bnf,S): compute the fundamental S-units of the number field
 bnf output by bnfinit, S being a list of prime ideals. res[1] contains the
 S-units, res[5] the S-classgroup. See manual for details.
Doc: computes the fundamental $S$-units of the
 number field $\var{bnf}$ (output by \kbd{bnfinit}), where $S$ is a list of
 prime ideals (output by \kbd{idealprimedec}). The output is a vector $v$ with
 6 components.
 
 $v[1]$ gives a minimal system of (integral) generators of the $S$-unit group
 modulo the unit group.
 
 $v[2]$ contains technical data needed by \kbd{bnfissunit}.
 
 $v[3]$ is an empty vector (used to give the logarithmic embeddings of the
 generators in $v[1]$ in version 2.0.16).
 
 $v[4]$ is the $S$-regulator (this is the product of the regulator, the
 determinant of $v[2]$ and the natural logarithms of the norms of the ideals
 in $S$).
 
 $v[5]$ gives the $S$-class group structure, in the usual format
 (a row vector whose three components give in order the $S$-class number,
 the cyclic components and the generators).
 
 $v[6]$ is a copy of $S$.

Function: bnrL1
Class: basic
Section: number_fields
C-Name: bnrL1
Prototype: GDGD0,L,p
Help: bnrL1(bnr, {subgrp}, {flag=0}): bnr being output by bnrinit(,,1) and
 subgrp being a square matrix defining a congruence subgroup of bnr (the
 trivial subgroup if omitted), for each character of bnr trivial on this
 subgroup, compute L(1, chi) (or equivalently the first non-zero term c(chi)
 of the expansion at s = 0). The binary digits of flag mean 1: if 0 then
 compute the term c(chi) and return [r(chi), c(chi)] where r(chi) is the
 order of L(s, chi) at s = 0, or if 1 then compute the value at s = 1 (and in
 this case, only for non-trivial characters), 2: if 0 then compute the value
 of the primitive L-function associated to chi, if 1 then compute the value
 of the L-function L_S(s, chi) where S is the set of places dividing the
 modulus of bnr (and the infinite places), 3: return also the characters.
Doc: \var{bnr} being
 the number field data which is output by \kbd{bnrinit(,,1)} and
 \var{subgrp} being a square matrix defining a congruence subgroup of the
 ray class group corresponding to \var{bnr} (the trivial congruence subgroup
 if omitted), returns for each \idx{character} $\chi$ of the ray class group
 which is trivial on this subgroup, the value at $s = 1$ (or $s = 0$) of the
 abelian $L$-function associated to $\chi$. For the value at $s = 0$, the
 function returns in fact for each character $\chi$ a vector $[r_\chi ,
 c_\chi]$ where $r_\chi$ is the order of $L(s, \chi)$ at $s = 0$ and $c_\chi$
 the first non-zero term in the expansion of $L(s, \chi)$ at $s = 0$; in other
 words
 %
 $$L(s, \chi) = c_\chi \cdot s^{r_\chi} + O(s^{r_\chi + 1})$$
 %
 \noindent near $0$. \fl\ is optional, default value is 0; its binary digits
 mean 1: compute at $s = 1$ if set to 1 or $s = 0$ if set to 0, 2: compute the
 primitive $L$-functions associated to $\chi$ if set to 0 or the $L$-function
 with Euler factors at prime ideals dividing the modulus of \var{bnr} removed
 if set to 1 (this is the so-called $L_S(s, \chi)$ function where $S$ is the
 set of infinite places of the number field together with the finite prime
 ideals dividing the modulus of \var{bnr}, see the example below), 3: returns
 also the character. Example:
 \bprog
 bnf = bnfinit(x^2 - 229);
 bnr = bnrinit(bnf,1,1);
 bnrL1(bnr)
 @eprog\noindent
 returns the order and the first non-zero term of the abelian
 $L$-functions $L(s, \chi)$ at $s = 0$ where $\chi$ runs through the
 characters of the class group of $\Q(\sqrt{229})$. Then
 \bprog
 bnr2 = bnrinit(bnf,2,1);
 bnrL1(bnr2,,2)
 @eprog\noindent
 returns the order and the first non-zero terms of the abelian
 $L$-functions $L_S(s, \chi)$ at $s = 0$ where $\chi$ runs through the
 characters of the class group of $\Q(\sqrt{229})$ and $S$ is the set
 of infinite places of $\Q(\sqrt{229})$ together with the finite prime
 $2$. Note that the ray class group modulo $2$ is in fact the class
 group, so \kbd{bnrL1(bnr2,0)} returns exactly the same answer as
 \kbd{bnrL1(bnr,0)}.

Function: bnrclassno
Class: basic
Section: number_fields
C-Name: bnrclassno
Prototype: GG
Help: bnrclassno(bnf,I): ray class number of the module I for the big number
 field bnf. Faster than bnrinit if only the ray class number is wanted.
Doc: $\var{bnf}$ being as output by
 \kbd{bnfinit} (units are mandatory unless the ideal is trivial), and $I$
 being a modulus, computes the ray class number of the number field for the
 modulus $I$. One can input the associated \var{bid} for $I$ instead of the
 module itself, saving some time.
 
 This function is faster than \kbd{bnrinit} and should be used if only the
 ray class number is desired. See \tet{bnrclassnolist} if you need ray class
 numbers for all moduli less than some bound.

Function: bnrclassnolist
Class: basic
Section: number_fields
C-Name: bnrclassnolist
Prototype: GG
Help: bnrclassnolist(bnf,list): if list is as output by ideallist or
 similar, gives list of corresponding ray class numbers.
Doc: $\var{bnf}$ being as
 output by \kbd{bnfinit}, and \var{list} being a list of moduli (with units) as
 output by \kbd{ideallist} or \kbd{ideallistarch}, outputs the list of the
 class numbers of the corresponding ray class groups. To compute a single
 class number, \tet{bnrclassno} is more efficient.
 
 \bprog
 ? bnf = bnfinit(x^2 - 2);
 ? L = ideallist(bnf, 100, 2);
 ? H = bnrclassnolist(bnf, L);
 ? H[98]
 %4 = [1, 3, 1]
 ? l = L[1][98]; ids = vector(#l, i, l[i].mod[1])
 %5 = [[98, 88; 0, 1], [14, 0; 0, 7], [98, 10; 0, 1]]
 @eprog
 The weird \kbd{l[i].mod[1]}, is the first component of \kbd{l[i].mod}, i.e.
 the finite part of the conductor. (This is cosmetic: since by construction
 the Archimedean part is trivial, I do not want to see it). This tells us that
 the ray class groups modulo the ideals of norm 98 (printed as \kbd{\%5}) have
 respectively order $1$, $3$ and $1$. Indeed, we may check directly :
 \bprog
 ? bnrclassno(bnf, ids[2])
 %6 = 3
 @eprog

Function: bnrconductor
Class: basic
Section: number_fields
C-Name: bnrconductor0
Prototype: GDGDGD0,L,
Help: bnrconductor(A,{B},{C},{flag=0}): conductor f of the subfield of
 the ray class field given by A,B,C. flag is optional and
 can be 0: default, 1: returns [f, Cl_f, H], H subgroup of the ray class
 group modulo f defining the extension, 2: returns [f, bnr(f), H].
Doc: conductor $f$ of the subfield of a ray class field as defined by $[A,B,C]$
 (of type \kbd{[\var{bnr}]},
 \kbd{[\var{bnr}, \var{subgroup}]},
 \kbd{[\var{bnf}, \var{modulus}]} or
 \kbd{[\var{bnf}, \var{modulus}, \var{subgroup}]},
 \secref{se:CFT})
 
 If $\fl = 0$, returns $f$.
 
 If $\fl = 1$, returns $[f, Cl_f, H]$, where $Cl_f$ is the ray class group
 modulo $f$, as a finite abelian group; finally $H$ is the subgroup of $Cl_f$
 defining the extension.
 
 If $\fl = 2$, returns $[f, \var{bnr}(f), H]$, as above except $Cl_f$ is
 replaced by a \kbd{bnr} structure, as output by $\tet{bnrinit}(,f,1)$.
Variant: 
 Also available is \fun{GEN}{bnrconductor}{GEN bnr, GEN H, long flag}

Function: bnrconductorofchar
Class: basic
Section: number_fields
C-Name: bnrconductorofchar
Prototype: GG
Help: bnrconductorofchar(bnr,chi): conductor of the character chi on the ray
 class group bnr.
Doc: \var{bnr} being a big
 ray number field as output by \kbd{bnrinit}, and \var{chi} being a row vector
 representing a \idx{character} as expressed on the generators of the ray
 class group, gives the conductor of this character as a modulus.

Function: bnrdisc
Class: basic
Section: number_fields
C-Name: bnrdisc0
Prototype: GDGDGD0,L,
Help: bnrdisc(A,{B},{C},{flag=0}): absolute or relative [N,R1,discf] of
 the field defined by A,B,C. [A,{B},{C}] is of type [bnr],
 [bnr,subgroup], [bnf, modulus] or [bnf,modulus,subgroup], where bnf is as
 output by bnfinit, bnr by bnrinit, and
 subgroup is the HNF matrix of a subgroup of the corresponding ray class
 group (if omitted, the trivial subgroup). flag is optional whose binary
 digits mean 1: give relative data; 2: return 0 if modulus is not the
 conductor.
Doc: $A$, $B$, $C$ defining a class field $L$ over a ground field $K$
 (of type \kbd{[\var{bnr}]},
 \kbd{[\var{bnr}, \var{subgroup}]},
 \kbd{[\var{bnf}, \var{modulus}]} or
 \kbd{[\var{bnf}, \var{modulus}, \var{subgroup}]},
 \secref{se:CFT}), outputs data $[N,r_1,D]$ giving the discriminant and
 signature of $L$, depending on the binary digits of \fl:
 
 \item 1: if this bit is unset, output absolute data related to $L/\Q$:
 $N$ is the absolute degree $[L:\Q]$, $r_1$ the number of real places of $L$,
 and $D$ the discriminant of $L/\Q$. Otherwise, output relative data for $L/K$:
 $N$ is the relative degree $[L:K]$, $r_1$ is the number of real places of $K$
 unramified in $L$ (so that the number of real places of $L$ is equal to $r_1$
 times $N$), and $D$ is the relative discriminant ideal of $L/K$.
 
 \item 2: if this bit is set and if the modulus is not the conductor of $L$,
 only return 0.

Function: bnrdisclist
Class: basic
Section: number_fields
C-Name: bnrdisclist0
Prototype: GGDG
Help: bnrdisclist(bnf,bound,{arch}): gives list of discriminants of
 ray class fields of all conductors up to norm bound, in a long vector
 The ramified Archimedean places are given by arch; all possible values are
 taken if arch is omitted. Supports the alternative syntax
 bnrdisclist(bnf,list), where list is as output by ideallist or ideallistarch
 (with units).
Doc: $\var{bnf}$ being as output by \kbd{bnfinit} (with units), computes a
 list of discriminants of Abelian extensions of the number field by increasing
 modulus norm up to bound \var{bound}. The ramified Archimedean places are
 given by \var{arch}; all possible values are taken if \var{arch} is omitted.
 
 The alternative syntax $\kbd{bnrdisclist}(\var{bnf},\var{list})$ is
 supported, where \var{list} is as output by \kbd{ideallist} or
 \kbd{ideallistarch} (with units), in which case \var{arch} is disregarded.
 
 The output $v$ is a vector of vectors, where $v[i][j]$ is understood to be in
 fact $V[2^{15}(i-1)+j]$ of a unique big vector $V$. (This awkward scheme
 allows for larger vectors than could be otherwise represented.)
 
 $V[k]$ is itself a vector $W$, whose length is the number of ideals of norm
 $k$. We consider first the case where \var{arch} was specified. Each
 component of $W$ corresponds to an ideal $m$ of norm $k$, and
 gives invariants associated to the ray class field $L$ of $\var{bnf}$ of
 conductor $[m, \var{arch}]$. Namely, each contains a vector $[m,d,r,D]$ with
 the following meaning: $m$ is the prime ideal factorization of the modulus,
 $d = [L:\Q]$ is the absolute degree of $L$, $r$ is the number of real places
 of $L$, and $D$ is the factorization of its absolute discriminant. We set $d
 = r = D = 0$ if $m$ is not the finite part of a conductor.
 
 If \var{arch} was omitted, all $t = 2^{r_1}$ possible values are taken and a
 component of $W$ has the form $[m, [[d_1,r_1,D_1], \dots, [d_t,r_t,D_t]]]$,
 where $m$ is the finite part of the conductor as above, and
 $[d_i,r_i,D_i]$ are the invariants of the ray class field of conductor
 $[m,v_i]$, where $v_i$ is the $i$-th Archimedean component, ordered by
 inverse lexicographic order; so $v_1 = [0,\dots,0]$, $v_2 = [1,0\dots,0]$,
 etc. Again, we set $d_i = r_i = D_i = 0$ if $[m,v_i]$ is not a conductor.
 
 Finally, each prime ideal $pr = [p,\alpha,e,f,\beta]$ in the prime
 factorization $m$ is coded as the integer $p\cdot n^2+(f-1)\cdot n+(j-1)$,
 where $n$ is the degree of the base field and $j$ is such that
 
 \kbd{pr = idealprimedec(\var{nf},p)[j]}.
 
 \noindent $m$ can be decoded using \tet{bnfdecodemodule}.
 
 Note that to compute such data for a single field, either \tet{bnrclassno}
 or \tet{bnrdisc} is more efficient.

Function: bnrinit
Class: basic
Section: number_fields
C-Name: bnrinit0
Prototype: GGD0,L,
Help: bnrinit(bnf,f,{flag=0}): given a bnf as output by
 bnfinit and a modulus f, initializes data
 linked to the ray class group structure corresponding to this module. flag
 is optional, and can be 0: default, 1: compute also the generators.
Description: 
 (gen,gen,?small):bnr       bnrinit0($1, $2, $3)
Doc: $\var{bnf}$ is as
 output by \kbd{bnfinit}, $f$ is a modulus, initializes data linked to
 the ray class group structure corresponding to this module, a so-called
 \var{bnr} structure. The following member functions are available
 on the result: \kbd{.bnf} is the underlying \var{bnf},
 \kbd{.mod} the modulus, \kbd{.bid} the \var{bid} structure associated to the
 modulus; finally, \kbd{.clgp}, \kbd{.no}, \kbd{.cyc}, \kbd{.gen} refer to the
 ray class group (as a finite abelian group), its cardinality, its elementary
 divisors, its generators.
 
 The last group of functions are different from the members of the underlying
 \var{bnf}, which refer to the class group; use \kbd{\var{bnr}.bnf.\var{xxx}}
 to access these, e.g.~\kbd{\var{bnr}.bnf.cyc} to get the cyclic decomposition
 of the class group.
 
 They are also different from the members of the underlying \var{bid}, which
 refer to $(\Z_K/f)^*$; use \kbd{\var{bnr}.bid.\var{xxx}} to access these,
 e.g.~\kbd{\var{bnr}.bid.no} to get $\phi(f)$.
 
 If $\fl=0$ (default), the generators of the ray class group are not computed,
 which saves time. Hence \kbd{\var{bnr}.gen} would produce an error.
 
 If $\fl=1$, as the default, except that generators are computed.
Variant: Instead the above  hardcoded  numerical flags,  one should rather use
 \fun{GEN}{Buchray}{GEN bnf, GEN module, long flag}
 where flag is an or-ed combination of \kbd{nf\_GEN} (include generators)
 and \kbd{nf\_INIT} (if omitted, return just the cardinal of the ray class group
 and its structure), possibly 0.

Function: bnrisconductor
Class: basic
Section: number_fields
C-Name: bnrisconductor0
Prototype: lGDGDG
Help: bnrisconductor(A,{B},{C}): returns 1 if the modulus is the
 conductor of the subfield of the ray class field given by A,B,C (see
 bnrdisc), and 0 otherwise. Slightly faster than bnrconductor if this is the
 only desired result.
Doc: $A$, $B$, $C$ represent
 an extension of the base field, given by class field theory
 (see~\secref{se:CFT}). Outputs 1 if this modulus is the conductor, and 0
 otherwise. This is slightly faster than \kbd{bnrconductor}.

Function: bnrisprincipal
Class: basic
Section: number_fields
C-Name: bnrisprincipal
Prototype: GGD1,L,
Help: bnrisprincipal(bnr,x,{flag=1}): bnr being output by bnrinit, gives
 [v,alpha], where v is the vector of exponents on the class group
 generators and alpha is the generator of the resulting principal ideal. In
 particular x is principal if and only if v is the zero vector. If (optional)
 flag is set to 0, output only v.
Doc: \var{bnr} being the
 number field data which is output by \kbd{bnrinit}$(,,1)$ and $x$ being an
 ideal in any form, outputs the components of $x$ on the ray class group
 generators in a way similar to \kbd{bnfisprincipal}. That is a 2-component
 vector $v$ where $v[1]$ is the vector of components of $x$ on the ray class
 group generators, $v[2]$ gives on the integral basis an element $\alpha$ such
 that $x=\alpha\prod_ig_i^{x_i}$.
 
 If $\fl=0$, outputs only $v_1$. In that case, \var{bnr} need not contain the
 ray class group generators, i.e.~it may be created with \kbd{bnrinit}$(,,0)$
 If $x$ is not coprime to the modulus of \var{bnr} the result is undefined.
Variant: Instead of hardcoded  numerical flags,  one should rather
 use
 \fun{GEN}{isprincipalray}{GEN bnr, GEN x} for $\kbd{flag} = 0$, and if you
 want generators:
 \bprog
   bnrisprincipal(bnr, x, nf_GEN)
 @eprog

Function: bnrrootnumber
Class: basic
Section: number_fields
C-Name: bnrrootnumber
Prototype: GGD0,L,p
Help: bnrrootnumber(bnr,chi,{flag=0}): returns the so-called Artin Root
 Number, i.e. the constant W appearing in the functional equation of the
 Hecke L-function associated to chi. Set flag = 1 if the character is known
 to be primitive.
Doc: if $\chi=\var{chi}$ is a
 \idx{character} over \var{bnr}, not necessarily primitive, let
 $L(s,\chi) = \sum_{id} \chi(id) N(id)^{-s}$ be the associated
 \idx{Artin L-function}. Returns the so-called \idx{Artin root number}, i.e.~the
 complex number $W(\chi)$ of modulus 1 such that
 %
 $$\Lambda(1-s,\chi) = W(\chi) \Lambda(s,\overline{\chi})$$
 %
 \noindent where $\Lambda(s,\chi) = A(\chi)^{s/2}\gamma_\chi(s) L(s,\chi)$ is
 the enlarged L-function associated to $L$.
 
 The generators of the ray class group are needed, and you can set $\fl=1$ if
 the character is known to be primitive. Example:
 
 \bprog
 bnf = bnfinit(x^2 - x - 57);
 bnr = bnrinit(bnf, [7,[1,1]], 1);
 bnrrootnumber(bnr, [2,1])
 @eprog\noindent
 returns the root number of the character $\chi$ of
 $\Cl_{7\infty_1\infty_2}(\Q(\sqrt{229}))$ defined by $\chi(g_1^ag_2^b)
 = \zeta_1^{2a}\zeta_2^b$. Here $g_1, g_2$ are the generators of the
 ray-class group given by \kbd{bnr.gen} and $\zeta_1 = e^{2i\pi/N_1},
 \zeta_2 = e^{2i\pi/N_2}$ where $N_1, N_2$ are the orders of $g_1$ and
 $g_2$ respectively ($N_1=6$ and $N_2=3$ as \kbd{bnr.cyc} readily tells us).

Function: bnrstark
Class: basic
Section: number_fields
C-Name: bnrstark
Prototype: GDGp
Help: bnrstark(bnr,{subgroup}): bnr being as output by
 bnrinit(,,1), finds a relative equation for the class field corresponding to
 the module in bnr and the given congruence subgroup (the trivial subgroup if
 omitted) using Stark's units. The ground field and the class field must be
 totally real.
Doc: \var{bnr} being as output by \kbd{bnrinit(,,1)}, finds a relative equation
 for the class field corresponding to the modulus in \var{bnr} and the given
 congruence subgroup (as usual, omit $\var{subgroup}$ if you want the whole ray
 class group).
 
 The main variable of \var{bnr} must not be $x$, and the ground field and the
 class field must be totally real. When the base field is $\Q$, the vastly
 simpler \tet{galoissubcyclo} is used instead. Here is an example:
 \bprog
 bnf = bnfinit(y^2 - 3);
 bnr = bnrinit(bnf, 5, 1);
 bnrstark(bnr)
 @eprog\noindent
 returns the ray class field of $\Q(\sqrt{3})$ modulo $5$. Usually, one wants
 to apply to the result one of
 \bprog
 rnfpolredabs(bnf, pol, 16)     \\@com compute a reduced relative polynomial
 rnfpolredabs(bnf, pol, 16 + 2) \\@com compute a reduced absolute polynomial
 @eprog
 
 The routine uses \idx{Stark units} and needs to find a suitable auxiliary
 conductor, which may not exist when the class field is not cyclic over the
 base. In this case \kbd{bnrstark} is allowed to return a vector of
 polynomials defining \emph{independent} relative extensions, whose compositum
 is the requested class field. It was decided that it was more useful
 to keep the extra information thus made available, hence the user has to take
 the compositum herself.
 
 Even if it exists, the auxiliary conductor may be so large that later
 computations become unfeasible. (And of course, Stark's conjecture may simply
 be wrong.) In case of difficulties, try \tet{rnfkummer}:
 \bprog
 ? bnr = bnrinit(bnfinit(y^8-12*y^6+36*y^4-36*y^2+9,1), 2, 1);
 ? bnrstark(bnr)
   ***   at top-level: bnrstark(bnr)
   ***                 ^-------------
   *** bnrstark: need 3919350809720744 coefficients in initzeta.
   *** Computation impossible.
 ? lift( rnfkummer(bnr) )
 time = 24 ms.
 %2 = x^2 + (1/3*y^6 - 11/3*y^4 + 8*y^2 - 5)
 @eprog

Function: break
Class: basic
Section: programming/control
C-Name: break0
Prototype: D1,L,
Help: break({n=1}): interrupt execution of current instruction sequence, and
 exit from the n innermost enclosing loops.
Doc: interrupts execution of current \var{seq}, and
 immediately exits from the $n$ innermost enclosing loops, within the
 current function call (or the top level loop); the integer $n$ must be
 positive. If $n$ is greater than the number of enclosing loops, all
 enclosing loops are exited.

Function: ceil
Class: basic
Section: conversions
C-Name: gceil
Prototype: G
Help: ceil(x): ceiling of x = smallest integer >= x.
Description: 
 (small):small:parens   $1
 (int):int:copy:parens  $1
 (real):int             ceilr($1)
 (mp):int               mpceil($1)
 (gen):gen              gceil($1)
Doc: 
 ceiling of $x$. When $x$ is in $\R$, the result is the
 smallest integer greater than or equal to $x$. Applied to a rational
 function, $\kbd{ceil}(x)$ returns the Euclidean quotient of the numerator by
 the denominator.

Function: centerlift
Class: basic
Section: conversions
C-Name: centerlift0
Prototype: GDn
Help: centerlift(x,{v}): centered lift of x. Same as lift except for
 integermods.
Description: 
 (pol):pol        centerlift($1)
 (vec):vec        centerlift($1)
 (gen):gen        centerlift($1)
 (pol, var):pol        centerlift0($1, $2)
 (vec, var):vec        centerlift0($1, $2)
 (gen, var):gen        centerlift0($1, $2)
Doc: 
 lifts an element $x=a \bmod n$ of $\Z/n\Z$
 to $a$ in $\Z$, and similarly lifts a polmod to a polynomial. This is the
 same as \tet{lift} except that in the particular case of elements of
 $\Z/n\Z$, the lift $y$ is such that $-n/2<y\le n/2$.  A \typ{PADIC} is lifted
 as above if its valuation $v$ is non-negative; if not, returns the fraction
 $p^v$ \kbd{centerlift}$(x^{-v})$; in particular, note that rational
 reconstruction is not attempted.
 
 If $x$ is of type fraction, complex, quadratic, polynomial, power series,
 rational function, vector or matrix, the lift is done for each coefficient.
 Reals are forbidden.
Variant: Also available is \fun{GEN}{centerlift}{GEN x} corresponding to
 \kbd{centerlift0(x,-1)}.

Function: charpoly
Class: basic
Section: linear_algebra
C-Name: charpoly0
Prototype: GDnD3,L,
Help: charpoly(A,{v=x},{flag=3}): det(v*Id-A)=characteristic polynomial of
 the matrix or polmod A. flag is optional and ignored unless A is a matrix;
 it may be set to 0 (Le Verrier), 1
 (Lagrange interpolation) or 2 (use Hessenberg form), 3 (Berkowitz, default).
 All algorithms except flag = 3 (Berkowitz) assume that n! is invertible,
 where n is the dimension of the matrix.
Doc: 
 \idx{characteristic polynomial}
 of $A$ with respect to the variable $v$, i.e.~determinant of $v*I-A$ if $A$
 is a square matrix. If $A$ is not a square matrix, it returns the
 characteristic polynomial of the map ``multiplication by $A$'' if $A$ is a
 scalar, in particular a polmod. E.g.~\kbd{charpoly(I) = x\pow2+1}.
 
 The value of $\fl$ is only significant for matrices. Let $n$ be the dimension
 of $A$.
 
 If $\fl=0$, same method (Le Verrier's) as for computing the adjoint matrix,
 i.e.~using the traces of the powers of $A$. Assumes that $n!$ is
 invertible; uses $O(n^4)$ scalar operations.
 
 If $\fl=1$, uses Lagrange interpolation which is usually the slowest method.
 Assumes that $n!$ is invertible; uses $O(n^4)$ scalar operations.
 
 If $\fl=2$, uses the Hessenberg form. Assumes that the base ring is a field.
 Uses $O(n^3)$ scalar operations, but suffers from coefficient explosion
 unless the base field is finite or $\R$.
 
 If $\fl=3$, uses Berkowitz's division free algorithm, valid over any
 ring (commutative, with unit). Uses $O(n^4)$ scalar operations.
 
 If $\fl=4$, $x$ must be integral. Uses a modular algorithm.
 
 In practice one should use the default (Berkowitz) unless the base ring is
 $\Z$ (use $\fl=4$) or a field where coefficient explosion does not occur,
 e.g.~a finite field or the reals (use $\fl=2$).
Variant: Also available are \fun{GEN}{caract}{GEN A, long v} ($\fl=1$),
 \fun{GEN}{carhess}{GEN A, long v} ($\fl=2$), \fun{GEN}{carberkowitz}{GEN A,
 long v} ($\fl=3$) and \fun{GEN}{caradj}{GEN A, long v, GEN *pt}. In this
 last case, if \var{pt} is not \kbd{NULL}, \kbd{*pt} receives the address of
 the adjoint matrix of $A$ (see \tet{matadjoint}), so both can be obtained at
 once.

Function: chinese
Class: basic
Section: number_theoretical
C-Name: chinese
Prototype: GDG
Help: chinese(x,{y}): x,y being both intmods (or polmods) computes z in the
 same residue classes as x and y.
Description: 
 (gen):gen      chinese1($1)
 (gen, gen):gen chinese($1, $2)
Doc: if $x$ and $y$ are both intmods or both
 polmods, creates (with the same type) a $z$ in the same residue class
 as $x$ and in the same residue class as $y$, if it is possible.
 
 This function also allows vector and matrix arguments, in which case the
 operation is recursively applied to each component of the vector or matrix.
 For polynomial arguments, it is applied to each coefficient.
 
 If $y$ is omitted, and $x$ is a vector, \kbd{chinese} is applied recursively
 to the components of $x$, yielding a residue belonging to the same class as all
 components of $x$.
 
 Finally $\kbd{chinese}(x,x) = x$ regardless of the type of $x$; this allows
 vector arguments to contain other data, so long as they are identical in both
 vectors.
Variant: \fun{GEN}{chinese1}{GEN x} is also available.

Function: clone
Class: gp2c
Description: 
 (small):small:parens             $1
 (int):int                        gclone($1)
 (real):real                      gclone($1)
 (mp):mp                          gclone($1)
 (vecsmall):vecsmall              gclone($1)
 (vec):vec                        gclone($1)
 (pol):pol                        gclone($1)
 (gen):gen                        gclone($1)

Function: component
Class: basic
Section: conversions
C-Name: compo
Prototype: GL
Help: component(x,n): the n'th component of the internal representation of
 x. For vectors or matrices, it is simpler to use x[]. For list objects such
 as nf, bnf, bnr or ell, it is much easier to use member functions starting
 with ".".
Doc: extracts the $n^{\text{th}}$-component of $x$. This is to be understood
 as follows: every PARI type has one or two initial \idx{code words}. The
 components are counted, starting at 1, after these code words. In particular
 if $x$ is a vector, this is indeed the $n^{\text{th}}$-component of $x$, if
 $x$ is a matrix, the $n^{\text{th}}$ column, if $x$ is a polynomial, the
 $n^{\text{th}}$ coefficient (i.e.~of degree $n-1$), and for power series,
 the $n^{\text{th}}$ significant coefficient.
 
 For polynomials and power series, one should rather use \tet{polcoeff}, and
 for vectors and matrices, the \kbd{[$\,$]} operator. Namely, if $x$ is a
 vector, then \tet{x[n]} represents the $n^{\text{th}}$ component of $x$. If
 $x$ is a matrix, \tet{x[m,n]} represents the coefficient of row \kbd{m} and
 column \kbd{n} of the matrix, \tet{x[m,]} represents the $m^{\text{th}}$
 \emph{row} of $x$, and \tet{x[,n]} represents the $n^{\text{th}}$
 \emph{column} of $x$.
 
 Using of this function requires detailed knowledge of the structure of the
 different PARI types, and thus it should almost never be used directly.
 Some useful exceptions:
 \bprog
     ? x = 3 + O(3^5);
     ? component(x, 2)
     %2 = 81   \\ p^(p-adic acurracy)
     ? component(x, 1)
     %3 = 3    \\ p
     ? q = Qfb(1,2,3);
     ? component(q, 1)
     %5 = 1
 @eprog

Function: concat
Class: basic
Section: linear_algebra
C-Name: concat
Prototype: GDG
Help: concat(x,{y}): concatenation of x and y, which can be scalars, vectors
 or matrices, or lists (in this last case, both x and y have to be lists). If
 y is omitted, x has to be a list or row vector and its elements are
 concatenated.
Description: 
 (mp,mp):vec           concat($1, $2)
 (vec,mp):vec          concat($1, $2)
 (mp,vec):vec          concat($1, $2)
 (vec,vec):vec         concat($1, $2)
 (list,list):list      concat($1, $2)
 (genstr,gen):genstr   concat($1, $2)
 (gen,genstr):genstr   concat($1, $2)
 (gen,?gen):gen        concat($1, $2)
Doc: concatenation of $x$ and $y$. If $x$ or $y$ is
 not a vector or matrix, it is considered as a one-dimensional vector. All
 types are allowed for $x$ and $y$, but the sizes must be compatible. Note
 that matrices are concatenated horizontally, i.e.~the number of rows stays
 the same. Using transpositions, it is easy to concatenate them vertically.
 
 To concatenate vectors sideways (i.e.~to obtain a two-row or two-column
 matrix), use \tet{Mat} instead (see the example there). Concatenating a row
 vector to a matrix having the same number of columns will add the row to the
 matrix (top row if the vector is $x$, i.e.~comes first, and bottom row
 otherwise).
 
 The empty matrix \kbd{[;]} is considered to have a number of rows compatible
 with any operation, in particular concatenation. (Note that this is
 definitely \emph{not} the case for empty vectors \kbd{[~]} or \kbd{[~]\til}.)
 
 If $y$ is omitted, $x$ has to be a row vector or a list, in which case its
 elements are concatenated, from left to right, using the above rules.
 
 \bprog
 ? concat([1,2], [3,4])
 %1 = [1, 2, 3, 4]
 ? a = [[1,2]~, [3,4]~]; concat(a)
 %2 =
 [1 3]
 
 [2 4]
 
 ? concat([1,2; 3,4], [5,6]~)
 %3 =
 [1 2 5]
 
 [3 4 6]
 ? concat([%, [7,8]~, [1,2,3,4]])
 %5 =
 [1 2 5 7]
 
 [3 4 6 8]
 
 [1 2 3 4]
 @eprog
Variant: \fun{GEN}{concat1}{GEN x} is a shortcut for \kbd{concat(x,NULL)}.

Function: conj
Class: basic
Section: conversions
C-Name: gconj
Prototype: G
Help: conj(x): the algebraic conjugate of x.
Doc: 
 conjugate of $x$. The meaning of this
 is clear, except that for real quadratic numbers, it means conjugation in the
 real quadratic field. This function has no effect on integers, reals,
 intmods, fractions or $p$-adics. The only forbidden type is polmod
 (see \kbd{conjvec} for this).

Function: conjvec
Class: basic
Section: conversions
C-Name: conjvec
Prototype: Gp
Help: conjvec(z): conjugate vector of the algebraic number z.
Doc: 
 conjugate vector representation of $z$. If $z$ is a
 polmod, equal to \kbd{Mod}$(a,T)$, this gives a vector of length
 $\text{degree}(T)$ containing:
 
 \item the complex embeddings of $z$ if $T$ has rational coefficients,
 i.e.~the $a(r[i])$ where $r = \kbd{polroots}(T)$;
 
 \item the conjugates of $z$ if $T$ has some intmod coefficients;
 
 \noindent if $z$ is a finite field element, the result is the vector of
 conjugates $[z,z^p,z^{p^2},\ldots,z^{p^{n-1}}]$ where $n=\text{degree}(T)$.
 
 \noindent If $z$ is an integer or a rational number, the result is~$z$. If
 $z$ is a (row or column) vector, the result is a matrix whose columns are
 the conjugate vectors of the individual elements of $z$.

Function: content
Class: basic
Section: number_theoretical
C-Name: content
Prototype: G
Help: content(x): gcd of all the components of x, when this makes sense.
Doc: computes the gcd of all the coefficients of $x$,
 when this gcd makes sense. This is the natural definition
 if $x$ is a polynomial (and by extension a power series) or a
 vector/matrix. This is in general a weaker notion than the \emph{ideal}
 generated by the coefficients:
 \bprog
 ? content(2*x+y)
 %1 = 1            \\ = gcd(2,y) over Q[y]
 @eprog
 
 If $x$ is a scalar, this simply returns the absolute value of $x$ if $x$ is
 rational (\typ{INT} or \typ{FRAC}), and either $1$ (inexact input) or $x$
 (exact input) otherwise; the result should be identical to \kbd{gcd(x, 0)}.
 
 The content of a rational function is the ratio of the contents of the
 numerator and the denominator. In recursive structures, if a
 matrix or vector \emph{coefficient} $x$ appears, the gcd is taken
 not with $x$, but with its content:
 \bprog
 ? content([ [2], 4*matid(3) ])
 %1 = 2
 @eprog

Function: contfrac
Class: basic
Section: number_theoretical
C-Name: contfrac0
Prototype: GDGD0,L,
Help: contfrac(x,{b},{nmax}): continued fraction expansion of x (x
 rational,real or rational function). b and nmax are both optional, where b
 is the vector of numerators of the continued fraction, and nmax is a bound
 for the number of terms in the continued fraction expansion.
Doc: returns the row vector whose components are the partial quotients of the
 \idx{continued fraction} expansion of $x$. In other words, a result
 $[a_0,\dots,a_n]$ means that $x \approx a_0+1/(a_1+\dots+1/a_n)$. The
 output is normalized so that $a_n \neq 1$ (unless we also have $n = 0$).
 
 The number of partial quotients $n+1$ is limited by \kbd{nmax}. If
 \kbd{nmax} is omitted, the expansion stops at the last significant partial
 quotient.
 \bprog
 ? \p19
   realprecision = 19 significant digits
 ? contfrac(Pi)
 %1 = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2]
 ? contfrac(Pi,, 3)  \\ n = 2
 %2 = [3, 7, 15]
 @eprog\noindent
 $x$ can also be a rational function or a power series.
 
 If a vector $b$ is supplied, the numerators are equal to the coefficients
 of $b$, instead of all equal to $1$ as above; more precisely, $x \approx
 (1/b_0)(a_0+b_1/(a_1+\dots+b_n/a_n))$; for a numerical continued fraction
 ($x$ real), the $a_i$ are integers, as large as possible; if $x$ is a
 rational function, they are polynomials with $\deg a_i = \deg b_i + 1$.
 The length of the result is then equal to the length of $b$, unless the next
 partial quotient cannot be reliably computed, in which case the expansion
 stops. This happens when a partial remainder is equal to zero (or too small
 compared to the available significant digits for $x$ a \typ{REAL}).
 
 A direct implementation of the numerical continued fraction
 \kbd{contfrac(x,b)} described above would be
 \bprog
 \\ "greedy" generalized continued fraction
 cf(x, b) =
 { my( a= vector(#b), t );
 
   x *= b[1];
   for (i = 1, #b,
     a[i] = floor(x);
     t = x - a[i]; if (!t || i == #b, break);
     x = b[i+1] / t;
   ); a;
 }
 @eprog\noindent There is some degree of freedom when choosing the $a_i$; the
 program above can easily be modified to derive variants of the standard
 algorithm. In the same vein, although no builtin
 function implements the related \idx{Engel expansion} (a special kind of
 \idx{Egyptian fraction} decomposition: $x = 1/a_1 + 1/(a_1a_2) + \dots$ ),
 it can be obtained as follows:
 \bprog
 \\ n terms of the Engel expansion of x
 engel(x, n = 10) =
 { my( u = x, a = vector(n) );
   for (k = 1, n,
     a[k] = ceil(1/u);
     u = u*a[k] - 1;
     if (!u, break);
   ); a
 }
 @eprog
 
 \misctitle{Obsolete hack} (don't use this): If $b$ is an integer, \var{nmax}
 is ignored and the command is understood as \kbd{contfrac($x,, b$)}.
Variant: Also available are \fun{GEN}{gboundcf}{GEN x, long nmax},
 \fun{GEN}{gcf}{GEN x} and \fun{GEN}{gcf2}{GEN b, GEN x}.

Function: contfracpnqn
Class: basic
Section: number_theoretical
C-Name: pnqn
Prototype: G
Help: contfracpnqn(x): [p_n,p_{n-1}; q_n,q_{n-1}] corresponding to the
 continued fraction x.
Doc: when $x$ is a vector or a one-row matrix, $x$
 is considered as the list of partial quotients $[a_0,a_1,\dots,a_n]$ of a
 rational number, and the result is the 2 by 2 matrix
 $[p_n,p_{n-1};q_n,q_{n-1}]$ in the standard notation of continued fractions,
 so $p_n/q_n=a_0+1/(a_1+\dots+1/a_n)$. If $x$ is a matrix with two rows
 $[b_0,b_1,\dots,b_n]$ and $[a_0,a_1,\dots,a_n]$, this is then considered as a
 generalized continued fraction and we have similarly
 $p_n/q_n=(1/b_0)(a_0+b_1/(a_1+\dots+b_n/a_n))$. Note that in this case one
 usually has $b_0=1$.

Function: copy
Class: gp2c
Description: 
 (small):small:parens             $1
 (int):int                        icopy($1)
 (real):real                      gcopy($1)
 (mp):mp                          gcopy($1)
 (vecsmall):vecsmall              gcopy($1)
 (vec):vec                        gcopy($1)
 (pol):pol                        gcopy($1)
 (gen):gen                        gcopy($1)

Function: core
Class: basic
Section: number_theoretical
C-Name: core0
Prototype: GD0,L,
Help: core(n,{flag=0}): unique squarefree integer d
 dividing n such that n/d is a square. If (optional) flag is non-null, output
 the two-component row vector [d,f], where d is the unique squarefree integer
 dividing n such that n/d=f^2 is a square.
Doc: if $n$ is an integer written as
 $n=df^2$ with $d$ squarefree, returns $d$. If $\fl$ is non-zero,
 returns the two-element row vector $[d,f]$. By convention, we write $0 = 0
 \times 1^2$, so \kbd{core(0, 1)} returns $[0,1]$.
Variant: Also available are \fun{GEN}{core}{GEN n} ($\fl = 0$) and
 \fun{GEN}{core2}{GEN n} ($\fl = 1$)

Function: coredisc
Class: basic
Section: number_theoretical
C-Name: coredisc0
Prototype: GD0,L,
Help: coredisc(n,{flag=0}): discriminant of the quadratic field Q(sqrt(n)).
 If (optional) flag is non-null, output a two-component row vector [d,f],
 where d is the discriminant of the quadratic field Q(sqrt(n)) and n=df^2. f
 may be a half integer.
Doc: a \emph{fundamental discriminant} is an integer of the form $t\equiv 1
 \mod 4$ or $4t \equiv 8,12 \mod 16$, with $t$ squarefree (i.e.~$1$ or the
 discriminant of a quadratic number field). Given a non-zero integer
 $n$, this routine returns the (unique) fundamental discriminant $d$
 such that $n=df^2$, $f$ a positive rational number. If $\fl$ is non-zero,
 returns the two-element row vector $[d,f]$. If $n$ is congruent to
 0 or 1 modulo 4, $f$ is an integer, and a half-integer otherwise.
 
 By convention, \kbd{coredisc(0, 1))} returns $[0,1]$.
 
 Note that \tet{quaddisc}$(n)$ returns the same value as \kbd{coredisc}$(n)$,
 and also works with rational inputs $n\in\Q^*$.
Variant: Also available are \fun{GEN}{coredisc}{GEN n} ($\fl = 0$) and
 \fun{GEN}{coredisc2}{GEN n} ($\fl = 1$)

Function: cos
Class: basic
Section: transcendental
C-Name: gcos
Prototype: Gp
Help: cos(x): cosine of x.
Doc: cosine of $x$.

Function: cosh
Class: basic
Section: transcendental
C-Name: gch
Prototype: Gp
Help: cosh(x): hyperbolic cosine of x.
Doc: hyperbolic cosine of $x$.

Function: cotan
Class: basic
Section: transcendental
C-Name: gcotan
Prototype: Gp
Help: cotan(x): cotangent of x.
Doc: cotangent of $x$.

Function: default
Class: basic
Section: programming/specific
C-Name: default0
Prototype: DrDs
Help: default({key},{val}): returns the current value of the
 default key. If val is present, set opt to val first. If no argument is
 given, print a list of all defaults as well as their values.
Description: 
 ("realprecision"):small:prec              getrealprecision()
 ("realprecision",small):small:prec        setrealprecision($2, &prec)
 ("seriesprecision"):small                 precdl
 ("seriesprecision",small):small:parens    precdl = $2
 ("debug"):small                           DEBUGLEVEL
 ("debug",small):small:parens              DEBUGLEVEL = $2
 ("debugmem"):small                        DEBUGMEM
 ("debugmem",small):small:parens           DEBUGMEM = $2
 ("debugfiles"):small                      DEBUGFILES
 ("debugfiles",small):small:parens         DEBUGFILES = $2
 ("factor_add_primes"):small               factor_add_primes
 ("factor_add_primes",small):small         factor_add_primes = $2
 ("factor_proven"):small                   factor_proven
 ("factor_proven",small):small             factor_proven = $2
 ("new_galois_format"):small               new_galois_format
 ("new_galois_format",small):small         new_galois_format = $2
Doc: returns the default corresponding to keyword \var{key}. If \var{val} is
 present, sets the default to \var{val} first (which is subject to string
 expansion first). Typing \kbd{default()} (or \b{d}) yields the complete
 default list as well as their current values. See \secref{se:defaults} for an
 introduction to GP defaults, \secref{se:gp_defaults} for a
 list of available defaults, and \secref{se:meta} for some shortcut
 alternatives. Note that the shortcuts are meant for interactive use and
 usually display more information than \kbd{default}.

Function: denominator
Class: basic
Section: conversions
C-Name: denom
Prototype: G
Help: denominator(x): denominator of x (or lowest common denominator in case
 of an array).
Doc: 
 denominator of $x$. The meaning of this
 is clear when $x$ is a rational number or function. If $x$ is an integer
 or a polynomial, it is treated as a rational number or function,
 respectively, and the result is equal to $1$. For polynomials, you
 probably want to use
 \bprog
 denominator( content(x) )
 @eprog\noindent
 instead. As for modular objects, \typ{INTMOD} and \typ{PADIC} have
 denominator $1$, and the denominator of a \typ{POLMOD} is the denominator
 of its (minimal degree) polynomial representative.
 
 If $x$ is a recursive structure, for instance a vector or matrix, the lcm
 of the denominators of its components (a common denominator) is computed.
 This also applies for \typ{COMPLEX}s and \typ{QUAD}s.
 
 \misctitle{Warning} Multivariate objects are created according to variable
 priorities, with possibly surprising side effects ($x/y$ is a polynomial, but
 $y/x$ is a rational function). See \secref{se:priority}.

Function: deriv
Class: basic
Section: polynomials
C-Name: deriv
Prototype: GDn
Help: deriv(x,{v}): derivative of x with respect to v, or to the main
 variable of x if v is omitted.
Doc: 
 derivative of $x$ with respect to the main
 variable if $v$ is omitted, and with respect to $v$ otherwise. The derivative
 of a scalar type is zero, and the derivative of a vector or matrix is done
 componentwise. One can use $x'$ as a shortcut if the derivative is with
 respect to the main variable of $x$.
 
 By definition, the main variable of a \typ{POLMOD} is the main variable among
 the coefficients from its two polynomial components (representative and
 modulus); in other words, assuming a polmod represents an element of
 $R[X]/(T(X))$, the variable $X$ is a mute variable and the derivative is
 taken with respect to the main variable used in the base ring $R$.

Function: derivnum
Class: basic
Section: sums
C-Name: derivnum0
Prototype: V=GEp
Help: derivnum(X=a,expr): numerical derivation of expr with respect to
 X at X = a.
Wrapper: (,G)
Description: 
  (gen,gen):gen:prec derivnum(${2 cookie}, ${2 wrapper}, $1, prec)
Doc: numerical derivation of \var{expr} with respect to $X$ at $X=a$.
 
 \bprog
 ? derivnum(x=0,sin(exp(x))) - cos(1)
 %1 = -1.262177448 E-29
 @eprog
 A clumsier approach, which would not work in library mode, is
 \bprog
 ? f(x) = sin(exp(x))
 ? f'(0) - cos(1)
 %1 = -1.262177448 E-29
 @eprog
 When $a$ is a power series, compute \kbd{derivnum(t=a,f)} as $f'(a) =
 (f(a))'/a'$.
 
 \synt{derivnum}{void *E, GEN (*eval)(void*,GEN), GEN a, long prec}. Also
 available is \fun{GEN}{derivfun}{void *E, GEN (*eval)(void *, GEN), GEN a,
 long prec}, which also allows power series for $a$.

Function: diffop
Class: basic
Section: polynomials
C-Name: diffop0
Prototype: GGGD1,L,
Help: diffop(x,v,d,{n=1}): apply the differential operator D to x, where D is defined
 by D(v[i])=d[i], where v is a vector of variable names. D is 0 for variables
 outside of v unless they appear as modulus of a POLMOD. If the optional parameter n
 is given, return D^n(x) instead.
Description: 
 (gen,gen,gen,?1):gen    diffop($1, $2, $3)
 (gen,gen,gen,small):gen diffop0($1, $2, $3, $4)
Doc: 
 Let $v$ be a vector of variables, and $d$ a vector of the same length,
 return the image of $x$ by the $n$-power ($1$ if n is not given) of the differential
 operator $D$ that assumes the value \kbd{d[i]} on the variable \kbd{v[i]}.
 The value of $D$ on a scalar type is zero, and $D$ applies componentwise to a vector
 or matrix. When applied to a \typ{POLMOD}, if no value is provided for the variable
 of the modulus, such value is derived using the implicit function theorem.
 
 Some examples:
 This function can be used to differentiate formal expressions:
 If $E=\exp(X^2)$ then we have $E'=2*X*E$. We can derivate $X*exp(X^2)$ as follow:
 \bprog
 ? diffop(E*X,[X,E],[1,2*X*E])
 %1 = (2*X^2 + 1)*E
 @eprog
 Let \kbd{Sin} and \kbd{Cos} be two function such that $\kbd{Sin}^2+\kbd{Cos}^2=1$
 and $\kbd{Cos}'=-\kbd{Sin}$. We can differentiate $\kbd{Sin}/\kbd{Cos}$ as follow,
 PARI inferring the value of $\kbd{Sin}'$ from the equation:
 \bprog
 ? diffop(Mod('Sin/'Cos,'Sin^2+'Cos^2-1),['Cos],[-'Sin])
 %1 = Mod(1/Cos^2, Sin^2 + (Cos^2 - 1))
 
 @eprog
 Compute the Bell polynomials (both complete and partial) via the Faa di Bruno formula:
 \bprog
 Bell(k,n=-1)=
 {
   my(var(i)=eval(Str("X",i)));
   my(x,v,dv);
   v=vector(k,i,if(i==1,'E,var(i-1)));
   dv=vector(k,i,if(i==1,'X*var(1)*'E,var(i)));
   x=diffop('E,v,dv,k)/'E;
   if(n<0,subst(x,'X,1),polcoeff(x,n,'X))
 }
 @eprog
Variant: 
 For $n=1$, the function \fun{GEN}{diffop}{GEN x, GEN v, GEN d} is also available.

Function: dilog
Class: basic
Section: transcendental
C-Name: dilog
Prototype: Gp
Help: dilog(x): dilogarithm of x.
Doc: principal branch of the dilogarithm of $x$,
 i.e.~analytic continuation of the power series $\log_2(x)=\sum_{n\ge1}x^n/n^2$.

Function: dirdiv
Class: basic
Section: number_theoretical
C-Name: dirdiv
Prototype: GG
Help: dirdiv(x,y): division of the Dirichlet series x by the Dirichlet
 series y.
Doc: $x$ and $y$ being vectors of perhaps different
 lengths but with $y[1]\neq 0$ considered as \idx{Dirichlet series}, computes
 the quotient of $x$ by $y$, again as a vector.

Function: direuler
Class: basic
Section: number_theoretical
C-Name: direuler0
Prototype: V=GGEDG
Help: direuler(p=a,b,expr,{c}): Dirichlet Euler product of expression expr
 from p=a to p=b, limited to b terms. Expr should be a polynomial or rational
 function in p and X, and X is understood to mean p^(-s). If c is present,
 output only the first c terms.
Wrapper: (,,G)
Description: 
  (gen,gen,gen,?gen):gen direuler(${3 cookie}, ${3 wrapper}, $1, $2, $4)
Doc: computes the \idx{Dirichlet series} associated to the \idx{Euler
 product} of expression \var{expr} as $p$ ranges through the primes from $a$
 to $b$. \var{expr} must be a polynomial or rational function in another
 variable than $p$ (say $X$) and $\var{expr}(X)$ is understood as the local
 factor $\var{expr}(p^{-s})$.
 
 The series is output as a vector of coefficients. If $c$ is present, output
 only the first $c$ coefficients in the series. The following command computes
 the \teb{sigma} function, associated to $\zeta(s)\zeta(s-1)$:
 \bprog
 ? direuler(p=2, 10, 1/((1-X)*(1-p*X)))
 %1 = [1, 3, 4, 7, 6, 12, 8, 15, 13, 18]
 @eprog
 
 \synt{direuler}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b}

Function: dirmul
Class: basic
Section: number_theoretical
C-Name: dirmul
Prototype: GG
Help: dirmul(x,y): multiplication of the Dirichlet series x by the Dirichlet
 series y.
Doc: $x$ and $y$ being vectors of perhaps different lengths representing
 the \idx{Dirichlet series} $\sum_n x_n n^{-s}$ and $\sum_n y_n n^{-s}$,
 computes the product of $x$ by $y$, again as a vector.
 \bprog
 ? dirmul(vector(10,n,1), vector(10,n,moebius(n)))
 %1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 @eprog\noindent
 The product
 length is the minimum of $\kbd{\#}x\kbd{*}v(y)$ and $\kbd{\#}y\kbd{*}v(x)$,
 where $v(x)$ is the index of the first non-zero coefficient.
 \bprog
 ? dirmul([0,1], [0,1]);
 %2 = [0, 0, 0, 1]
 @eprog

Function: dirzetak
Class: basic
Section: number_fields
C-Name: dirzetak
Prototype: GG
Help: dirzetak(nf,b): Dirichlet series of the Dedekind zeta function of the
 number field nf up to the bound b-1.
Doc: gives as a vector the first $b$
 coefficients of the \idx{Dedekind} zeta function of the number field $\var{nf}$
 considered as a \idx{Dirichlet series}.

Function: divisors
Class: basic
Section: number_theoretical
C-Name: divisors
Prototype: G
Help: divisors(x): gives a vector formed by the divisors of x in increasing
 order.
Description: 
 (gen):vec        divisors($1)
Doc: creates a row vector whose components are the
 divisors of $x$. The factorization of $x$ (as output by \tet{factor}) can
 be used instead.
 
 By definition, these divisors are the products of the irreducible
 factors of $n$, as produced by \kbd{factor(n)}, raised to appropriate
 powers (no negative exponent may occur in the factorization). If $n$ is
 an integer, they are the positive divisors, in increasing order.

Function: divrem
Class: basic
Section: operators
C-Name: divrem
Prototype: GGDn
Help: divrem(x,y,{v}): euclidean division of x by y giving as a
 2-dimensional column vector the quotient and the remainder, with respect to
 v (to main variable if v is omitted)
Doc: creates a column vector with two components, the first being the Euclidean
 quotient (\kbd{$x$ \bs\ $y$}), the second the Euclidean remainder
 (\kbd{$x$ - ($x$\bs$y$)*$y$}), of the division of $x$ by $y$. This avoids the
 need to do two divisions if one needs both the quotient and the remainder.
 If $v$ is present, and $x$, $y$ are multivariate
 polynomials, divide with respect to the variable $v$.
 
 Beware that \kbd{divrem($x$,$y$)[2]} is in general not the same as
 \kbd{$x$ \% $y$}; no GP operator corresponds to it:
 \bprog
 ? divrem(1/2, 3)[2]
 %1 = 1/2
 ? (1/2) % 3
 %2 = 2
 ? divrem(Mod(2,9), 3)[2]
  ***   at top-level: divrem(Mod(2,9),3)[2
  ***                 ^--------------------
  ***   forbidden division t_INTMOD \ t_INT.
 ? Mod(2,9) % 6
 %3 = Mod(2,3)
 @eprog
Variant: Also available is \fun{GEN}{gdiventres}{GEN x, GEN y} when $v$ is
 not needed.

Function: eint1
Class: basic
Section: transcendental
C-Name: veceint1
Prototype: GDGp
Help: eint1(x,{n}): exponential integral E1(x). If n is present, computes
 the vector of the first n values of the exponential integral E1(n.x) (x > 0).
Doc: exponential integral $\int_x^\infty \dfrac{e^{-t}}{t}\,dt$ ($x\in\R$)
 
 If $n$ is present, outputs the $n$-dimensional vector
 $[\kbd{eint1}(x),\dots,\kbd{eint1}(nx)]$ ($x \geq 0$). This is faster than
 repeatedly calling \kbd{eint1($i$ * x)}.
Variant: Also available is \fun{GEN}{eint1}{GEN x, long prec}.

Function: ellL1
Class: basic
Section: elliptic_curves
C-Name: ellL1
Prototype: GLp
Help: ellL1(e, r): returns the value at s=1 of the derivative of order r of the L-function of the elliptic curve e assuming that r is at most the order of vanishing of the function at s=1.
Doc: returns the value at $s=1$ of the derivative of order $r$ of the
 $L$-function of the elliptic curve $e$ assuming that $r$ is at most the order
 of vanishing of the $L$-function at $s=1$. (The result is wrong if $r$ is
 strictly larger than the order of vanishing at 1.)
 \bprog
 ? e = ellinit("11a1"); \\ order of vanishing is 0
 ? ellL1(e, 0)
 %2 = 0.2538418608559106843377589233
 ? e = ellinit("389a1");  \\ order of vanishing is 2
 ? ellL1(e, 0)
 %4 = -5.384067311837218089235032414 E-29
 ? ellL1(e, 1)
 %5 = 0
 ? ellL1(e, 2)
 %6 = 1.518633000576853540460385214
 @eprog\noindent
 The main use of this function, after computing at \emph{low} accuracy the
 order of vanishing using \tet{ellanalyticrank}, is to compute the
 leading term at \emph{high} accuracy to check (or use) the Birch and
 Swinnerton-Dyer conjecture:
 \bprog
 ? \p18
   realprecision = 18 significant digits
 ? ellanalyticrank(ellinit([0, 0, 1, -7, 6]))
 time = 32 ms.
 %1 = [3, 10.3910994007158041]
 ? \p200
   realprecision = 202 significant digits (200 digits displayed)
 ? ellL1(e, 3)
 time = 23,113 ms.
 %3 = 10.3910994007158041387518505103609170697263563756570092797@com$[\dots]$
 @eprog

Function: elladd
Class: basic
Section: elliptic_curves
C-Name: addell
Prototype: GGG
Help: elladd(E,z1,z2): sum of the points z1 and z2 on elliptic curve E.
Doc: 
 sum of the points $z1$ and $z2$ on the
 elliptic curve corresponding to $E$.

Function: ellak
Class: basic
Section: elliptic_curves
C-Name: akell
Prototype: GG
Help: ellak(E,n): computes the n-th Fourier coefficient of the L-function of
 the elliptic curve E (assumed E is a minimal model).
Doc: 
 computes the coefficient $a_n$ of the
 $L$-function of the elliptic curve $E$, i.e.~in principle coefficients of a
 newform of weight 2 assuming \idx{Taniyama-Weil conjecture} (which is now
 known to hold in full generality thanks to the work of \idx{Breuil},
 \idx{Conrad}, \idx{Diamond}, \idx{Taylor} and \idx{Wiles}). $E$ must be a
 \var{smallell} as output by \kbd{ellinit}. For this function
 to work for every $n$ and not just those prime to the conductor, $E$ must
 be a minimal Weierstrass equation. If this is not the case, use the
 function \kbd{ellminimalmodel} before using \kbd{ellak}.

Function: ellan
Class: basic
Section: elliptic_curves
C-Name: anell
Prototype: GL
Help: ellan(E,n): computes the first n Fourier coefficients of the
 L-function of the elliptic curve E (n<2^24 on a 32-bit machine).
Doc: 
 computes the vector of the first $n$ $a_k$
 corresponding to the elliptic curve $E$. All comments in \kbd{ellak}
 description remain valid.

Function: ellanalyticrank
Class: basic
Section: elliptic_curves
C-Name: ellanalyticrank
Prototype: GDGp
Help: ellanalyticrank(e, {eps}): returns the order of vanishing at s=1
 of the L-function of the elliptic curve e and the value of the first
 non-zero derivative. To determine this order, it is assumed that any
 value less than eps is zero. If no value of eps is given, a value of
 half the current precision is used.
Doc: returns the order of vanishing at $s=1$ of the $L$-function of the
 elliptic curve $e$ and the value of the first non-zero derivative. To
 determine this order, it is assumed that any value less than \kbd{eps} is
 zero. If no value of \kbd{eps} is given, a value of half the current
 precision is used.
 \bprog
 ? e = ellinit("11a1"); \\ rank 0
 ? ellanalyticrank(e)
 %2 = [0, 0.2538418608559106843377589233]
 ? e = ellinit("37a1"); \\ rank 1
 ? ellanalyticrank(e)
 %4 = [1, 0.3059997738340523018204836835]
 ? e = ellinit("389a1"); \\ rank 2
 ? ellanalyticrank(e)
 %6 = [2, 1.518633000576853540460385214]
 ? e = ellinit("5077a1"); \\ rank 3
 ? ellanalyticrank(e)
 %8 = [3, 10.39109940071580413875185035]
 @eprog

Function: ellap
Class: basic
Section: elliptic_curves
C-Name: ellap
Prototype: GDG
Help: ellap(E,{p}): computes a_p for the elliptic curve E using
 Shanks-Mestre's method, or SEA algorithm if the package seadata is installed.
 Assume the equation is minimal at p.
Doc: computes the trace of Frobenius $a_p$ for the elliptic curve $E$ and the
 prime number $p$. This is defined by the equation $\#E(\F_p) = p+1 - a_p$,
 where $\#E(\F_p)$ stands for the number of points of the curve $E$ over the
 finite field $\F_p$.
 
 No checking is done that $p$ is indeed prime. $E$ must be a \var{smallell} as
 output by \kbd{ellinit}, defined over $\Q$, $\Q_p$, or $\F_p$. The prime $p$
 may be omitted if the curve was defined over $\F_p$ (\typ{INTMOD}
 coefficients) or $\Q_p$ (\typ{PADIC} coefficients). Otherwise the curve must
 be defined over $\Q$, and $p$ must be explicitly given. Over $\Q$ or
 $\Q_p$, the equation is assumed to be minimal at $p$.
 \bprog
 ? E = ellinit([0,0,0,0,1]);  \\ defined over Q
 ? ellap(E, 3)  \\ 3 necessary here
 %2 = 0    \\ #E(F_3) = 3+1 - 0 = 4
 ? ellap(E, 7)
 %3 = -4   \\ #E(F_7) = 12
 
 ? E = ellinit([0,0,0,0,1] * Mod(1,11));  \\ defined over F_11
 ? ellap(E)       \\ no need to repeat 11
 %5 = 0
 ? ellap(E, 11)   \\ ... but it also works
 %6 = 0
 ? ellgroup(E, 13) \\ ouch, inconsistent input !
    ***   at top-level: ellap(E,13)
    ***                 ^-----------
    *** ellap: inconsistent moduli in Rg_to_Fp: 11, 13.
 @eprog
 \misctitle{Algorithms used} If $E/\F_p$ has CM by a principal imaginary
 quadratic order we use an explicit formula (involving essentially Kronecker
 symbols and Cornacchia's algorithm, hence very fast: $O(\log p)^2$).
 Otherwise, we use Shanks-Mestre's baby-step/giant-step method, which runs in
 time $O(p^{1/4})$ using $O(p^{1/4})$ storage, hence becomes unreasonable when
 $p$ has about 30~digits. If the \tet{seadata} package is installed, the
 \tet{SEA} algorithm becomes available and primes of the order of 200~digits
 become feasible.

Function: ellbil
Class: basic
Section: elliptic_curves
C-Name: bilhell
Prototype: GGGp
Help: ellbil(E,z1,z2): canonical bilinear form for the points z1,z2 on the
 elliptic curve E (assumed to be minimal). Either z1 or z2 can also be a
 vector/matrix of points.
Doc: 
 if $z1$ and $z2$ are points on the elliptic
 curve $E$, assumed to be integral given by a minimal model, this function
 computes the value of the canonical bilinear form on $z1$, $z2$:
 $$ ( h(E,z1\kbd{+}z2) - h(E,z1) - h(E,z2) ) / 2 $$
 where \kbd{+} denotes of course addition on $E$. In addition, $z1$ or $z2$
 (but not both) can be vectors or matrices.

Function: ellchangecurve
Class: basic
Section: elliptic_curves
C-Name: ellchangecurve
Prototype: GG
Help: ellchangecurve(E,v): change data on elliptic curve according to
 v=[u,r,s,t].
Description: 
 (gen, gen):ell        ellchangecurve($1, $2)
Doc: 
 changes the data for the elliptic curve $E$
 by changing the coordinates using the vector \kbd{v=[u,r,s,t]}, i.e.~if $x'$
 and $y'$ are the new coordinates, then $x=u^2x'+r$, $y=u^3y'+su^2x'+t$.
 $E$ must be a \var{smallell} as output by \kbd{ellinit}.

Function: ellchangepoint
Class: basic
Section: elliptic_curves
C-Name: ellchangepoint
Prototype: GG
Help: ellchangepoint(x,v): change data on point or vector of points x on an
 elliptic curve according to v=[u,r,s,t].
Doc: 
 changes the coordinates of the point or
 vector of points $x$ using the vector \kbd{v=[u,r,s,t]}, i.e.~if $x'$ and
 $y'$ are the new coordinates, then $x=u^2x'+r$, $y=u^3y'+su^2x'+t$ (see also
 \kbd{ellchangecurve}).
Variant: The reciprocal function \fun{GEN}{ellchangepointinv}{GEN x, GEN ch}
 inverts the coordinate change.

Function: ellconvertname
Class: basic
Section: elliptic_curves
C-Name: ellconvertname
Prototype: G
Help: ellconvertname(name): convert an elliptic curve name (as found in
 the elldata database) from a string to a triplet [conductor, isogeny class,
 index]. It will also convert a triplet back to a curve name.
Doc: 
 converts an elliptic curve name, as found in the \tet{elldata} database,
 from a string to a triplet $[\var{conductor}, \var{isogeny class},
 \var{index}]$. It will also convert a triplet back to a curve name.
 Examples:
 \bprog
 ? ellconvertname("123b1")
 %1 = [123, 1, 1]
 ? ellconvertname(%)
 %2 = "123b1"
 @eprog

Function: elldivpol
Class: basic
Section: elliptic_curves
C-Name: elldivpol
Prototype: GLDn
Help: elldivpol(E,n,{v='x}): n-division polynomial for the curve E in the
 variable v.
Doc: $n$-division polynomial for the curve \kbd{E} in the
 variable $v$.

Function: elleisnum
Class: basic
Section: elliptic_curves
C-Name: elleisnum
Prototype: GLD0,L,p
Help: elleisnum(E,k,{flag=0}): E being an elliptic curve (or, alternatively,
 given by a 2-component vector representing its periods)
 and k an even positive integer, computes the
 numerical value of the Eisenstein series of weight k. When flag is non-zero
 and k=4 or 6, this gives g2 or g3 with the correct normalization.
Doc: 
 $E$ being an elliptic curve as
 output by \kbd{ellinit} (or, alternatively, given by a 2-component vector
 $[\omega_1,\omega_2]$ representing its periods), and $k$ being an even
 positive integer, computes the numerical value of the Eisenstein series of
 weight $k$ at $E$, namely
 $$
 (2i \pi/\omega_2)^k
 \Big(1 + 2/\zeta(1-k) \sum_{n\geq 0} n^{k-1}q^n / (1-q^n)\Big),
 $$
 where $q = \exp(2i\pi \tau)$ and $\tau:=\omega_1/\omega_2$ belongs to the
 complex upper half-plane.
 
 When \fl\ is non-zero and $k=4$ or 6, returns the elliptic invariants $g_2$
 or $g_3$, such that
 $$y^2 = 4x^3 - g_2 x - g_3$$
 is a Weierstrass equation for $E$.

Function: elleta
Class: basic
Section: elliptic_curves
C-Name: elleta
Prototype: Gp
Help: elleta(om): om=[om1,om2], returns the two-component row vector
 [eta1,eta2] of quasi-periods associated to [om1,om2].
Doc: 
 returns the quasi-periods $[\eta_1,\eta_2]$
 associated to the lattice basis $\var{om} = [\omega_1, \omega_2]$.
 Alternatively, \var{om} can be an elliptic curve $E$ as output by
 \kbd{ellinit}, in which case, the quasi periods associated to the period
 lattice basis \kbd{$E$.omega} (namely, \kbd{$E$.eta}) are returned.
 
 \bprog
 ? elleta([1, I])
 %1 = [3.141592653589793238462643383, 9.424777960769379715387930149*I]
 @eprog

Function: ellgenerators
Class: basic
Section: elliptic_curves
C-Name: ellgenerators
Prototype: G
Help: ellgenerators(E): if E is an elliptic curve as output by ellinit(),
 return the generators of the Mordell-Weil group associated to the curve.
 This function depends on the curve being referenced in the elldata database.
Doc: 
 returns a $\Z$-basis of the free part of the
 \idx{Mordell-Weil group} associated to $E$.  This function depends on the
 \tet{elldata} database being installed and referencing the curve, and so
 is only available for curves over $\Z$ of small conductors.

Function: ellglobalred
Class: basic
Section: elliptic_curves
C-Name: ellglobalred
Prototype: G
Help: ellglobalred(E): E being an elliptic curve, returns [N,[u,r,s,t],c],
 where N is the conductor of E, [u,r,s,t] leads to the standard model for E,
 and c is the product of the local Tamagawa numbers c_p.
Description: 
 (gen):gen        ellglobalred($1)
Doc: 
 calculates the arithmetic conductor, the global
 minimal model of $E$ and the global \idx{Tamagawa number} $c$.
 $E$ must be a \var{smallell} as output by \kbd{ellinit}, \emph{and is supposed
 to have all its coefficients $a_i$ in} $\Q$. The result is a 3 component
 vector $[N,v,c]$. $N$ is the arithmetic conductor of the curve. $v$ gives the
 coordinate change for $E$ over $\Q$ to the minimal integral model (see
 \tet{ellminimalmodel}). Finally $c$ is the product of the local Tamagawa
 numbers $c_p$, a quantity which enters in the \idx{Birch and Swinnerton-Dyer
 conjecture}.\sidx{minimal model}

Function: ellgroup
Class: basic
Section: elliptic_curves
C-Name: ellgroup
Prototype: GDG
Help: ellgroup(E,{p}): computes the structure of the group E(Fp)
 Assume the equation is minimal at p.
Doc: computes the structure of the group $E(\F_p) \sim \Z/d_1\Z \times
 \Z/d_2\Z$, with $d_2\mid d_1$. The prime $p$ may be omitted if the curve
 was defined over $\F_p$ (\typ{INTMOD} coefficients) or $\Q_p$ (\typ{PADIC}
 coefficients). Otherwise the curve must be defined over $\Q$, and $p$ must
 be explicitly given. Over $\Q$ or $\Q_p$, the equation is assumed to be
 minimal at $p$.
 \bprog
 ? E = ellinit([0,0,0,0,1]);  \\ defined over Q
 ? ellgroup(E, 3)  \\ 3 necessary here
 %2 = [4]    \\ cyclic
 ? ellgroup(E, 7)
 %3 = [6, 2] \\ non-cyclic
 
 ? E = ellinit([0,0,0,0,1] * Mod(1,11));  \\ defined over F_11
 ? ellgroup(E)   \\ no need to repeat 11
 %5 = [12]
 ? ellgroup(E, 11)   \\ ... but it also works
 %6 = [12]
 ? ellgroup(E, 13) \\ ouch, inconsistent input !
    ***   at top-level: ellgroup(E,13)
    ***                 ^--------------
    *** ellgroup: inconsistent moduli in Rg_to_Fp: 11, 13.
 @eprog

Function: ellheight
Class: basic
Section: elliptic_curves
C-Name: ellheight0
Prototype: GGD2,L,p
Help: ellheight(E,x,{flag=2}): canonical height of point x on elliptic curve
 E (assumed to be a minimal model). flag is optional and selects the algorithm
 used to compute the Archimedean local height. Its meaning is 0: use
 theta-functions, 1: use Tate's method, 2: use Mestre's AGM.
Doc: global \idx{N\'eron-Tate height} of the point $z$ on the elliptic curve
 $E$ (defined over $\Q$), given by a standard minimal integral model. $E$
 must be an \kbd{ell} as output by \kbd{ellinit}. \fl selects the algorithm
 used to compute the Archimedean local height. If $\fl=0$, this computation
 is done using sigma and theta-functions and a trick due to J.~Silverman. If
 $\fl=1$, use Tate's $4^n$ algorithm. If $\fl=2$, use Mestre's AGM algorithm.
 The latter is much faster than the other two, both in theory (converges
 quadratically) and in practice.
Variant: Also available is \fun{GEN}{ghell}{GEN E, GEN x, long prec}
 ($\fl=2$).

Function: ellheightmatrix
Class: basic
Section: elliptic_curves
C-Name: mathell
Prototype: GGp
Help: ellheightmatrix(E,x): gives the height matrix for vector of points x
 on elliptic curve E, assume to be a minimal model.
Doc: 
 $x$ being a vector of points, this
 function outputs the Gram matrix of $x$ with respect to the N\'eron-Tate
 height, in other words, the $(i,j)$ component of the matrix is equal to
 \kbd{ellbil($E$,x[$i$],x[$j$])}. The rank of this matrix, at least in some
 approximate sense, gives the rank of the set of points, and if $x$ is a
 basis of the \idx{Mordell-Weil group} of $E$, its determinant is equal to
 the regulator of $E$. Note that this matrix should be divided by 2 to be in
 accordance with certain normalizations. $E$ is assumed to be integral,
 given by a minimal model.

Function: ellidentify
Class: basic
Section: elliptic_curves
C-Name: ellidentify
Prototype: G
Help: ellidentify(E): look up the elliptic curve E in the elldata database and
 return [[N, M, ...], C] where N is the name of the curve in J. E. Cremona
 database, M the minimal model and C the coordinates change (see
 ellchangecurve).
Doc: 
 look up the elliptic curve $E$ (over $\Z$)
 in the \tet{elldata} database and return \kbd{[[N, M, G], C]}  where $N$
 is the name of the curve in the J.~E.~Cremona database, $M$ the minimal
 model, $G$ a $\Z$-basis of the free part of the \idx{Mordell-Weil group}
 of $E$ and $C$ the coordinates change (see \kbd{ellchangecurve}).

Function: ellinit
Class: basic
Section: elliptic_curves
C-Name: ellinit0
Prototype: GD0,L,p
Help: ellinit(x,{flag=0}): x being the vector [a1,a2,a3,a4,a6] defining the
 curve Y^2 + a1.XY + a3.Y = X^3 + a2.X^2 + a4.X + a6, gives the vector:
 [a1,a2,a3,a4,a6,b2,b4,b6,b8,c4,c6,disc,j,[e1,e2,e3],w1,w2,eta1,eta2,area].
 If the curve is defined over a p-adic field, the last six components are
 replaced by root,u^2,u,q,w,0. If optional flag is 1, omit them altogether.
 x can also be a string, in this case the coefficients of the curve with
 matching name are looked in the elldata database if available.
Description: 
 (gen, ?0):bell:prec    ellinit($1, prec)
 (gen, 1):ell           smallellinit($1)
 (gen, small):ell:prec  ellinit0($1, $2, prec)
Doc: 
 initialize an \tet{ell} structure,
 associated to the elliptic curve $E$. $E$ is either a $5$-component
 vector $[a_1,a_2,a_3,a_4,a_6]$ defining the elliptic curve with Weierstrass
 equation
 $$ Y^2 + a_1 XY + a_3 Y = X^3 + a_2 X^2 + a_4 X + a_6 $$
 or a string, in this case the coefficients of the curve with matching name
 are looked in the \tet{elldata} database if available.
 \bprog
 ? E = ellinit([0,0,0,0,1]); \\ y^2 = x^3 + 1
 ? E = ellinit("36a1");      \\ the same curve, using Cremona's notations
 @eprog\noindent
 For the time being, only curves over a prime field $\F_p$ and over the
 $p$-adic or real numbers (including rational numbers) are fully supported.
 Other domains are only supported for very basic operations such as point
 addition.
 
 The result of \tet{ellinit} is an \tev{ell} structure by default, and
 a shorter \tev{sell} if $\fl=1$. Both contain the following information in
 their components:
 %
 $$ a_1,a_2,a_3,a_4,a_6,b_2,b_4,b_6,b_8,c_4,c_6,\Delta,j.$$
 %
 All are accessible via member functions. In particular, the discriminant is
 \kbd{$E$.disc}, and the $j$-invariant is \kbd{$E$.j}.
 
 The other six components are only present if $\fl$ is $0$ or omitted, in
 which case the computation will be 10 ($p$-adic) to 200 (complex) times
 slower. Their content depends on whether the curve is defined over $\R$ or
 not:
 \smallskip
 \item When $E$ is defined over $\R$, \kbd{$E$.roots} is a vector whose
 three components contain the roots of the right hand side of the associated
 Weierstrass equation.
 $$ (y + a_1x/2 + a_3/2)^2 = g(x) $$
 If the roots are all real, they are ordered by decreasing value. If only
 one is real, it is the first component.
 
 Then $\omega_1 = $\kbd{$E$.omega[1]} is the real period of $E$ (integral of
 $dx/(2y+a_1x+a_3)$ over the connected component of the identity element of
 the real points of the curve), and $\omega_2 = $\kbd{$E$.omega[2]} is a
 complex period. \kbd{$E$.omega} forms a basis of the
 complex lattice defining $E$, such that
 $\tau=\dfrac{\omega_1}{\omega_2}$ has positive imaginary part.
 
 \kbd{$E$.eta} is a row vector containing the quasi-periods $\eta_1$ and
 $\eta_2$ such that $\eta_i = 2\zeta(\omega_i/2)$, where $\zeta$ is the
 Weierstrass zeta function associated to the period lattice (see
 \tet{ellzeta}). In particular, the Legendre relation holds:
 $\eta_2\omega_1 - \eta_1\omega_2 = 2i\pi$.
 
 Finally, \kbd{$E$.area} is the volume of the complex lattice defining
 $E$.\smallskip
 
 \item When $E$ is defined over $\Q_p$, the $p$-adic valuation of $j$
 must be negative. Then \kbd{$E$.roots} is the vector with a single component
 equal to the $p$-adic root of the associated Weierstrass equation
 corresponding to $-1$ under the Tate parametrization.
 
 \kbd{$E$.tate} yields the three-component vector $[u^2,u,q]$, in the
 notations of Tate. If the $u$-component does not belong to $\Q_p$, it is set
 to zero.
 
 \kbd{$E$.w} is Mestre's $w$ (this is technical).
 
 \smallskip For all other base fields or rings, the last six components are
 arbitrarily set to zero. See also the description of member functions
 related to elliptic curves at the beginning of this section.
Variant: Also available are \fun{GEN}{ellinit}{GEN E, long prec} ($\fl=0$) and
 \fun{GEN}{smallellinit}{GEN E, long prec} ($\fl=1$).

Function: ellisoncurve
Class: basic
Section: elliptic_curves
C-Name: ellisoncurve
Prototype: GG
Help: ellisoncurve(E,z): true(1) if z is on elliptic curve E, false(0) if not.
Doc: gives 1 (i.e.~true) if the point $z$ is on the elliptic curve $E$, 0
 otherwise. If $E$ or $z$ have imprecise coefficients, an attempt is made to
 take this into account, i.e.~an imprecise equality is checked, not a precise
 one. It is allowed for $z$ to be a vector of points in which case a vector
 (of the same type) is returned.
Variant: Also available is \fun{int}{oncurve}{GEN E, GEN z} which does not
 accept vectors of points.

Function: ellj
Class: basic
Section: elliptic_curves
C-Name: jell
Prototype: Gp
Help: ellj(x): elliptic j invariant of x.
Doc: 
 elliptic $j$-invariant. $x$ must be a complex number
 with positive imaginary part, or convertible into a power series or a
 $p$-adic number with positive valuation.

Function: elllocalred
Class: basic
Section: elliptic_curves
C-Name: elllocalred
Prototype: GG
Help: elllocalred(E,p): E being an elliptic curve, returns
 [f,kod,[u,r,s,t],c], where f is the conductor's exponent, kod is the Kodaira
 type for E at p, [u,r,s,t] is the change of variable needed to make E
 minimal at p, and c is the local Tamagawa number c_p.
Doc: 
 calculates the \idx{Kodaira} type of the
 local fiber of the elliptic curve $E$ at the prime $p$.
 $E$ must be a \var{smallell} as output by \kbd{ellinit}, and is assumed to have
 all its coefficients $a_i$ in $\Z$. The result is a 4-component vector
 $[f,kod,v,c]$. Here $f$ is the exponent of $p$ in the arithmetic conductor of
 $E$, and $kod$ is the Kodaira type which is coded as follows:
 
 1 means good reduction (type I$_0$), 2, 3 and 4 mean types II, III and IV
 respectively, $4+\nu$ with $\nu>0$ means type I$_\nu$;
 finally the opposite values $-1$, $-2$, etc.~refer to the starred types
 I$_0^*$, II$^*$, etc. The third component $v$ is itself a vector $[u,r,s,t]$
 giving the coordinate changes done during the local reduction. Normally, this
 has no use if $u$ is 1, that is, if the given equation was already minimal.
 Finally, the last component $c$ is the local \idx{Tamagawa number} $c_p$.

Function: elllog
Class: basic
Section: elliptic_curves
C-Name: elllog
Prototype: GGGDG
Help: elllog(E,P,G,{o}): return the discrete logarithm of the point P of
 the elliptic curve E in base G. If present, o represents the order of G.
 If not present, assume that G generates the curve.
Doc: discrete logarithm of the point $P$ of the elliptic curve $E$ in base $G$.
 See \tet{znlog} for the limitations of the underlying discrete log algorithms.
 If present, $o$ represents the order of $G$, see \secref{se:DLfun};
 the preferred format for this parameter is \kbd{[N, factor(N)]}, where $N$
 is  the order of $G$.
 
 If no $o$ is given, assume that $G$ generates the curve.
 The function also assumes that $P$ is a multiple of $G$.
 \bprog
 ? a = ffgen(ffinit(2,8),'a);
 ? E = ellinit([a,1,0,0,1]);  \\ over F_{2^8}
 ? x = a^3; y = ellordinate(E,x)[1];
 ? P = [x,y]; G = ellpow(E, P, 113);
 ? ord = [242, factor(242)]; \\ P generates a group of order 242. Initialize.
 ? ellorder(E, G, ord)
 %4 = 242
 ? e = elllog(E, P, G, ord)
 %5 = 15
 ? ellpow(E,G,e) == P
 %6 = 1
 @eprog

Function: elllseries
Class: basic
Section: elliptic_curves
C-Name: elllseries
Prototype: GGDGp
Help: elllseries(E,s,{A=1}): L-series at s of the elliptic curve E, where A
 a cut-off point close to 1.
Doc: 
 $E$ being an \var{sell} as output by
 \kbd{ellinit}, this computes the value of the L-series of $E$ at $s$. It is
 assumed that $E$ is defined over $\Q$, not necessarily minimal. The optional
 parameter $A$ is a cutoff point for the integral, which must be chosen close
 to 1 for best speed. The result must be independent of $A$, so this allows
 some internal checking of the function.
 
 Note that if the conductor of the curve is large, say greater than $10^{12}$,
 this function will take an unreasonable amount of time since it uses an
 $O(N^{1/2})$ algorithm.

Function: ellminimalmodel
Class: basic
Section: elliptic_curves
C-Name: ellminimalmodel
Prototype: GD&
Help: ellminimalmodel(E,{&v}): return the standard minimal integral model of
 the rational elliptic curve E. Sets v to the corresponding change of
 variables.
Doc: return the standard minimal integral model of the rational elliptic
 curve $E$. If present, sets $v$ to the corresponding change of variables,
 which is a vector $[u,r,s,t]$ with rational components. The return value is
 identical to that of \kbd{ellchangecurve(E, v)}.
 
 The resulting model has integral coefficients, is everywhere minimal, $a_1$
 is 0 or 1, $a_2$ is 0, 1 or $-1$ and $a_3$ is 0 or 1. Such a model is
 unique, and the vector $v$ is unique if we specify that $u$ is positive,
 which we do. \sidx{minimal model}

Function: ellmodulareqn
Class: basic
Section: elliptic_curves
C-Name: ellmodulareqn
Prototype: LDnDn
Help: ellmodulareqn(l,{x},{y}): return a vector [eqn, t] where eqn is a modular
 equation of level l, for l<500, l prime. This requires the package seadata to
 be installed.  The equation is either of canonical type (t=0) or of Atkin type
 (t=1)
Doc: return a vector [\kbd{eqn},$t$] where \kbd{eqn} is a modular equation of
 level $l$, for $l<500$, $l$ prime. This requires the package seadata to be
 installed. The equation is either of canonical type ($t=0$) or of Atkin type
 ($t=1$).

Function: ellorder
Class: basic
Section: elliptic_curves
C-Name: ellorder
Prototype: GGDG
Help: ellorder(E,z,{o}): order of the point z on the elliptic curve E over Q
 or a finite field, 0 if non-torsion. The parameter o, if present,
 represents a non-zero multiple of the order of z
 (mandatory over non-prime finite fields).
Doc: 
 gives the order of the point $z$ on the elliptic
 curve $E$. If the curve is defined over $\Q$, return zero if the point has
 infinite order. The parameter $o$, if present, represents a non-zero
 multiple of the order of $z$, see \secref{se:DLfun}; the preferred format for
 this parameter is \kbd{[ord, factor(ord)]}, where \kbd{ord} is the
 cardinality of the curve.
 
 For a curve defined over $\F_p$, it is very important to supply $o$ since
 its computation is very expensive and should only be done once, using
 \bprog
 ? N = p+1-ellap(E,p); o = [N, factor(N)];
 @eprog\noindent possibly using the \tet{seadata} package; for a curve defined
 over a non-prime finite field,
 giving the order is \emph{mandatory} since no function is available yet to
 compute the cardinality or trace of Frobenius in that case.
Variant: The obsolete form \fun{GEN}{orderell}{GEN e, GEN z} should no longer be
 used.

Function: ellordinate
Class: basic
Section: elliptic_curves
C-Name: ellordinate
Prototype: GGp
Help: ellordinate(E,x): y-coordinates corresponding to x-ordinate x on
 elliptic curve E.
Doc: 
 gives a 0, 1 or 2-component vector containing
 the $y$-coordinates of the points of the curve $E$ having $x$ as
 $x$-coordinate.

Function: ellpointtoz
Class: basic
Section: elliptic_curves
C-Name: zell
Prototype: GGp
Help: ellpointtoz(E,P): lattice point z corresponding to the point P on the
 elliptic curve E.
Doc: 
 if $E$ is an elliptic curve with coefficients
 in $\R$, this computes a complex number $t$ (modulo the lattice defining
 $E$) corresponding to the point $z$, i.e.~such that, in the standard
 Weierstrass model, $\wp(t)=z[1],\wp'(t)=z[2]$. In other words, this is the
 inverse function of \kbd{ellztopoint}. More precisely, if $(w1,w2)$ are the
 real and complex periods of $E$, $t$ is such that $0 \leq \Re(t) < w1$
 and $0 \leq \Im(t) < \Im(w2)$.
 
 If $E$ has coefficients in $\Q_p$, then either Tate's $u$ is in $\Q_p$, in
 which case the output is a $p$-adic number $t$ corresponding to the point $z$
 under the Tate parametrization, or only its square is, in which case the
 output is $t+1/t$. $E$ must be an \var{ell} as output by \kbd{ellinit}.

Function: ellpow
Class: basic
Section: elliptic_curves
C-Name: powell
Prototype: GGG
Help: ellpow(E,z,n): n times the point z on elliptic curve E (n in Z).
Doc: 
 computes $[n]z$, where $z$ is a point on the elliptic curve $E$. The
 exponent $n$ is in $\Z$, or may be a complex quadratic integer if the curve $E$
 has complex multiplication by $n$ (if not, an error message is issued).
 \bprog
 ? Ei = ellinit([0,0,0,1,0]); z = [0,0];
 ? ellpow(Ei, z, 10)
 %2 = [0]     \\ unsurprising: z has order 2
 ? ellpow(Ei, z, I)
 %3 = [0, 0]  \\ Ei has complex multiplication by Z[i]
 ? ellpow(Ei, z, quadgen(-4))
 %4 = [0, 0]  \\ an alternative syntax for the same query
 ? Ej  = ellinit([0,0,0,0,1]); z = [-1,0];
 ? ellpow(Ej, z, I)
   ***   at top-level: ellpow(Ej,z,I)
   ***                 ^--------------
   *** ellpow: not a complex multiplication in powell.
 ? ellpow(Ej, z, 1+quadgen(-3))
 %6 = [1 - w, 0]
 @eprog
 The simple-minded algorithm for the CM case assumes that we are in
 characteristic $0$, and that the quadratic order to which $n$ belongs has
 small discriminant.

Function: ellrootno
Class: basic
Section: elliptic_curves
C-Name: ellrootno
Prototype: lGDG
Help: ellrootno(E,{p=1}): root number for the L-function of the elliptic
 curve E. p can be 1 (default), global root number, or a prime p (including
 0) for the local root number at p.
Doc: 
 $E$ being a \var{smallell} as output by
 \kbd{ellinit}, this computes the local (if $p\neq 1$) or global (if $p=1$)
 root number of the L-series of the elliptic curve $E$. Note that the global
 root number is the sign of the functional equation and conjecturally is the
 parity of the rank of the \idx{Mordell-Weil group}. The equation for $E$ must
 have coefficients in $\Q$ but need \emph{not} be minimal.

Function: ellsearch
Class: basic
Section: elliptic_curves
C-Name: ellsearch
Prototype: G
Help: ellsearch(N): if N is an integer, it is taken as a conductor else if N is
 a string, it can be a curve name ("11a1"), a isogeny class ("11a") or a
 conductor ("11"). Return all curves in the elldata database that match the
 property.
Doc: if $N$ is an integer, it is taken as a conductor else if $N$ is a
 string, it can be a curve name ("11a1"), an isogeny class ("11a") or a
 conductor "11". This function finds all curves in the \tet{elldata} database
 with the given property.
 
 If $N$ is a full curve name, the output format is $[N, [a_1,a_2,a_3,a_4,a_6],
 G]$ where $[a_1,a_2,a_3,a_4,a_6]$ are the coefficients of the Weierstrass
 equation of the curve and $G$ is a $\Z$-basis of the free part of the
 \idx{Mordell-Weil group} associated to the curve.
 
 If $N$ is not a full-curve name, the output is a vector of all matching
 curves in the above format.
Variant: Also available is \fun{GEN}{ellsearchcurve}{GEN N} that only
 accepts complete curve names.

Function: ellsigma
Class: basic
Section: elliptic_curves
C-Name: ellsigma
Prototype: GGD0,L,p
Help: ellsigma(E,z,{flag=0}): E being given by ellinit, returns the value of
 the Weierstrass sigma
 function of the lattice generated by om at z if flag = 0 (default). If flag
 = 1, arbitrary determination of the logarithm of sigma. If flag = 2 or 3,
 same but using the product expansion instead of theta series.
Doc: 
 $E$ being given by \kbd{ellinit},
 returns the value at $z$ of the Weierstrass $\sigma$ function of the period
 lattice $L$ of $E$:
 $$ \sigma(z, L) = z \prod_{\omega\in L^*} \left(1 -
 \dfrac{z}{\omega}\right)e^{\dfrac{z}{\omega} + \dfrac{z^2}{2\omega^2}}$$
 Alternatively, one can input a lattice basis $[\omega_1,\omega_2]$ directly
 instead of $E$.
 
 If $\fl=1$, computes an (arbitrary) determination of $\log(\sigma(z))$.
 
 If $\fl=2,3$, same using the product expansion instead of theta series.

Function: ellsub
Class: basic
Section: elliptic_curves
C-Name: subell
Prototype: GGG
Help: ellsub(E,z1,z2): difference of the points z1 and z2 on elliptic curve E.
Doc: 
 difference of the points $z1$ and $z2$ on the
 elliptic curve corresponding to $E$.

Function: elltaniyama
Class: basic
Section: elliptic_curves
C-Name: elltaniyama
Prototype: GDP
Help: elltaniyama(E, {d = seriesprecision}): modular parametrization of elliptic curve E (minimal
 model).
Doc: 
 computes the modular parametrization of the
 elliptic curve $E$, where $E$ is a \var{smallell} as output by \kbd{ellinit},
 in the form of a two-component vector $[u,v]$ of power series, given to $d$
 significant terms (\tet{seriesprecision} by default). This vector is
 characterized by the
 following two properties. First the point $(x,y)=(u,v)$ satisfies the
 equation of the elliptic curve. Second, the differential $du/(2v+a_1u+a_3)$
 is equal to $f(z)dz$, a differential form on $H/\Gamma_0(N)$ where $N$ is the
 conductor of the curve. The variable used in the power series for $u$ and $v$
 is $x$, which is implicitly understood to be equal to $\exp(2i\pi z)$. It is
 assumed that the curve is a \emph{strong} \idx{Weil curve}, and that the
 Manin constant is equal to 1. The equation of the curve $E$ must be minimal
 (use \kbd{ellminimalmodel} to get a minimal equation).

Function: elltatepairing
Class: basic
Section: elliptic_curves
C-Name: elltatepairing
Prototype: GGGG
Help: elltatepairing(E, P, Q, m): Computes the Tate pairing of the two points
 P and Q on the elliptic curve E. The point P must be of m-torsion.
Doc: Computes the Tate pairing of the two points $P$ and $Q$ on the elliptic
 curve $E$. The point $P$ must be of $m$-torsion.

Function: elltors
Class: basic
Section: elliptic_curves
C-Name: elltors0
Prototype: GD0,L,
Help: elltors(E,{flag=0}): torsion subgroup of elliptic curve E: order,
 structure, generators. If flag = 0, use Doud's algorithm; if flag = 1, use
 Lutz-Nagell.
Doc: 
 if $E$ is an elliptic curve \emph{defined
 over $\Q$}, outputs the torsion subgroup of $E$ as a 3-component vector
 \kbd{[t,v1,v2]}, where \kbd{t} is the order of the torsion group, \kbd{v1}
 gives the structure of the torsion group as a product of cyclic groups
 (sorted by decreasing order), and \kbd{v2} gives generators for these cyclic
 groups. $E$ must be an \var{ell} as output by \kbd{ellinit}.
 
 \bprog
 ?  E = ellinit([0,0,0,-1,0]);
 ?  elltors(E)
 %1 = [4, [2, 2], [[0, 0], [1, 0]]]
 @eprog
 Here, the torsion subgroup is isomorphic to $\Z/2\Z \times \Z/2\Z$, with
 generators $[0,0]$ and $[1,0]$.
 
 If $\fl = 0$, use Doud's algorithm: bound torsion by computing $\#E(\F_p)$
 for small primes of good reduction, then look for torsion points using
 Weierstrass parametrization (and Mazur's classification).
 
 If $\fl = 1$, use Lutz-Nagell (\emph{much} slower), $E$ is allowed to be a
 \var{smallell}.
Variant: Also available is \fun{GEN}{elltors}{GEN E} for \kbd{elltors(E, 0)}.

Function: ellweilpairing
Class: basic
Section: elliptic_curves
C-Name: ellweilpairing
Prototype: GGGG
Help: ellweilpairing(E, P, Q, m): Computes the Weil pairing of the two points
 of m-torsion P and Q on the elliptic curve E.
Doc: Computes the Weil pairing of the two points of $m$-torsion $P$ and $Q$
 on the elliptic curve $E$.

Function: ellwp
Class: basic
Section: elliptic_curves
C-Name: ellwp0
Prototype: GDGD0,L,DPp
Help: ellwp(E,{z=x},{flag=0},{d=seriesprecision}):
 computes the value at z of the Weierstrass P function attached to the
 elliptic curve E as given by ellinit (alternatively, E can be
 given as a lattice [om1,om2]). Optional flag means 0 (default), compute only
 P(z), 1 compute [P(z),P'(z)], 2 consider om as an elliptic curve and compute
 P(z) for that curve (identical to ellztopoint in that case). If z is omitted
 or is a simple variable, return formal expansion in z with d significant
 terms.
Doc: Computes the value at $z$ of the Weierstrass $\wp$ function attached to
 the elliptic curve $E$ as given by \kbd{ellinit} (alternatively, $E$ can be
 given as a lattice $[\omega_1,\omega_2]$).
 
 If $z$ is omitted or is a simple variable, computes the \emph{power series}
 expansion in $z$ (starting $z^{-2}+O(z^2)$). The series is given to $d$
 significant terms (\tet{seriesprecision} by default).
 
 Optional \fl\ is (for now) only taken into account when $z$ is numeric, and
 means 0: compute only $\wp(z)$, 1: compute $[\wp(z),\wp'(z)]$.
Variant: Also available is \fun{GEN}{weipell}{GEN E, long precdl} for the power
 series.

Function: ellzeta
Class: basic
Section: elliptic_curves
C-Name: ellzeta
Prototype: GGp
Help: ellzeta(E,z): E being given by ellinit, returns the value at z of the
 Weierstrass zeta function of the period lattice of E.
Doc: 
 $E$ being given by \kbd{ellinit}, returns the
 value at $z$ of the Weierstrass $\zeta$ function of the period lattice $L$
 of $E$:
 $$ \zeta(z, L) = \dfrac{1}{z} + z^2\sum_{\omega\in L^*}
 \dfrac{1}{\omega^2(z-\omega)}.$$
 Alternatively, one can input a lattice basis $[\omega_1,\omega_2]$ directly
 instead of $E$.
 \bprog
 ? e = ellinit([0,0,0,1,0]);
 ? ellzeta(e, e.omega[1]/2)
 %2 = 0.8472130847939790866064991234 + 4.417621070 E-29*I
 ? 2*ellzeta([1,I], 1/2)
 %3 = 3.141592653589793238462643384 + 0.E-37*I
 @eprog\noindent
 The quasi-periods of $\zeta$, such that
 $$\zeta(z + a\omega_1 + b\omega_2) = \zeta(z) + a\eta_1 + b\eta_2 $$
 for integers $a$ and $b$ are obtained directly as $\eta_i =
 2\zeta(\omega_i/2)$ or using \tet{elleta}.

Function: ellztopoint
Class: basic
Section: elliptic_curves
C-Name: pointell
Prototype: GGp
Help: ellztopoint(E,z): coordinates of point P on the curve E corresponding
 to the complex number z.
Doc: 
 $E$ being an \var{ell} as output by
 \kbd{ellinit}, computes the coordinates $[x,y]$ on the curve $E$
 corresponding to the complex number $z$. Hence this is the inverse function
 of \kbd{ellpointtoz}. In other words, if the curve is put in Weierstrass
 form, $[x,y]$ represents the \idx{Weierstrass $\wp$-function} and its
 derivative. If $z$ is in the lattice defining $E$ over $\C$, the result is
 the point at infinity $[0]$.

Function: erfc
Class: basic
Section: transcendental
C-Name: gerfc
Prototype: Gp
Help: erfc(x): complementary error function.
Doc: complementary error function, analytic continuation of
 $(2/\sqrt\pi)\int_x^\infty e^{-t^2}\,dt$ ($x\in\R$).

Function: error
Class: basic
Section: programming/specific
C-Name: error0
Prototype: vs*
Help: error({str}*): abort script with error message str.
Description: 
 (?gen,...):void  pari_err(talker, "${2 format_string}"${2 format_args})
Doc: outputs its argument list (each of
 them interpreted as a string), then interrupts the running \kbd{gp} program,
 returning to the input prompt. For instance
 \bprog
 error("n = ", n, " is not squarefree !")
 @eprog\noindent
  % \syn{NO}

Function: eta
Class: basic
Section: transcendental
C-Name: eta0
Prototype: GD0,L,p
Help: eta(z,{flag=0}): if flag=0, returns prod(n=1,oo, 1-q^n), where
 q = exp(2 i Pi z) if z is a complex scalar (belonging to the upper half plane);
 q = z if z is a p-adic number or can be converted to a power series.
 If flag is non-zero, the function only applies to complex scalars and returns
 the true eta function, with the factor q^(1/24) included.
Doc: Variants of \idx{Dedekind}'s $\eta$ function.
 If $\fl = 0$, return $\prod_{n=1}^\infty(1-q^n)$, where $q$ depends on $x$
 in the following way:
 
 \item $q = e^{2i\pi x}$ if $x$ is a \emph{complex number} (which must then
 have positive imaginary part); notice that the factor $q^{1/24}$ is
 missing!
 
 \item $q = x$ if $x$ is a \typ{PADIC}, or can be converted to a
 \emph{power series} (which must then have positive valuation).
 
 If $\fl$ is non-zero, $x$ is converted to a complex number and we return the
 true $\eta$ function, $q^{1/24}\prod_{n=1}^\infty(1-q^n)$,
 where $q = e^{2i\pi x}$.
Variant: 
 Also available is \fun{GEN}{trueeta}{GEN x, long prec} ($\fl=1$).

Function: eulerphi
Class: basic
Section: number_theoretical
C-Name: geulerphi
Prototype: G
Help: eulerphi(x): Euler's totient function of x.
Description: 
 (int):int        eulerphi($1)
 (gen):gen        geulerphi($1)
Doc: Euler's $\phi$ (totient)\sidx{Euler totient function} function of $|x|$,
 in other words $|(\Z/x\Z)^*|$. Normally, $x$ must be of type integer, but
 the function accepts vector/matrices arguments, and is then applied
 componentwise.
Variant: For a \typ{INT} $x$, the variant
 \fun{GEN}{eulerphi}{GEN n} is also available.

Function: eval
Class: basic
Section: polynomials
C-Name: geval_gp
Prototype: GC
Help: eval(x): evaluation of x, replacing variables by their value.
Description: 
 (gen):gen      geval($1)
Doc: replaces in $x$ the formal variables by the values that
 have been assigned to them after the creation of $x$. This is mainly useful
 in GP, and not in library mode. Do not confuse this with substitution (see
 \kbd{subst}).
 
 If $x$ is a character string, \kbd{eval($x$)} executes $x$ as a GP
 command, as if directly input from the keyboard, and returns its
 output. For convenience, $x$ is evaluated as if
 \kbd{strictmatch} was off. In particular, unused characters at the end of
 $x$ do not prevent its evaluation:
 \bprog
 ? eval("1a")
   *** eval: Warning: unused characters: a.
 % 1 = 1
 @eprog
 
 \synt{geval}{GEN x}.

Function: exp
Class: basic
Section: transcendental
C-Name: gexp
Prototype: Gp
Help: exp(x): exponential of x.
Description: 
 (real):real         mpexp($1)
 (mp):mp:prec        gexp($1, prec)
 (gen):gen:prec      gexp($1, prec)
Doc: exponential of $x$.
 $p$-adic arguments with positive valuation are accepted.
Variant: For a \typ{PADIC} $x$, the function
 \fun{GEN}{Qp_exp}{GEN x} is also available.

Function: extern
Class: gp
Section: programming/specific
C-Name: extern0
Prototype: s
Help: extern(str): execute shell command str, and feeds the result to GP (as
 if loading from file).
Doc: the string \var{str} is the name of an external command (i.e.~one you
 would type from your UNIX shell prompt). This command is immediately run and
 its output fed into \kbd{gp}, just as if read from a file.

Function: externstr
Class: gp
Section: programming/specific
C-Name: externstr
Prototype: s
Help: externstr(str): execute shell command str, and returns the result as a
 vector of GP strings, one component per output line.
Doc: the string \var{str} is the name of an external command (i.e.~one you
 would type from your UNIX shell prompt). This command is immediately run and
 its output is returned as a vector of GP strings, one component per output
 line.

Function: factor
Class: basic
Section: number_theoretical
C-Name: gp_factor0
Prototype: GDG
Help: factor(x,{lim}): factorization of x. lim is optional and can be set
 whenever x is of (possibly recursive) rational type. If lim is set return
 partial factorization, using primes < lim (up to primelimit if lim=0).
Description: 
 (int, ?-1):vec        Z_factor($1)
 (gen, ?-1):vec        factor($1)
 (gen, small):vec      factor0($1, $2)
Doc: general factorization function, where $x$ is a
 rational (including integers), a complex number with rational
 real and imaginary parts, or a rational function (including polynomials).
 The result is a two-column matrix: the first contains the irreducibles
 dividing $x$ (rational or Gaussian primes, irreducible polynomials),
 and the second the exponents. By convention, $0$ is factored as $0^1$.
 
 \misctitle{$\Q$ and $\Q(i)$}
 See \tet{factorint} for more information about the algorithms used.
 The rational or Gaussian primes are in fact \var{pseudoprimes}
 (see \kbd{ispseudoprime}), a priori not rigorously proven primes. In fact,
 any factor which is $\leq 10^{15}$ (whose norm is $\leq 10^{15}$ for an
 irrational Gaussian prime) is a genuine prime. Use
 \kbd{isprime} to prove primality of other factors, as in
 \bprog
 ? fa = factor(2^2^7 + 1)
 %1 =
 [59649589127497217 1]
 
 [5704689200685129054721 1]
 
 ? isprime( fa[,1] )
 %2 = [1, 1]~   \\ both entries are proven primes
 @eprog\noindent
 Another possibility is to set the global default \tet{factor_proven}, which
 will perform a rigorous primality proof for each pseudoprime factor.
 
 A \typ{INT} argument \var{lim} can be added, meaning that we look only for
 prime factors $p < \var{lim}$. The limit \var{lim} must be non-negative and
 satisfy
 $\var{lim} \leq \kbd{primelimit} + 1$; setting $\var{lim}=0$ is the same
 as setting it to $\kbd{primelimit} + 1$. In this case, all but the last
 factor
 are proven primes, but the remaining factor may actually be a proven composite!
 If the remaining factor is less than $\var{lim}^2$, then it is prime.
 \bprog
 ? factor(2^2^7 +1, 10^5)
 %3 =
 [340282366920938463463374607431768211457 1]
 @eprog\noindent
 This routine uses trial division and perfect power tests, and should not be
 used for huge values
 of \var{lim} (at most $10^9$, say): \kbd{factorint(, 1 + 8)} will in general
 be faster. The latter does not guarantee that all small prime factors are
 found, but it also finds larger factors, and in a much more efficient way.
 \bprog
 ? F = (2^2^7 + 1) * 1009 * 100003; factor(F, 10^5)  \\ fast, incomplete
 time = 0 ms.
 %4 =
 [1009 1]
 
 [34029257539194609161727850866999116450334371 1]
 
 ? default(primelimit,10^9)
 time = 4,360 ms.
 %5 = 1000000000
 ? factor(F, 10^9)    \\ very slow
 time = 6,120 ms.
 %6 =
 [1009 1]
 
 [100003 1]
 
 [340282366920938463463374607431768211457 1]
 
 ? factorint(F, 1+8)  \\ much faster, all small primes were found
 time = 40 ms.
 %7 =
 [1009 1]
 
 [100003 1]
 
 [340282366920938463463374607431768211457 1]
 
 ? factorint(F)   \\ complete factorisation
 time = 260 ms.
 %8 =
 [1009 1]
 
 [100003 1]
 
 [59649589127497217 1]
 
 [5704689200685129054721 1]
 @eprog
 
 \misctitle{Rational functions}
 The polynomials or rational functions to be factored must have scalar
 coefficients. In particular PARI does not know how to factor
 \emph{multivariate} polynomials. See \tet{factormod} and \tet{factorff} for
 the algorithms used over finite fields, \tet{factornf} for the algorithms
 over number fields. Over $\Q$, \idx{van Hoeij}'s method is used, which is
 able to cope with hundreds of modular factors.
 
 The routine guesses a sensible ring over which you want to factor: the
 smallest ring containing all coefficients, taking into account quotient
 structures induced by \typ{INTMOD}s and \typ{POLMOD}s (e.g.~if a coefficient
 in $\Z/n\Z$ is known, all rational numbers encountered are first mapped to
 $\Z/n\Z$; different moduli will produce an error).
 Note that factorization of polynomials is done up to
 multiplication by a constant. In particular, the factors of rational
 polynomials will have integer coefficients, and the content of a polynomial
 or rational function is discarded and not included in the factorization. If
 needed, you can always ask for the content explicitly:
 \bprog
 ? factor(t^2 + 5/2*t + 1)
 %1 =
 [2*t + 1 1]
 
 [t + 2 1]
 
 ? content(t^2 + 5/2*t + 1)
 %2 = 1/2
 @eprog\noindent
 See also \tet{nffactor}.
Variant: This function should only be used by the \kbd{gp} interface. Use
 directly \fun{GEN}{factor}{GEN x} or \fun{GEN}{boundfact}{GEN x, long lim}.
 The obsolete function \fun{GEN}{factor0}{GEN x, long lim} is kept for
 backward compatibility.

Function: factorback
Class: basic
Section: number_theoretical
C-Name: factorback2
Prototype: GDG
Help: factorback(f,{e}): given a factorisation f, gives the factored
 object back. If this is a prime ideal factorisation you must supply the
 corresponding number field as last argument. If e is present, f has to be a
 vector of the same length, and we return the product of the f[i]^e[i].
Description: 
 (gen):gen      factorback($1)
 (gen,):gen     factorback($1)
 (gen,gen):gen  factorback2($1, $2)
Doc: gives back the factored object
 corresponding to a factorization. The integer $1$ corresponds to the empty
 factorization.
 
 If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
 integral), and the corresponding factorization is the product of the
 $f[i]^{e[i]}$.
 
 If not, and $f$ is vector, it is understood as in the preceding case with $e$
 a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
 regular factorization, as produced with any \kbd{factor} command. A few
 examples:
 \bprog
 ? factor(12)
 %1 =
 [2 2]
 
 [3 1]
 
 ? factorback(%)
 %2 = 12
 ? factorback([2,3], [2,1])   \\ 2^3 * 3^1
 %3 = 12
 ? factorback([5,2,3])
 %4 = 30
 @eprog
Variant: Also available is \fun{GEN}{factorback}{GEN f} (case $e = \kbd{NULL}$).

Function: factorcantor
Class: basic
Section: number_theoretical
C-Name: factcantor
Prototype: GG
Help: factorcantor(x,p): factorization mod p of the polynomial x using
 Cantor-Zassenhaus.
Doc: factors the polynomial $x$ modulo the
 prime $p$, using distinct degree plus
 \idx{Cantor-Zassenhaus}\sidx{Zassenhaus}. The coefficients of $x$ must be
 operation-compatible with $\Z/p\Z$. The result is a two-column matrix, the
 first column being the irreducible polynomials dividing $x$, and the second
 the exponents. If you want only the \emph{degrees} of the irreducible
 polynomials (for example for computing an $L$-function), use
 $\kbd{factormod}(x,p,1)$. Note that the \kbd{factormod} algorithm is
 usually faster than \kbd{factorcantor}.

Function: factorff
Class: basic
Section: number_theoretical
C-Name: factorff
Prototype: GDGDG
Help: factorff(x,{p},{a}): factorization of the polynomial x in the finite field
 F_p[X]/a(X)F_p[X].
Doc: factors the polynomial $x$ in the field
 $\F_q$ defined by the irreducible polynomial $a$ over $\F_p$. The
 coefficients of $x$ must be operation-compatible with $\Z/p\Z$. The result
 is a two-column matrix: the first column contains the irreducible factors of
 $x$, and the second their exponents. If all the coefficients of $x$ are in
 $\F_p$, a much faster algorithm is applied, using the computation of
 isomorphisms between finite fields.
 
 Either $a$ or $p$ can omitted (in which case both are ignored) if x has
 \typ{FFELT} coefficients; the function then becomes identical to \kbd{factor}:
 \bprog
 ? factorff(x^2 + 1, 5, y^2+3)  \\ over F_5[y]/(y^2+3) ~ F_25
 %1 =
 [Mod(Mod(1, 5), Mod(1, 5)*y^2 + Mod(3, 5))*x
  + Mod(Mod(2, 5), Mod(1, 5)*y^2 + Mod(3, 5)) 1]
 
 [Mod(Mod(1, 5), Mod(1, 5)*y^2 + Mod(3, 5))*x
  + Mod(Mod(3, 5), Mod(1, 5)*y^2 + Mod(3, 5)) 1]
 ? t = ffgen(y^2 + Mod(3,5), 't); \\ a generator for F_25 as a t_FFELT
 ? factorff(x^2 + 1)   \\ not enough information to determine the base field
  ***   at top-level: factorff(x^2+1)
  ***                 ^---------------
  *** factorff: incorrect type in factorff.
 ? factorff(x^2 + t^0) \\ make sure a coeff. is a t_FFELT
 %3 =
 [x + 2 1]
 
 [x + 3 1]
 ? factorff(x^2 + t + 1)
 %11 =
 [x + (2*t + 1) 1]
 
 [x + (3*t + 4) 1]
 @eprog\noindent
 Notice that the second syntax is easier to use and much more readable.

Function: factorial
Class: basic
Section: number_theoretical
C-Name: mpfactr
Prototype: Lp
Help: factorial(x): factorial of x, the result being given as a real number.
Doc: factorial of $x$. The expression $x!$ gives a result which is an integer,
 while $\kbd{factorial}(x)$ gives a real number.
Variant: \fun{GEN}{mpfact}{long x} returns $x!$ as a \typ{INT}.

Function: factorint
Class: basic
Section: number_theoretical
C-Name: factorint
Prototype: GD0,L,
Help: factorint(x,{flag=0}): factor the integer x. flag is optional, whose
 binary digits mean 1: avoid MPQS, 2: avoid first-stage ECM (may fall back on
 it later), 4: avoid Pollard-Brent Rho and Shanks SQUFOF, 8: skip final ECM
 (huge composites will be declared prime).
Doc: factors the integer $n$ into a product of
 pseudoprimes (see \kbd{ispseudoprime}), using a combination of the
 \idx{Shanks SQUFOF} and \idx{Pollard Rho} method (with modifications due to
 Brent), \idx{Lenstra}'s \idx{ECM} (with modifications by Montgomery), and
 \idx{MPQS} (the latter adapted from the \idx{LiDIA} code with the kind
 permission of the LiDIA maintainers), as well as a search for pure powers.
 The output is a two-column matrix as for \kbd{factor}: the first column
 contains the ``prime'' divisors of $n$, the second one contains the
 (positive) exponents.
 
 By convention $0$ is factored as $0^1$, and $1$ as the empty factorization;
 also the divisors are by default not proven primes is they are larger than
 $2^64$, they only failed the BPSW compositeness test (see
 \tet{ispseudoprime}). Use \kbd{isprime} on the result if you want to
 guarantee primality or set the \tet{factor_proven} default to $1$.
 Entries of the private prime tables (see \tet{addprimes}) are also included
 as is.
 
 This gives direct access to the integer factoring engine called by most
 arithmetical functions. \fl\ is optional; its binary digits mean 1: avoid
 MPQS, 2: skip first stage ECM (we may still fall back to it later), 4: avoid
 Rho and SQUFOF, 8: don't run final ECM (as a result, a huge composite may be
 declared to be prime). Note that a (strong) probabilistic primality test is
 used; thus composites might not be detected, although no example is known.
 
 You are invited to play with the flag settings and watch the internals at
 work by using \kbd{gp}'s \tet{debug} default parameter (level 3 shows
 just the outline, 4 turns on time keeping, 5 and above show an increasing
 amount of internal details).

Function: factormod
Class: basic
Section: number_theoretical
C-Name: factormod0
Prototype: GGD0,L,
Help: factormod(x,p,{flag=0}): factors the polynomial x modulo the prime p, using Berlekamp. flag is optional, and can be 0: default or 1:
 only the degrees of the irreducible factors are given.
Doc: factors the polynomial $x$ modulo the prime integer $p$, using
 \idx{Berlekamp}. The coefficients of $x$ must be operation-compatible with
 $\Z/p\Z$. The result is a two-column matrix, the first column being the
 irreducible polynomials dividing $x$, and the second the exponents. If $\fl$
 is non-zero, outputs only the \emph{degrees} of the irreducible polynomials
 (for example, for computing an $L$-function). A different algorithm for
 computing the mod $p$ factorization is \kbd{factorcantor} which is sometimes
 faster.

Function: factornf
Class: basic
Section: number_fields
C-Name: polfnf
Prototype: GG
Help: factornf(x,t): factorization of the polynomial x over the number field
 defined by the polynomial t.
Doc: factorization of the univariate polynomial $x$
 over the number field defined by the (univariate) polynomial $t$. $x$ may
 have coefficients in $\Q$ or in the number field. The algorithm reduces to
 factorization over $\Q$ (\idx{Trager}'s trick). The direct approach of
 \tet{nffactor}, which uses \idx{van Hoeij}'s method in a relative setting, is
 in general faster.
 
 The main variable of $t$ must be of \emph{lower} priority than that of $x$
 (see \secref{se:priority}). However if non-rational number field elements
 occur (as polmods or polynomials) as coefficients of $x$, the variable of
 these polmods \emph{must} be the same as the main variable of $t$. For
 example
 
 \bprog
 ? factornf(x^2 + Mod(y, y^2+1), y^2+1);
 ? factornf(x^2 + y, y^2+1); \\@com these two are OK
 ? factornf(x^2 + Mod(z,z^2+1), y^2+1)
   ***   at top-level: factornf(x^2+Mod(z,z
   ***                 ^--------------------
   *** factornf: inconsistent data in rnf function.
 ? factornf(x^2 + z, y^2+1)
   ***   at top-level: factornf(x^2+z,y^2+1
   ***                 ^--------------------
   *** factornf: incorrect variable in rnf function.
 @eprog

Function: factorpadic
Class: basic
Section: polynomials
C-Name: factorpadic0
Prototype: GGLD0,L,
Help: factorpadic(pol,p,r,{flag=0}): p-adic factorization of the polynomial pol
 to precision r. flag is optional and may be set to 0 (use round 4) or 1 (use
 Buchmann-Lenstra).
Doc: $p$-adic factorization
 of the polynomial \var{pol} to precision $r$, the result being a
 two-column matrix as in \kbd{factor}. The factors are normalized so that
 their leading coefficient is a power of $p$. $r$ must be strictly larger than
 the $p$-adic valuation of the discriminant of \var{pol} for the result to
 make any sense. The method used is a modified version of the \idx{round 4}
 algorithm of \idx{Zassenhaus}.
 
 If $\fl=1$, use an algorithm due to \idx{Buchmann} and \idx{Lenstra}, which is
 much less efficient.
Variant: 
 \fun{GEN}{factorpadic}{GEN f,GEN p, long r} corresponds to the default
 $\fl=0$.

Function: ffgen
Class: basic
Section: number_theoretical
C-Name: ffgen
Prototype: GDn
Help: ffgen(P,{v}): return the generator g=X mod P(X) of the finite field
 defined by the polynomial P(X). If v is given, the variable name is used to
 display g, else the variable of the polynomial P is used.
Doc: return the generator $g=X \pmod{P(X)}$ of the
 finite field defined by the polynomial $P$ (which must have \typ{INTMOD}
 coefficients). If \kbd{v} is given, the variable name is used to display $g$,
 else the variable of the polynomial $P$ is used.

Function: ffinit
Class: basic
Section: number_theoretical
C-Name: ffinit
Prototype: GLDn
Help: ffinit(p,n,{v=x}): monic irreducible polynomial of degree n over F_p[v].
Description: 
 (int, small, ?var):pol        ffinit($1, $2, $3)
Doc: computes a monic polynomial of degree $n$ which is irreducible over
  $\F_p$, where $p$ is assumed to be prime. This function uses a fast variant
  of Adleman-Lenstra's algorithm.
 
 It is useful in conjunction with \tet{ffgen}; for instance if \kbd{P =
 ffinit(3,2)}, you can represent elements in $\F_{3^2}$ in term of \kbd{g =
 ffgen(P,g)}.

Function: fflog
Class: basic
Section: number_theoretical
C-Name: fflog
Prototype: GGDG
Help: fflog(x,g,{o}): return the discrete logarithm of the finite field
 element x in base g. If present, o must represents the multiplicative
 order of g. If no o is given, assume that g is a primitive root.
Doc: discrete logarithm of the finite field element $x$ in base $g$. If
 present, $o$ represents the multiplicative order of $g$, see
 \secref{se:DLfun}; the preferred format for
 this parameter is \kbd{[ord, factor(ord)]}, where \kbd{ord} is the
 order of $g$. It may be set as a side effect of calling \tet{ffprimroot}.
 
 If no $o$ is given, assume that $g$ is a primitive root.
 See \tet{znlog} for the limitations of the underlying discrete log algorithms.
 \bprog
 ? t = ffgen(ffinit(7,5));
 ? o = fforder(t)
 %2 = 5602   \\@com \emph{not} a primitive root.
 ? fflog(t^10,t)
 %3 = 11214  \\@com Actually correct modulo o. We are lucky !
 ? fflog(t^10,t, o)
 %4 = 10
 ? g = ffprimroot(t, &o);
 ? o   \\ order is 16806, bundled with its factorization matrix
 %6 = [16806, [2, 1; 3, 1; 2801, 1]]
 ? fforder(g, o)
 %7 = 16806  \\ no surprise there !
 ? fforder(g^10000, g, o)
 ? fflog(g^10000, g, o)
 %9 = 10000
 @eprog

Function: fforder
Class: basic
Section: number_theoretical
C-Name: fforder
Prototype: GDG
Help: fforder(x,{o}): multiplicative order of the finite field element x.
 Optional o represents a multiple of the order of the element.
Doc: multiplicative order of the finite field element $x$.  If $o$ is
 present, it represents a multiple of the order of the element,
 see \secref{se:DLfun}; the preferred format for
 this parameter is \kbd{[N, factor(N)]}, where \kbd{N} is the cardinality
 of the multiplicative group of the underlying finite field.
 \bprog
 ? t = ffgen(ffinit(nextprime(10^8), 5));
 ? g = ffprimroot(t, &o);  \\@com o will be useful !
 ? fforder(g^1000000, o)
 time = 0 ms.
 %5 = 5000001750000245000017150000600250008403
 ? fforder(g^1000000)
 time = 16 ms. \\@com noticeably slower, same result of course
 %6 = 5000001750000245000017150000600250008403
 @eprog

Function: ffprimroot
Class: basic
Section: number_theoretical
C-Name: ffprimroot
Prototype: GD&
Help: ffprimroot(x, {&o}): return a primitive root of the multiplicative group
 of the definition field of the finite field element x (not necessarily the
 same as the field generated by x). If present, o is set to [ord, fa], where
 ord is the order of the group, and fa its factorization
 (useful in fflog and fforder).
Doc: return a primitive root of the multiplicative
 group of the definition field of the finite field element $x$ (not necessarily
 the same as the field generated by $x$). If present, $o$ is set to
 a vector \kbd{[ord, fa]}, where \kbd{ord} is the order of the group
 and \kbd{fa} its factorisation \kbd{factor(ord)}. This last parameter is
 useful in \tet{fflog} and \tet{fforder}, see \secref{se:DLfun}.
 \bprog
 ? t = ffgen(ffinit(nextprime(10^7), 5));
 ? g = ffprimroot(t, &o);
 ? o[1]
 %3 = 100000950003610006859006516052476098
 ? o[2]
 %4 =
 [2 1]
 
 [7 2]
 
 [31 1]
 
 [41 1]
 
 [67 1]
 
 [1523 1]
 
 [10498781 1]
 
 [15992881 1]
 
 [46858913131 1]
 
 ? fflog(g^1000000, g, o)
 time = 1,312 ms.
 %5 = 1000000
 @eprog

Function: fibonacci
Class: basic
Section: number_theoretical
C-Name: fibo
Prototype: L
Help: fibonacci(x): fibonacci number of index x (x C-integer).
Doc: $x^{\text{th}}$ Fibonacci number.

Function: floor
Class: basic
Section: conversions
C-Name: gfloor
Prototype: G
Help: floor(x): floor of x = largest integer <= x.
Description: 
 (small):small:parens   $1
 (int):int:copy:parens  $1
 (real):int             floorr($1)
 (mp):int               mpfloor($1)
 (gen):gen              gfloor($1)
Doc: 
 floor of $x$. When $x$ is in $\R$, the result is the
 largest integer smaller than or equal to $x$. Applied to a rational function,
 $\kbd{floor}(x)$ returns the Euclidean quotient of the numerator by the
 denominator.

Function: for
Class: basic
Section: programming/control
C-Name: forpari
Prototype: vV=GGI
Help: for(X=a,b,seq): the sequence is evaluated, X going from a up to b.
Doc: evaluates \var{seq}, where
 the formal variable $X$ goes from $a$ to $b$. Nothing is done if $a>b$.
 $a$ and $b$ must be in $\R$.

Function: fordiv
Class: basic
Section: programming/control
C-Name: fordiv
Prototype: vGVI
Help: fordiv(n,X,seq): the sequence is evaluated, X running over the
 divisors of n.
Doc: evaluates \var{seq}, where
 the formal variable $X$ ranges through the divisors of $n$
 (see \tet{divisors}, which is used as a subroutine). It is assumed that
 \kbd{factor} can handle $n$, without negative exponents. Instead of $n$,
 it is possible to input a factorization matrix, i.e. the output of
 \kbd{factor(n)}.
 
 This routine uses \kbd{divisors} as a subroutine, then loops over the
 divisors. In particular, if $n$ is an integer, divisors are sorted by
 increasing size.
 
 To avoid storing all divisors, possibly using a lot of memory, the following
 (much slower) routine loops over the divisors using essentially constant
 space:
 \bprog
 FORDIV(N)=
 { my(P, E);
 
   P = factor(N); E = P[,2]; P = P[,1];
   forvec( v = vector(#E, i, [0,E[i]]),
   X = factorback(P, v)
   \\ ...
 );
 }
 ? for(i=1,10^5, FORDIV(i))
 time = 3,445 ms.
 ? for(i=1,10^5, fordiv(i, d, ))
 time = 490 ms.
 @eprog

Function: forell
Class: basic
Section: programming/control
C-Name: forell0
Prototype: vVLLI
Help: forell(E,a,b,seq): execute seq for each elliptic curves E of conductor
 between a and b in the elldata database.
Wrapper: (,,,vG)
Description: 
 (,small,small,closure):void  forell(${4 cookie}, ${4 wrapper}, $2, $3)
Doc: evaluates \var{seq}, where the formal variable $E$ ranges through all
 elliptic curves of conductors from $a$ to $b$. Th \tet{elldata} database must
 be installed and contain data for the specified conductors.
 
 \synt{forell}{void *data, long (*call)(void*,GEN), GEN a, GEN b}.

Function: forprime
Class: basic
Section: programming/control
C-Name: forprime
Prototype: vV=GGI
Help: forprime(X=a,b,seq): the sequence is evaluated, X running over the
 primes between a and b.
Doc: evaluates \var{seq},
 where the formal variable $X$ ranges over the prime numbers between $a$ to
 $b$ (including $a$ and $b$ if they are prime). More precisely, the value of
 $X$ is incremented to the smallest prime strictly larger than $X$ at the end
 of each iteration. Nothing is done if $a>b$. Note that $a$ and $b$ must be in
 $\R$.
 
 \bprog
 f(N) =
 {
   forprime(p = 2, N,
     print(p);
     if (p == 3, p = 6);
   )
 }
 ? f(12)
 2
 3
 7
 11
 @eprog

Function: forstep
Class: basic
Section: programming/control
C-Name: forstep
Prototype: vV=GGGI
Help: forstep(X=a,b,s,seq): the sequence is evaluated, X going from a to b
 in steps of s (can be a vector of steps).
Doc: evaluates \var{seq},
 where the formal variable $X$ goes from $a$ to $b$, in increments of $s$.
 Nothing is done if $s>0$ and $a>b$ or if $s<0$ and $a<b$. $s$ must be in
 $\R^*$ or a vector of steps $[s_1,\dots,s_n]$. In the latter case, the
 successive steps are used in the order they appear in $s$.
 
 \bprog
 ? forstep(x=5, 20, [2,4], print(x))
 5
 7
 11
 13
 17
 19
 @eprog

Function: forsubgroup
Class: basic
Section: programming/control
C-Name: forsubgroup0
Prototype: vV=GDGI
Help: forsubgroup(H=G,{bound},seq): execute seq for each subgroup H of the
 abelian group G (in SNF form), whose index is bounded by bound. H is given
 as a left divisor of G in HNF form.
Wrapper: (,,vG)
Description: 
 (gen,?gen,closure):void  forsubgroup(${3 cookie}, ${3 wrapper}, $1, $2)
Doc: evaluates \var{seq} for
 each subgroup $H$ of the \emph{abelian} group $G$ (given in
 SNF\sidx{Smith normal form} form or as a vector of elementary divisors),
 whose index is bounded by $B$. The subgroups are not ordered in any
 obvious way, unless $G$ is a $p$-group in which case Birkhoff's algorithm
 produces them by decreasing index. A \idx{subgroup} is given as a matrix
 whose columns give its generators on the implicit generators of $G$. For
 example, the following prints all subgroups of index less than 2 in $G =
 \Z/2\Z g_1 \times \Z/2\Z g_2$:
 
 \bprog
 ? G = [2,2]; forsubgroup(H=G, 2, print(H))
 [1; 1]
 [1; 2]
 [2; 1]
 [1, 0; 1, 1]
 @eprog\noindent
 The last one, for instance is generated by $(g_1, g_1 + g_2)$. This
 routine is intended to treat huge groups, when \tet{subgrouplist} is not an
 option due to the sheer size of the output.
 
 For maximal speed the subgroups have been left as produced by the algorithm.
 To print them in canonical form (as left divisors of $G$ in HNF form), one
 can for instance use
 \bprog
 ? G = matdiagonal([2,2]); forsubgroup(H=G, 2, print(mathnf(concat(G,H))))
 [2, 1; 0, 1]
 [1, 0; 0, 2]
 [2, 0; 0, 1]
 [1, 0; 0, 1]
 @eprog\noindent
 Note that in this last representation, the index $[G:H]$ is given by the
 determinant. See \tet{galoissubcyclo} and \tet{galoisfixedfield} for
 applications to \idx{Galois} theory.
 
 \synt{forsubgroup}{void *data, long (*call)(void*,GEN), GEN G, GEN bound}.

Function: forvec
Class: basic
Section: programming/control
C-Name: forvec
Prototype: vV=GID0,L,
Help: forvec(X=v,seq,{flag=0}): v being a vector of two-component vectors of
 length n, the sequence is evaluated with X[i] going from v[i][1] to v[i][2]
 for i=n,..,1 if flag is zero or omitted. If flag = 1 (resp. flag = 2),
 restrict to increasing (resp. strictly increasing) sequences.
Doc: Let $v$ be an $n$-component
 vector (where $n$ is arbitrary) of two-component vectors $[a_i,b_i]$
 for $1\le i\le n$. This routine evaluates \var{seq}, where the formal
 variables $X[1],\dots, X[n]$ go from $a_1$ to $b_1$,\dots, from $a_n$ to
 $b_n$, i.e.~$X$ goes from $[a_1,\dots,a_n]$ to $[b_1,\dots,b_n]$ with respect
 to the lexicographic ordering. (The formal variable with the highest index
 moves the fastest.) If $\fl=1$, generate only nondecreasing vectors $X$, and
 if $\fl=2$, generate only strictly increasing vectors $X$.
 
 The type of $X$ is the same as the type of $v$: \typ{VEC} or \typ{COL}.

Function: frac
Class: basic
Section: conversions
C-Name: gfrac
Prototype: G
Help: frac(x): fractional part of x = x-floor(x).
Doc: 
 fractional part of $x$. Identical to
 $x-\text{floor}(x)$. If $x$ is real, the result is in $[0,1[$.

Function: galoisexport
Class: basic
Section: number_fields
C-Name: galoisexport
Prototype: GD0,L,
Help: galoisexport(gal,{flag}): gal being a Galois group as output by
 galoisinit, output a string representing the underlying permutation group in
 GAP notation (default) or Magma notation (flag = 1).
Doc: \var{gal} being be a Galois group as output by \tet{galoisinit},
 export the underlying permutation group as a string suitable
 for (no flags or $\fl=0$) GAP or ($\fl=1$) Magma. The following example
 compute the index of the underlying abstract group in the GAP library:
 \bprog
 ? G = galoisinit(x^6+108);
 ? s = galoisexport(G)
 %2 = "Group((1, 2, 3)(4, 5, 6), (1, 4)(2, 6)(3, 5))"
 ? extern("echo \"IdGroup("s");\" | gap -q")
 %3 = [6, 1]
 ? galoisidentify(G)
 %4 = [6, 1]
 @eprog\noindent
 This command also accepts subgroups returned by \kbd{galoissubgroups}.
 
 To \emph{import} a GAP permutation into gp (for \tet{galoissubfields} for
 instance), the following GAP function may be useful :
 \bprog
  PermToGP := function(p, n)
    return Permuted([1..n],p);
  end;
 
  gap> p:= (1,26)(2,5)(3,17)(4,32)(6,9)(7,11)(8,24)(10,13)(12,15)(14,27)
    (16,22)(18,28)(19,20)(21,29)(23,31)(25,30)
  gap> PermToGP(p,32);
  [ 26, 5, 17, 32, 2, 9, 11, 24, 6, 13, 7, 15, 10, 27, 12, 22, 3, 28, 20, 19,
    29, 16, 31, 8, 30, 1, 14, 18, 21, 25, 23, 4 ]
  @eprog

Function: galoisfixedfield
Class: basic
Section: number_fields
C-Name: galoisfixedfield
Prototype: GGD0,L,Dn
Help: galoisfixedfield(gal,perm,{flag},{v=y}): gal being a Galois group as
 output by galoisinit and perm a subgroup, an element of gal.group or a vector
 of such elements, return [P,x] such that P is a polynomial defining the fixed
 field of gal[1] by the subgroup generated by perm, and x is a root of P in gal
 expressed as a polmod in gal.pol. If flag is 1 return only P. If flag is 2
 return [P,x,F] where F is the factorization of gal.pol over the field
 defined by P, where the variable v stands for a root of P.
Description: 
 (gen, gen, ?small, ?var):vec        galoisfixedfield($1, $2, $3, $4)
Doc: \var{gal} being be a Galois group as output by \tet{galoisinit} and
 \var{perm} an element of $\var{gal}.group$, a vector of such elements
 or a subgroup of \var{gal} as returned by galoissubgroups,
 computes the fixed field of \var{gal} by the automorphism defined by the
 permutations \var{perm} of the roots $\var{gal}.roots$. $P$ is guaranteed to
 be squarefree modulo $\var{gal}.p$.
 
 If no flags or $\fl=0$, output format is the same as for \tet{nfsubfield},
 returning $[P,x]$ such that $P$ is a polynomial defining the fixed field, and
 $x$ is a root of $P$ expressed as a polmod in $\var{gal}.pol$.
 
 If $\fl=1$ return only the polynomial $P$.
 
 If $\fl=2$ return $[P,x,F]$ where $P$ and $x$ are as above and $F$ is the
 factorization of $\var{gal}.pol$ over the field defined by $P$, where
 variable $v$ ($y$ by default) stands for a root of $P$. The priority of $v$
 must be less than the priority of the variable of $\var{gal}.pol$ (see
 \secref{se:priority}). Example:
 
 \bprog
 ? G = galoisinit(x^4+1);
 ? galoisfixedfield(G,G.group[2],2)
 %2 = [x^2 + 2, Mod(x^3 + x, x^4 + 1), [x^2 - y*x - 1, x^2 + y*x - 1]]
 @eprog\noindent
 computes the factorization  $x^4+1=(x^2-\sqrt{-2}x-1)(x^2+\sqrt{-2}x-1)$

Function: galoisgetpol
Class: basic
Section: number_fields
C-Name: galoisgetpol
Prototype: LD0,L,D1,L,
Help: galoisgetpol(a,{b},{s}): Query the galpol package for a polynomial with
 Galois group isomorphic to GAP4(a,b), totally real if s=1 (default) and
 totally complex if s=2.  The output is a vector [pol, den] where pol is the
 polynomial and den is the common denominator of the conjugates expressed
 as a polynomial in a root of pol. If b and s are omitted, return the number of
 isomorphism classes of groups of order a.
Description: 
 (small):int               galoisnbpol($1)
 (small,):int              galoisnbpol($1)
 (small,,):int             galoisnbpol($1)
 (small,small,small):vec   galoisgetpol($1, $2 ,$3)
Doc: Query the galpol package for a polynomial with Galois group isomorphic to
 GAP4(a,b), totally real if $s=1$ (default) and totally complex if $s=2$. The
 output is a vector [\kbd{pol}, \kbd{den}] where \kbd{pol} is the polynomial and
 \kbd{den} is the common denominator of the conjugates expressed as a
 polynomial in a root of \kbd{pol}, which can be passed as an optional argument
 to \tet{galoisinit} and \tet{nfgaloisconj} as follows:
 \bprog
 V=galoisgetpol(8,4,1);
 G=galoisinit(V[1], V[2])  \\ passing V[2] speeds up the computation
 @eprog
 
 If $b$ and $s$ are omitted, return the number of isomorphic class of groups
 of order $a$.
Variant: Also available is \fun{GEN}{galoisnbpol}{long a} when $b$ and $s$
 are omitted.

Function: galoisidentify
Class: basic
Section: number_fields
C-Name: galoisidentify
Prototype: G
Help: galoisidentify(gal): gal being a Galois group as output by galoisinit,
 output the isomorphism class of the underlying abstract group as a
 two-components vector [o,i], where o is the group order, and i is the group
 index in the GAP4 small group library.
Doc: \var{gal} being be a Galois group as output by \tet{galoisinit},
 output the isomorphism class of the underlying abstract group as a
 two-components vector $[o,i]$, where $o$ is the group order, and $i$ is the
 group index in the GAP4 Small Group library, by Hans Ulrich Besche, Bettina
 Eick and Eamonn O'Brien.
 
 This command also accepts subgroups returned by \kbd{galoissubgroups}.
 
 The current implementation is limited to degree less or equal to $127$.
 Some larger ``easy'' orders are also supported.
 
 The output is similar to the output of the function \kbd{IdGroup} in GAP4.
 Note that GAP4 \kbd{IdGroup} handles all groups of order less than $2000$
 except $1024$, so you can use \tet{galoisexport} and GAP4 to identify large
 Galois groups.

Function: galoisinit
Class: basic
Section: number_fields
C-Name: galoisinit
Prototype: GDG
Help: galoisinit(pol,{den}): pol being a polynomial or a number field as
 output by nfinit defining a Galois extension of Q, compute the Galois group
 and all neccessary informations for computing fixed fields. den is optional
 and has the same meaning as in nfgaloisconj(,4)(see manual).
Description: 
 (gen, ?int):gal        galoisinit($1, $2)
Doc: computes the Galois group
 and all necessary information for computing the fixed fields of the
 Galois extension $K/\Q$ where $K$ is the number field defined by
 $\var{pol}$ (monic irreducible polynomial in $\Z[X]$ or
 a number field as output by \tet{nfinit}). The extension $K/\Q$ must be
 Galois with Galois group ``weakly'' super-solvable, see below;
 returns 0 otherwise. Hence this permits to quickly check whether a polynomial
 of order strictly less than $36$ is Galois or not.
 
 The algorithm used is an improved version of the paper
 ``An efficient algorithm for the computation of Galois automorphisms'',
 Bill Allombert, Math.~Comp, vol.~73, 245, 2001, pp.~359--375.
 
 A group $G$ is said to be ``weakly'' super-solvable if there exists a
 normal series
 
 $\{1\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_{n-1}
 \triangleleft H_n$
 
 such that each $H_i$ is normal in $G$ and for $i<n$, each quotient group
 $H_{i+1}/H_i$ is cyclic, and either $H_n=G$ (then $G$ is super-solvable) or
 $G/H_n$ is isomorphic to either $A_4$ or $S_4$.
 
 In practice, almost all small groups are WKSS, the exceptions having order
 36(1 exception), 48(2), 56(1), 60(1), 72(5), 75(1), 80(1), 96(10) and $\geq
 108$.
 
 This function is a prerequisite for most of the \kbd{galois}$xxx$ routines.
 For instance:
 
 \bprog
 P = x^6 + 108;
 G = galoisinit(P);
 L = galoissubgroups(G);
 vector(#L, i, galoisisabelian(L[i],1))
 vector(#L, i, galoisidentify(L[i]))
 @eprog
 
 The output is an 8-component vector \var{gal}.
 
 $\var{gal}[1]$ contains the polynomial \var{pol}
 (\kbd{\var{gal}.pol}).
 
 $\var{gal}[2]$ is a three-components vector $[p,e,q]$ where $p$ is a
 prime number (\kbd{\var{gal}.p}) such that \var{pol} totally split
 modulo $p$ , $e$ is an integer and $q=p^e$ (\kbd{\var{gal}.mod}) is the
 modulus of the roots in \kbd{\var{gal}.roots}.
 
 $\var{gal}[3]$ is a vector $L$ containing the $p$-adic roots of
 \var{pol} as integers implicitly modulo \kbd{\var{gal}.mod}.
 (\kbd{\var{gal}.roots}).
 
 $\var{gal}[4]$ is the inverse of the Vandermonde matrix of the
 $p$-adic roots of \var{pol}, multiplied by $\var{gal}[5]$.
 
 $\var{gal}[5]$ is a multiple of the least common denominator of the
 automorphisms expressed as polynomial in a root of \var{pol}.
 
 $\var{gal}[6]$ is the Galois group $G$ expressed as a vector of
 permutations of $L$ (\kbd{\var{gal}.group}).
 
 $\var{gal}[7]$ is a generating subset $S=[s_1,\ldots,s_g]$ of $G$
 expressed as a vector of permutations of $L$ (\kbd{\var{gal}.gen}).
 
 $\var{gal}[8]$ contains the relative orders $[o_1,\ldots,o_g]$ of
 the generators of $S$ (\kbd{\var{gal}.orders}).
 
 Let $H_n$ be as above, we have the following properties:
 
 \quad\item if $G/H_n\simeq A_4$ then $[o_1,\ldots,o_g]$ ends by
 $[2,2,3]$.
 
 \quad\item if $G/H_n\simeq S_4$ then $[o_1,\ldots,o_g]$ ends by
 $[2,2,3,2]$.
 
 \quad\item for $1\leq i \leq g$ the subgroup of $G$ generated by
 $[s_1,\ldots,s_g]$ is normal, with the exception of $i=g-2$ in the
 $A_4$ case and of $i=g-3$ in the $S_A$ case.
 
 \quad\item the relative order $o_i$ of $s_i$ is its order in the
 quotient group $G/\langle s_1,\ldots,s_{i-1}\rangle$, with the same
 exceptions.
 
 \quad\item for any $x\in G$ there exists a unique family
 $[e_1,\ldots,e_g]$ such that (no exceptions):
 
 -- for $1\leq i \leq g$ we have $0\leq e_i<o_i$
 
 -- $x=g_1^{e_1}g_2^{e_2}\ldots g_n^{e_n}$
 
 If present $den$ must be a suitable value for $\var{gal}[5]$.

Function: galoisisabelian
Class: basic
Section: number_fields
C-Name: galoisisabelian
Prototype: GD0,L,
Help: galoisisabelian(gal,{flag=0}): gal being as output by galoisinit,
 return 0 if gal is not abelian, the HNF matrix of gal over gal.gen if
 flag=0, 1 if flag is 1, and the SNF of gal is flag=2.
Doc: \var{gal} being as output by \kbd{galoisinit}, return $0$ if
 \var{gal} is not an abelian group, and the HNF matrix of \var{gal} over
 \kbd{gal.gen} if $fl=0$, $1$ if $fl=1$.
 
 This command also accepts subgroups returned by \kbd{galoissubgroups}.

Function: galoisisnormal
Class: basic
Section: number_fields
C-Name: galoisisnormal
Prototype: lGG
Help: galoisisnormal(gal,subgrp): gal being as output by galoisinit,
 and subgrp a subgroup of gal as output by galoissubgroups,
 return 1 if subgrp is a normal subgroup of gal, else return 0.
Doc: \var{gal} being as output by \kbd{galoisinit}, and \var{subgrp} a subgroup
 of \var{gal} as output by \kbd{galoissubgroups},return $1$ if \var{subgrp} is a
 normal subgroup of \var{gal}, else return 0.
 
 This command also accepts subgroups returned by \kbd{galoissubgroups}.

Function: galoispermtopol
Class: basic
Section: number_fields
C-Name: galoispermtopol
Prototype: GG
Help: galoispermtopol(gal,perm): gal being a Galois group as output by
 galoisinit and perm a element of gal.group, return the polynomial defining
 the corresponding Galois automorphism.
Doc: \var{gal} being a
 Galois group as output by \kbd{galoisinit} and \var{perm} a element of
 $\var{gal}.group$, return the polynomial defining the Galois
 automorphism, as output by \kbd{nfgaloisconj}, associated with the
 permutation \var{perm} of the roots $\var{gal}.roots$. \var{perm} can
 also be a vector or matrix, in this case, \kbd{galoispermtopol} is
 applied to all components recursively.
 
 \noindent Note that
 \bprog
 G = galoisinit(pol);
 galoispermtopol(G, G[6])~
 @eprog\noindent
 is equivalent to \kbd{nfgaloisconj(pol)}, if degree of \var{pol} is greater
 or equal to $2$.

Function: galoissubcyclo
Class: basic
Section: number_fields
C-Name: galoissubcyclo
Prototype: GDGD0,L,Dn
Help: galoissubcyclo(N,H,{fl=0},{v}):Compute a polynomial (in variable v)
 defining the subfield of Q(zeta_n) fixed by the subgroup H of (Z/nZ)*. N can
 be an integer n, znstar(n) or bnrinit(bnfinit(y),[n,[1]],1). H can be given
 by a generator, a set of generator given by a vector or a HNF matrix (see
 manual). If flag is 1, output only the conductor of the abelian extension.
 If flag is 2 output [pol,f] where pol is the polynomial and f the conductor.
Doc: computes the subextension
 of $\Q(\zeta_n)$ fixed by the subgroup $H \subset (\Z/n\Z)^*$. By the
 Kronecker-Weber theorem, all abelian number fields can be generated in this
 way (uniquely if $n$ is taken to be minimal).
 
 \noindent The pair $(n, H)$ is deduced from the parameters $(N, H)$ as follows
 
 \item $N$ an integer: then $n = N$; $H$ is a generator, i.e. an
 integer or an integer modulo $n$; or a vector of generators.
 
 \item $N$ the output of \kbd{znstar($n$)}. $H$ as in the first case
 above, or a matrix, taken to be a HNF left divisor of the SNF for $(\Z/n\Z)^*$
 (of type \kbd{$N$.cyc}), giving the generators of $H$ in terms of \kbd{$N$.gen}.
 
 \item $N$ the output of \kbd{bnrinit(bnfinit(y), $m$, 1)} where $m$ is a
 module. $H$ as in the first case, or a matrix taken to be a HNF left
 divisor of the SNF for the ray class group modulo $m$
 (of type \kbd{$N$.cyc}), giving the generators of $H$ in terms of \kbd{$N$.gen}.
 
 In this last case, beware that $H$ is understood relatively to $N$; in
 particular, if the infinite place does not divide the module, e.g if $m$ is
 an integer, then it is not a subgroup of $(\Z/n\Z)^*$, but of its quotient by
 $\{\pm 1\}$.
 
 If $fl=0$, compute a polynomial (in the variable \var{v}) defining the
 the subfield of $\Q(\zeta_n)$ fixed by the subgroup \var{H} of $(\Z/n\Z)^*$.
 
 If $fl=1$, compute only the conductor of the abelian extension, as a module.
 
 If $fl=2$, output $[pol, N]$, where $pol$ is the polynomial as output when
 $fl=0$ and $N$ the conductor as output when $fl=1$.
 
 The following function can be used to compute all subfields of
 $\Q(\zeta_n)$ (of exact degree \kbd{d}, if \kbd{d} is set):
 \bprog
 polsubcyclo(n, d = -1)=
 { my(bnr,L,IndexBound);
   IndexBound = if (d < 0, n, [d]);
   bnr = bnrinit(bnfinit(y), [n,[1]], 1);
   L = subgrouplist(bnr, IndexBound, 1);
   vector(#L,i, galoissubcyclo(bnr,L[i]));
 }
 @eprog\noindent
 Setting \kbd{L = subgrouplist(bnr, IndexBound)} would produce subfields of exact
 conductor $n\infty$.

Function: galoissubfields
Class: basic
Section: number_fields
C-Name: galoissubfields
Prototype: GD0,L,Dn
Help: galoissubfields(G,{flags=0},{v}):Output all the subfields of G. flags
 have the same meaning as for galoisfixedfield.
Doc: outputs all the subfields of the Galois group \var{G}, as a vector.
 This works by applying \kbd{galoisfixedfield} to all subgroups. The meaning of
 the flag \var{fl} is the same as for \kbd{galoisfixedfield}.

Function: galoissubgroups
Class: basic
Section: number_fields
C-Name: galoissubgroups
Prototype: G
Help: galoissubgroups(G):Output all the subgroups of G.
Doc: outputs all the subgroups of the Galois group \kbd{gal}. A subgroup is a
 vector [\var{gen}, \var{orders}], with the same meaning
 as for $\var{gal}.gen$ and $\var{gal}.orders$. Hence \var{gen} is a vector of
 permutations generating the subgroup, and \var{orders} is the relatives
 orders of the generators. The cardinal of a subgroup is the product of the
 relative orders. Such subgroup can be used instead of a Galois group in the
 following command: \kbd{galoisisabelian}, \kbd{galoissubgroups},
 \kbd{galoisexport} and \kbd{galoisidentify}.
 
 To get the subfield fixed by a subgroup \var{sub} of \var{gal}, use
 \bprog
 galoisfixedfield(gal,sub[1])
 @eprog

Function: gamma
Class: basic
Section: transcendental
C-Name: ggamma
Prototype: Gp
Help: gamma(s): gamma function at x, s a complex or p-adic number.
Doc: For $s$ a complex number, evaluates Euler's gamma
 function \sidx{gamma-function}
 $$\Gamma(s)=\int_0^\infty t^{s-1}\exp(-t)\,dt.$$
 Error if $s$ is a non-positive integer, where $\Gamma$ has a pole.
 
 For $s$ a $p$-adic number, evaluates the Morita gamma function at $s$, that
 is the unique continuous $p$-adic function on the $p$-adic integers
 extending $\Gamma_p(k)=(-1)^k \prod_{j<k}'j$, where the prime means that $p$
 does not divide $j$.
 \bprog
 ? gamma(1/4 + O(5^10))
 %1= 1 + 4*5 + 3*5^4 + 5^6 + 5^7 + 4*5^9 + O(5^10)
 ? algdep(%,4)
 %2 = x^4 + 4*x^2 + 5
 @eprog
Variant: For a \typ{PADIC} $x$, the function
 \fun{GEN}{Qp_gamma}{GEN x} is also available.

Function: gammah
Class: basic
Section: transcendental
C-Name: ggamd
Prototype: Gp
Help: gammah(x): gamma of x+1/2 (x integer).
Doc: gamma function evaluated at the argument $x+1/2$.

Function: gcd
Class: basic
Section: number_theoretical
C-Name: ggcd0
Prototype: GDG
Help: gcd(x,{y}): greatest common divisor of x and y.
Description: 
 (small, small):small   cgcd($1, $2)
 (int, int):int         gcdii($1, $2)
 (gen):gen              content($1)
 (gen, gen):gen         ggcd($1, $2)
Doc: creates the greatest common divisor of $x$ and $y$.
 If you also need the $u$ and $v$ such that $x*u + y*v = \gcd(x,y)$,
 use the \tet{bezout} function. $x$ and $y$ can have rather quite general
 types, for instance both rational numbers. If $y$ is omitted and $x$ is a
 vector, returns the $\text{gcd}$ of all components of $x$, i.e.~this is
 equivalent to \kbd{content(x)}.
 
 When $x$ and $y$ are both given and one of them is a vector/matrix type,
 the GCD is again taken recursively on each component, but in a different way.
 If $y$ is a vector, resp.~matrix, then the result has the same type as $y$,
 and components equal to \kbd{gcd(x, y[i])}, resp.~\kbd{gcd(x, y[,i])}. Else
 if $x$ is a vector/matrix the result has the same type as $x$ and an
 analogous definition. Note that for these types, \kbd{gcd} is not
 commutative.
 
 The algorithm used is a naive \idx{Euclid} except for the following inputs:
 
 \item integers: use modified right-shift binary (``plus-minus''
 variant).
 
 \item univariate polynomials with coefficients in the same number
 field (in particular rational): use modular gcd algorithm.
 
 \item general polynomials: use the \idx{subresultant algorithm} if
 coefficient explosion is likely (non modular coefficients).
 
 If $u$ and $v$ are polynomials in the same variable with \emph{inexact}
 coefficients, their gcd is defined to be scalar, so that
 \bprog
 ? a = x + 0.0; gcd(a,a)
 %1 = 1
 ? b = y*x + O(y); gcd(b,b)
 %2 = y
 ? c = 4*x + O(2^3); gcd(c,c)
 %2 = 4
 @eprog\noindent A good quantitative check to decide whether such a
 gcd ``should be'' non-trivial, is to use \tet{polresultant}: a value
 close to $0$ means that a small deformation of the inputs has non-trivial gcd.
 You may also use \tet{bezout}, which does try to compute an approximate gcd
 $d$ and provides $u$, $v$ to check whether $u x + v y$ is close to $d$.
Variant: Also available are \fun{GEN}{ggcd}{GEN x, GEN y}, if \kbd{y} is not
 \kbd{NULL}, and \fun{GEN}{content}{GEN x}, if $\kbd{y} = \kbd{NULL}$.

Function: getheap
Class: basic
Section: programming/specific
C-Name: getheap
Prototype: 
Help: getheap(): 2-component vector giving the current number of objects in
 the heap and the space they occupy.
Doc: returns a two-component row vector giving the
 number of objects on the heap and the amount of memory they occupy in long
 words. Useful mainly for debugging purposes.

Function: getrand
Class: basic
Section: programming/specific
C-Name: getrand
Prototype: 
Help: getrand(): current value of random number seed.
Doc: returns the current value of the seed used by the
 pseudo-random number generator \tet{random}. Useful mainly for debugging
 purposes, to reproduce a specific chain of computations. The returned value
 is technical (reproduces an internal state array), and can only be used as an
 argument to \tet{setrand}.

Function: getstack
Class: basic
Section: programming/specific
C-Name: getstack
Prototype: l
Help: getstack(): current value of stack pointer avma.
Doc: returns the current value of $\kbd{top}-\kbd{avma}$, i.e.~the number of
 bytes used up to now on the stack. Useful mainly for debugging purposes.

Function: gettime
Class: basic
Section: programming/specific
C-Name: gettime
Prototype: l
Help: gettime(): time (in milliseconds) since last call to gettime.
Doc: returns the time (in milliseconds) elapsed since either the last call to
 \kbd{gettime}, or to the beginning of the containing GP instruction (if
 inside \kbd{gp}), whichever came last.

Function: global
Class: basic
Section: programming/specific
Help: global(list of variables): obsolete. Scheduled for deletion.
Doc: obsolete. Scheduled for deletion.
 % \syn{NO}

Function: hilbert
Class: basic
Section: number_theoretical
C-Name: hilbert
Prototype: lGGDG
Help: hilbert(x,y,{p}): Hilbert symbol at p of x,y.
Doc: \idx{Hilbert symbol} of $x$ and $y$ modulo the prime $p$, $p=0$ meaning
 the place at infinity (the result is undefined if $p\neq 0$ is not prime).
 
 It is possible to omit $p$, in which case we take $p = 0$ if both $x$
 and $y$ are rational, or one of them is a real number. And take $p = q$
 if one of $x$, $y$ is a \typ{INTMOD} modulo $q$ or a $q$-adic. (Incompatible
 types will raise an error.)

Function: hyperu
Class: basic
Section: transcendental
C-Name: hyperu
Prototype: GGGp
Help: hyperu(a,b,x): U-confluent hypergeometric function.
Doc: $U$-confluent hypergeometric function with
 parameters $a$ and $b$. The parameters $a$ and $b$ can be complex but
 the present implementation requires $x$ to be positive.

Function: idealadd
Class: basic
Section: number_fields
C-Name: idealadd
Prototype: GGG
Help: idealadd(nf,x,y): sum of two ideals x and y in the number field
 defined by nf.
Doc: sum of the two ideals $x$ and $y$ in the number field $\var{nf}$. The
 result is given in HNF.
 \bprog
  ? K = nfinit(x^2 + 1);
  ? a = idealadd(K, 2, x + 1)  \\ ideal generated by 2 and 1+I
  %2 =
  [2 1]
 
  [0 1]
  ? pr = idealprimedec(K, 5)[1];  \\ a prime ideal above 5
  ? idealadd(K, a, pr)     \\ coprime, as expected
  %4 =
  [1 0]
 
  [0 1]
 @eprog\noindent
 This function cannot be used to add arbitrary $\Z$-modules, since it assumes
 that its arguments are ideals:
 \bprog
   ? b = Mat([1,0]~);
   ? idealadd(K, b, b)     \\ only square t_MATs represent ideals
   *** idealadd: non-square t_MAT in idealtyp.
   ? c = [2, 0; 2, 0]; idealadd(K, c, c)   \\ non-sense
   %6 =
   [2 0]
 
   [0 2]
   ? d = [1, 0; 0, 2]; idealadd(K, d, d)   \\ non-sense
   %7 =
   [1 0]
 
   [0 1]
 
 @eprog\noindent In the last two examples, we get wrong results since the
 matrices $c$ and $d$ do not correspond to an ideal : the $\Z$-span of their
 columns (as usual interpreted as coordinates with respect to the integer basis
 \kbd{K.zk}) is not an $O_K$-module. To add arbitrary $\Z$-modules generated
 by the columns of matrices $A$ and $B$, use \kbd{mathnf(concat(A,B))}.

Function: idealaddtoone
Class: basic
Section: number_fields
C-Name: idealaddtoone0
Prototype: GGDG
Help: idealaddtoone(nf,x,{y}): if y is omitted, when the sum of the ideals
 in the number field K defined by nf and given in the vector x is equal to
 Z_K, gives a vector of elements of the corresponding ideals who sum to 1.
 Otherwise, x and y are ideals, and if they sum up to 1, find one element in
 each of them such that the sum is 1.
Doc: $x$ and $y$ being two co-prime
 integral ideals (given in any form), this gives a two-component row vector
 $[a,b]$ such that $a\in x$, $b\in y$ and $a+b=1$.
 
 The alternative syntax $\kbd{idealaddtoone}(\var{nf},v)$, is supported, where
 $v$ is a $k$-component vector of ideals (given in any form) which sum to
 $\Z_K$. This outputs a $k$-component vector $e$ such that $e[i]\in x[i]$ for
 $1\le i\le k$ and $\sum_{1\le i\le k}e[i]=1$.

Function: idealappr
Class: basic
Section: number_fields
C-Name: idealappr0
Prototype: GGD0,L,
Help: idealappr(nf,x,{flag=0}): x being a fractional ideal, gives an element
 b such that v_p(b)=v_p(x) for all prime ideals p dividing x, and v_p(b)>=0
 for all other p. If (optional) flag is non-null x must be a prime ideal
 factorization with possibly zero exponents.
Doc: if $x$ is a fractional ideal
 (given in any form), gives an element $\alpha$ in $\var{nf}$ such that for
 all prime ideals $\goth{p}$ such that the valuation of $x$ at $\goth{p}$ is
 non-zero, we have $v_{\goth{p}}(\alpha)=v_{\goth{p}}(x)$, and
 $v_{\goth{p}}(\alpha)\ge0$ for all other $\goth{p}$.
 
 If $\fl$ is non-zero, $x$ must be given as a prime ideal factorization, as
 output by \kbd{idealfactor}, but possibly with zero or negative exponents.
 This yields an element $\alpha$ such that for all prime ideals $\goth{p}$
 occurring in $x$, $v_{\goth{p}}(\alpha)$ is equal to the exponent of
 $\goth{p}$ in $x$, and for all other prime ideals,
 $v_{\goth{p}}(\alpha)\ge0$. This generalizes $\kbd{idealappr}(\var{nf},x,0)$
 since zero exponents are allowed. Note that the algorithm used is slightly
 different, so that
 \bprog
   idealappr(nf, idealfactor(nf,x))
 @eprog\noindent
 may not be the same as \kbd{idealappr(nf,x,1)}.

Function: idealchinese
Class: basic
Section: number_fields
C-Name: idealchinese
Prototype: GGG
Help: idealchinese(nf,x,y): x being a prime ideal factorization and y a
 vector of elements, gives an element b such that v_p(b-y_p)>=v_p(x) for all
 prime ideals p dividing x, and v_p(b)>=0 for all other p.
Doc: $x$ being a prime ideal factorization
 (i.e.~a 2 by 2 matrix whose first column contains prime ideals, and the second
 column integral exponents), $y$ a vector of elements in $\var{nf}$ indexed by
 the ideals in $x$, computes an element $b$ such that
 
 $v_{\goth{p}}(b - y_{\goth{p}}) \geq v_{\goth{p}}(x)$ for all prime ideals
 in $x$ and $v_{\goth{p}}(b)\geq 0$ for all other $\goth{p}$.

Function: idealcoprime
Class: basic
Section: number_fields
C-Name: idealcoprime
Prototype: GGG
Help: idealcoprime(nf,x,y): gives an element b in nf such that b. x is an
 integral ideal coprime to the integral ideal y.
Doc: given two integral ideals $x$ and $y$
 in the number field $\var{nf}$, returns a $\beta$ in the field,
 such that $\beta\cdot x$ is an integral ideal coprime to $y$.

Function: idealdiv
Class: basic
Section: number_fields
C-Name: idealdiv0
Prototype: GGGD0,L,
Help: idealdiv(nf,x,y,{flag=0}): quotient x/y of two ideals x and y in HNF
 in the number field nf. If (optional) flag is non-null, the quotient is
 supposed to be an integral ideal (slightly faster).
Description: 
 (gen, gen, gen, ?0):gen        idealdiv($1, $2, $3)
 (gen, gen, gen, 1):gen         idealdivexact($1, $2, $3)
 (gen, gen, gen, #small):gen    $"invalid flag in idealdiv"
 (gen, gen, gen, small):gen     idealdiv0($1, $2, $3, $4)
Doc: quotient $x\cdot y^{-1}$ of the two ideals $x$ and $y$ in the number
 field $\var{nf}$. The result is given in HNF.
 
 If $\fl$ is non-zero, the quotient $x \cdot y^{-1}$ is assumed to be an
 integral ideal. This can be much faster when the norm of the quotient is
 small even though the norms of $x$ and $y$ are large.
Variant: Also available are \fun{GEN}{idealdiv}{GEN nf, GEN x, GEN y}
 ($\fl=0$) and \fun{GEN}{idealdivexact}{GEN nf, GEN x, GEN y} ($\fl=1$).

Function: idealfactor
Class: basic
Section: number_fields
C-Name: idealfactor
Prototype: GG
Help: idealfactor(nf,x): factorization of the ideal x given in HNF into
 prime ideals in the number field nf.
Doc: factors into prime ideal powers the
 ideal $x$ in the number field $\var{nf}$. The output format is similar to the
 \kbd{factor} function, and the prime ideals are represented in the form
 output by the \kbd{idealprimedec} function, i.e.~as 5-element vectors.

Function: idealfactorback
Class: basic
Section: number_fields
C-Name: idealfactorback
Prototype: GGDGD0,L,
Help: idealfactorback(nf,f,{e},{flag = 0}): given a factorisation f, gives the
 ideal product back. If e is present, f has to be a
 vector of the same length, and we return the product of the f[i]^e[i]. If
 flag is non-zero, perform idealred along the way.
Doc: gives back the ideal corresponding to a factorization. The integer $1$
 corresponds to the empty factorization.
 If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
 integral), and the corresponding factorization is the product of the
 $f[i]^{e[i]}$.
 
 If not, and $f$ is vector, it is understood as in the preceding case with $e$
 a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
 regular factorization, as produced by \kbd{idealfactor}.
 \bprog
 ? nf = nfinit(y^2+1); idealfactor(nf, 4 + 2*y)
 %1 =
 [[2, [1, 1]~, 2, 1, [1, 1]~] 2]
 
 [[5, [2, 1]~, 1, 1, [-2, 1]~] 1]
 
 ? idealfactorback(nf, %)
 %2 =
 [10 4]
 
 [0  2]
 
 ? f = %1[,1]; e = %1[,2]; idealfactorback(nf, f, e)
 %3 =
 [10 4]
 
 [0  2]
 
 ? % == idealhnf(nf, 4 + 2*y)
 %4 = 1
 @eprog
 If \kbd{flag} is non-zero, perform ideal reductions (\tet{idealred}) along the
 way. This is most useful if the ideals involved are all \emph{extended}
 ideals (for instance with trivial principal part), so that the principal parts
 extracted by \kbd{idealred} are not lost. Here is an example:
 \bprog
 ? f = vector(#f, i, [f[i], [;]]);  \\ transform to extended ideals
 ? idealfactorback(nf, f, e, 1)
 %6 = [[1, 0; 0, 1], [2, 1; [2, 1]~, 1]]
 ? nffactorback(nf, %[2])
 %7 = [4, 2]~
 @eprog
 The extended ideal returned in \kbd{\%6} is the trivial ideal $1$, extended
 with a principal generator given in factored form. We use \tet{nffactorback}
 to recover it in standard form.

Function: idealfrobenius
Class: basic
Section: number_fields
C-Name: idealfrobenius
Prototype: GGG
Help: idealfrobenius(nf,gal,pr): Returns the Frobenius element (pr|nf/Q)
 associated with the unramified prime ideal pr in prid format, in the Galois
 group gal of the number field nf.
Doc: Let $K$ be the number field defined by $nf$ and assume $K/\Q$ be a
 Galois extension with Galois group given \kbd{gal=galoisinit(nf)},
 and that $pr$ is the prime ideal $\goth{P}$ in prid format, and that
 $\goth{P}$ is unramified.
 This function returns a permutation of \kbd{gal.group} which defines the
 automorphism $\sigma=\left(\goth{P}\over K/\Q \right)$, i.e the Frobenius
 element associated to $\goth{P}$. If $p$ is the unique prime number
 in $\goth{P}$, then $\sigma(x)\equiv x^p\mod\P$ for all $x\in\Z_K$.
 \bprog
 ? nf = nfinit(polcyclo(31));
 ? gal = galoisinit(nf);
 ? pr = idealprimedec(nf,101)[1];
 ? g = idealfrobenius(nf,gal,pr);
 ? galoispermtopol(gal,g)
 %5 = x^8
 @eprog\noindent This is correct since $101\equiv 8\mod{31}$.

Function: idealhnf
Class: basic
Section: number_fields
C-Name: idealhnf0
Prototype: GGDG
Help: idealhnf(nf,a,{b}): hermite normal form of the ideal a in the number
 field nf. If called as idealhnf(nf,a,b), the ideal
 is given as aZ_K+bZ_K in the number field K defined by nf.
Doc: gives the \idx{Hermite normal form} of the ideal $a\Z_K+b\Z_K$, where $a$
 and $b$ are elements of the number field $K$ defined by \kbd{nf}.
 \bprog
 ? nf = nfinit(y^3 - 2);
 ? idealhnf(nf, 2, y+1)
 %2 =
 [1 0 0]
 
 [0 1 0]
 
 [0 0 1]
 ? idealhnf(nf, y/2, [0,0,1/3]~)
 %3 =
 [1/3 0 0]
 
 [0 1/6 0]
 
 [0 0 1/6]
 @eprog
 
 If $b$ is omitted, returns the HNF of the ideal defined by $a$: $a$ may be an
 algebraic number (defining a principal ideal), a maximal ideal (as given by
 \kbd{idealprimedec} or \kbd{idealfactor}), or a matrix whose columns give
 generators for the ideal. This last format is a little complicated, but
 useful to reduce general modules to the canonical form once in a while:
 
 \item if strictly less than $N = [K:\Q]$ generators are given, $a$
 is the $\Z_K$-module they generate,
 
 \item if $N$ or more are given, it is \emph{assumed} that they form a
 $\Z$-basis (that the matrix has maximal rank $N$). This acts
 as \kbd{mathnf} since the $\Z_K$-module structure is (taken for
 granted hence) not taken into account in this case.
 \bprog
 ? idealhnf(nf, idealprimedec(nf,2)[1])
 %4 =
 [2 0 0]
 
 [0 1 0]
 
 [0 0 1]
 ? idealhnf(nf, [1,2;2,3;3,4])
 %5 =
 [1 0 0]
 
 [0 1 0]
 
 [0 0 1]
 @eprog
Variant: Also available is \fun{GEN}{idealhnf}{GEN nf, GEN a}.

Function: idealintersect
Class: basic
Section: number_fields
C-Name: idealintersect
Prototype: GGG
Help: idealintersect(nf,A,B): intersection of two ideals A and B in the
 number field defined by nf.
Doc: intersection of the two ideals
 $A$ and $B$ in the number field $\var{nf}$. The result is given in HNF.
 \bprog
 ? nf = nfinit(x^2+1);
 ? idealintersect(nf, 2, x+1)
 %2 =
 [2 0]
 
 [0 2]
 @eprog
 
 This function does not apply to general $\Z$-modules, e.g.~orders, since its
 arguments are replaced by the ideals they generate. The following script
 intersects $\Z$-modules $A$ and $B$ given by matrices of compatible
 dimensions with integer coefficients:
 \bprog
 ZM_intersect(A,B) =
 { my(Ker = matkerint(concat(A,B));
   mathnf( A * vecextract(Ker, Str("..", #A), "..") )
 }
 @eprog

Function: idealinv
Class: basic
Section: number_fields
C-Name: idealinv
Prototype: GG
Help: idealinv(nf,x): inverse of the ideal x in the number field nf.
Description: 
 (gen, gen):gen        idealinv($1, $2)
Doc: inverse of the ideal $x$ in the
 number field $\var{nf}$, given in HNF. If $x$ is an extended
 ideal\sidx{ideal (extended)}, its principal part is suitably
 updated: i.e. inverting $[I,t]$, yields $[I^{-1}, 1/t]$.

Function: ideallist
Class: basic
Section: number_fields
C-Name: ideallist0
Prototype: GLD4,L,
Help: ideallist(nf,bound,{flag=4}): vector of vectors L of all idealstar of
 all ideals of norm<=bound. If (optional) flag is present, its binary digits
 are toggles meaning 1: give generators; 2: add units; 4: give only the
 ideals and not the bid.
Doc: computes the list
 of all ideals of norm less or equal to \var{bound} in the number field
 \var{nf}. The result is a row vector with exactly \var{bound} components.
 Each component is itself a row vector containing the information about
 ideals of a given norm, in no specific order, depending on the value of
 $\fl$:
 
 The possible values of $\fl$ are:
 
 \quad 0: give the \var{bid} associated to the ideals, without generators.
 
 \quad 1: as 0, but include the generators in the \var{bid}.
 
 \quad 2: in this case, \var{nf} must be a \var{bnf} with units. Each
 component is of the form $[\var{bid},U]$, where \var{bid} is as case 0
 and $U$ is a vector of discrete logarithms of the units. More precisely, it
 gives the \kbd{ideallog}s with respect to \var{bid} of \kbd{bnf.tufu}.
 This structure is technical, and only meant to be used in conjunction with
 \tet{bnrclassnolist} or \tet{bnrdisclist}.
 
 \quad 3: as 2, but include the generators in the \var{bid}.
 
 \quad 4: give only the HNF of the ideal.
 
 \bprog
 ? nf = nfinit(x^2+1);
 ? L = ideallist(nf, 100);
 ? L[1]
 %3 = [[1, 0; 0, 1]]  \\@com A single ideal of norm 1
 ? #L[65]
 %4 = 4               \\@com There are 4 ideals of norm 4 in $\Z[i]$
 @eprog
 If one wants more information, one could do instead:
 \bprog
 ? nf = nfinit(x^2+1);
 ? L = ideallist(nf, 100, 0);
 ? l = L[25]; vector(#l, i, l[i].clgp)
 %3 = [[20, [20]], [16, [4, 4]], [20, [20]]]
 ? l[1].mod
 %4 = [[25, 18; 0, 1], []]
 ? l[2].mod
 %5 = [[5, 0; 0, 5], []]
 ? l[3].mod
 %6 = [[25, 7; 0, 1], []]
 @eprog\noindent where we ask for the structures of the $(\Z[i]/I)^*$ for all
 three ideals of norm $25$. In fact, for all moduli with finite part of norm
 $25$ and trivial Archimedean part, as the last 3 commands show. See
 \tet{ideallistarch} to treat general moduli.

Function: ideallistarch
Class: basic
Section: number_fields
C-Name: ideallistarch
Prototype: GGG
Help: ideallistarch(nf,list,arch): list is a vector of vectors of of bid's as
 output by ideallist. Return a vector of vectors with the same number of
 components as the original list. The leaves give information about
 moduli whose finite part is as in original list, in the same order, and
 Archimedean part is now arch. The information contained is of the same kind
 as was present in the input.
Doc: 
 \var{list} is a vector of vectors of bid's, as output by \tet{ideallist} with
 flag $0$ to $3$. Return a vector of vectors with the same number of
 components as the original \var{list}. The leaves give information about
 moduli whose finite part is as in original list, in the same order, and
 Archimedean part is now \var{arch} (it was originally trivial). The
 information contained is of the same kind as was present in the input; see
 \tet{ideallist}, in particular the meaning of \fl.
 
 \bprog
 ? bnf = bnfinit(x^2-2);
 ? bnf.sign
 %2 = [2, 0]                         \\@com two places at infinity
 ? L = ideallist(bnf, 100, 0);
 ? l = L[98]; vector(#l, i, l[i].clgp)
 %4 = [[42, [42]], [36, [6, 6]], [42, [42]]]
 ? La = ideallistarch(bnf, L, [1,1]); \\@com add them to the modulus
 ? l = La[98]; vector(#l, i, l[i].clgp)
 %6 = [[168, [42, 2, 2]], [144, [6, 6, 2, 2]], [168, [42, 2, 2]]]
 @eprog
 Of course, the results above are obvious: adding $t$ places at infinity will
 add $t$ copies of $\Z/2\Z$ to the ray class group. The following application
 is more typical:
 \bprog
 ? L = ideallist(bnf, 100, 2);        \\@com units are required now
 ? La = ideallistarch(bnf, L, [1,1]);
 ? H = bnrclassnolist(bnf, La);
 ? H[98];
 %6 = [2, 12, 2]
 @eprog

Function: ideallog
Class: basic
Section: number_fields
C-Name: ideallog
Prototype: GGG
Help: ideallog(nf,x,bid): if bid is a big ideal, as given by
 idealstar(nf,I,1) or idealstar(nf,I,2), gives the vector of exponents on the
 generators bid[2][3] (even if these generators have not been computed).
Doc: $\var{nf}$ is a number field,
 \var{bid} is as output by \kbd{idealstar(nf, D, \dots)} and $x$ a
 non-necessarily integral element of \var{nf} which must have valuation
 equal to 0 at all prime ideals in the support of $\kbd{D}$. This function
 computes the discrete logarithm of $x$ on the generators given in
 \kbd{\var{bid}.gen}. In other words, if $g_i$ are these generators, of orders
 $d_i$ respectively, the result is a column vector of integers $(x_i)$ such
 that $0\le x_i<d_i$ and
 $$x \equiv \prod_i g_i^{x_i} \pmod{\ ^*D}\enspace.$$
 Note that when the support of \kbd{D} contains places at infinity, this
 congruence implies also sign conditions on the associated real embeddings.
 See \tet{znlog} for the limitations of the underlying discrete log algorithms.

Function: idealmin
Class: basic
Section: number_fields
C-Name: idealmin
Prototype: GGDG
Help: idealmin(nf,ix,{vdir}): pseudo-minimum of the ideal ix in the direction
 vdir in the number field nf.
Doc: \emph{This function is useless and kept for backward compatibility only,
 use \kbd{idealred}}. Computes a pseudo-minimum of the ideal $x$ in the
 direction \var{vdir} in the number field \var{nf}.

Function: idealmul
Class: basic
Section: number_fields
C-Name: idealmul0
Prototype: GGGD0,L,
Help: idealmul(nf,x,y,{flag=0}): product of the two ideals x and y in the
 number field nf. If (optional) flag is non-nul, reduce the result.
Description: 
 (gen, gen, gen, ?0):gen        idealmul($1, $2, $3)
 (gen, gen, gen, 1):gen         idealmulred($1, $2, $3)
 (gen, gen, gen, #small):gen    $"invalid flag in idealmul"
 (gen, gen, gen, small):gen     idealmul0($1, $2, $3, $4)
Doc: ideal multiplication of the ideals $x$ and $y$ in the number field
 \var{nf}; the result is the ideal product in HNF. If either $x$ or $y$
 are extended ideals\sidx{ideal (extended)}, their principal part is suitably
 updated: i.e. multiplying $[I,t]$, $[J,u]$ yields $[IJ, tu]$; multiplying
 $I$ and $[J, u]$ yields $[IJ, u]$.
 \bprog
 ? nf = nfinit(x^2 + 1);
 ? idealmul(nf, 2, x+1)
 %2 =
 [4 2]
 
 [0 2]
 ? idealmul(nf, [2, x], x+1)        \\ extended ideal * ideal
 %4 = [[4, 2; 0, 2], x]
 ? idealmul(nf, [2, x], [x+1, x])   \\ two extended ideals
 %5 = [[4, 2; 0, 2], [-1, 0]~]
 @eprog\noindent
 If $\fl$ is non-zero, reduce the result using \kbd{idealred}.
Variant: 
 \noindent See also \fun{GEN}{idealmul}{GEN
 nf, GEN x, GEN y} ($\fl=0$) and \fun{GEN}{idealmulred}{GEN nf, GEN x, GEN y}
 ($\fl\neq0$).

Function: idealnorm
Class: basic
Section: number_fields
C-Name: idealnorm
Prototype: GG
Help: idealnorm(nf,x): norm of the ideal x in the number field nf.
Doc: computes the norm of the ideal~$x$ in the number field~$\var{nf}$.

Function: idealpow
Class: basic
Section: number_fields
C-Name: idealpow0
Prototype: GGGD0,L,
Help: idealpow(nf,x,k,{flag=0}): k-th power of the ideal x in HNF in the
 number field nf. If (optional) flag is non-null, reduce the result.
Doc: computes the $k$-th power of
 the ideal $x$ in the number field $\var{nf}$; $k\in\Z$.
 If $x$ is an extended
 ideal\sidx{ideal (extended)}, its principal part is suitably
 updated: i.e. raising $[I,t]$ to the $k$-th power, yields $[I^k, t^k]$.
 
 If $\fl$ is non-zero, reduce the result using \kbd{idealred}, \emph{throughout
 the (binary) powering process}; in particular, this is \emph{not} the same as
 as $\kbd{idealpow}(\var{nf},x,k)$ followed by reduction.
Variant: 
 \noindent See also
 \fun{GEN}{idealpow}{GEN nf, GEN x, GEN k} and
 \fun{GEN}{idealpows}{GEN nf, GEN x, long k} ($\fl = 0$).
 Corresponding to $\fl=1$ is \fun{GEN}{idealpowred}{GEN nf, GEN vp, GEN k}.

Function: idealprimedec
Class: basic
Section: number_fields
C-Name: idealprimedec
Prototype: GG
Help: idealprimedec(nf,p): prime ideal decomposition of the prime number p
 in the number field nf as a vector of 5 component vectors [p,a,e,f,b]
 representing the prime ideals pZ_K+a. Z_K, e,f as usual, a as vector of
 components on the integral basis, b Lenstra's constant.
Doc: computes the prime ideal
 decomposition of the (positive) prime number $p$ in the number field $K$
 represented by \var{nf}. If a non-prime $p$ is given the result is undefined.
 
 The result is a vector of \tev{prid} structures, each representing one of the
 prime ideals above $p$ in the number field $\var{nf}$. The representation
 $\kbd{pr}=[p,a,e,f,b]$ of a prime ideal means the following: $a$ and $b$ are
 algebraic integers in the maximal order $\Z_K$; the prime ideal is
 equal to $\goth{p} = p\Z_K + a\Z_K$;
 $e$ is the ramification index; $f$ is the residual index;
 and $b$ is such that $\goth{p}^{-1}=\Z_K+ b/ p\Z_K$, which is used internally
 to compute valuations. The algebraic number $a$ is guaranteed to have a
 valuation equal to 1 at the prime ideal (this is automatic if $e>1$).
 
 The components of \kbd{pr} should be accessed by member functions: \kbd{pr.p},
 \kbd{pr.e}, \kbd{pr.f}, and \kbd{pr.gen} (returns the vector $[p,a]$):
 \bprog
 ? K = nfinit(x^3-2);
 ? L = idealprimedec(K, 5);
 ? #L       \\ 2 primes above 5 in Q(2^(1/3))
 %3 = 2
 ? p1 = L[1]; p2 = L[2];
 ? [p1.e, p1.f]    \\ the first is unramified of degree 1
 %4 = [1, 1]
 ? [p2.e, p2.f]    \\ the second is unramified of degree 2
 %5 = [1, 2]
 ? p1.gen
 %6 = [5, [2, 1, 0]~]
 ? nfbasistoalg(K, %[2])  \\ a uniformizer for p1
 %7 = Mod(x + 2, x^3 - 2)
 @eprog

Function: idealramgroups
Class: basic
Section: number_fields
C-Name: idealramgroups
Prototype: GGG
Help: idealramgroups(nf,gal,pr): let pr be a prime ideal pr in prid format, in
 the Galois group gal of the number field nf, return a vector g such that g[1]
 is the decomposition group of pr, g[2] is the inertia group, g[i] is the
 (i-2)th ramification group of pr, all trivial subgroups being omitted.
Doc: Let $K$ be the number field defined by $nf$ and assume $K/\Q$ be a
 Galois extension with Galois group $G$ given \kbd{gal=galoisinit(nf)},
 and that $pr$ is the prime ideal $\goth{P}$ in prid format.
 This function returns a vector $g$ of subgroups of \kbd{gal}
 as follow:
 
 \item \kbd{g[1]} is the decomposition group of $\goth{P}$,
 
 \item \kbd{g[2]} is $G_0(\goth{P})$, the inertia group of $\goth{P}$,
 
 and for $i\geq 2$,
 
 \item \kbd{g[i]} is $G_{i-2}(\goth{P})$, the $i-2$-th ramification group of
 $\goth{P}$.
 
 The length of $g$ is the number of non-trivial groups in the sequence, thus
 is $0$ if $e=1$ and $f=1$, and $1$ if $f>1$ and $e=1$.
 
 \bprog
 ? nf=nfinit(x^6+108);
 ? gal=galoisinit(nf);
 ? pr=idealprimedec(nf,2)[1];
 ? iso=idealramgroups(nf,gal,pr)[2]
 %4 = [[Vecsmall([2, 3, 1, 5, 6, 4])], Vecsmall([3])]
 ? nfdisc(galoisfixedfield(gal,iso,1))
 %5 = -3
 @eprog\noindent The field fixed by the inertia group of $2$ is not ramified at
 $2$.

Function: idealred
Class: basic
Section: number_fields
C-Name: idealred0
Prototype: GGDG
Help: idealred(nf,I,{v=0}): LLL reduction of the ideal I in the number
 field nf along direction v, in HNF.
Doc: \idx{LLL} reduction of
 the ideal $I$ in the number field \var{nf}, along the direction $v$.
 The $v$ parameter is best left omitted, but if it is present, it must
 be an $\kbd{nf.r1} + \kbd{nf.r2}$-component vector of \emph{non-negative}
 integers. (What counts is the relative magnitude of the entries: if all
 entries are equal, the effect is the same as if the vector had been omitted.)
 
 This function finds a ``small'' $a$ in $I$ (see the end for technical details).
 The result is the Hermite normal form of
 the ``reduced'' ideal $J = r I/a$, where $r$ is the unique rational number such
 that $J$ is integral and primitive. (This is usually not a reduced ideal in
 the sense of \idx{Buchmann}.)
 \bprog
 ? K = nfinit(y^2+1);
 ? P = idealprimedec(K,5)[1];
 ? idealred(K, P)
 %3 =
 [1 0]
 
 [0 1]
 @eprog\noindent More often than not, a \idx{principal ideal} yields the unit
 ideal as above. This is a quick and dirty way to check if ideals are principal,
 but it is not a necessary condition: a non-trivial result does not prove that
 the ideal is non-principal. For guaranteed results, see \kbd{bnfisprincipal},
 which requires the computation of a full \kbd{bnf} structure.
 
 If the input is an extended ideal $[I,s]$, the output is $[J,sa/r]$; this way,
 one can keep track of the principal ideal part:
 \bprog
 ? idealred(K, [P, 1])
 %5 = [[1, 0; 0, 1], [-2, 1]~]
 @eprog\noindent
 meaning that $P$ is generated by $[-2, 1]~$. The number field element in the
 extended part is an algebraic number in any form \emph{or} a factorization
 matrix (in terms of number field elements, not ideals!). In the latter case,
 elements stay in factored form, which is a convenient way to avoid
 coefficient explosion; see also \tet{idealpow}.
 
 \misctitle{Technical note} The routine computes an LLL-reduced
 basis for the lattice $I$ equipped with the quadratic form
 $$|| x ||_v^2 = \sum_{i=1}^{r_1+r_2} 2^{v_i}\varepsilon_i|\sigma_i(x)|^2,$$
 where as usual the $\sigma_i$ are the (real and) complex embeddings and
 $\varepsilon_i = 1$, resp.~$2$, for a real, resp.~complex place. The element
 $a$ is simply the first vector in the LLL basis. The only reason you may want
 to try to change some directions and set some $v_i\neq 0$ is to randomize
 the elements found for a fixed ideal, which is heuristically useful in index
 calculus algorithms like \tet{bnfinit} and \tet{bnfisprincipal}.
 
 \misctitle{Even more technical note} In fact, the above is a white lie.
 We do not use $||\cdot||_v$ exactly but a rescaled rounded variant which
 gets us faster and simpler LLLs. There's no harm since we are not using any
 theoretical property of $a$ after all, except that it belongs to $I$ and is
 ``expected to be small''.

Function: idealstar
Class: basic
Section: number_fields
C-Name: idealstar0
Prototype: GGD1,L,
Help: idealstar(nf,I,{flag=1}): gives the structure of (Z_K/I)^*. flag is
 optional, and can be 0: simply gives the structure as a 3-component vector v
 such that v[1] is the order (i.e. eulerphi(I)), v[2] is a vector of cyclic
 components, and v[3] is a vector giving the corresponding generators. If
 flag=1 (default), gives idealstarinit, i.e. a 6-component vector
 [I,v,fa,f2,U,V] where v is as above without the generators, fa is the prime
 ideal factorisation of I and f2, U and V are technical but essential to work
 in (Z_K/I)^*. Finally if flag=2, same as with flag=1 except that the
 generators are also given.
Doc: outputs a \var{bid} structure,
 necessary for computing in the finite abelian group $G = (\Z_K/I)^*$. Here,
 \var{nf} is a number field and $I$ is a \var{modulus}: either an ideal in any
 form, or a row vector whose first component is an ideal and whose second
 component is a row vector of $r_1$ 0 or 1.
 
 This \var{bid} is used in \tet{ideallog} to compute discrete logarithms. It
 also contains useful information which can be conveniently retrieved as
 \kbd{\var{bid}.mod} (the modulus),
 \kbd{\var{bid}.clgp} ($G$ as a finite abelian group),
 \kbd{\var{bid}.no} (the cardinality of $G$),
 \kbd{\var{bid}.cyc} (elementary divisors) and
 \kbd{\var{bid}.gen} (generators).
 
 If $\fl=1$ (default), the result is a \var{bid} structure without
 generators.
 
 If $\fl=2$, as $\fl=1$, but including generators, which wastes some time.
 
 If $\fl=0$, only outputs $(\Z_K/I)^*$ as an abelian group,
 i.e as a 3-component vector $[h,d,g]$: $h$ is the order, $d$ is the vector of
 SNF\sidx{Smith normal form} cyclic components and $g$ the corresponding
 generators.
Variant: Instead the above hardcoded numerical flags, one should rather use
 \fun{GEN}{Idealstar}{GEN nf, GEN ideal, long flag}, where \kbd{flag} is
 an or-ed combination of \tet{nf_GEN} (include generators) and \tet{nf_INIT}
 (return a full \kbd{bid}, not a group), possibly $0$. This offers
 one more combination: gen, but no init.

Function: idealtwoelt
Class: basic
Section: number_fields
C-Name: idealtwoelt0
Prototype: GGDG
Help: idealtwoelt(nf,x,{a}): two-element representation of an ideal x in the
 number field nf. If (optional) a is non-zero, first element will be equal to a.
Doc: computes a two-element
 representation of the ideal $x$ in the number field $\var{nf}$, combining a
 random search and an explicit approximation theorem. $x$ is an ideal
 in any form (possibly an extended ideal, whose principal part is ignored)
 and the
 result is a row vector $[a,\alpha]$ with two components such that
 $x=a\Z_K+\alpha\Z_K$ and $a\in\Z$, where $a$ is the one passed as argument if
 any. Unless $x$ was given as a principal ideal, $a$ is chosen to be the
 positive generator of $x\cap\Z$.
 
 Note that when an explicit $a$ is given, we must factor it and this may
 be costly. When $a$ is omitted, we use a fast lazy factorization of $x\cap
 \Z$, yielding an algorithm in randomized polynomial time (and generally
 much faster in practice).
Variant: Also available are
 \fun{GEN}{idealtwoelt}{GEN nf, GEN x} and
 \fun{GEN}{idealtwoelt2}{GEN nf, GEN x, GEN a}.

Function: idealval
Class: basic
Section: number_fields
C-Name: idealval
Prototype: lGGG
Help: idealval(nf,x,pr): valuation at pr given in idealprimedec format of the
 ideal x in the number field nf.
Doc: gives the valuation of the ideal $x$ at the prime ideal \var{pr} in the
 number field $\var{nf}$, where \var{pr} is in \kbd{idealprimedec} format.

Function: if
Class: basic
Section: programming/control
C-Name: ifpari
Prototype: GDEDE
Help: if(a,{seq1},{seq2}): if a is nonzero, seq1 is evaluated, otherwise seq2.
 seq1 and seq2 are optional, and if seq2 is omitted, the preceding comma can
 be omitted also.
Doc: evaluates the expression sequence \var{seq1} if $a$ is non-zero, otherwise
 the expression \var{seq2}. Of course, \var{seq1} or \var{seq2} may be empty:
 
 \kbd{if ($a$,\var{seq})} evaluates \var{seq} if $a$ is not equal to zero
 (you don't have to write the second comma), and does nothing otherwise,
 
 \kbd{if ($a$,,\var{seq})} evaluates \var{seq} if $a$ is equal to zero, and
 does nothing otherwise. You could get the same result using the \kbd{!}
 (\kbd{not}) operator: \kbd{if (!$a$,\var{seq})}.
 
 Note that the boolean operators \kbd{\&\&} and \kbd{||} are evaluated
 according to operator precedence as explained in \secref{se:operators}, but
 that, contrary to other operators, the evaluation of the arguments is stopped
 as soon as the final truth value has been determined. For instance
 \bprog
 if (reallydoit && longcomplicatedfunction(), ...)
 @eprog
 \noindent is a perfectly safe statement.
 
 Recall that functions such as \kbd{break} and \kbd{next} operate on
 \emph{loops} (such as \kbd{for$xxx$}, \kbd{while}, \kbd{until}). The \kbd{if}
 statement is \emph{not} a loop (obviously!).

Function: imag
Class: basic
Section: conversions
C-Name: gimag
Prototype: G
Help: imag(x): imaginary part of x.
Doc: imaginary part of $x$. When $x$ is a quadratic number, this is the
 coefficient of $\omega$ in the ``canonical'' integral basis $(1,\omega)$.

Function: incgam
Class: basic
Section: transcendental
C-Name: incgam0
Prototype: GGDGp
Help: incgam(s,x,{y}): incomplete gamma function. y is optional and is the
 precomputed value of gamma(s).
Doc: incomplete gamma function. The argument $x$
 and $s$ are complex numbers ($x$ must be a positive real number if $s = 0$).
 The result returned is $\int_x^\infty e^{-t}t^{s-1}\,dt$. When $y$ is given,
 assume (of course without checking!) that $y=\Gamma(s)$. For small $x$, this
 will speed up the computation.
Variant: Also available is \fun{GEN}{incgam}{GEN s, GEN x, long prec}.

Function: incgamc
Class: basic
Section: transcendental
C-Name: incgamc
Prototype: GGp
Help: incgamc(s,x): complementary incomplete gamma function.
Doc: complementary incomplete gamma function.
 The arguments $x$ and $s$ are complex numbers such that $s$ is not a pole of
 $\Gamma$ and $|x|/(|s|+1)$ is not much larger than 1 (otherwise the
 convergence is very slow). The result returned is $\int_0^x
 e^{-t}t^{s-1}\,dt$.

Function: input
Class: gp
Section: programming/specific
C-Name: input0
Prototype: 
Help: input(): read an expression from the input file or standard input.
Doc: reads a string, interpreted as a GP expression,
 from the input file, usually standard input (i.e.~the keyboard). If a
 sequence of expressions is given, the result is the result of the last
 expression of the sequence. When using this instruction, it is useful to
 prompt for the string by using the \kbd{print1} function. Note that in the
 present version 2.19 of \kbd{pari.el}, when using \kbd{gp} under GNU Emacs (see
 \secref{se:emacs}) one \emph{must} prompt for the string, with a string
 which ends with the same prompt as any of the previous ones (a \kbd{"? "}
 will do for instance).

Function: install
Class: highlevel
Section: programming/specific
C-Name: gpinstall
Prototype: vrrD"",r,D"",s,
Help: install(name,code,{gpname},{lib}): load from dynamic library 'lib' the
 function 'name'. Assign to it the name 'gpname' in this GP session, with
 argument code 'code'. If 'lib' is omitted use 'libpari.so'. If 'gpname' is
 omitted, use 'name'.
Doc: loads from dynamic library \var{lib} the function \var{name}. Assigns to it
 the name \var{gpname} in this \kbd{gp} session, with argument code \var{code}
 (see the Libpari Manual for an explanation of those). If \var{lib} is
 omitted, uses \kbd{libpari.so}. If \var{gpname} is omitted, uses
 \var{name}.
 
 This function is useful for adding custom functions to the \kbd{gp} interpreter,
 or picking useful functions from unrelated libraries. For instance, it
 makes the function \tet{system} obsolete:
 
 \bprog
 ? install(system, vs, sys, "libc.so")
 ? sys("ls gp*")
 gp.c            gp.h            gp_rl.c
 @eprog
 
 But it also gives you access to all (non static) functions defined in the
 PARI library. For instance, the function \kbd{GEN addii(GEN x, GEN y)} adds
 two PARI integers, and is not directly accessible under \kbd{gp} (it is
 eventually called by the \kbd{+} operator of course):
 
 \bprog
 ? install("addii", "GG")
 ? addii(1, 2)
 %1 = 3
 @eprog\noindent
 Re-installing a function will print a warning and update the prototype code
 if needed. However, it will not reload a symbol from the library, even it the
 latter has been recompiled.
 
 \misctitle{Caution} This function may not work on all systems, especially
 when \kbd{gp} has been compiled statically. In that case, the first use of an
 installed function will provoke a Segmentation Fault, i.e.~a major internal
 blunder (this should never happen with a dynamically linked executable).
 Hence, if you intend to use this function, please check first on some
 harmless example such as the ones above that it works properly on your
 machine.

Function: intcirc
Class: basic
Section: sums
C-Name: intcirc0
Prototype: V=GGEDGp
Help: intcirc(X=a,R,expr,{tab}): numerical integration of expr on the circle
 |z-a|=R, divided by 2*I*Pi. tab is as in intnum.
Wrapper: (,,G)
Description: 
  (gen,gen,gen,?gen):gen:prec intcirc(${3 cookie}, ${3 wrapper}, $1, $2, $4, prec)
Doc: numerical
 integration of $(2i\pi)^{-1}\var{expr}$ with respect to $X$ on the circle
 $|X-a| = R$.
 In other words, when \var{expr} is a meromorphic
 function, sum of the residues in the corresponding disk. \var{tab} is as in
 \kbd{intnum}, except that if computed with \kbd{intnuminit} it should be with
 the endpoints \kbd{[-1, 1]}.
 
 \bprog
 ? \p105
 ? intcirc(s=1, 0.5, zeta(s)) - 1
 %1 = -2.398082982 E-104 - 7.94487211 E-107*I
 @eprog
 
 \synt{intcirc}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN R,GEN tab, long prec}.

Function: intformal
Class: basic
Section: polynomials
C-Name: integ
Prototype: GDn
Help: intformal(x,{v}): formal integration of x with respect to v, or to the
 main variable of x if v is omitted.
Doc: \idx{formal integration} of $x$ with respect to the main variable if $v$
 is omitted, with respect to the variable $v$ otherwise. Since PARI does not
 know about ``abstract'' logarithms (they are immediately evaluated, if only
 to a power series), logarithmic terms in the result will yield an error. $x$
 can be of any type. When $x$ is a rational function, it is assumed that the
 base ring is an integral domain of characteristic zero.

Function: intfouriercos
Class: basic
Section: sums
C-Name: intfourcos0
Prototype: V=GGGEDGp
Help: intfouriercos(X=a,b,z,expr,{tab}): numerical integration from a to b
 of cos(2*Pi*z*X)*expr(X) from a to b, where a, b, and tab are as in intnum.
 This is the cosine-Fourier transform if a=-infty and b=+infty.
Wrapper: (,,,G)
Description: 
  (gen,gen,gen,gen,?gen):gen:prec intfouriercos(${4 cookie}, ${4 wrapper}, $1, $2, $3, $5, prec)
Doc: numerical
 integration of $\var{expr}(X)\cos(2\pi zX)$ from $a$ to $b$, in other words
 Fourier cosine transform (from $a$ to $b$) of the function represented by
 \var{expr}. Endpoints $a$ and $b$ are coded as in \kbd{intnum}, and are not
 necessarily at infinity, but if they are, oscillations (i.e. $[[\pm1],\alpha
 I]$) are forbidden.
 
 \synt{intfouriercos}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b, GEN z, GEN tab, long prec}.

Function: intfourierexp
Class: basic
Section: sums
C-Name: intfourexp0
Prototype: V=GGGEDGp
Help: intfourierexp(X=a,b,z,expr,{tab}): numerical integration from a to b
 of exp(-2*I*Pi*z*X)*expr(X) from a to b, where a, b, and tab are as in intnum.
 This is the ordinary Fourier transform if a=-infty and b=+infty. Note the
 minus sign.
Wrapper: (,,,G)
Description: 
  (gen,gen,gen,gen,?gen):gen:prec intfourierexp(${4 cookie}, ${4 wrapper}, $1, $2, $3, $5, prec)
Doc: numerical
 integration of $\var{expr}(X)\exp(-2i\pi zX)$ from $a$ to $b$, in other words
 Fourier transform (from $a$ to $b$) of the function represented by
 \var{expr}. Note the minus sign. Endpoints $a$ and $b$ are coded as in
 \kbd{intnum}, and are not necessarily at infinity but if they are,
 oscillations (i.e. $[[\pm1],\alpha I]$) are forbidden.
 
 \synt{intfourierexp}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b, GEN z, GEN tab, long prec}.

Function: intfouriersin
Class: basic
Section: sums
C-Name: intfoursin0
Prototype: V=GGGEDGp
Help: intfouriersin(X=a,b,z,expr,{tab}): numerical integration from a to b
 of sin(2*Pi*z*X)*expr(X) from a to b, where a, b, and tab are as in intnum.
 This is the sine-Fourier transform if a=-infty and b=+infty.
Wrapper: (,,,G)
Description: 
  (gen,gen,gen,gen,?gen):gen:prec intfouriercos(${4 cookie}, ${4 wrapper}, $1, $2, $3, $5, prec)
Doc: numerical
 integration of $\var{expr}(X)\sin(2\pi zX)$ from $a$ to $b$, in other words
 Fourier sine transform (from $a$ to $b$) of the function represented by
 \var{expr}. Endpoints $a$ and $b$ are coded as in \kbd{intnum}, and are not
 necessarily at infinity but if they are, oscillations (i.e. $[[\pm1],\alpha
 I]$) are forbidden.
 
 \synt{intfouriersin}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b, GEN z, GEN tab, long prec}.

Function: intfuncinit
Class: basic
Section: sums
C-Name: intfuncinit0
Prototype: V=GGED0,L,D0,L,p
Help: intfuncinit(X=a,b,expr,{flag=0},{m=0}): initialize tables for integrations
 from a to b using a weight expr(X). Essential for integral transforms such
 as intmellininv, intlaplaceinv and intfourier, since it avoids recomputing
 all the time the same quantities. Must then be used with intmellininvshort
 (for intmellininv) and directly with intnum and not with the corresponding
 integral transforms for the others. See help for intnum for coding of a
 and b, and m is as in intnuminit. If flag is nonzero, assumes that
 expr(-X)=conj(expr(X)), which is twice faster.
Wrapper: (,,G)
Description: 
  (gen,gen,gen,?small,?small):gen:prec intfuncinit(${3 cookie}, ${3 wrapper}, $1, $2, $4, $5, prec)
Doc: initialize tables for use with integral transforms such as \kbd{intmellininv},
 etc., where $a$ and $b$ are coded as in \kbd{intnum}, $\var{expr}$ is the
 function $s(X)$ to which the integral transform is to be applied (which will
 multiply the weights of integration) and $m$ is as in \kbd{intnuminit}. If
 $\fl$ is nonzero, assumes that $s(-X)=\overline{s(X)}$, which makes the
 computation twice as fast. See \kbd{intmellininvshort} for examples of the
 use of this function, which is particularly useful when the function $s(X)$
 is lengthy to compute, such as a gamma product.
 
 \synt{intfuncinit}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b,long m, long
 flag, long prec}. Note that the order of $m$ and $\fl$ are reversed compared
 to the \kbd{GP} syntax.

Function: intlaplaceinv
Class: basic
Section: sums
C-Name: intlaplaceinv0
Prototype: V=GGEDGp
Help: intlaplaceinv(X=sig,z,expr,{tab}): numerical integration on the line
 real(X) = sig of expr(X)exp(zX)dz/(2*I*Pi), i.e. inverse Laplace transform of
 expr at z. tab is as in intnum.
Wrapper: (,,G)
Description: 
  (gen,gen,gen,?gen):gen:prec intlaplaceinv(${3 cookie}, ${3 wrapper}, $1, $2, $4, prec)
Doc: numerical integration of $(2i\pi)^{-1}\var{expr}(X)e^{Xz}$ with respect
 to $X$ on the line $\Re(X)=sig$. In other words, inverse Laplace transform
 of the function corresponding to \var{expr} at the value $z$.
 
 $sig$ is coded as follows. Either it is a real number $\sigma$, equal to the
 abscissa of integration, and then the integrand is assumed to
 be slowly decreasing when the imaginary part of the variable tends to
 $\pm\infty$. Or it is a two component vector $[\sigma,\alpha]$, where
 $\sigma$ is as before, and either $\alpha=0$ for slowly decreasing functions,
 or $\alpha>0$ for functions decreasing like $\exp(-\alpha t)$. Note that it
 is not necessary to choose the exact value of $\alpha$. \var{tab} is as in
 \kbd{intnum}.
 
 It is often a good idea to use this function with a value of $m$ one or two
 higher than the one chosen by default (which can be viewed thanks to the
 function \kbd{intnumstep}), or to increase the abscissa of integration
 $\sigma$. For example:
 
 \bprog
 ? \p 105
 ? intlaplaceinv(x=2, 1, 1/x) - 1
 time = 350 ms.
 %1 = 7.37... E-55 + 1.72... E-54*I \\@com not so good
 ? m = intnumstep()
 %2 = 7
 ? intlaplaceinv(x=2, 1, 1/x, m+1) - 1
 time = 700 ms.
 %3 = 3.95... E-97 + 4.76... E-98*I \\@com better
 ? intlaplaceinv(x=2, 1, 1/x, m+2) - 1
 time = 1400 ms.
 %4 = 0.E-105 + 0.E-106*I \\@com perfect but slow.
 ? intlaplaceinv(x=5, 1, 1/x) - 1
 time = 340 ms.
 %5 = -5.98... E-85 + 8.08... E-85*I \\@com better than \%1
 ? intlaplaceinv(x=5, 1, 1/x, m+1) - 1
 time = 680 ms.
 %6 = -1.09... E-106 + 0.E-104*I \\@com perfect, fast.
 ? intlaplaceinv(x=10, 1, 1/x) - 1
 time = 340 ms.
 %7 = -4.36... E-106 + 0.E-102*I \\@com perfect, fastest, but why $sig=10$?
 ? intlaplaceinv(x=100, 1, 1/x) - 1
 time = 330 ms.
 %7 = 1.07... E-72 + 3.2... E-72*I \\@com too far now...
 @eprog
 
 \synt{intlaplaceinv}{void *E, GEN (*eval)(void*,GEN), GEN sig,GEN z, GEN tab, long prec}.

Function: intmellininv
Class: basic
Section: sums
C-Name: intmellininv0
Prototype: V=GGEDGp
Help: intmellininv(X=sig,z,expr,{tab}): numerical integration on the
 line real(X) = sig (or sig[1]) of expr(X)z^(-X)dX/(2*I*Pi), i.e. inverse Mellin
 transform of s at x. sig is coded as follows: either it is real, and then
 by default assume s(z) decreases like exp(-z). Or sig = [sigR, al], sigR is
 the abscissa of integration, and al = 0 for slowly decreasing functions, or
 al > 0 if s(z) decreases like exp(-al*z). tab is as in intnum. Use
 intmellininvshort if several values must be computed.
Wrapper: (,,G)
Description: 
  (gen,gen,gen,?gen):gen:prec intmellininv(${3 cookie}, ${3 wrapper}, $1, $2, $4, prec)
Doc: numerical
 integration of $(2i\pi)^{-1}\var{expr}(X)z^{-X}$ with respect to $X$ on the
 line $\Re(X)=sig$,  in other words, inverse Mellin transform of
 the function corresponding to \var{expr} at the value $z$.
 
 $sig$ is coded as follows. Either it is a real number $\sigma$, equal to the
 abscissa of integration, and then the integrated is assumed to decrease
 exponentially fast, of the order of $\exp(-t)$ when the imaginary part of the
 variable tends to $\pm\infty$. Or it is a two component vector
 $[\sigma,\alpha]$, where $\sigma$ is as before, and either $\alpha=0$ for
 slowly decreasing functions, or $\alpha>0$ for functions decreasing like
 $\exp(-\alpha t)$, such as gamma products. Note that it is not necessary to
 choose the exact value of $\alpha$, and that $\alpha=1$ (equivalent to $sig$
 alone) is usually sufficient. \var{tab} is as in \kbd{intnum}.
 
 As all similar functions, this function is provided for the convenience of
 the user, who could use \kbd{intnum} directly. However it is in general
 better to use \kbd{intmellininvshort}.
 
 \bprog
 ? \p 105
 ? intmellininv(s=2,4, gamma(s)^3);
 time = 1,190 ms. \\@com reasonable.
 ? \p 308
 ? intmellininv(s=2,4, gamma(s)^3);
 time = 51,300 ms. \\@com slow because of $\Gamma(s)^3$.
 @eprog\noindent
 
 \synt{intmellininv}{void *E, GEN (*eval)(void*,GEN), GEN sig, GEN z, GEN tab, long prec}.

Function: intmellininvshort
Class: basic
Section: sums
C-Name: intmellininvshort
Prototype: GGGp
Help: intmellininvshort(sig,z,tab): numerical integration on the
 line real(X) = sig (or sig[1]) of s(X)z^(-X)dX/(2*I*Pi), i.e. inverse Mellin
 transform of s at z. sig is coded as follows: either it is real, and then
 by default assume s(X) decreases like exp(-X). Or sig = [sigR, al], sigR is
 the abscissa of integration, and al = 0 for slowly decreasing functions, or
 al > 0 if s(X) decreases like exp(-al*X). Compulsory table tab has been
 precomputed using the command intfuncinit(t=[[-1],sig[2]],[[1],sig[2]],s)
 (with possibly its two optional additional parameters), where sig[2] = 1
 if not given. Orders of magnitude faster than intmellininv.
Doc: numerical integration
 of $(2i\pi)^{-1}s(X)z^{-X}$ with respect to $X$ on the line $\Re(X)=sig$.
 In other words, inverse Mellin transform of $s(X)$ at the value $z$.
 Here $s(X)$ is implicitly contained in \var{tab} in \kbd{intfuncinit} format,
 typically
 \bprog
 tab = intfuncinit(T = [-1], [1], s(sig + I*T))
 @eprog\noindent
 or similar commands. Take the example of the inverse Mellin transform of
 $\Gamma(s)^3$ given in \kbd{intmellininv}:
 
 \bprog
 ? \p 105
 ? oo = [1]; \\@com for clarity
 ? A = intmellininv(s=2,4, gamma(s)^3);
 time = 2,500 ms. \\@com not too fast because of $\Gamma(s)^3$.
 \\ @com function of real type, decreasing as $\exp(-3\pi/2\cdot |t|)$
 ? tab = intfuncinit(t=[-oo, 3*Pi/2],[oo, 3*Pi/2], gamma(2+I*t)^3, 1);
 time = 1,370 ms.
 ? intmellininvshort(2,4, tab) - A
 time = 50 ms.
 %4 = -1.26... - 3.25...E-109*I \\@com 50 times faster than \kbd{A} and perfect.
 ? tab2 = intfuncinit(t=-oo, oo, gamma(2+I*t)^3, 1);
 ? intmellininvshort(2,4, tab2)
 %6 = -1.2...E-42 - 3.2...E-109*I  \\@com 63 digits lost
 @eprog\noindent
 In the computation of \var{tab}, it was not essential to include the
 \emph{exact} exponential decrease of $\Gamma(2+it)^3$. But as the last
 example shows, a rough indication \emph{must} be given, otherwise slow
 decrease is assumed, resulting in catastrophic loss of accuracy.

Function: intnum
Class: basic
Section: sums
C-Name: intnum0
Prototype: V=GGEDGp
Help: intnum(X=a,b,expr,{tab}): numerical integration of expr from a to b with
 respect to X. Plus/minus infinity is coded as [+1]/ [-1]. Finally tab is
 either omitted (let the program choose the integration step), a positive
 integer m (choose integration step 1/2^m), or data precomputed with intnuminit.
Wrapper: (,,G)
Description: 
  (gen,gen,gen,?gen):gen:prec intnum(${3 cookie}, ${3 wrapper}, $1, $2, $4, prec)
Doc: numerical integration
 of \var{expr} on $]a,b[$ with respect to $X$. The integrand may have values
 belonging to a vector space over the real numbers; in particular, it can be
 complex-valued or vector-valued. But it is assumed that the function is regular
 on $]a,b[$. If the endpoints $a$ and $b$ are finite and the function is regular
 there, the situation is simple:
 \bprog
 ? intnum(x = 0,1, x^2)
 %1 = 0.3333333333333333333333333333
 ? intnum(x = 0,Pi/2, [cos(x), sin(x)])
 %2 = [1.000000000000000000000000000, 1.000000000000000000000000000]
 @eprog\noindent
 An endpoint equal to $\pm\infty$ is coded as the single-component vector
 $[\pm1]$. You are welcome to set, e.g \kbd{oo = [1]} or \kbd{INFINITY = [1]},
 then using \kbd{+oo}, \kbd{-oo}, \kbd{-INFINITY}, etc. will have the expected
 behavior.
 \bprog
 ? oo = [1];  \\@com for clarity
 ? intnum(x = 1,+oo, 1/x^2)
 %2 = 1.000000000000000000000000000
 @eprog\noindent
 In basic usage, it is assumed that the function does not decrease
 exponentially fast at infinity:
 \bprog
 ? intnum(x=0,+oo, exp(-x))
   ***   at top-level: intnum(x=0,+oo,exp(-
   ***                 ^--------------------
   *** exp: exponent (expo) overflow
 @eprog\noindent
 We shall see in a moment how to avoid the last problem, after describing
 the last argument \var{tab}, which is both optional and technical. The
 routine uses weights, which are mostly independent of the function being
 integrated, evaluated at many sampling points. If \var{tab} is
 
 \item a positive integer $m$, we use $2^m$ sampling points, hopefully
 increasing accuracy. But note that the running time is roughly proportional
 to $2^m$. One may try consecutive values of $m$ until they give the same
 value up to an accepted error. If \var{tab} is omitted, the algorithm guesses
 a reasonable value for $m$ depending on the current precision only, which
 should be sufficient for regular functions. That value may be obtained from
 \tet{intnumstep}, and increased in case of difficulties.
 
 \item a set of integration tables as output by \tet{intnuminit},
 they are used directly. This is useful if several integrations of the same
 type are performed (on the same kind of interval and functions, for a given
 accuracy), in particular for multivariate integrals, since we then skip
 expensive precomputations.
 
 \misctitle{Specifying the behavior at endpoints}
 This is done as follows. An endpoint $a$ is either given as such (a scalar,
 real or complex, or $[\pm1]$ for $\pm\infty$), or as a two component vector
 $[a,\alpha]$, to indicate the behavior of the integrand in a neighborhood
 of $a$.
 
 If $a$ is finite, the code $[a,\alpha]$ means the function has a
 singularity of the form $(x-a)^{\alpha}$, up to logarithms. (If $\alpha \ge
 0$, we only assume the function is regular, which is the default assumption.)
 If a wrong singularity exponent is used, the result will lose a catastrophic
 number of decimals:
 \bprog
 ? intnum(x=0, 1, x^(-1/2))         \\@com assume $x^{-1/2}$ is regular at 0
 %1 = 1.999999999999999999990291881
 ? intnum(x=[0,-1/2], 1, x^(-1/2))  \\@com no, it's not
 %2 = 2.000000000000000000000000000
 ? intnum(x=[0,-1/10], 1, x^(-1/2))
 %3 = 1.999999999999999999999946438 \\@com using a wrong exponent is bad
 @eprog
 
 If $a$ is $\pm\infty$, which is coded as $[\pm 1]$, the situation is more
 complicated, and $[[\pm1],\alpha]$ means:
 
 \item $\alpha=0$ (or no $\alpha$ at all, i.e. simply $[\pm1]$) assumes that the
 integrand tends to zero, but not exponentially fast, and not
 oscillating such as $\sin(x)/x$.
 
 \item $\alpha>0$ assumes that the function tends to zero exponentially fast
 approximately as $\exp(-\alpha x)$. This includes oscillating but quickly
 decreasing functions such as $\exp(-x)\sin(x)$.
 \bprog
 ? oo = [1];
 ? intnum(x=0, +oo, exp(-2*x))
   ***   at top-level: intnum(x=0,+oo,exp(-
   ***                 ^--------------------
   *** exp: exponent (expo) overflow
 ? intnum(x=0, [+oo, 2], exp(-2*x))
 %1 = 0.5000000000000000000000000000 \\@com OK!
 ? intnum(x=0, [+oo, 4], exp(-2*x))
 %2 = 0.4999999999999999999961990984 \\@com wrong exponent $\Rightarrow$ imprecise result
 ? intnum(x=0, [+oo, 20], exp(-2*x))
 %2 = 0.4999524997739071283804510227 \\@com disaster
 @eprog
 
 \item $\alpha<-1$ assumes that the function tends to $0$ slowly, like
 $x^{\alpha}$. Here it is essential to give the correct $\alpha$, if possible,
 but on the other hand $\alpha\le -2$ is equivalent to $\alpha=0$, in other
 words to no $\alpha$ at all.
 
 \smallskip The last two codes are reserved for oscillating functions.
 Let $k > 0$ real, and $g(x)$ a non-oscillating function tending slowly to $0$
 (e.g. like a negative power of $x$), then
 
 \item $\alpha=k * I$ assumes that the function behaves like $\cos(kx)g(x)$.
 
 \item $\alpha=-k* I$ assumes that the function behaves like $\sin(kx)g(x)$.
 
 \noindent Here it is critical to give the exact value of $k$. If the
 oscillating part is not a pure sine or cosine, one must expand it into a
 Fourier series, use the above codings, and sum the resulting contributions.
 Otherwise you will get nonsense. Note that $\cos(kx)$, and similarly
 $\sin(kx)$, means that very function, and not a translated version such as
 $\cos(kx+a)$.
 
 \misctitle{Note} If $f(x)=\cos(kx)g(x)$ where $g(x)$ tends to zero
 exponentially fast as $\exp(-\alpha x)$, it is up to the user to choose
 between $[[\pm1],\alpha]$ and $[[\pm1],k* I]$, but a good rule of thumb is that
 if the oscillations are much weaker than the exponential decrease, choose
 $[[\pm1],\alpha]$, otherwise choose $[[\pm1],k* I]$, although the latter can
 reasonably be used in all cases, while the former cannot. To take a specific
 example, in the inverse Mellin transform, the integrand is almost always a
 product of an exponentially decreasing and an oscillating factor. If we
 choose the oscillating type of integral we perhaps obtain the best results,
 at the expense of having to recompute our functions for a different value of
 the variable $z$ giving the transform, preventing us to use a function such
 as \kbd{intmellininvshort}. On the other hand using the exponential type of
 integral, we obtain less accurate results, but we skip expensive
 recomputations. See \kbd{intmellininvshort} and \kbd{intfuncinit} for more
 explanations.
 
 \smallskip
 
 We shall now see many examples to get a feeling for what the various
 parameters achieve. All examples below assume precision is set to $105$
 decimal digits. We first type
 \bprog
 ? \p 105
 ? oo = [1]  \\@com for clarity
 @eprog
 
 \misctitle{Apparent singularities} Even if the function $f(x)$ represented
 by \var{expr} has no singularities, it may be important to define the
 function differently near special points. For instance, if $f(x) = 1
 /(\exp(x)-1) - \exp(-x)/x$, then $\int_0^\infty f(x)\,dx=\gamma$, Euler's
 constant \kbd{Euler}. But
 
 \bprog
 ? f(x) = 1/(exp(x)-1) - exp(-x)/x
 ? intnum(x = 0, [oo,1],  f(x)) - Euler
 %1 = 6.00... E-67
 @eprog\noindent
 thus only correct to $67$ decimal digits. This is because close to $0$ the
 function $f$ is computed with an enormous loss of accuracy.
 A better solution is
 
 \bprog
 ? f(x) = 1/(exp(x)-1)-exp(-x)/x
 ? F = truncate( f(t + O(t^7)) ); \\@com expansion around t = 0
 ? g(x) = if (x > 1e-18, f(x), subst(F,t,x))  \\@com note that $6 \cdot 18 > 105$
 ? intnum(x = 0, [oo,1],  g(x)) - Euler
 %2 = 0.E-106 \\@com perfect
 @eprog\noindent
 It is up to the user to determine constants such as the $10^{-18}$ and $7$
 used above.
 
 \misctitle{True singularities} With true singularities the result is worse.
 For instance
 
 \bprog
 ? intnum(x = 0, 1,  1/sqrt(x)) - 2
 %1 = -1.92... E-59 \\@com only $59$ correct decimals
 
 ? intnum(x = [0,-1/2], 1,  1/sqrt(x)) - 2
 %2 = 0.E-105 \\@com better
 @eprog
 
 \misctitle{Oscillating functions}
 
 \bprog
 ? intnum(x = 0, oo, sin(x) / x) - Pi/2
 %1 = 20.78.. \\@com nonsense
 ? intnum(x = 0, [oo,1], sin(x)/x) - Pi/2
 %2 = 0.004.. \\@com bad
 ? intnum(x = 0, [oo,-I], sin(x)/x) - Pi/2
 %3 = 0.E-105 \\@com perfect
 ? intnum(x = 0, [oo,-I], sin(2*x)/x) - Pi/2  \\@com oops, wrong $k$
 %4 = 0.07...
 ? intnum(x = 0, [oo,-2*I], sin(2*x)/x) - Pi/2
 %5 = 0.E-105 \\@com perfect
 
 ? intnum(x = 0, [oo,-I], sin(x)^3/x) - Pi/4
 %6 = 0.0092... \\@com bad
 ? sin(x)^3 - (3*sin(x)-sin(3*x))/4
 %7 = O(x^17)
 @eprog\noindent
 We may use the above linearization and compute two oscillating integrals with
 ``infinite endpoints'' \kbd{[oo, -I]} and \kbd{[oo, -3*I]} respectively, or
 notice the obvious change of variable, and reduce to the single integral
 ${1\over 2}\int_0^\infty \sin(x)/x\,dx$. We finish with some more complicated
 examples:
 
 \bprog
 ? intnum(x = 0, [oo,-I], (1-cos(x))/x^2) - Pi/2
 %1 = -0.0004... \\@com bad
 ? intnum(x = 0, 1, (1-cos(x))/x^2) \
 + intnum(x = 1, oo, 1/x^2) - intnum(x = 1, [oo,I], cos(x)/x^2) - Pi/2
 %2 = -2.18... E-106 \\@com OK
 
 ? intnum(x = 0, [oo, 1], sin(x)^3*exp(-x)) - 0.3
 %3 = 5.45... E-107 \\@com OK
 ? intnum(x = 0, [oo,-I], sin(x)^3*exp(-x)) - 0.3
 %4 = -1.33... E-89 \\@com lost 16 decimals. Try higher $m$:
 ? m = intnumstep()
 %5 = 7 \\@com the value of $m$ actually used above.
 ? tab = intnuminit(0,[oo,-I], m+1); \\@com try $m$ one higher.
 ? intnum(x = 0, oo, sin(x)^3*exp(-x), tab) - 0.3
 %6 = 5.45... E-107 \\@com OK this time.
 @eprog
 
 \misctitle{Warning} Like \tet{sumalt}, \kbd{intnum} often assigns a
 reasonable value to diverging integrals. Use these values at your own risk!
 For example:
 
 \bprog
 ? intnum(x = 0, [oo, -I], x^2*sin(x))
 %1 = -2.0000000000...
 @eprog\noindent
 Note the formula
 $$ \int_0^\infty \sin(x)/x^s\,dx = \cos(\pi s/2) \Gamma(1-s)\;, $$
 a priori valid only for $0 < \Re(s) < 2$, but the right hand side provides an
 analytic continuation which may be evaluated at $s = -2$\dots
 
 \misctitle{Multivariate integration}
 Using successive univariate integration with respect to different formal
 parameters, it is immediate to do naive multivariate integration. But it is
 important to use a suitable \kbd{intnuminit} to precompute data for the
 \emph{internal} integrations at least!
 
 For example, to compute the double integral on the unit disc $x^2+y^2\le1$
 of the function $x^2+y^2$, we can write
 \bprog
 ? tab = intnuminit(-1,1);
 ? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab), tab)
 @eprog\noindent
 The first \var{tab} is essential, the second optional. Compare:
 
 \bprog
 ? tab = intnuminit(-1,1);
 time = 30 ms.
 ? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2));
 time = 54,410 ms. \\@com slow
 ? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab), tab);
 time = 7,210 ms.  \\@com faster
 @eprog\noindent
 However, the \kbd{intnuminit} program is usually pessimistic when it comes to
 choosing the integration step $2^{-m}$. It is often possible to improve the
 speed by trial and error. Continuing the above example:
 \bprog
 ? test(M) =
 {
 tab = intnuminit(-1,1, M);
 intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2,tab), tab) - Pi/2
 }
 ? m = intnumstep() \\@com what value of $m$ did it take ?
 %1 = 7
 ? test(m - 1)
 time = 1,790 ms.
 %2 = -2.05... E-104 \\@com $4 = 2^2$ times faster and still OK.
 ? test(m - 2)
 time = 430 ms.
 %3 = -1.11... E-104 \\@com $16 = 2^4$ times faster and still OK.
 ? test(m - 3)
 time = 120 ms.
 %3 = -7.23... E-60 \\@com $64 = 2^6$ times faster, lost $45$ decimals.
 @eprog
 
 \synt{intnum}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b,GEN tab, long prec},
 where an omitted \var{tab} is coded as \kbd{NULL}.

Function: intnuminit
Class: basic
Section: sums
C-Name: intnuminit
Prototype: GGD0,L,p
Help: intnuminit(a,b,{m=0}): initialize tables for integrations from a to b.
 See help for intnum for coding of a and b. Possible types: compact interval,
 semi-compact (one extremity at + or - infinity) or R, and very slowly, slowly
 or exponentially decreasing, or sine or cosine oscillating at infinities.
Doc: initialize tables for integration from
 $a$ to $b$, where $a$ and $b$ are coded as in \kbd{intnum}. Only the
 compactness, the possible existence of singularities, the speed of decrease
 or the oscillations at infinity are taken into account, and not the values.
 For instance {\tt intnuminit(-1,1)} is equivalent to {\tt intnuminit(0,Pi)},
 and {\tt intnuminit([0,-1/2],[1])} is equivalent to {\tt
 intnuminit([-1],[-1,-1/2])}. If $m$ is not given, it is computed according to
 the current precision. Otherwise the integration step is $1/2^m$. Reasonable
 values of $m$ are $m=6$ or $m=7$ for $100$ decimal digits, and $m=9$ for
 $1000$ decimal digits.
 
 The result is technical, but in some cases it is useful to know the output.
 Let $x=\phi(t)$ be the change of variable which is used. \var{tab}[1] contains
 the integer $m$ as above, either given by the user or computed from the default
 precision, and can be recomputed directly using the function \kbd{intnumstep}.
 \var{tab}[2] and \var{tab}[3] contain respectively the abscissa and weight
 corresponding to $t=0$ ($\phi(0)$ and $\phi'(0)$). \var{tab}[4] and
 \var{tab}[5] contain the abscissas and weights corresponding to positive
 $t=nh$ for $1\le n\le N$ and $h=1/2^m$ ($\phi(nh)$ and $\phi'(nh)$). Finally
 \var{tab}[6] and \var{tab}[7] contain either the abscissas and weights
 corresponding to negative $t=nh$ for $-N\le n\le -1$, or may be empty (but
 not always) if $\phi(t)$ is an odd function (implicitly we would have
 $\var{tab}[6]=-\var{tab}[4]$ and $\var{tab}[7]=\var{tab}[5]$).

Function: intnuminitgen
Class: basic
Section: sums
C-Name: intnuminitgen0
Prototype: VGGED0,L,D0,L,p
Help: intnuminitgen(t,a,b,ph,{m=0},{flag=0}): initialize tables for
 integrations from a to b using abscissas ph(t) and weights ph'(t). Note that
 there is no equal sign after the variable name t since t always goes from
 -infty to +infty, but it is ph(t) which goes from a to b, and this is not
 checked. If flag = 1 or 2, multiply the reserved table length by 4^flag, to
 avoid corresponding error.
Doc: initialize tables for integrations from $a$ to $b$ using abscissas
 $ph(t)$ and weights $ph'(t)$. Note that there is no equal sign after the
 variable name $t$ since $t$ always goes from $-\infty$ to $+infty$, but it
 is $ph(t)$ which goes from $a$ to $b$, and this is not checked. If \fl = 1
 or 2, multiply the reserved table length by $4^{\fl}$, to avoid corresponding
 error.
 
 \synt{intnuminitgen}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b, long m, long flag, long prec}

Function: intnumromb
Class: basic
Section: sums
C-Name: intnumromb0
Prototype: V=GGED0,L,p
Help: intnumromb(X=a,b,expr,{flag=0}): numerical integration of expr (smooth in
 ]a,b[) from a to b with respect to X. flag is optional and mean 0: default.
 expr can be evaluated exactly on [a,b]; 1: general function; 2: a or b can be
 plus or minus infinity (chosen suitably), but of same sign; 3: expr has only
 limits at a or b.
Wrapper: (,,G)
Description: 
  (gen,gen,gen,?small):gen:prec intnumromb(${3 cookie}, ${3 wrapper}, $1, $2, $4, prec)
Doc: numerical integration of
 \var{expr} (smooth in $]a,b[$), with respect to $X$. This function is
 deprecated, use \tet{intnum} instead.
 
 Set $\fl=0$ (or omit it altogether) when $a$ and $b$ are not too large, the
 function is smooth, and can be evaluated exactly everywhere on the interval
 $[a,b]$.
 
 If $\fl=1$, uses a general driver routine for doing numerical integration,
 making no particular assumption (slow).
 
 $\fl=2$ is tailored for being used when $a$ or $b$ are infinite. One
 \emph{must} have $ab>0$, and in fact if for example $b=+\infty$, then it is
 preferable to have $a$ as large as possible, at least $a\ge1$.
 
 If $\fl=3$, the function is allowed to be undefined (but continuous) at $a$
 or $b$, for example the function $\sin(x)/x$ at $x=0$.
 
 The user should not require too much accuracy: 18 or 28 decimal digits is OK,
 but not much more. In addition, analytical cleanup of the integral must have
 been done: there must be no singularities in the interval or at the
 boundaries. In practice this can be accomplished with a simple change of
 variable. Furthermore, for improper integrals, where one or both of the
 limits of integration are plus or minus infinity, the function must decrease
 sufficiently rapidly at infinity. This can often be accomplished through
 integration by parts. Finally, the function to be integrated should not be
 very small (compared to the current precision) on the entire interval. This
 can of course be accomplished by just multiplying by an appropriate constant.
 
 Note that \idx{infinity} can be represented with essentially no loss of
 accuracy by 1e1000. However beware of real underflow when dealing with
 rapidly decreasing functions. For example, if one wants to compute the
 $\int_0^\infty e^{-x^2}\,dx$ to 28 decimal digits, then one should set
 infinity equal to 10 for example, and certainly not to 1e1000.
 
 \synt{intnumromb}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b, long flag, long prec},
 where $\kbd{eval}(x, E)$ returns the value of the function at $x$.
 You may store any additional information required by \kbd{eval} in $E$, or set
 it to \kbd{NULL}.

Function: intnumstep
Class: basic
Section: sums
C-Name: intnumstep
Prototype: lp
Help: intnumstep(): gives the default value of m used by all intnum and sumnum
 routines, such that the integration step is 1/2^m.
Doc: give the value of $m$ used in all the
 \kbd{intnum} and \kbd{sumnum} programs, hence such that the integration
 step is equal to $1/2^m$.

Function: isfundamental
Class: basic
Section: number_theoretical
C-Name: gisfundamental
Prototype: G
Help: isfundamental(x): true(1) if x is a fundamental discriminant
 (including 1), false(0) if not.
Description: 
 (int):bool       Z_isfundamental($1)
 (gen):gen        gisfundamental($1)
Doc: true (1) if $x$ is equal to 1 or to the discriminant of a quadratic
 field, false (0) otherwise.
 The function accepts vector/matrices arguments, and is then applied
 componentwise.

Function: ispower
Class: basic
Section: number_theoretical
C-Name: ispower
Prototype: lGDGD&
Help: ispower(x,{k},{&n}): if k > 0 is given, return true (1) if x is a k-th
 power, false (0) if not. If k is omitted, return the maximal k >= 2 such
 that x = n^k is a perfect power, or 0 if no such k exist.
 If n is present, and the function returns a non-zero result, set n to the
 k-th root of x.
Description: 
 (int):small       Z_isanypower($1, NULL)
 (int, &int):small Z_isanypower($1, &$2)
Doc: if $k$ is given, returns true (1) if $x$ is a $k$-th power, false
 (0) if not.
 
 If $k$ is omitted, only integers and fractions are allowed for $x$ and the
 function returns the maximal $k \geq 2$ such that $x = n^k$ is a perfect
 power, or 0 if no such $k$ exist; in particular \kbd{ispower(-1)},
 \kbd{ispower(0)}, and \kbd{ispower(1)} all return $0$.
 
 If a third argument $\&n$ is given and $x$ is indeed a $k$-th power, sets
 $n$ to a $k$-th root of $x$.
 
 \noindent For a \typ{FFELT} \kbd{x}, instead of omitting \kbd{k} (which is
 not allowed for this type), it may be natural to set
 \bprog
 k = (x.p ^ poldegree(x.pol) - 1) / fforder(x)
 @eprog
Variant: Also available is
 \fun{long}{gisanypower}{GEN x, GEN *pty} ($k$ omitted).

Function: isprime
Class: basic
Section: number_theoretical
C-Name: gisprime
Prototype: GD0,L,
Help: isprime(x,{flag=0}): true(1) if x is a (proven) prime number, false(0)
 if not. If flag is 0 or omitted, use a combination of algorithms. If flag is
 1, the primality is certified by the Pocklington-Lehmer Test. If flag is 2,
 the primality is certified using the APRCL test.
Description: 
 (int, ?0):bool        isprime($1)
 (int, 1):bool         plisprime($1, 0)
 (int, 2):gen          plisprime($1, 1)
 (gen, ?small):gen     gisprime($1, $2)
Doc: true (1) if $x$ is a prime
 number, false (0) otherwise. A prime number is a positive integer having
 exactly two distinct divisors among the natural numbers, namely 1 and
 itself.
 
 This routine proves or disproves rigorously that a number is prime, which can
 be very slow when $x$ is indeed prime and has more than $1000$ digits, say.
 Use \tet{ispseudoprime} to quickly check for compositeness. See also
 \kbd{factor}. It accepts vector/matrices arguments, and is then applied
 componentwise.
 
 If $\fl=0$, use a combination of Baillie-PSW pseudo primality test (see
 \tet{ispseudoprime}), Selfridge ``$p-1$'' test if $x-1$ is smooth enough, and
 Adleman-Pomerance-Rumely-Cohen-Lenstra (APRCL) for general $x$.
 
 If $\fl=1$, use Selfridge-Pocklington-Lehmer ``$p-1$'' test and output a
 primality certificate as follows: return
 
 \item 0 if $x$ is composite,
 
 \item 1 if $x$ is small enough that passing Baillie-PSW test guarantees
 its primality (currently $x < 2^{64}$, as checked by Jan Feitsma),
 
 \item $2$ if $x$ is a large prime whose primality could only sensibly be
 proven (given the algorithms implemented in PARI) using the APRCL test.
 
 \item Otherwise ($x$ is large and $x-1$ is smooth) output a three column
 matrix as a primality certificate. The first column contains prime
 divisors $p$ of $x-1$ (such that $\prod p^{v_p(x-1)} > x^{1/3}$), the second
 the corresponding elements $a_p$ as in Proposition~8.3.1 in GTM~138 , and the
 third the output of isprime(p,1).
 
 The algorithm fails if one of the pseudo-prime factors is not prime, which is
 exceedingly unlikely and well worth a bug report. Note that if you monitor
 \kbd{isprime} at a high enough debug level, you may see warnings about
 untested integers being declared primes. This is normal: we ask for partial
 factorisations (sufficient to prove primality if the unfactored part is not
 too large), and \kbd{factor} warns us that the cofactor hasn't been tested.
 It may or may not be tested later, and may or may not be prime. This does
 not affect the validity of the whole \kbd{isprime} procedure.
 
 If $\fl=2$, use APRCL.

Function: ispseudoprime
Class: basic
Section: number_theoretical
C-Name: gispseudoprime
Prototype: GD0,L,
Help: ispseudoprime(x,{flag}): true(1) if x is a strong pseudoprime, false(0)
 if not. If flag is 0 or omitted, use BPSW test, otherwise use strong
 Rabin-Miller test for flag randomly chosen bases.
Description: 
 (int,?0):bool      BPSW_psp($1)
 (int,#small):bool  millerrabin($1,$2)
 (int,small):bool   ispseudoprime($1, $2)
 (gen,?small):bool  gispseudoprime($1, $2)
Doc: true (1) if $x$ is a strong pseudo
 prime (see below), false (0) otherwise. If this function returns false, $x$
 is not prime; if, on the other hand it returns true, it is only highly likely
 that $x$ is a prime number. Use \tet{isprime} (which is of course much
 slower) to prove that $x$ is indeed prime.
 The function accepts vector/matrices arguments, and is then applied
 componentwise.
 
 If $\fl = 0$, checks whether $x$ is a Baillie-Pomerance-Selfridge-Wagstaff
 pseudo prime (strong Rabin-Miller pseudo prime for base $2$, followed by
 strong Lucas test for the sequence $(P,-1)$, $P$ smallest positive integer
 such that $P^2 - 4$ is not a square mod $x$).
 
 There are no known composite numbers passing this test, although it is
 expected that infinitely many such numbers exist. In particular, all
 composites $\leq 2^{64}$ are correctly detected (checked using
 \kbd{http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html}).
 
 If $\fl > 0$, checks whether $x$ is a strong Miller-Rabin pseudo prime  for
 $\fl$ randomly chosen bases (with end-matching to catch square roots of $-1$).

Function: issquare
Class: basic
Section: number_theoretical
C-Name: gissquareall
Prototype: GD&
Help: issquare(x,{&n}): true(1) if x is a square, false(0) if not. If n is
 given puts the exact square root there if it was computed.
Description: 
 (int):bool        Z_issquare($1)
 (mp):int          gissquare($1)
 (gen):gen         gissquare($1)
 (int, &int):bool  Z_issquarerem($1, &$2)
 (gen, &gen):gen   gissquareall($1, &$2)
Doc: true (1) if $x$ is a square, false (0)
 if not. What ``being a square'' means depends on the type of $x$: all
 \typ{COMPLEX} are squares, as well as all non-negative \typ{REAL}; for
 exact types such as \typ{INT}, \typ{FRAC} and \typ{INTMOD}, squares are
 numbers of the form $s^2$ with $s$ in $\Z$, $\Q$ and $\Z/N\Z$ respectively.
 \bprog
 ? issquare(3)          \\ as an integer
 %1 = 0
 ? issquare(3.)         \\ as a real number
 %2 = 1
 ? issquare(Mod(7, 8))  \\ in Z/8Z
 %3 = 0
 ? issquare( 5 + O(13^4) )  \\ in Q_13
 %4 = 0
 @eprog
 If $n$ is given, a square root of $x$ is put into $n$.
 \bprog
 ? issquare(4, &n)
 %1 = 1
 ? n
 %2 = 2
 ? issquare([4, x^2], &n)
 %3 = [1, 1]  \\ both are squares
 ? n
 %4 = [2, x]  \\ the square roots
 @eprog
 For polynomials, either we detect that the characteristic is 2 (and check
 directly odd and even-power monomials) or we assume that $2$ is invertible
 and check whether squaring the truncated power series for the square root
 yields the original input.
 The function accepts vector/matrices arguments, and is then applied
 componentwise.
Variant: Also available is \fun{GEN}{gissquare}{GEN x}.

Function: issquarefree
Class: basic
Section: number_theoretical
C-Name: gissquarefree
Prototype: G
Help: issquarefree(x): true(1) if x is squarefree, false(0) if not.
Description: 
 (int):bool       issquarefree($1)
 (gen):gen        gissquarefree($1)
Doc: true (1) if $x$ is squarefree, false (0) if not. Here $x$ can be an
 integer or a polynomial.
 The function accepts vector/matrices arguments, and is then applied
 componentwise.
Variant: For scalar arguments $x$ (\typ{INT} or \typ{POL}), the function
 \fun{long}{issquarefree}{GEN x} is easier to use.

Function: kill
Class: basic
Section: programming/specific
C-Name: kill0
Prototype: vr
Help: kill(sym): restores the symbol sym to its ``undefined'' status and kill
 associated help messages.
Doc: restores the symbol \kbd{sym} to its ``undefined'' status, and deletes any
 help messages associated to \kbd{sym} using \kbd{addhelp}. Variable names
 remain known to the interpreter and keep their former priority: you cannot
 make a variable ``less important" by killing it!
 \bprog
 ? z = y = 1; y
 %1 = 1
 ? kill(y)
 ? y            \\ restored to ``undefined'' status
 %2 = y
 ? variable()
 %3 = [x, y, z] \\ but the variable name y is still known, with y > z !
 @eprog\noindent
 For the same reason, killing a user function (which is an ordinary
 variable holding a \typ{CLOSURE}) does not remove its name from the list of
 variable names.
 
 If the symbol is associated to a variable --- user functions being an
 important special case ---, one may use the \idx{quote} operator
 \kbd{a = 'a} to reset variables to their starting values. However, this
 will not delete a help message associated to \kbd{a}, and is also slightly
 slower than \kbd{kill(a)}.
 \bprog
 ? x = 1; addhelp(x, "foo"); x
 %1 = 1
 ? x = 'x; x   \\ same as 'kill', except we don't delete help.
 %2 = x
 ? ?x
 foo
 @eprog\noindent
 On the other hand, \kbd{kill} is the only way to remove aliases and installed
 functions.
 \bprog
 ? alias(fun, sin);
 ? kill(fun);
 
 ? install(addii, GG);
 ? kill(addii);
 @eprog

Function: kronecker
Class: basic
Section: number_theoretical
C-Name: gkronecker
Prototype: GG
Help: kronecker(x,y): kronecker symbol (x/y).
Description: 
 (small, small):small  kross($1, $2)
 (int, small):small    krois($1, $2)
 (small, int):small    krosi($1, $2)
 (int, int):small      kronecker($1, $2)
 (gen, gen):gen        gkronecker($1, $2)
Doc: 
 \idx{Kronecker symbol} $(x|y)$, where $x$ and $y$ must be of type integer. By
 definition, this is the extension of \idx{Legendre symbol} to $\Z \times \Z$
 by total multiplicativity in both arguments with the following special rules
 for $y = 0, -1$ or $2$:
 
 \item $(x|0) = 1$ if $|x| = 1$ and $0$ otherwise.
 
 \item $(x|-1) = 1$ if $x \geq 0$ and $-1$ otherwise.
 
 \item $(x|2) = 0$ if $x$ is even and $1$ if $x = 1,-1 \mod 8$ and $-1$
 if $x=3,-3 \mod 8$.

Function: lcm
Class: basic
Section: number_theoretical
C-Name: glcm0
Prototype: GDG
Help: lcm(x,{y}): least common multiple of x and y, i.e. x*y / gcd(x,y).
Description: 
 (int, int):int lcmii($1, $2)
 (gen):gen      glcm0($1, NULL)
 (gen, gen):gen glcm($1, $2)
Doc: least common multiple of $x$ and $y$, i.e.~such
 that $\lcm(x,y)*\gcd(x,y) = \text{abs}(x*y)$. If $y$ is omitted and $x$
 is a vector, returns the $\text{lcm}$ of all components of $x$.
 
 When $x$ and $y$ are both given and one of them is a vector/matrix type,
 the LCM is again taken recursively on each component, but in a different way.
 If $y$ is a vector, resp.~matrix, then the result has the same type as $y$,
 and components equal to \kbd{lcm(x, y[i])}, resp.~\kbd{lcm(x, y[,i])}. Else
 if $x$ is a vector/matrix the result has the same type as $x$ and an
 analogous definition. Note that for these types, \kbd{lcm} is not
 commutative.
 
 Note that \kbd{lcm(v)} is quite different from
 \bprog
 l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))
 @eprog\noindent
 Indeed, \kbd{lcm(v)} is a scalar, but \kbd{l} may not be (if one of
 the \kbd{v[i]} is a vector/matrix). The computation uses a divide-conquer tree
 and should be much more efficient, especially when using the GMP
 multiprecision kernel (and more subquadratic algorithms become available):
 \bprog
 ? v = vector(10^4, i, random);
 ? lcm(v);
 time = 323 ms.
 ? l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))
 time = 833 ms.
 @eprog

Function: length
Class: basic
Section: conversions
C-Name: glength
Prototype: lG
Help: length(x): number of non code words in x, number of characters for a
 string.
Description: 
 (vecsmall):lg      lg($1)
 (vec):lg           lg($1)
 (pol):small        lgpol($1)
 (gen):small        glength($1)
Doc: length of $x$; \kbd{\#}$x$ is a shortcut for \kbd{length}$(x)$.
 This is mostly useful for
 
 \item vectors: dimension (0 for empty vectors),
 
 \item lists: number of entries (0 for empty lists),
 
 \item matrices: number of columns,
 
 \item character strings: number of actual characters (without
 trailing \kbd{\bs 0}, should you expect it from $C$ \kbd{char*}).
 \bprog
  ? #"a string"
  %1 = 8
  ? #[3,2,1]
  %2 = 3
  ? #[]
  %3 = 0
  ? #matrix(2,5)
  %4 = 5
  ? L = List([1,2,3,4]); #L
  %5 = 4
 @eprog
 
 The routine is in fact defined for arbitrary GP types, but is awkward and
 useless in other cases: it returns the number of non-code words in $x$, e.g.
 the effective length minus 2 for integers since the \typ{INT} type has two code
 words.

Function: lex
Class: basic
Section: operators
C-Name: lexcmp
Prototype: iGG
Help: lex(x,y): compare x and y lexicographically (1 if x>y, 0 if x=y, -1 if
 x<y)
Doc: gives the result of a lexicographic comparison
 between $x$ and $y$ (as $-1$, $0$ or $1$). This is to be interpreted in quite
 a wide sense: It is admissible to compare objects of different types
 (scalars, vectors, matrices), provided the scalars can be compared, as well
 as vectors/matrices of different lengths. The comparison is recursive.
 
 In case all components are equal up to the smallest length of the operands,
 the more complex is considered to be larger. More precisely, the longest is
 the largest; when lengths are equal, we have matrix $>$ vector $>$ scalar.
 For example:
 \bprog
 ? lex([1,3], [1,2,5])
 %1 = 1
 ? lex([1,3], [1,3,-1])
 %2 = -1
 ? lex([1], [[1]])
 %3 = -1
 ? lex([1], [1]~)
 %4 = 0
 @eprog

Function: lift
Class: basic
Section: conversions
C-Name: lift0
Prototype: GDn
Help: lift(x,{v}): lifts every element of Z/nZ to Z or T[x]/PT[x] to T[x]
 for a type T if v is omitted, otherwise lift only polmods with main
 variable v. If v does not occur in x, lift only intmods.
Description: 
 (pol):pol        lift($1)
 (vec):vec        lift($1)
 (gen):gen        lift($1)
 (pol, var):pol        lift0($1, $2)
 (vec, var):vec        lift0($1, $2)
 (gen, var):gen        lift0($1, $2)
Doc: lifts an element $x=a \bmod n$ of $\Z/n\Z$ to
 $a$ in $\Z$, and similarly lifts a polmod to a polynomial if $v$ is omitted.
 Otherwise, lifts only polmods whose modulus has main variable $v$ (if $v$
 does not occur in $x$, lifts only intmods). If $x$ is of recursive (non
 modular) type, the lift is done coefficientwise. For $p$-adics, this routine
 acts as \tet{truncate}. It is not allowed to have $x$ of type \typ{REAL}.
 \bprog
 ? lift(Mod(5,3))
 %1 = 2
 ? lift(3 + O(3^9))
 %2 = 3
 ? lift(Mod(x,x^2+1))
 %3 = x
 ? lift(x * Mod(1,3) + Mod(2,3))
 %4 = x + 2
 ? lift(x * Mod(y,y^2+1) + Mod(2,3))
 %5 = y*x + Mod(2, 3)   \\@com do you understand this one ?
 ? lift(x * Mod(y,y^2+1) + Mod(2,3), x)
 %6 = Mod(y, y^2+1) * x + Mod(2, y^2+1)
 @eprog
Variant: Also available is \fun{GEN}{lift}{GEN x} corresponding to
 \kbd{lift0(x,-1)}.

Function: lindep
Class: basic
Section: linear_algebra
C-Name: lindep0
Prototype: GD0,L,
Help: lindep(x,{flag=0}): Z-linear dependencies between components of x.
 flag is optional, and can be 0: default, uses a standard LLL; -1: uses
 Hastad et al; -2: returns a non-trivial kernel vector (not integral in
 general); -3: uses PSLQ; or positive, using LLL with 'flag' many digits of
 accuracy, which should be less than the input accuracy.
Doc: \sidx{linear dependence}$x$ being a
 vector with $p$-adic or real/complex coefficients, finds a small integral
 linear combination among these coefficients.
 
 If $x$ is $p$-adic, $\fl$ is meaningless and the algorithm LLL-reduces a
 suitable (dual) lattice.
 
 Otherwise, the value of $\fl$ determines the algorithm used; in the current
 version of PARI, we suggest to use \emph{non-negative} values, since it is by
 far the fastest and most robust implementation. See the detailed example in
 \secref{se:algdep} (\kbd{algdep}).
 
 If $\fl\geq 0$, uses a floating point (variable precision) LLL algorithm.
 This is in general much faster than the other variants.
 If $\fl = 0$ the accuracy is chosen internally using a crude heuristic.
 If $\fl > 0$ the computation is done with an accuracy of $\fl$ decimal digits.
 To get meaningful results in the latter case, the parameter $\fl$ should be
 smaller than the number of correct decimal digits in the input.
 
 If $\fl=-1$, uses a variant of the \idx{LLL} algorithm due to Hastad,
 Lagarias and Schnorr (STACS 1986). If the precision is too low, the routine
 may enter an infinite loop. Faster than the alternatives if it converges,
 especially when the accuracy is much larger than what is really necessary;
 usually diverges, though.
 
 If $\fl=-2$, $x$ is allowed to be (and in any case interpreted as) a matrix.
 Returns a non trivial element of the kernel of $x$, or $0$ if $x$ has trivial
 kernel. The element is defined over the field of coefficients of $x$, and is
 in general not integral.
 
 If $\fl=-3$, uses the PSLQ algorithm. This may return a real number $B$,
 indicating that the input accuracy was exhausted and that no relation exist
 whose sup norm is less than $B$.
 
 If $\fl=-4$, uses an experimental 2-level PSLQ, which does not work at all.
 Don't use it!
Variant: Also available are \fun{GEN}{lindep}{GEN x} ($\fl=0$)
 \fun{GEN}{lindep2}{GEN x, long bit} ($\fl\geq 0$, bypasses the check for
 $p$-adic inputs) and \fun{GEN}{deplin}{GEN x} ($\fl=-2$).

Function: listcreate
Class: basic
Section: linear_algebra
C-Name: listcreate
Prototype: D0,L,
Help: listcreate(): creates an empty list.
Description: 
 (?gen):list        listcreate()
Doc: creates an empty list. This routine used to have a mandatory argument,
 which is now ignored (for backward compatibility). In fact, this function
 has become redundant and obsolete; it will disappear in future versions of
 PARI: just use \kbd{List()}
 % \syn{NO}

Function: listinsert
Class: basic
Section: linear_algebra
C-Name: listinsert
Prototype: WGL
Help: listinsert(L,x,n): insert x at index n in list L, shifting the
 remaining elements to the right.
Description: 
 (list, gen, small):gen        listinsert($1, $2, $3)
Doc: inserts the object $x$ at
 position $n$ in $L$ (which must be of type \typ{LIST}). This has
 complexity $O(\#L - n + 1)$: all the
 remaining elements of \var{list} (from position $n+1$ onwards) are shifted
 to the right.

Function: listkill
Class: basic
Section: linear_algebra
C-Name: listkill
Prototype: vG
Help: listkill(L): obsolete, retained for backward compatibility.
Doc: obsolete, retained for backward compatibility. Just use \kbd{L = List()}
 instead of \kbd{listkill(L)}. In most cases, you won't even need that, e.g.
 local variables are automatically cleared when a user function returns.

Function: listpop
Class: basic
Section: linear_algebra
C-Name: listpop
Prototype: vWD0,L,
Help: listpop(list,{n}): removes n-th element from list. If n is
 omitted or greater than the current list length, removes last element.
Description: 
 (list, small):void     listpop($1, $2)
Doc: 
 removes the $n$-th element of the list
 \var{list} (which must be of type \typ{LIST}). If $n$ is omitted,
 or greater than the list current length, removes the last element.
 This runs in time $O(\#L - n + 1)$.

Function: listput
Class: basic
Section: linear_algebra
C-Name: listput
Prototype: WGD0,L,
Help: listput(list,x,{n}): sets n-th element of list equal to x. If n is
 omitted or greater than the current list length, appends x.
Description: 
 (list, gen, small):gen        listput($1, $2, $3)
Doc: 
 sets the $n$-th element of the list
 \var{list} (which must be of type \typ{LIST}) equal to $x$. If $n$ is omitted,
 or greater than the list length, appends $x$.
 You may put an element into an occupied cell (not changing the
 list length), but it is easier to use the standard \kbd{list[n] = x}
 construct. This runs in time $O(\#L)$ in the worst case (when the list must
 be reallocated), but in time $O(1)$ on average: any number of successive
 \kbd{listput}s run in time $O(\#L)$, where $\#L$ denotes the list
 \emph{final} length.

Function: listsort
Class: basic
Section: linear_algebra
C-Name: listsort
Prototype: vWD0,L,
Help: listsort(L,{flag=0}): sort the list L in place. If flag is non-zero,
 suppress all but one occurence of each element in list.
Doc: sorts the \typ{LIST} \var{list} in place. If $\fl$ is non-zero,
 suppresses all repeated coefficients. This is faster than the \kbd{vecsort}
 command since no copy has to be made. No value returned.

Function: lngamma
Class: basic
Section: transcendental
C-Name: glngamma
Prototype: Gp
Help: lngamma(x): logarithm of the gamma function of x.
Doc: principal branch of the logarithm of the gamma
 function of $x$. This function is analytic on the complex plane with
 non-positive integers removed. Can have much larger arguments than \kbd{gamma}
 itself. The $p$-adic \kbd{lngamma} function is not implemented.

Function: local
Class: basic
Section: programming/specific
Help: local(x,...,z): declare x,...,z as (dynamically scoped) local variables.

Function: log
Class: basic
Section: transcendental
C-Name: glog
Prototype: Gp
Help: log(x): natural logarithm of x.
Description: 
 (gen):gen:prec        glog($1, prec)
Doc: principal branch of the natural logarithm of
 $x \in \C^*$, i.e.~such that $\text{Im(log}(x))\in{} ]-\pi,\pi]$.
 The branch cut lies
 along the negative real axis, continuous with quadrant 2, i.e.~such that
 $\lim_{b\to 0^+} \log (a+bi) = \log a$ for $a \in\R^*$. The result is complex
 (with imaginary part equal to $\pi$) if $x\in \R$ and $x < 0$. In general,
 the algorithm uses the formula
 $$\log(x) \approx {\pi\over 2\text{agm}(1, 4/s)} - m \log 2, $$
 if $s = x 2^m$ is large enough. (The result is exact to $B$ bits provided
 $s > 2^{B/2}$.) At low accuracies, the series expansion near $1$ is used.
 
 $p$-adic arguments are also accepted for $x$, with the convention that
 $\log(p)=0$. Hence in particular $\exp(\log(x))/x$ is not in general equal to
 1 but to a $(p-1)$-th root of unity (or $\pm1$ if $p=2$) times a power of $p$.
Variant: For a \typ{PADIC} $x$, the function
 \fun{GEN}{Qp_log}{GEN x} is also available.

Function: matadjoint
Class: basic
Section: linear_algebra
C-Name: matadjoint0
Prototype: GD0,L,
Help: matadjoint(x,{flag=0}): adjoint matrix of x. If flag is 0 or omitted,
 n! must be invertible, where n is the dimension of the matrix. If flag is 1,
 uses a slower division-free algorithm.
Doc: 
 \idx{adjoint matrix} of $x$, i.e.~the matrix $y$
 of cofactors of $x$, satisfying $x*y=\det(x)*\Id$. $x$ must be a
 (non-necessarily invertible) square matrix of dimension $n$.
 If $\fl$ is 0 or omitted, use a fast algorithm which assumes that $n!$ is
 invertible. If $\fl$ is 1, use a slower division-free algorithm.
 \bprog
 ? a = [1,2,3;3,4,5;6,7,8] * Mod(1,2);
 ? matadjoint(a)
  ***   at top-level: matadjoint([1,2,3;3,
  ***                 ^--------------------
  *** matadjoint: impossible inverse modulo: Mod(0, 2).
 ? matadjoint(a, 1)  \\ use safe algorithm
 %2 =
 [Mod(1, 2) Mod(1, 2) Mod(0, 2)]
 
 [Mod(0, 2) Mod(0, 2) Mod(0, 2)]
 
 [Mod(1, 2) Mod(1, 2) Mod(0, 2)]
 @eprog\noindent
 Both algorithms use $O(n^4)$ operations in the base ring.
Variant: Also available are
 \fun{GEN}{adj}{GEN x} (\fl=0) and
 \fun{GEN}{adjsafe}{GEN x} (\fl=1).

Function: matalgtobasis
Class: basic
Section: number_fields
C-Name: matalgtobasis
Prototype: GG
Help: matalgtobasis(nf,x): nfalgtobasis applied to every element of the
 vector or matrix x.
Doc: $\var{nf}$ being a number field in \kbd{nfinit} format, and $x$ a
 (row or column) vector or matrix, apply \tet{nfalgtobasis} to each entry
 of $x$.

Function: matbasistoalg
Class: basic
Section: number_fields
C-Name: matbasistoalg
Prototype: GG
Help: matbasistoalg(nf,x): nfbasistoalg applied to every element of the
 matrix or vector x.
Doc: $\var{nf}$ being a number field in \kbd{nfinit} format, and $x$ a
 (row or column) vector or matrix, apply \tet{nfbasistoalg} to each entry
 of $x$.

Function: matcompanion
Class: basic
Section: linear_algebra
C-Name: matcompanion
Prototype: G
Help: matcompanion(x): companion matrix to polynomial x.
Doc: 
 the left companion matrix to the polynomial $x$.

Function: matdet
Class: basic
Section: linear_algebra
C-Name: det0
Prototype: GD0,L,
Help: matdet(x,{flag=0}): determinant of the matrix x using Gauss-Bareiss.
 If (optional) flag is set to 1, use classical Gaussian elimination (slightly
 better for integer entries).
Description: 
 (gen, ?0):gen           det($1)
 (gen, 1):gen            det2($1)
 (gen, #small):gen       $"incorrect flag in matdet"
 (gen, small):gen        det0($1, $2)
Doc: determinant of $x$. $x$ must be a square matrix.
 
 If $\fl=0$, uses Gauss-Bareiss.
 
 If $\fl=1$, uses classical Gaussian elimination, which is better when the
 entries of the matrix are reals or integers for example, but usually much
 worse for more complicated entries like multivariate polynomials.
Variant: Also available are \fun{GEN}{det}{GEN x} ($\fl=0$) and
 \fun{GEN}{det2}{GEN x} ($\fl=1$).

Function: matdetint
Class: basic
Section: linear_algebra
C-Name: detint
Prototype: G
Help: matdetint(x): some multiple of the determinant of the lattice
 generated by the columns of x (0 if not of maximal rank). Useful with
 mathnfmod.
Doc: 
 $x$ being an $m\times n$ matrix with integer
 coefficients, this function computes a non-zero \emph{multiple} of the
 determinant of
 the lattice generated by the columns of $x$ if it has maximal rank $m$, and
 returns zero otherwise, using the Gauss-Bareiss algorithm. When $x$ is square,
 the exact determinant is obtained.
 
 This function is useful in conjunction with \kbd{mathnfmod}, which needs to
 know such a multiple. If the rank is maximal and the matrix non-square,
 you can obtain the exact determinant using
 \bprog
   matdet( mathnfmod(x, matdetint(x)) )
 @eprog\noindent
 Note that as soon as one of the dimensions gets large ($m$ or $n$ is larger
 than 20, say), it will often be much faster to use \kbd{mathnf(x, 1)} or
 \kbd{mathnf(x, 4)} directly.

Function: matdiagonal
Class: basic
Section: linear_algebra
C-Name: diagonal
Prototype: G
Help: matdiagonal(x): creates the diagonal matrix whose diagonal entries are
 the entries of the vector x.
Doc: $x$ being a vector, creates the diagonal matrix
 whose diagonal entries are those of $x$.

Function: mateigen
Class: basic
Section: linear_algebra
C-Name: eigen
Prototype: Gp
Help: mateigen(x): eigenvectors of the matrix x given as columns of a matrix.
Doc: gives the eigenvectors of $x$ as columns of a matrix.

Function: matfrobenius
Class: basic
Section: linear_algebra
C-Name: matfrobenius
Prototype: GD0,L,Dn
Help: matfrobenius(M,{flag},{v=x}): Return the Frobenius form of the square
 matrix M. If flag is 1, return only the elementary divisors as a vector of
 polynomials in the variable v. If flag is 2, return a two-components vector
 [F,B] where F is the Frobenius form and B is the basis change so that
 M=B^-1*F*B.
Doc: returns the Frobenius form of
 the square matrix \kbd{M}. If $\fl=1$, returns only the elementary divisors as
 a vector of polynomials in the variable \kbd{v}.  If $\fl=2$, returns a
 two-components vector [F,B] where \kbd{F} is the Frobenius form and \kbd{B} is
 the basis change so that $M=B^{-1}FB$.

Function: mathess
Class: basic
Section: linear_algebra
C-Name: hess
Prototype: G
Help: mathess(x): Hessenberg form of x.
Doc: returns a matrix similar to the square matrix $x$, which is in upper Hessenberg
 form (zero entries below the first subdiagonal).

Function: mathilbert
Class: basic
Section: linear_algebra
C-Name: mathilbert
Prototype: L
Help: mathilbert(n): Hilbert matrix of order n.
Doc: $x$ being a \kbd{long}, creates the
 \idx{Hilbert matrix}of order $x$, i.e.~the matrix whose coefficient
 ($i$,$j$) is $1/ (i+j-1)$.

Function: mathnf
Class: basic
Section: linear_algebra
C-Name: mathnf0
Prototype: GD0,L,
Help: mathnf(x,{flag=0}): (upper triangular) Hermite normal form of x, basis
 for the lattice formed by the columns of x. flag is optional whose value
 range from 0 to 4 (0 if omitted), meaning : 0: naive algorithm. 1: as 0, but
 output 2-component vector [H,U] such that H is the HNF of
 x, and U is a unimodular matrix such that XU=H. 3: Batut's algorithm:
 output [H,U,P] where P is a permutation matrix such that P x U = H. 4:
 as 1, using a heuristic variant of LLL reduction along the way.
Doc: if $x$ is a (not necessarily square)
 matrix with integer entries, finds the \emph{upper triangular}
 \idx{Hermite normal form} of $x$. If the rank of $x$ is equal to its number
 of rows, the result is a square matrix. In general, the columns of the result
 form a basis of the lattice spanned by the columns of $x$.
 
 If $\fl=0$, uses the naive algorithm. This is in general fastest but may
 require too much memory as the dimension gets large (bigger than 100, say),
 in which case you may try \kbd{mathnfmod(x, matdetint(x))} when $x$ has
 maximal rank, and \kbd{mathnf(x, 4)} otherwise.
 
 If $\fl=1$, outputs a two-component row vector $[H,U]$, where $H$ is the
 Hermite normal form of $x$ defined as above,  and $U$ is the
 unimodular transformation matrix such that $xU=[0|H]$. When the kernel is
 large, $U$ has in general huge coefficients. In the worst case, the
 running time is exponential with respect to the dimension, but the
 routine behaves well in small dimension (less than 50 or 100, say).
 
 If $\fl=3$, uses Batut's algorithm and output $[H,U,P]$, such that $H$ and
 $U$ are as before and $P$ is a permutation of the rows such that $P$ applied
 to $xU$ gives $H$. This is in general slower than $\fl=1$ but the matrix $U$
 is smaller; it may still be large.
 
 If $\fl=4$, as in case 1 above, but uses a variant of \idx{LLL}
 reduction along the way. The matrix $U$ is in general close to optimal (in
 terms of smallest $L_2$ norm), but the reduction is in general slow,
 although provably polynomial-time.
Variant: Also available are \fun{GEN}{hnf}{GEN x} ($\fl=0$) and
 \fun{GEN}{hnfall}{GEN x} ($\fl=1$). To reduce \emph{huge} (say $400 \times
 400$ and more) relation matrices (sparse with small entries), you can use
 the pair \kbd{hnfspec} / \kbd{hnfadd}. Since this is quite technical and
 the calling interface may change, they are not documented yet. Look at the
 code in \kbd{basemath/alglin1.c}.

Function: mathnfmod
Class: basic
Section: linear_algebra
C-Name: hnfmod
Prototype: GG
Help: mathnfmod(x,d): (upper triangular) Hermite normal form of x, basis for
 the lattice formed by the columns of x, where d is a multiple of the
 non-zero determinant of this lattice.
Doc: if $x$ is a (not necessarily square) matrix of
 maximal rank with integer entries, and $d$ is a multiple of the (non-zero)
 determinant of the lattice spanned by the columns of $x$, finds the
 \emph{upper triangular} \idx{Hermite normal form} of $x$.
 
 If the rank of $x$ is equal to its number of rows, the result is a square
 matrix. In general, the columns of the result form a basis of the lattice
 spanned by the columns of $x$. Even when $d$ is known, this is in general
 slower than \kbd{mathnf} but uses much less memory.

Function: mathnfmodid
Class: basic
Section: linear_algebra
C-Name: hnfmodid
Prototype: GG
Help: mathnfmodid(x,d): (upper triangular) Hermite normal form of x
 concatenated with d times the identity matrix.
Doc: outputs the (upper triangular)
 \idx{Hermite normal form} of $x$ concatenated with $d$ times
 the identity matrix. Assumes that $x$ has integer entries.

Function: matid
Class: basic
Section: linear_algebra
C-Name: matid
Prototype: L
Help: matid(n): identity matrix of order n.
Description: 
 (small):vec    matid($1)
Doc: creates the $n\times n$ identity matrix.

Function: matimage
Class: basic
Section: linear_algebra
C-Name: matimage0
Prototype: GD0,L,
Help: matimage(x,{flag=0}): basis of the image of the matrix x. flag is
 optional and can be set to 0 or 1, corresponding to two different algorithms.
Doc: gives a basis for the image of the
 matrix $x$ as columns of a matrix. A priori the matrix can have entries of
 any type. If $\fl=0$, use standard Gauss pivot. If $\fl=1$, use
 \kbd{matsupplement} (much slower: keep the default flag!).
Variant: Also available is \fun{GEN}{image}{GEN x} ($\fl=0$).

Function: matimagecompl
Class: basic
Section: linear_algebra
C-Name: imagecompl
Prototype: G
Help: matimagecompl(x): vector of column indices not corresponding to the
 indices given by the function matimage.
Doc: gives the vector of the column indices which
 are not extracted by the function \kbd{matimage}. Hence the number of
 components of \kbd{matimagecompl(x)} plus the number of columns of
 \kbd{matimage(x)} is equal to the number of columns of the matrix $x$.

Function: matindexrank
Class: basic
Section: linear_algebra
C-Name: indexrank
Prototype: G
Help: matindexrank(x): gives two extraction vectors (rows and columns) for
 the matrix x such that the extracted matrix is square of maximal rank.
Doc: $x$ being a matrix of rank $r$, returns a vector with two
 \typ{VECSMALL} components $y$ and $z$ of length $r$ giving a list of rows
 and columns respectively (starting from 1) such that the extracted matrix
 obtained from these two vectors using $\tet{vecextract}(x,y,z)$ is
 invertible.

Function: matintersect
Class: basic
Section: linear_algebra
C-Name: intersect
Prototype: GG
Help: matintersect(x,y): intersection of the vector spaces whose bases are
 the columns of x and y.
Doc: $x$ and $y$ being two matrices with the same
 number of rows each of whose columns are independent, finds a basis of the
 $\Q$-vector space equal to the intersection of the spaces spanned by the
 columns of $x$ and $y$ respectively. The faster function
 \tet{idealintersect} can be used to intersect fractional ideals (projective
 $\Z_K$ modules of rank $1$); the slower but much more general function
 \tet{nfhnf} can be used to intersect general $\Z_K$-modules.

Function: matinverseimage
Class: basic
Section: linear_algebra
C-Name: inverseimage
Prototype: GG
Help: matinverseimage(x,y): an element of the inverse image of the vector y
 by the matrix x if one exists, the empty vector otherwise.
Doc: given a matrix $x$ and
 a column vector or matrix $y$, returns a preimage $z$ of $y$ by $x$ if one
 exists (i.e such that $x z = y$), an empty vector or matrix otherwise. The
 complete inverse image is $z + \text{Ker} x$, where a basis of the kernel of
 $x$ may be obtained by \kbd{matker}.
 \bprog
 ? M = [1,2;2,4];
 ? matinverseimage(M, [1,2]~)
 %2 = [1, 0]~
 ? matinverseimage(M, [3,4]~)
 %3 = []~    \\@com no solution
 ? matinverseimage(M, [1,3,6;2,6,12])
 %4 =
 [1 3 6]
 
 [0 0 0]
 ? matinverseimage(M, [1,2;3,4])
 %5 = [;]    \\@com no solution
 ? K = matker(M)
 %6 =
 [-2]
 
 [1]
 @eprog

Function: matisdiagonal
Class: basic
Section: linear_algebra
C-Name: isdiagonal
Prototype: iG
Help: matisdiagonal(x): true(1) if x is a diagonal matrix, false(0)
 otherwise.
Doc: returns true (1) if $x$ is a diagonal matrix, false (0) if not.

Function: matker
Class: basic
Section: linear_algebra
C-Name: matker0
Prototype: GD0,L,
Help: matker(x,{flag=0}): basis of the kernel of the matrix x. flag is
 optional, and may be set to 0: default; non-zero: x is known to have
 integral entries.
Doc: gives a basis for the kernel of the matrix $x$ as columns of a matrix.
 The matrix can have entries of any type, provided they are compatible with
 the generic arithmetic operations ($+$, $\times$ and $/$).
 
 If $x$ is known to have integral entries, set $\fl=1$.
Variant: Also available are \fun{GEN}{ker}{GEN x} ($\fl=0$),
 \fun{GEN}{keri}{GEN x} ($\fl=1$).

Function: matkerint
Class: basic
Section: linear_algebra
C-Name: matkerint0
Prototype: GD0,L,
Help: matkerint(x,{flag=0}): LLL-reduced Z-basis of the kernel of the matrix
 x with integral entries. flag is optional, and may be set to 0: default,
 uses LLL, 1: uses matrixqz (much slower).
Doc: gives an \idx{LLL}-reduced $\Z$-basis
 for the lattice equal to the kernel of the matrix $x$ as columns of the
 matrix $x$ with integer entries (rational entries are not permitted).
 
 If $\fl=0$, uses an integer LLL algorithm.
 
 If $\fl=1$, uses $\kbd{matrixqz}(x,-2)$. Many orders of magnitude slower
 than the default: never use this.
Variant: See also \fun{GEN}{kerint}{GEN x} ($\fl=0$), which is a trivial
 wrapper around
 \bprog
 ZM_lll(ZM_lll(x, 0.99, LLL_KER), 0.99, LLL_INPLACE);
 @eprog\noindent Remove the outermost \kbd{ZM\_lll} if LLL-reduction is not
 desired (saves time).

Function: matmuldiagonal
Class: basic
Section: linear_algebra
C-Name: matmuldiagonal
Prototype: GG
Help: matmuldiagonal(x,d): product of matrix x by diagonal matrix whose
 diagonal coefficients are those of the vector d, equivalent but faster than
 x*matdiagonal(d).
Doc: product of the matrix $x$ by the diagonal
 matrix whose diagonal entries are those of the vector $d$. Equivalent to,
 but much faster than $x*\kbd{matdiagonal}(d)$.

Function: matmultodiagonal
Class: basic
Section: linear_algebra
C-Name: matmultodiagonal
Prototype: GG
Help: matmultodiagonal(x,y): product of matrices x and y, knowing that the
 result will be a diagonal matrix. Much faster than general multiplication in
 that case.
Doc: product of the matrices $x$ and $y$ assuming that the result is a
 diagonal matrix. Much faster than $x*y$ in that case. The result is
 undefined if $x*y$ is not diagonal.

Function: matpascal
Class: basic
Section: linear_algebra
C-Name: matqpascal
Prototype: LDG
Help: matpascal(n,{q}): Pascal triangle of order n if q is omited. q-Pascal
 triangle otherwise.
Doc: creates as a matrix the lower triangular
 \idx{Pascal triangle} of order $x+1$ (i.e.~with binomial coefficients
 up to $x$). If $q$ is given, compute the $q$-Pascal triangle (i.e.~using
 $q$-binomial coefficients).
Variant: Also available is \fun{GEN}{matpascal}{GEN x}.

Function: matrank
Class: basic
Section: linear_algebra
C-Name: rank
Prototype: lG
Help: matrank(x): rank of the matrix x.
Doc: rank of the matrix $x$.

Function: matrix
Class: basic
Section: linear_algebra
C-Name: matrice
Prototype: GGDVDVDE
Help: matrix(m,n,{X},{Y},{expr=0}): mXn matrix of expression expr, the row
 variable X going from 1 to m and the column variable Y going from 1 to n. By
 default, fill with 0s.
Doc: creation of the
 $m\times n$ matrix whose coefficients are given by the expression
 \var{expr}. There are two formal parameters in \var{expr}, the first one
 ($X$) corresponding to the rows, the second ($Y$) to the columns, and $X$
 goes from 1 to $m$, $Y$ goes from 1 to $n$. If one of the last 3 parameters
 is omitted, fill the matrix with zeroes.
 %\syn{NO}

Function: matrixqz
Class: basic
Section: linear_algebra
C-Name: matrixqz0
Prototype: GDG
Help: matrixqz(A,{p=0}): if p>=0, transforms the rational or integral mxn (m>=n)
 matrix A into an integral matrix with gcd of maximal determinants coprime to
 p. If p=-1, finds a basis of the intersection with Z^n of the lattice spanned
 by the columns of A. If p=-2, finds a basis of the intersection with Z^n of
 the Q-vector space spanned by the columns of A.
Doc: $A$ being an $m\times n$ matrix in $M_{m,n}(\Q)$, let
 $\text{Im}_\Q A$ (resp.~$\text{Im}_\Z A$) the $\Q$-vector space
 (resp.~the $\Z$-module) spanned by the columns of $A$. This function has
 varying behavior depending on the sign of $p$:
 
 If $p \geq 0$, $A$ is assumed to have maximal rank $n\leq m$. The function
 returns a matrix $B\in M_{m,n}(\Z)$, with $\text{Im}_\Q B = \text{Im}_\Q A$,
 such that the GCD of all its $n\times n$ minors is coprime to
 $p$; in particular, if $p = 0$ (default), this GCD is $1$.
 \bprog
 ? minors(x) = vector(#x[,1], i, matdet( vecextract(x, Str("^",i), "..") ));
 ? A = [3,1/7; 5,3/7; 7,5/7]; minors(A)
 %1 = [4/7, 8/7, 4/7]   \\ determinants of all 2x2 minors
 ? B = matrixqz(A)
 %2 =
 [3 1]
 
 [5 2]
 
 [7 3]
 ? minors(%)
 %3 = [1, 2, 1]   \\ B integral with coprime minors
 @eprog
 
 If $p=-1$, returns the HNF basis of the lattice $\Z^n \cap \text{Im}_\Z A$.
 
 If $p=-2$, returns the HNF basis of the lattice $\Z^n \cap \text{Im}_\Q A$.
 \bprog
 ? matrixqz(A,-1)
 %4 =
 [8 5]
 
 [4 3]
 
 [0 1]
 
 ? matrixqz(A,-2)
 %5 =
 [2 -1]
 
 [1 0]
 
 [0 1]
 @eprog

Function: matsize
Class: basic
Section: linear_algebra
C-Name: matsize
Prototype: G
Help: matsize(x): number of rows and columns of the vector/matrix x as a
 2-vector.
Doc: $x$ being a vector or matrix, returns a row vector
 with two components, the first being the number of rows (1 for a row vector),
 the second the number of columns (1 for a column vector).

Function: matsnf
Class: basic
Section: linear_algebra
C-Name: matsnf0
Prototype: GD0,L,
Help: matsnf(X,{flag=0}): Smith normal form (i.e. elementary divisors) of
 the matrix X, expressed as a vector d. Binary digits of flag mean 1: returns
 [u,v,d] where d=u*X*v, otherwise only the diagonal d is returned, 2: allow
 polynomial entries, otherwise assume X is integral, 4: removes all
 information corresponding to entries equal to 1 in d.
Doc: if $X$ is a (singular or non-singular) matrix outputs the vector of
 \idx{elementary divisors} of $X$, i.e.~the diagonal of the
 \idx{Smith normal form} of $X$, normalized so that $d_n \mid d_{n-1} \mid
 \ldots \mid d_1$.
 
 The binary digits of \fl\ mean:
 
 1 (complete output): if set, outputs $[U,V,D]$, where $U$ and $V$ are two
 unimodular matrices such that $UXV$ is the diagonal matrix $D$. Otherwise
 output only the diagonal of $D$. If $X$ is not a square matrix, then $D$
 will be a square diagonal matrix padded with zeros on the left or the top.
 
 2 (generic input): if set, allows polynomial entries, in which case the
 input matrix must be square. Otherwise, assume that $X$ has integer
 coefficients with arbitrary shape.
 
 4 (cleanup): if set, cleans up the output. This means that elementary
 divisors equal to $1$ will be deleted, i.e.~outputs a shortened vector $D'$
 instead of $D$. If complete output was required, returns $[U',V',D']$ so
 that $U'XV' = D'$ holds. If this flag is set, $X$ is allowed to be of the
 form `vector of elementary divisors' or $[U,V,D]$ as would normally be output with the cleanup flag
 unset.

Function: matsolve
Class: basic
Section: linear_algebra
C-Name: gauss
Prototype: GG
Help: matsolve(M,B): Gaussian solution of MX=B (M matrix, B column vector).
Doc: $M$ being an invertible matrix and $B$ a column
 vector, finds the solution $X$ of $MX=B$, using Gaussian elimination. This
 has the same effect as, but is a bit faster, than $M^{-1}*B$.

Function: matsolvemod
Class: basic
Section: linear_algebra
C-Name: matsolvemod0
Prototype: GGGD0,L,
Help: matsolvemod(M,D,B,{flag=0}): one solution of system of congruences
 MX=B mod D (M matrix, B and D column vectors). If (optional) flag is
 non-null return all solutions.
Doc: $M$ being any integral matrix,
 $D$ a column vector of non-negative integer moduli, and $B$ an integral
 column vector, gives a small integer solution to the system of congruences
 $\sum_i m_{i,j}x_j\equiv b_i\pmod{d_i}$ if one exists, otherwise returns
 zero. Shorthand notation: $B$ (resp.~$D$) can be given as a single integer,
 in which case all the $b_i$ (resp.~$d_i$) above are taken to be equal to $B$
 (resp.~$D$).
 \bprog
 ? M = [1,2;3,4];
 ? matsolvemod(M, [3,4]~, [1,2]~)
 %2 = [-2, 0]~
 ? matsolvemod(M, 3, 1) \\ M X = [1,1]~ over F_3
 %3 = [-1, 1]~
 ? matsolvemod(M, [3,0]~, [1,2]~) \\ x + 2y = 1 (mod 3), 3x + 4y = 2 (in Z)
 %4 = [6, -4]~
 @eprog
 If $\fl=1$, all solutions are returned in the form of a two-component row
 vector $[x,u]$, where $x$ is a small integer solution to the system of
 congruences and $u$ is a matrix whose columns give a basis of the homogeneous
 system (so that all solutions can be obtained by adding $x$ to any linear
 combination of columns of $u$). If no solution exists, returns zero.
Variant: Also available are \fun{GEN}{gaussmodulo}{GEN M, GEN D, GEN B}
 ($\fl=0$) and \fun{GEN}{gaussmodulo2}{GEN M, GEN D, GEN B} ($\fl=1$).

Function: matsupplement
Class: basic
Section: linear_algebra
C-Name: suppl
Prototype: G
Help: matsupplement(x): supplement the columns of the matrix x to an
 invertible matrix.
Doc: assuming that the columns of the matrix $x$
 are linearly independent (if they are not, an error message is issued), finds
 a square invertible matrix whose first columns are the columns of $x$,
 i.e.~supplement the columns of $x$ to a basis of the whole space.

Function: mattranspose
Class: basic
Section: linear_algebra
C-Name: gtrans
Prototype: G
Help: mattranspose(x): x~ = transpose of x.
Doc: transpose of $x$ (also $x\til$).
 This has an effect only on vectors and matrices.

Function: max
Class: basic
Section: operators
C-Name: gmax
Prototype: GG
Help: max(x,y): maximum of x and y
Description: 
 (small, small):small  maxss($1, $2)
 (small, int):int      gmaxsg($1, $2)
 (int, small):int      gmaxgs($1, $2)
 (int, int):int        gmax($1, $2)
 (small, mp):mp        gmaxsg($1, $2)
 (mp, small):mp        gmaxgs($1, $2)
 (mp, mp):mp           gmax($1, $2)
 (small, gen):gen      gmaxsg($1, $2)
 (gen, small):gen      gmaxgs($1, $2)
 (gen, gen):gen        gmax($1, $2)
Doc: creates the maximum of $x$ and $y$ when they can be compared.

Function: min
Class: basic
Section: operators
C-Name: gmin
Prototype: GG
Help: min(x,y): minimum of x and y
Description: 
 (small, small):small  minss($1, $2)
 (small, int):int      gminsg($1, $2)
 (int, small):int      gmings($1, $2)
 (int, int):int        gmin($1, $2)
 (small, mp):mp        gminsg($1, $2)
 (mp, small):mp        gmings($1, $2)
 (mp, mp):mp           gmin($1, $2)
 (small, gen):gen      gminsg($1, $2)
 (gen, small):gen      gmings($1, $2)
 (gen, gen):gen        gmin($1, $2)
Doc: creates the minimum of $x$ and $y$ when they can be compared.

Function: minpoly
Class: basic
Section: linear_algebra
C-Name: minpoly
Prototype: GDn
Help: minpoly(A,{v=x}): minimal polynomial of the matrix or polmod A.
Doc: \idx{minimal polynomial}
 of $A$ with respect to the variable $v$., i.e. the monic polynomial $P$
 of minimal degree (in the variable $v$) such that $P(A) = 0$.

Function: modreverse
Class: basic
Section: number_fields
C-Name: modreverse
Prototype: G
Help: modreverse(z): reverse polmod of the polmod z, if it exists.
Doc: let $z = \kbd{Mod(A, T)}$ be a polmod, and $Q$ be its minimal
 polynomial, which must satisfy $\text{deg}(Q) = \text{deg}(T)$.
 Returns a ``reverse polmod'' \kbd{Mod(B, Q)}, which is a root of $T$.
 
 This is quite useful when one changes the generating element in algebraic
 extensions:
 \bprog
 ? u = Mod(x, x^3 - x -1); v = u^5;
 ? w = modreverse(v)
 %2 = Mod(x^2 - 4*x + 1, x^3 - 5*x^2 + 4*x - 1)
 @eprog\noindent
 which means that $x^3 - 5x^2 + 4x -1$ is another defining polynomial for the
 cubic field
 $$\Q(u) = \Q[x]/(x^3 - x - 1) = \Q[x]/(x^3 - 5x^2 + 4x - 1) = \Q(v),$$
 and that $u \to v^2 - 4v + 1$ gives an explicit isomorphism. From this, it is
 easy to convert elements between the $A(u)\in \Q(u)$ and $B(v)\in \Q(v)$
 representations:
 \bprog
 ? A = u^2 + 2*u + 3; subst(lift(A), 'x, w)
 %3 = Mod(x^2 - 3*x + 3, x^3 - 5*x^2 + 4*x - 1)
 ? B = v^2 + v + 1;   subst(lift(B), 'x, v)
 %4 = Mod(26*x^2 + 31*x + 26, x^3 - x - 1)
 @eprog
 If the minimal polynomial of $z$ has lower degree than expected, the routine
 fails
 \bprog
 ? u = Mod(-x^3 + 9*x, x^4 - 10*x^2 + 1)
 ? modreverse(u)
   ***   at top-level: modreverse(u)
   ***                 ^-------------
   *** modreverse: reverse polmod does not exist: Mod(-x^3+9*x, x^4-10*x^2+1).
 ? minpoly(u)
 %6 = x^2 - 8
 @eprog

Function: moebius
Class: basic
Section: number_theoretical
C-Name: gmoebius
Prototype: G
Help: moebius(x): Moebius function of x.
Description: 
 (int):small      moebius($1)
 (gen):gen        gmoebius($1)
Doc: \idx{Moebius} $\mu$-function of $|x|$. $x$ must be of type integer.
 The function accepts vector/matrices arguments, and is then applied
 componentwise.
Variant: For a \typ{INT} $x$, the variant
 \fun{long}{moebius}{GEN n} is generally easier to use.

Function: my
Class: basic
Section: programming/specific
Help: my(x,...,z): declare x,...,z as lexically-scoped local variables.

Function: newtonpoly
Class: basic
Section: number_fields
C-Name: newtonpoly
Prototype: GG
Help: newtonpoly(x,p): Newton polygon of polynomial x with respect to the
 prime p.
Doc: gives the vector of the slopes of the Newton
 polygon of the polynomial $x$ with respect to the prime number $p$. The $n$
 components of the vector are in decreasing order, where $n$ is equal to the
 degree of $x$. Vertical slopes occur iff the constant coefficient of $x$ is
 zero and are denoted by \tet{LONG_MAX}, the biggest single precision
 integer representable on the machine ($2^{31}-1$ (resp.~$2^{63}-1$) on 32-bit
 (resp.~64-bit) machines), see \secref{se:valuation}.

Function: next
Class: basic
Section: programming/control
C-Name: next0
Prototype: D1,L,
Help: next({n=1}): interrupt execution of current instruction sequence, and
 start another iteration from the n-th innermost enclosing loops.
Doc: interrupts execution of current $seq$,
 resume the next iteration of the innermost enclosing loop, within the
 current function call (or top level loop). If $n$ is specified, resume at
 the $n$-th enclosing loop. If $n$ is bigger than the number of enclosing
 loops, all enclosing loops are exited.

Function: nextprime
Class: basic
Section: number_theoretical
C-Name: gnextprime
Prototype: G
Help: nextprime(x): smallest pseudoprime >= x.
Description: 
 (int):int        nextprime($1)
 (gen):gen        gnextprime($1)
Doc: finds the smallest pseudoprime (see
 \tet{ispseudoprime}) greater than or equal to $x$. $x$ can be of any real
 type. Note that if $x$ is a pseudoprime, this function returns $x$ and not
 the smallest pseudoprime strictly larger than $x$. To rigorously prove that
 the result is prime, use \kbd{isprime}.
 The function accepts vector/matrices arguments, and is then applied
 componentwise.
Variant: For a scalar $x$,
 \fun{long}{nextprime}{GEN n} is also available.

Function: nfalgtobasis
Class: basic
Section: number_fields
C-Name: algtobasis
Prototype: GG
Help: nfalgtobasis(nf,x): transforms the algebraic number x into a column
 vector on the integral basis nf.zk.
Doc: Given an algebraic number $x$ in the number field $\var{nf}$,
 transforms it to a column vector on the integral basis \kbd{\var{nf}.zk}.
 \bprog
 ? nf = nfinit(y^2 + 4);
 ? nf.zk
 %2 = [1, 1/2*y]
 ? nfalgtobasis(nf, [1,1]~)
 %3 = [1, 1]~
 ? nfalgtobasis(nf, y)
 %4 = [0, 2]~
 ? nfalgtobasis(nf, Mod(y, y^2+4))
 %4 = [0, 2]~
 @eprog
 This is the inverse function of \kbd{nfbasistoalg}.

Function: nfbasis
Class: basic
Section: number_fields
C-Name: nfbasis0
Prototype: GD0,L,DG
Help: nfbasis(x,{flag=0},{fa}): integral basis of the field Q[a], where a is
 a root of the polynomial x, using the round 4 algorithm. Second and third
 args are optional. Binary digits of flag mean 1: assume that no square of a
 prime>primelimit divides the discriminant of x, 2: use round 2 algorithm
 instead. If present, fa provides the matrix of a partial factorization of the
 discriminant of x, useful if one wants only an order maximal at certain
 primes only.
Doc: \idx{integral basis} of the number
 field defined by the irreducible, preferably monic, polynomial $x$, using a
 modified version of the \idx{round 4} algorithm by default, due to David
 \idx{Ford}, Sebastian \idx{Pauli} and Xavier \idx{Roblot}. The binary digits
 of $\fl$ have the following meaning:
 
 1: assume that no square of a prime greater than the default \kbd{primelimit}
 divides the discriminant of $x$, i.e.~that the index of $x$ has only small
 prime divisors.
 
 2: use \idx{round 2} algorithm. For small degrees and coefficient size, this
 is sometimes a little faster. (This program is the translation into C of a
 program written by David \idx{Ford} in Algeb.)
 
 Thus for instance, if $\fl=3$, this uses the round 2 algorithm and outputs
 an order which will be maximal at all the small primes.
 
 If \var{fa} is present, we assume (without checking!) that it is the two-column
 matrix of the factorization of the discriminant of the polynomial $x$. Note
 that it does \emph{not} have to be a complete factorization. This is
 especially useful if only a local integral basis for some small set of places
 is desired: only factors with exponents greater or equal to 2 will be
 considered.
Variant: An extended version is
 \fun{GEN}{nfbasis}{GEN x, GEN *d, long flag, GEN fa = NULL}, where \kbd{*d}
 receives the discriminant of the number field
 (\emph{not} of the polynomial $x$).

Function: nfbasistoalg
Class: basic
Section: number_fields
C-Name: basistoalg
Prototype: GG
Help: nfbasistoalg(nf,x): transforms the column vector x on the integral
 basis into an algebraic number.
Doc: Given an algebraic number $x$ in the number field \kbd{nf}, transforms it
 into \typ{POLMOD} form.
 \bprog
 ? nf = nfinit(y^2 + 4);
 ? nf.zk
 %2 = [1, 1/2*y]
 ? nfbasistoalg(nf, [1,1]~)
 %3 = Mod(1/2*y + 1, y^2 + 4)
 ? nfbasistoalg(nf, y)
 %4 = Mod(y, y^2 + 4)
 ? nfbasistoalg(nf, Mod(y, y^2+4))
 %4 = Mod(y, y^2 + 4)
 @eprog
 This is the inverse function of \kbd{nfalgtobasis}.

Function: nfdetint
Class: basic
Section: number_fields
C-Name: nfdetint
Prototype: GG
Help: nfdetint(nf,x): multiple of the ideal determinant of the pseudo
 generating set x.
Doc: given a pseudo-matrix $x$, computes a
 non-zero ideal contained in (i.e.~multiple of) the determinant of $x$. This
 is particularly useful in conjunction with \kbd{nfhnfmod}.

Function: nfdisc
Class: basic
Section: number_fields
C-Name: nfdisc0
Prototype: GD0,L,DG
Help: nfdisc(x,{flag=0},{fa}): discriminant of the number field defined by
 the polynomial x using round 4. Optional args flag and fa are as in nfbasis.
Doc: \idx{field discriminant} of the number field defined by the integral,
 preferably monic, irreducible polynomial $x$. $\fl$ and $fa$ are exactly as
 in \kbd{nfbasis}. That is, $fa$ provides the matrix of a partial
 factorization of the discriminant of $x$, and binary digits of $\fl$ are as
 follows:
 
 1: assume that no square of a prime greater than \kbd{primelimit}
 divides the discriminant.
 
 2: use the round 2 algorithm, instead of the default \idx{round 4}. This
 should be slower except maybe for polynomials of small degree and
 coefficients.
Variant: Also available is \fun{GEN}{nfdisc}{GEN x} ($\fl=0$).

Function: nfeltadd
Class: basic
Section: number_fields
C-Name: nfadd
Prototype: GGG
Help: nfadd(nf,x,y): element x+y in nf.
Doc: 
 given two elements $x$ and $y$ in
 \var{nf}, computes their sum $x+y$ in the number field $\var{nf}$.

Function: nfeltdiv
Class: basic
Section: number_fields
C-Name: nfdiv
Prototype: GGG
Help: nfdiv(nf,x,y): element x/y in nf.
Doc: given two elements $x$ and $y$ in
 \var{nf}, computes their quotient $x/y$ in the number field $\var{nf}$.

Function: nfeltdiveuc
Class: basic
Section: number_fields
C-Name: nfdiveuc
Prototype: GGG
Help: nfdiveuc(nf,x,y): gives algebraic integer q such that x-by is small.
Doc: given two elements $x$ and $y$ in
 \var{nf}, computes an algebraic integer $q$ in the number field $\var{nf}$
 such that the components of $x-qy$ are reasonably small. In fact, this is
 functionally identical to \kbd{round(nfdiv(\var{nf},x,y))}.

Function: nfeltdivmodpr
Class: basic
Section: number_fields
C-Name: nfdivmodpr
Prototype: GGGG
Help: nfeltdivmodpr(nf,x,y,pr): element x/y modulo pr in nf, where pr is in
 modpr format (see nfmodprinit).
Doc: given two elements $x$
 and $y$ in \var{nf} and \var{pr} a prime ideal in \kbd{modpr} format (see
 \tet{nfmodprinit}), computes their quotient $x / y$ modulo the prime ideal
 \var{pr}.
Variant: This function is normally useless in library mode. Project your
 inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.

Function: nfeltdivrem
Class: basic
Section: number_fields
C-Name: nfdivrem
Prototype: GGG
Help: nfeltdivrem(nf,x,y): gives [q,r] such that r=x-by is small.
Doc: given two elements $x$ and $y$ in
 \var{nf}, gives a two-element row vector $[q,r]$ such that $x=qy+r$, $q$ is
 an algebraic integer in $\var{nf}$, and the components of $r$ are
 reasonably small.

Function: nfeltmod
Class: basic
Section: number_fields
C-Name: nfmod
Prototype: GGG
Help: nfeltmod(nf,x,y): gives r such that r=x-by is small with q algebraic
 integer.
Doc: 
 given two elements $x$ and $y$ in
 \var{nf}, computes an element $r$ of $\var{nf}$ of the form $r=x-qy$ with
 $q$ and algebraic integer, and such that $r$ is small. This is functionally
 identical to
 $$\kbd{x - nfmul(\var{nf},round(nfdiv(\var{nf},x,y)),y)}.$$

Function: nfeltmul
Class: basic
Section: number_fields
C-Name: nfmul
Prototype: GGG
Help: nfmul(nf,x,y): element x.y in nf.
Doc: 
 given two elements $x$ and $y$ in
 \var{nf}, computes their product $x*y$ in the number field $\var{nf}$.

Function: nfeltmulmodpr
Class: basic
Section: number_fields
C-Name: nfmulmodpr
Prototype: GGGG
Help: nfeltmulmodpr(nf,x,y,pr): element x.y modulo pr in nf, where pr is in
 modpr format (see nfmodprinit).
Doc: given two elements $x$ and
 $y$ in \var{nf} and \var{pr} a prime ideal in \kbd{modpr} format (see
 \tet{nfmodprinit}), computes their product $x*y$ modulo the prime ideal
 \var{pr}.
Variant: This function is normally useless in library mode. Project your
 inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.

Function: nfeltnorm
Class: basic
Section: number_fields
C-Name: nfnorm
Prototype: GG
Help: nfeltnorm(nf,x): norm of x.
Doc: returns the absolute norm of $x$.

Function: nfeltpow
Class: basic
Section: number_fields
C-Name: nfpow
Prototype: GGG
Help: nfeltpow(nf,x,k): element x^k in nf.
Doc: given an element $x$ in \var{nf}, and a positive or negative integer $k$,
 computes $x^k$ in the number field $\var{nf}$.
Variant: \fun{GEN}{nfinv}{GEN nf, GEN x} correspond to $k = -1$, and
 \fun{GEN}{nfsqr}{GEN nf,GEN x} to $k = 2$.

Function: nfeltpowmodpr
Class: basic
Section: number_fields
C-Name: nfpowmodpr
Prototype: GGGG
Help: nfeltpowmodpr(nf,x,k,pr): element x^k modulo pr in nf, where pr is in
 modpr format (see nfmodprinit).
Doc: given an element $x$ in \var{nf}, an integer $k$ and a prime ideal
 \var{pr} in \kbd{modpr} format
 (see \tet{nfmodprinit}), computes $x^k$ modulo the prime ideal \var{pr}.
Variant: This function is normally useless in library mode. Project your
 inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.

Function: nfeltreduce
Class: basic
Section: number_fields
C-Name: nfreduce
Prototype: GGG
Help: nfeltreduce(nf,a,id): gives r such that a-r is in the ideal id and r
 is small.
Doc: given an ideal \var{id} in
 Hermite normal form and an element $a$ of the number field $\var{nf}$,
 finds an element $r$ in $\var{nf}$ such that $a-r$ belongs to the ideal
 and $r$ is small.

Function: nfeltreducemodpr
Class: basic
Section: number_fields
C-Name: nfreducemodpr
Prototype: GGG
Help: nfeltreducemodpr(nf,x,pr): element x modulo pr in nf, where pr is in
 modpr format (see nfmodprinit).
Doc: given an element $x$ of the number field $\var{nf}$ and a prime ideal
 \var{pr} in \kbd{modpr} format compute a canonical representative for the
 class of $x$ modulo \var{pr}.
Variant: This function is normally useless in library mode. Project your
 inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.

Function: nfelttrace
Class: basic
Section: number_fields
C-Name: nftrace
Prototype: GG
Help: nfelttrace(nf,x): trace of x.
Doc: returns the absolute trace of $x$.

Function: nfeltval
Class: basic
Section: number_fields
C-Name: nfval
Prototype: lGGG
Help: nfeltval(nf,x,pr): valuation of element x at the prime pr as output by
 idealprimedec.
Doc: given an element $x$ in
 \var{nf} and a prime ideal \var{pr} in the format output by
 \kbd{idealprimedec}, computes their the valuation at \var{pr} of the
 element $x$. The same result could be obtained using
 \kbd{idealval(\var{nf},x,\var{pr})} (since $x$ would then be converted to a
 principal ideal), but it would be less efficient.

Function: nffactor
Class: basic
Section: number_fields
C-Name: nffactor
Prototype: GG
Help: nffactor(nf,x): factor polynomial x in number field nf.
Doc: factorization of the univariate
 polynomial $x$ over the number field $\var{nf}$ given by \kbd{nfinit}. $x$
 has coefficients in $\var{nf}$ (i.e.~either scalar, polmod, polynomial or
 column vector). The main variable of $\var{nf}$ must be of \emph{lower}
 priority than that of $x$ (see \secref{se:priority}). However if
 the polynomial defining the number field occurs explicitly  in the
 coefficients of $x$ (as modulus of a \typ{POLMOD}), its main variable must be
 \emph{the same} as the main variable of $x$. For example,
 \bprog
 ? nf = nfinit(y^2 + 1);
 ? nffactor(nf, x^2 + y); \\@com OK
 ? nffactor(nf, x^2 + Mod(y, y^2+1)); \\ @com OK
 ? nffactor(nf, x^2 + Mod(z, z^2+1)); \\ @com WRONG
 @eprog\noindent It is possible to input a defining polynomial for \var{nf}
 instead, but this is in general less efficient since parts of an \kbd{nf}
 structure will be computed internally. This is useful in two situations: when
 you don't need the \kbd{nf}, or when you can't compute its discriminant due
 to integer factorization difficulties. In the latter case, \tet{addprimes} is
 a possibility but a dangerous one: factors will probably be missed if the
 (true) field discriminant and an \kbd{addprimes} entry are strictly divisible
 by some prime. If you have such an unsafe \var{nf}, it is safer to input
 \kbd{nf.pol}.

Function: nffactorback
Class: basic
Section: number_fields
C-Name: nffactorback
Prototype: GGDG
Help: nffactorback(nf,f,{e}): given a factorisation f, returns
 the factored object back as an nf element.
Doc: gives back the \kbd{nf} element corresponding to a factorization.
 The integer $1$ corresponds to the empty factorization.
 
 If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
 integral), and the corresponding factorization is the product of the
 $f[i]^{e[i]}$.
 
 If not, and $f$ is vector, it is understood as in the preceding case with $e$
 a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
 regular factorization matrix.
 \bprog
 ? nf = nfinit(y^2+1);
 ? nffactorback(nf, [3, y+1, [1,2]~], [1, 2, 3])
 %2 = [12, -66]~
 ? 3 * (I+1)^2 * (1+2*I)^3
 %3 = 12 - 66*I
 @eprog

Function: nffactormod
Class: basic
Section: number_fields
C-Name: nffactormod
Prototype: GGG
Help: nffactormod(nf,pol,pr): factorize polynomial pol modulo prime ideal pr
 in number field nf.
Doc: factorization of the
 univariate polynomial $x$ modulo the prime ideal \var{pr} in the number
 field $\var{nf}$. $x$ can have coefficients in the number field (scalar,
 polmod, polynomial, column vector) or modulo the prime ideal (intmod
 modulo the rational prime under \var{pr}, polmod or polynomial with
 intmod coefficients, column vector of intmod). The prime ideal
 \var{pr} \emph{must} be in the format output by \kbd{idealprimedec}. The
 main variable of $\var{nf}$ must be of lower priority than that of $x$
 (see \secref{se:priority}). However if the coefficients of the number
 field occur explicitly (as polmods) as coefficients of $x$, the variable of
 these polmods \emph{must} be the same as the main variable of $t$ (see
 \kbd{nffactor}).

Function: nfgaloisapply
Class: basic
Section: number_fields
C-Name: galoisapply
Prototype: GGG
Help: nfgaloisapply(nf,aut,x): Apply the Galois automorphism aut to the object
 x (element or ideal) in the number field nf.
Doc: let $\var{nf}$ be a
 number field as output by \kbd{nfinit}, and let \var{aut} be a \idx{Galois}
 automorphism of $\var{nf}$ expressed by its image on the field generator
 (such automorphisms can be found using \kbd{nfgaloisconj}). The function
 computes the action of the automorphism \var{aut} on the object $x$ in the
 number field; $x$ can be a number field element, or an ideal (possibly
 extended). Because of possible confusion with elements and ideals, other
 vector or matrix arguments are forbidden.
  \bprog
  ? nf = nfinit(x^2+1);
  ? L = nfgaloisconj(nf)
  %2 = [-x, x]~
  ? aut = L[1]; /* the non-trivial automorphism */
  ? nfgaloisapply(nf, aut, x)
  %4 = Mod(-x, x^2 + 1)
  ? P = idealprimedec(nf,5); /* prime ideals above 5 */
  ? nfgaloisapply(nf, aut, P[2]) == P[1]
  %7 = 0 \\ !!!!
  ? idealval(nf, nfgaloisapply(nf, aut, P[2]), P[1])
  %8 = 1
 @eprog\noindent The surprising failure of the equality test (\kbd{\%7}) is
 due to the fact that although the corresponding prime ideals are equal, their
 representations are not. (A prime ideal is specificed by a uniformizer, and
 there is no guarantee that applying automorphisms yields the same elements
 as a direct \kbd{idealprimedec} call.)
 
 The automorphism can also be given as a column vector, representing the
 image of \kbd{Mod(x, nf.pol)} as an algebraic number. This last
 representation is more efficient and should be preferred if a given
 automorphism must be used in many such calls.
 \bprog
  ? nf = nfinit(x^3 - 37*x^2 + 74*x - 37);
  ? l = nfgaloisconj(nf); aut = l[2] \\ @com automorphisms in basistoalg form
  %2 = -31/11*x^2 + 1109/11*x - 925/11
  ? L = matalgtobasis(nf, l); AUT = L[2] \\ @com same in algtobasis form
  %3 = [16, -6, 5]~
  ? v = [1, 2, 3]~; nfgaloisapply(nf, aut, v) == nfgaloisapply(nf, AUT, v)
  %4 = 1 \\ @com same result...
  ? for (i=1,10^5, nfgaloisapply(nf, aut, v))
  time = 1,451 ms.
  ? for (i=1,10^5, nfgaloisapply(nf, AUT, v))
  time = 1,045 ms.  \\ @com but the latter is faster
 @eprog

Function: nfgaloisconj
Class: basic
Section: number_fields
C-Name: galoisconj0
Prototype: GD0,L,DGp
Help: nfgaloisconj(nf,{flag=0},{d}): list of conjugates of a root of the
 polynomial x=nf.pol in the same number field. flag is optional (set to 0 by
 default), meaning 0: use combination of flag 4 and 1, always complete; 1:
 use nfroots; 2 : use complex numbers, LLL on integral basis (not always
 complete); 4: use Allombert's algorithm, complete if the field is Galois of
 degree <= 35 (see manual for details). nf can be simply a polynomial.
Doc: $\var{nf}$ being a number field as output by \kbd{nfinit}, computes the
 conjugates of a root $r$ of the non-constant polynomial $x=\var{nf}[1]$
 expressed as polynomials in $r$. This also makes sense when the number field
 is not \idx{Galois} since some conjugates may lie in the field.
 $\var{nf}$ can simply be a polynomial.
 
 If no flags or $\fl=0$, use a combination of flag $4$ and $1$ and the result
 is always complete. There is no point whatsoever in using the other flags.
 
 If $\fl=1$, use \kbd{nfroots}: a little slow, but guaranteed to work in
 polynomial time.
 
 If $\fl=2$ (OBSOLETE), use complex approximations to the roots and an integral
 \idx{LLL}. The result is not guaranteed to be complete: some
 conjugates may be missing (a warning is issued if the result is not proved
 complete), especially so if the corresponding polynomial has a huge index,
 and increasing the default precision may help. This variant is slow and
 unreliable: don't use it.
 
 If $\fl=4$, use \kbd{galoisinit}: very fast, but only applies to (most) Galois
 fields. If the field is Galois with weakly
 super-solvable Galois group (see \tet{galoisinit}), return the complete list
 of automorphisms, else only the identity element. If present, $d$ is assumed to
 be a multiple of the least common denominator of the conjugates expressed as
 polynomial in a root of \var{pol}.
 
 This routine can only compute $\Q$-automorphisms, but it may be used to get
 $K$-automorphism for any base field $K$ as follows:
 \bprog
 rnfgaloisconj(nfK, R) = \\ K-automorphisms of L = K[X] / (R)
 { my(polabs, N);
   R *= Mod(1, nfK.pol);             \\ convert coeffs to polmod elts of K
   polabs = rnfequation(nfK, R);
   N = nfgaloisconj(polabs) % R;     \\ Q-automorphisms of L
   \\ select the ones that fix K
   select(s->subst(R, variable(R), Mod(s,R)) == 0, N);
 }
 K  = nfinit(y^2 + 7);
 rnfgaloisconj(K, x^4 - y*x^3 - 3*x^2 + y*x + 1)  \\ K-automorphisms of L
 @eprog
Variant: Use directly
 \fun{GEN}{galoisconj}{GEN nf, GEN d}, corresponding to $\fl = 0$, the others
 only have historical interest.

Function: nfhilbert
Class: basic
Section: number_fields
C-Name: nfhilbert0
Prototype: lGGGDG
Help: nfhilbert(nf,a,b,{pr}): if pr is omitted, global Hilbert symbol (a,b) in
 nf, that is 1 if X^2-aY^2-bZ^2 has a non-trivial solution (X,Y,Z) in nf, -1
 otherwise. Otherwise compute the local symbol modulo the prime ideal pr.
Doc: if \var{pr} is omitted,
 compute the global quadratic \idx{Hilbert symbol} $(a,b)$ in $\var{nf}$, that
 is $1$ if $x^2 - a y^2 - b z^2$ has a non trivial solution $(x,y,z)$ in
 $\var{nf}$, and $-1$ otherwise. Otherwise compute the local symbol modulo
 the prime ideal \var{pr}, as output by \kbd{idealprimedec}.
Variant: 
 Also available is \fun{long}{nfhilbert}{GEN bnf,GEN a,GEN b} (global
 quadratic Hilbert symbol).

Function: nfhnf
Class: basic
Section: number_fields
C-Name: nfhnf
Prototype: GG
Help: nfhnf(nf,x): if x=[A,I], gives a pseudo-basis of the module sum A_jI_j
Doc: given a pseudo-matrix $(A,I)$, finds a
 pseudo-basis in \idx{Hermite normal form} of the module it generates.
Variant: Also available:
 
 \fun{GEN}{rnfsimplifybasis}{GEN bnf, GEN x} simplifies the pseudo-basis
 given by $x = (A,I)$. The ideals in the list $I$ are integral, primitive and
 either trivial (equal to the full ring of integer) or non-principal.

Function: nfhnfmod
Class: basic
Section: number_fields
C-Name: nfhnfmod
Prototype: GGG
Help: nfhnfmod(nf,x,detx): if x=[A,I], and detx is a multiple of the ideal
 determinant of x, gives a pseudo-basis of the module sum A_jI_j.
Doc: given a pseudo-matrix $(A,I)$
 and an ideal \var{detx} which is contained in (read integral multiple of) the
 determinant of $(A,I)$, finds a pseudo-basis in \idx{Hermite normal form}
 of the module generated by $(A,I)$. This avoids coefficient explosion.
 \var{detx} can be computed using the function \kbd{nfdetint}.

Function: nfinit
Class: basic
Section: number_fields
C-Name: nfinit0
Prototype: GD0,L,p
Help: nfinit(pol,{flag=0}): pol being a nonconstant irreducible polynomial,
 gives the vector: [pol,[r1,r2],discf,index,[M,MC,T2,T,different] (see
 manual),r1+r2 first roots, integral basis, matrix of power basis in terms of
 integral basis, multiplication table of basis]. flag is optional and can be
 set to 0: default; 1: do not compute different; 2: first use polred to find
 a simpler polynomial; 3: outputs a two-element vector [nf,Mod(a,P)], where
 nf is as in 2 and Mod(a,P) is a polmod equal to Mod(x,pol) and P=nf.pol.
Description: 
 (gen, ?0):nf:prec       nfinit0($1, 0, prec)
 (gen, 1):nf:prec        nfinit0($1, 1, prec)
 (gen, 2):nf:prec        nfinit0($1, 2, prec)
 (gen, 3):gen:prec       nfinit0($1, 3, prec)
 (gen, 4):nf:prec        nfinit0($1, 4, prec)
 (gen, 5):gen:prec       nfinit0($1, 5, prec)
 (gen, #small):void      $"incorrect flag in nfinit"
 (gen, small):gen:prec   nfinit0($1, $2, prec)
Doc: \var{pol} being a non-constant,
 preferably monic, irreducible polynomial in $\Z[X]$, initializes a
 \emph{number field} structure (\kbd{nf}) associated to the field $K$ defined
 by \var{pol}. As such, it's a technical object passed as the first argument
 to most \kbd{nf}\var{xxx} functions, but it contains some information which
 may be directly useful. Access to this information via \emph{member
 functions} is preferred since the specific data organization specified below
 may change in the future. Currently, \kbd{nf} is a row vector with 9
 components:
 
 $\var{nf}[1]$ contains the polynomial \var{pol} (\kbd{\var{nf}.pol}).
 
 $\var{nf}[2]$ contains $[r1,r2]$ (\kbd{\var{nf}.sign}, \kbd{\var{nf}.r1},
 \kbd{\var{nf}.r2}), the number of real and complex places of $K$.
 
 $\var{nf}[3]$ contains the discriminant $d(K)$ (\kbd{\var{nf}.disc}) of $K$.
 
 $\var{nf}[4]$ contains the index of $\var{nf}[1]$ (\kbd{\var{nf}.index}),
 i.e.~$[\Z_K : \Z[\theta]]$, where $\theta$ is any root of $\var{nf}[1]$.
 
 $\var{nf}[5]$ is a vector containing 7 matrices $M$, $G$, \var{roundG}, $T$,
 $MD$, $TI$, $MDI$ useful for certain computations in the number field $K$.
 
 \quad\item $M$ is the $(r1+r2)\times n$ matrix whose columns represent
 the numerical values of the conjugates of the elements of the integral
 basis.
 
 \quad\item $G$ is an $n\times n$ matrix such that $T2 = {}^t G G$,
 where $T2$ is the quadratic form $T_2(x) = \sum |\sigma(x)|^2$, $\sigma$
 running over the embeddings of $K$ into $\C$.
 
 \quad\item \var{roundG} is a rescaled copy of $G$, rounded to nearest
 integers.
 
 \quad\item $T$ is the $n\times n$ matrix whose coefficients are
 $\text{Tr}(\omega_i\omega_j)$ where the $\omega_i$ are the elements of the
 integral basis. Note also that $\det(T)$ is equal to the discriminant of the
 field $K$. Also, when understood as an ideal, the matrix $T^{-1}$
 generates the codifferent ideal.
 
 \quad\item The columns of $MD$ (\kbd{\var{nf}.diff}) express a $\Z$-basis
 of the different of $K$ on the integral basis.
 
 \quad\item $TI$ is equal to the primitive part of $T^{-1}$, which has integral
 coefficients.
 
 \quad\item Finally, $MDI$ is a two-element representation (for faster
 ideal product) of $d(K)$ times the codifferent ideal
 (\kbd{\var{nf}.disc$*$\var{nf}.codiff}, which is an integral ideal). $MDI$
 is only used in \tet{idealinv}.
 
 $\var{nf}[6]$ is the vector containing the $r1+r2$ roots
 (\kbd{\var{nf}.roots}) of $\var{nf}[1]$ corresponding to the $r1+r2$
 embeddings of the number field into $\C$ (the first $r1$ components are real,
 the next $r2$ have positive imaginary part).
 
 $\var{nf}[7]$ is an integral basis for $\Z_K$ (\kbd{\var{nf}.zk}) expressed
 on the powers of~$\theta$. Its first element is guaranteed to be $1$. This
 basis is LLL-reduced with respect to $T_2$ (strictly speaking, it is a
 permutation of such a basis, due to the condition that the first element be
 $1$).
 
 $\var{nf}[8]$ is the $n\times n$ integral matrix expressing the power
 basis in terms of the integral basis, and finally
 
 $\var{nf}[9]$ is the $n\times n^2$ matrix giving the multiplication table
 of the integral basis.
 
 If a non monic polynomial is input, \kbd{nfinit} will transform it into a
 monic one, then reduce it (see $\fl=3$). It is allowed, though not very
 useful given the existence of \tet{nfnewprec}, to input a \kbd{nf} or a
 \kbd{bnf} instead of a polynomial.
 
 \bprog
 ? nf = nfinit(x^3 - 12); \\ initialize number field Q[X] / (X^3 - 12)
 ? nf.pol   \\ defining polynomial
 %2 = x^3 - 12
 ? nf.disc  \\ field discriminant
 %3 = -972
 ? nf.index \\ index of power basis order in maximal order
 %4 = 2
 ? nf.zk    \\ integer basis, lifted to Q[X]
 %5 = [1, x, 1/2*x^2]
 ? nf.sign  \\ signature
 %6 = [1, 1]
 ? factor(abs(nf.disc ))  \\ determines ramified primes
 %7 =
 [2 2]
 
 [3 5]
 ? idealfactor(nf, 2)
 %8 =
 [[2, [0, 0, -1]~, 3, 1, [0, 1, 0]~] 3]  \\ @com $\goth{p}_2^3$
 @eprog
 
 In case \var{pol} has a huge discriminant which is difficult to factor,
 the special input format $[\var{pol},B]$ is also accepted where \var{pol} is a
 polynomial as above and $B$ is the integer basis, as would be computed by
 \tet{nfbasis}. This is useful if the integer basis is known in advance,
 or was computed conditionally.
 \bprog
 ? pol = polcompositum(x^5 - 101, polcyclo(7))[1];
 ? B = nfbasis(pol, 1);   \\ faster than nfbasis(pol), but conditional
 ? nf = nfinit( [pol, B] );
 ? factor( abs(nf.disc) )
 [5 18]
 
 [7 25]
 
 [101 24]
 @eprog
 \kbd{B} is conditional when its discriminant, which is \kbd{nf.disc}, can't be
 factored. In this example, the above factorization proves the correctness of
 the computation.
 \medskip
 
 If $\fl=2$: \var{pol} is changed into another polynomial $P$ defining the same
 number field, which is as simple as can easily be found using the \kbd{polred}
 algorithm, and all the subsequent computations are done using this new
 polynomial. In particular, the first component of the result is the modified
 polynomial.
 
 If $\fl=3$, does a \kbd{polred} as in case 2, but outputs
 $[\var{nf},\kbd{Mod}(a,P)]$, where $\var{nf}$ is as before and
 $\kbd{Mod}(a,P)=\kbd{Mod}(x,\var{pol})$ gives the change of
 variables. This is implicit when \var{pol} is not monic: first a linear change
 of variables is performed, to get a monic polynomial, then a \kbd{polred}
 reduction.
Variant: Also available are
 \fun{GEN}{nfinit}{GEN x, long prec} ($\fl = 0$),
 \fun{GEN}{nfinitred}{GEN x, long prec} ($\fl = 2$),
 \fun{GEN}{nfinitred2}{GEN x, long prec} ($\fl = 3$).
 Instead of the above hardcoded numerical flags in \kbd{nfinit0}, one should
 rather use
 
 \fun{GEN}{nfinitall}{GEN x, long flag, long prec}, where \fl\ is an
 or-ed combination of
 
 \item \tet{nf_RED}: find a simpler defining polynomial,
 
 \item \tet{nf_ORIG}: if \tet{nf_RED} set, also return the change of variable,
 
 \item \tet{nf_ROUND2}: slow down the routine by using an obsolete
 normalization algorithm (do not use this one!),
 
 \item \tet{nf_PARTIALFACT}: lazy factorization of the polynomial discriminant.
 Result is conditional unless the \emph{field} discriminant obtained
 is fully factored by
 \bprog
   Z_factor_limit(disc, 0)
 @eprog\noindent Namely the ``maximal order'' may not be maximal at any prime
 bigger than \kbd{primelimit} dividing the field discriminant.

Function: nfisideal
Class: basic
Section: number_fields
C-Name: isideal
Prototype: lGG
Help: nfisideal(nf,x): true(1) if x is an ideal in the number field nf,
 false(0) if not.
Doc: returns 1 if $x$ is an ideal in the number field $\var{nf}$, 0 otherwise.

Function: nfisincl
Class: basic
Section: number_fields
C-Name: nfisincl
Prototype: GG
Help: nfisincl(x,y): tests whether the number field x is isomorphic to a
 subfield of y (where x and y are either polynomials or number fields as
 output by nfinit). Return 0 if not, and otherwise all the isomorphisms. If y
 is a number field, a faster algorithm is used.
Doc: tests whether the number field $K$ defined
 by the polynomial $x$ is conjugate to a subfield of the field $L$ defined
 by $y$ (where $x$ and $y$ must be in $\Q[X]$). If they are not, the output
 is the number 0. If they are, the output is a vector of polynomials, each
 polynomial $a$ representing an embedding of $K$ into $L$, i.e.~being such
 that $y\mid x\circ a$.
 
 If $y$ is a number field (\var{nf}), a much faster algorithm is used
 (factoring $x$ over $y$ using \tet{nffactor}). Before version 2.0.14, this
 wasn't guaranteed to return all the embeddings, hence was triggered by a
 special flag. This is no more the case.

Function: nfisisom
Class: basic
Section: number_fields
C-Name: nfisisom
Prototype: GG
Help: nfisisom(x,y): as nfisincl but tests whether x is isomorphic to y.
Doc: as \tet{nfisincl}, but tests for isomorphism. If either $x$ or $y$ is a
 number field, a much faster algorithm will be used.

Function: nfkermodpr
Class: basic
Section: number_fields
C-Name: nfkermodpr
Prototype: GGG
Help: nfkermodpr(nf,x,pr): kernel of the matrix x in Z_K/pr, where pr is in
 modpr format (see nfmodprinit).
Doc: kernel of the matrix $a$ in $\Z_K/\var{pr}$, where \var{pr} is in
 \key{modpr} format (see \kbd{nfmodprinit}).
Variant: This function is normally useless in library mode. Project your
 inputs to the residue field using \kbd{nfM\_to\_FqM}, then work there.

Function: nfmodprinit
Class: basic
Section: number_fields
C-Name: nfmodprinit
Prototype: GG
Help: nfmodprinit(nf,pr): transform the 5 element row vector pr representing
 a prime ideal into modpr format necessary for all operations mod pr in the
 number field nf (see manual for details about the format).
Doc: transforms the prime ideal \var{pr} into \tet{modpr} format necessary
 for all operations modulo \var{pr} in the number field \var{nf}.

Function: nfnewprec
Class: basic
Section: number_fields
C-Name: nfnewprec
Prototype: Gp
Help: nfnewprec(nf): transform the number field data nf into new data using
 the current (usually larger) precision.
Doc: transforms the number field $\var{nf}$
 into the corresponding data using current (usually larger) precision. This
 function works as expected if $\var{nf}$ is in fact a $\var{bnf}$ (update
 $\var{bnf}$ to current precision) but may be quite slow (many generators of
 principal ideals have to be computed).
Variant: See also \fun{GEN}{bnfnewprec}{GEN bnf, long prec}
 and \fun{GEN}{bnrnewprec}{GEN bnr, long prec}.

Function: nfroots
Class: basic
Section: number_fields
C-Name: nfroots
Prototype: DGG
Help: nfroots({nf},x): roots of polynomial x belonging to nf (Q if
 omitted) without multiplicity.
Doc: roots of the polynomial $x$ in the
 number field $\var{nf}$ given by \kbd{nfinit} without multiplicity (in $\Q$
 if $\var{nf}$ is omitted). $x$ has coefficients in the number field (scalar,
 polmod, polynomial, column vector). The main variable of $\var{nf}$ must be
 of lower priority than that of $x$ (see \secref{se:priority}). However if the
 coefficients of the number field occur explicitly (as polmods) as
 coefficients of $x$, the variable of these polmods \emph{must} be the same as
 the main variable of $t$ (see \kbd{nffactor}).
 
 It is possible to input a defining polynomial for \var{nf}
 instead, but this is in general less efficient since parts of an \kbd{nf}
 structure will be computed internally. This is useful in two situations: when
 you don't need the \kbd{nf}, or when you can't compute its discriminant due
 to integer factorization difficulties. In the latter case, \tet{addprimes} is
 a possibility but a dangerous one: roots will probably be missed if the
 (true) field discriminant and an \kbd{addprimes} entry are strictly divisible
 by some prime. If you have such an unsafe \var{nf}, it is safer to input
 \kbd{nf.pol}.
Variant: See also \fun{GEN}{nfrootsQ}{GEN x},
 corresponding to $\kbd{nf} = \kbd{NULL}$.

Function: nfrootsof1
Class: basic
Section: number_fields
C-Name: rootsof1
Prototype: G
Help: nfrootsof1(nf): number of roots of unity and primitive root of unity
 in the number field nf.
Doc: Returns a two-component vector $[w,z]$ where $w$ is the number of roots of
 unity in the number field \var{nf}, and $z$ is a primitive $w$-th root
 of unity.
 \bprog
 ? K = nfinit(polcyclo(11));
 ? nfrootsof1(K)
 %2 = [22, [0, 0, 0, 0, 0, -1, 0, 0, 0, 0]~]
 ? z = nfbasistoalg(K, %[2])   \\ in algebraic form
 %3 = Mod(-x^5, x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
 ? [lift(z^11), lift(z^2)]     \\ proves that the order of z is 22
 %4 = [-1, -x^9 - x^8 - x^7 - x^6 - x^5 - x^4 - x^3 - x^2 - x - 1]
 @eprog
 This function guesses the number $w$ as the gcd of the $\#k(v)^*$ for
 unramified $v$ above odd primes, then computes the roots in \var{nf}
 of the $w$-th cyclotomic polynomial: the algorithm is polynomial time with
 respect to the field degree and the bitsize of the multiplication table in
 \var{nf} (both of them polynomially bounded in terms of the size of the
 discriminant). Fields of degree up to $100$ or so should require less than
 one minute.
Variant: Also available is \fun{GEN}{rootsof1_kannan}{GEN nf}, that computes
 all algebraic integers of $T_2$ norm equal to the field degree
 (all roots of $1$, by Kronecker's theorem). This is in general a little
 faster than the default when there \emph{are} roots of $1$ in the field
 (say twice faster), but can be much slower (say, \emph{days} slower), since
 the algorithm is a priori exponential in the field degree.

Function: nfsnf
Class: basic
Section: number_fields
C-Name: nfsnf
Prototype: GG
Help: nfsnf(nf,x): if x=[A,I,J], outputs [c_1,...c_n] Smith normal form of x.
Doc: given a $\Z_K$-module $x$ associated to the integral pseudo-matrix
 $(A,I,J)$, returns an ideal list $d_1,\dots,d_n$ which is the \idx{Smith
 normal form} of $x$. In other words, $x$ is isomorphic to
 $\Z_K/d_1\oplus\cdots\oplus\Z_K/d_n$ and $d_i$ divides $d_{i-1}$ for $i\ge2$.
 
 See \secref{se:ZKmodules} for the definition of integral pseudo-matrix;
 briefly, it is input as a 3-component row vector $[A,I,J]$ where
 $I = [b_1,\dots,b_n]$ and $J = [a_1,\dots,a_n]$ are two ideal lists,
 and $A$ is a square $n\times n$ matrix with columns $(A_1,\dots,A_n)$,
 seen as elements in $K^n$ (with canonical basis $(e_1,\dots,e_n)$).
 This data defines the $\Z_K$ module $x$ given by
 $$ (b_1e_1\oplus\cdots\oplus b_ne_n) / (a_1A_1\oplus\cdots\oplus a_nA_n)
 \enspace, $$
 The integrality condition is $a_{i,j} \in b_i a_j^{-1}$ for all $i,j$. If it
 is not satisfied, then the $d_i$ will not be integral. Note that every
 finitely generated torsion module is isomorphic to a module of this form and
 even with $b_i=Z_K$ for all $i$.

Function: nfsolvemodpr
Class: basic
Section: number_fields
C-Name: nfsolvemodpr
Prototype: GGGG
Help: nfsolvemodpr(nf,a,b,pr): solution of a*x=b in Z_K/pr, where a is a
 matrix and b a column vector, and where pr is in modpr format (see
 nfmodprinit).
Doc: solution of $a\cdot x = b$
 in $\Z_K/\var{pr}$, where $a$ is a matrix and $b$ a column vector, and where
 \var{pr} is in \key{modpr} format (see \kbd{nfmodprinit}).
Variant: This function is normally useless in library mode. Project your
 inputs to the residue field using \kbd{nfM\_to\_FqM}, then work there.

Function: nfsubfields
Class: basic
Section: number_fields
C-Name: nfsubfields
Prototype: GD0,L,
Help: nfsubfields(pol,{d=0}): find all subfields of degree d of number field
 defined by pol (all subfields if d is null or omitted). Result is a vector of
 subfields, each being given by [g,h], where g is an absolute equation and h
 expresses one of the roots of g in terms of the root x of the polynomial
 defining nf.
Doc: finds all subfields of degree
 $d$ of the number field defined by the (monic, integral) polynomial
 \var{pol} (all subfields if $d$ is null or omitted). The result is a vector
 of subfields, each being given by $[g,h]$, where $g$ is an absolute equation
 and $h$ expresses one of the roots of $g$ in terms of the root $x$ of the
 polynomial defining $\var{nf}$. This routine uses J.~Kl\"uners's algorithm
 in the general case, and B.~Allombert's \tet{galoissubfields} when \var{nf}
 is Galois (with weakly supersolvable Galois group).\sidx{Galois}\sidx{subfield}

Function: norm
Class: basic
Section: conversions
C-Name: gnorm
Prototype: G
Help: norm(x): norm of x.
Doc: 
 algebraic norm of $x$, i.e.~the product of $x$ with
 its conjugate (no square roots are taken), or conjugates for polmods. For
 vectors and matrices, the norm is taken componentwise and hence is not the
 $L^2$-norm (see \kbd{norml2}). Note that the norm of an element of
 $\R$ is its square, so as to be compatible with the complex norm.

Function: norml2
Class: basic
Section: conversions
C-Name: gnorml2
Prototype: G
Help: norml2(x): square of the L2-norm of the vector x.
Doc: 
 square of the $L^2$-norm of $x$. More precisely,
 if $x$ is a scalar, $\kbd{norml2}(x)$ is defined to be \kbd{$x$ * conj($x$)}.
 If $x$ is a polynomial, a (row or column) vector or a matrix, \kbd{norml2($x$)} is
 defined recursively as $\sum_i \kbd{norml2}(x_i)$, where $(x_i)$ run through
 the components of $x$. In particular, this yields the usual $\sum |x_i|^2$
 (resp.~$\sum |x_{i,j}|^2$) if $x$ is a polynomial or vector (resp.~matrix) with
 complex components.
 
 \bprog
 ? norml2( [ 1, 2, 3 ] )      \\ vector
 %1 = 14
 ? norml2( [ 1, 2; 3, 4] )   \\ matrix
 %2 = 30
 ? norml2( 2*I + x )
 %3 = 5
 ? norml2( [ [1,2], [3,4], 5, 6 ] )   \\ recursively defined
 %4 = 91
 @eprog

Function: numbpart
Class: basic
Section: number_theoretical
C-Name: numbpart
Prototype: G
Help: numbpart(n): number of partitions of n.
Doc: gives the number of unrestricted partitions of
 $n$, usually called $p(n)$ in the literature; in other words the number of
 nonnegative integer solutions to $a+2b+3c+\cdots=n$. $n$ must be of type
 integer and $n<10^{15}$ (with trivial values $p(n) = 0$ for $n < 0$ and
 $p(0) = 1$). The algorithm uses the Hardy-Ramanujan-Rademacher formula.
 To explicitly enumerate them, see \tet{partitions}.

Function: numdiv
Class: basic
Section: number_theoretical
C-Name: gnumbdiv
Prototype: G
Help: numdiv(x): number of divisors of x.
Description: 
 (int):int        numbdiv($1)
 (gen):gen        gnumbdiv($1)
Doc: number of divisors of $|x|$. $x$ must be of type integer.
 The function accepts vector/matrices arguments, and is then applied
 componentwise.
Variant: If $x$ is a \typ{INT}, one may use \fun{GEN}{numbdiv}{GEN n} directly.

Function: numerator
Class: basic
Section: conversions
C-Name: numer
Prototype: G
Help: numerator(x): numerator of x.
Doc: 
 numerator of $x$. The meaning of this
 is clear when $x$ is a rational number or function. If $x$ is an integer
 or a polynomial, it is treated as a rational number or function,
 respectively, and the result is $x$ itself. For polynomials, you
 probably want to use
 \bprog
 numerator( content(x) )
 @eprog\noindent
 instead.
 
 In other cases, \kbd{numerator(x)} is defined to be
 \kbd{denominator(x)*x}. This is the case when $x$ is a vector or a
 matrix, but also for \typ{COMPLEX} or \typ{QUAD}. In particular since a
 \typ{PADIC} or \typ{INTMOD} has  denominator $1$, its numerator is
 itself.
 
 \misctitle{Warning} Multivariate objects are created according to variable
 priorities, with possibly surprising side effects ($x/y$ is a polynomial, but
 $y/x$ is a rational function). See \secref{se:priority}.

Function: numtoperm
Class: basic
Section: conversions
C-Name: numtoperm
Prototype: LG
Help: numtoperm(n,k): permutation number k (mod n!) of n letters (n
 C-integer).
Doc: generates the $k$-th permutation (as a row vector of length $n$) of the
 numbers $1$ to $n$. The number $k$ is taken modulo $n!\,$, i.e.~inverse
 function of \tet{permtonum}.

Function: omega
Class: basic
Section: number_theoretical
C-Name: gomega
Prototype: G
Help: omega(x): number of distinct prime divisors of x.
Description: 
 (int):small      omega($1)
 (gen):gen        gomega($1)
Doc: number of distinct prime divisors of $|x|$. $x$ must be of type integer.
 \bprog
 ? factor(392)
 %1 =
 [2 3]
 
 [7 2]
 
 ? omega(392)
 %2 = 2;  \\ without multiplicity
 ? bigomega(392)
 %3 = 5;  \\ = 3+2, with multiplicity
 @eprog
 The function accepts vector/matrices arguments, and is then applied
 componentwise.
Variant: For a \typ{INT} $x$, the variant
 \fun{long}{omega}{GEN n} is generally easier to use.

Function: padicappr
Class: basic
Section: polynomials
C-Name: padicappr
Prototype: GG
Help: padicappr(pol,a): p-adic roots of the polynomial pol congruent to a mod p.
Doc: vector of $p$-adic roots of the
 polynomial $pol$ congruent to the $p$-adic number $a$ modulo $p$, and with
 the same $p$-adic precision as $a$. The number $a$ can be an ordinary
 $p$-adic number (type \typ{PADIC}, i.e.~an element of $\Z_p$) or can be an
 integral element of a finite extension of $\Q_p$, given as a \typ{POLMOD}
 at least one of whose coefficients is a \typ{PADIC}. In this case, the result
 is the vector of roots belonging to the same extension of $\Q_p$ as $a$.

Function: padicfields
Class: basic
Section: polynomials
C-Name: padicfields0
Prototype: GGD0,L,
Help: padicfields(p, N, {flag=0}): returns polynomials generating all
 the extensions of degree N of the field of p-adic rational numbers; N is
 allowed to be a 2-component vector [n,d], in which case, returns the
 extensions of degree n and discriminant p^d. flag is optional,
 and can be 0: default, 1: return also the ramification index, the residual
 degree, the valuation of the discriminant and the number of conjugate fields,
 or 2: return only the number of extensions in a fixed algebraic closure.
Doc: returns a vector of polynomials generating all the extensions of degree
 $N$ of the field $\Q_p$ of $p$-adic rational numbers; $N$ is
 allowed to be a 2-component vector $[n,d]$, in which case we return the
 extensions of degree $n$ and discriminant $p^d$.
 
 The list is minimal in the sense that two different polynomials generate
 non-isomorphic extensions; in particular, the number of polynomials is the
 number of classes of isomorphic extensions. If $P$ is a polynomial in this
 list, $\alpha$ is any root of $P$ and $K = \Q_p(\alpha)$, then $\alpha$
 is the sum of a uniformizer and a (lift of a) generator of the residue field
 of $K$; in particular, the powers of $\alpha$ generate the ring of $p$-adic
 integers of $K$.
 
 If $\fl = 1$, replace each polynomial $P$ by a vector $[P, e, f, d, c]$
 where $e$ is the ramification index, $f$ the residual degree, $d$ the
 valuation of the discriminant, and $c$ the number of conjugate fields.
 If $\fl = 2$, only return the \emph{number} of extensions in a fixed
 algebraic closure (Krasner's formula), which is much faster.
Variant: Also available is \fun{GEN}{padicfields}{GEN p, long n,
 long d, long flag}, which computes extensions of $\Q_p$ of degree $n$ and
 discriminant $p^d$.

Function: padicprec
Class: basic
Section: conversions
C-Name: padicprec
Prototype: lGG
Help: padicprec(x,p): absolute p-adic precision of object x.
Doc: absolute $p$-adic precision of the object $x$. This is the minimum
 precision of the components of $x$. The result is \tet{LONG_MAX}
 ($2^{31}-1$ for 32-bit machines or $2^{63}-1$ for 64-bit machines) if $x$ is
 an exact object.

Function: partitions
Class: basic
Section: number_theoretical
C-Name: partitions
Prototype: LD0,L,
Help: partitions(n,{restr=0}): return vector of partitions of n, a positive
 integer. The second optional argument may be set to a number smaller than n
 to restrict the value of each element in the partitions to that value. The
 default of 0 means that this maximum is n itself.
Doc: returns vector of partitions of the integer $n$ (negative values return
 \kbd{[]}, $n = 0$ returns the trivial partition of the empty set).
 The second optional argument may be set to a non-negative number smaller than
 $n$ to restrict the value of each element in the partitions to that value.
 The default of 0 means that this maximum is $n$ itself.
 
 A partition is given by a \typ{VECSMALL}:
 \bprog
 ? partitions(4, 2)
 %1 = [Vecsmall([2, 2]), Vecsmall([1, 1, 2]), Vecsmall([1, 1, 1, 1])]
 @eprog\noindent
 correspond to $2+2$, $1+1+2$, $1+1+1+1$.

Function: permtonum
Class: basic
Section: conversions
C-Name: permtonum
Prototype: G
Help: permtonum(x): ordinal (between 1 and n!) of permutation x.
Doc: given a permutation $x$ on $n$ elements, gives the number $k$ such that
 $x=\kbd{numtoperm(n,k)}$, i.e.~inverse function of \tet{numtoperm}.

Function: plot
Class: highlevel
Section: graphic
C-Name: plot
Prototype: vV=GGEDGDGp
Help: plot(X=a,b,expr,{Ymin},{Ymax}): crude plot of expression expr, X goes
 from a to b, with Y ranging from Ymin to Ymax. If Ymin (resp. Ymax) is not
 given, the minima (resp. the maxima) of the expression is used instead.
Doc: crude ASCII plot of the function represented by expression \var{expr}
 from $a$ to $b$, with \var{Y} ranging from \var{Ymin} to \var{Ymax}. If
 \var{Ymin} (resp. \var{Ymax}) is not given, the minima (resp. the maxima) of
 the computed values of the expression is used instead.

Function: plotbox
Class: highlevel
Section: graphic
C-Name: rectbox
Prototype: vLGG
Help: plotbox(w,x2,y2): if the cursor is at position (x1,y1), draw a box
 with diagonal (x1,y1) and (x2,y2) in rectwindow w (cursor does not move).
Doc: let $(x1,y1)$ be the current position of the virtual cursor. Draw in the
 rectwindow $w$ the outline of the rectangle which is such that the points
 $(x1,y1)$ and $(x2,y2)$ are opposite corners. Only the part of the rectangle
 which is in $w$ is drawn. The virtual cursor does \emph{not} move.

Function: plotclip
Class: highlevel
Section: graphic
C-Name: rectclip
Prototype: vL
Help: plotclip(w): clip the contents of the rectwindow to the bounding box
 (except strings).
Doc: `clips' the content of rectwindow $w$, i.e remove all parts of the
 drawing that would not be visible on the screen. Together with
 \tet{plotcopy} this function enables you to draw on a scratchpad before
 committing the part you're interested in to the final picture.

Function: plotcolor
Class: highlevel
Section: graphic
C-Name: rectcolor
Prototype: vLL
Help: plotcolor(w,c): in rectwindow w, set default color to c. Possible
 values for c are given by the graphcolormap default: factory settings
 are 1=black, 2=blue, 3=sienna, 4=red, 5=green, 6=grey, 7=gainsborough.
Doc: set default color to $c$ in rectwindow $w$.
 This is only implemented for the X-windows, fltk and Qt graphing engines.
 Possible values for $c$ are given by the \tet{graphcolormap} default,
 factory setting are
 
 1=black, 2=blue, 3=violetred, 4=red, 5=green, 6=grey, 7=gainsborough.
 
 but this can be considerably extended.

Function: plotcopy
Class: highlevel
Section: graphic
C-Name: rectcopy_gen
Prototype: vLLGGD0,L,
Help: plotcopy(sourcew,destw,dx,dy,{flag=0}): copy the contents of
 rectwindow sourcew to rectwindow destw with offset (dx,dy). If flag's bit 1
 is set, dx and dy express fractions of the size of the current output
 device, otherwise dx and dy are in pixels. dx and dy are relative positions
 of northwest corners if other bits of flag vanish, otherwise of: 2:
 southwest, 4: southeast, 6: northeast corners.
Doc: copy the contents of rectwindow \var{sourcew} to rectwindow \var{destw}
 with offset (dx,dy). If flag's bit 1 is set, dx and dy express fractions of
 the size of the current output device, otherwise dx and dy are in pixels. dx
 and dy are relative positions of northwest corners if other bits of flag
 vanish, otherwise of: 2: southwest, 4: southeast, 6: northeast corners

Function: plotcursor
Class: highlevel
Section: graphic
C-Name: rectcursor
Prototype: L
Help: plotcursor(w): current position of cursor in rectwindow w.
Doc: give as a 2-component vector the current
 (scaled) position of the virtual cursor corresponding to the rectwindow $w$.

Function: plotdraw
Class: highlevel
Section: graphic
C-Name: rectdraw_flag
Prototype: vGD0,L,
Help: plotdraw(list, {flag=0}): draw vector of rectwindows list at indicated
 x,y positions; list is a vector w1,x1,y1,w2,x2,y2,etc. If flag!=0, x1, y1
 etc. express fractions of the size of the current output device.
Doc: physically draw the rectwindows given in $list$
 which must be a vector whose number of components is divisible by 3. If
 $list=[w1,x1,y1,w2,x2,y2,\dots]$, the windows $w1$, $w2$, etc.~are
 physically placed with their upper left corner at physical position
 $(x1,y1)$, $(x2,y2)$,\dots\ respectively, and are then drawn together.
 Overlapping regions will thus be drawn twice, and the windows are considered
 transparent. Then display the whole drawing in a special window on your
 screen. If $\fl \neq 0$, x1, y1 etc. express fractions of the size of the
 current output device

Function: ploth
Class: highlevel
Section: graphic
C-Name: ploth
Prototype: V=GGEpD0,M,D0,L,\nParametric|1; Recursive|2; no_Rescale|4; no_X_axis|8; no_Y_axis|16; no_Frame|32; no_Lines|64; Points_too|128; Splines|256; no_X_ticks|512; no_Y_ticks|1024; Same_ticks|2048; Complex|4096
Help: ploth(X=a,b,expr,{flags=0},{n=0}): plot of expression expr, X goes
 from a to b in high resolution. Both flags and n are optional. Binary digits
 of flags mean: 1=Parametric, 2=Recursive, 4=no_Rescale, 8=no_X_axis,
 16=no_Y_axis, 32=no_Frame, 64=no_Lines (do not join points), 128=Points_too
 (plot both lines and points), 256=Splines (use cubic splines),
 512=no_X_ticks, 1024= no_Y_ticks, 2048=Same_ticks (plot all ticks with the
 same length), 4096=Complex (the two coordinates of each points are encoded
 as a complex number). n specifies number of reference points on the graph
 (0=use default value). Returns a vector for the bounding box.
Doc: high precision plot of the function $y=f(x)$ represented by the expression
 \var{expr}, $x$ going from $a$ to $b$. This opens a specific window (which is
 killed whenever you click on it), and returns a four-component vector giving
 the coordinates of the bounding box in the form
 $[\var{xmin},\var{xmax},\var{ymin},\var{ymax}]$.
 
 \misctitle{Important note}: \kbd{ploth} may evaluate \kbd{expr} thousands of
 times; given the relatively low resolution of plotting devices, few
 significant digits of the result will be meaningful. Hence you should keep
 the current precision to a minimum (e.g.~9) before calling this function.
 
 $n$ specifies the number of reference point on the graph, where a value of 0
 means we use the hardwired default values (1000 for general plot, 1500 for
 parametric plot, and 15 for recursive plot).
 
 If no $\fl$ is given, \var{expr} is either a scalar expression $f(X)$, in which
 case the plane curve $y=f(X)$ will be drawn, or a vector
 $[f_1(X),\dots,f_k(X)]$, and then all the curves $y=f_i(X)$ will be drawn in
 the same window.
 
 \noindent The binary digits of $\fl$ mean:
 
 \item $1 = \kbd{Parametric}$: \tev{parametric plot}. Here \var{expr} must
 be a vector with an even number of components. Successive pairs are then
 understood as the parametric coordinates of a plane curve. Each of these are
 then drawn.
 
 For instance:
 \bprog
 ploth(X=0,2*Pi,[sin(X),cos(X)], "Parametric")
 ploth(X=0,2*Pi,[sin(X),cos(X)])
 ploth(X=0,2*Pi,[X,X,sin(X),cos(X)], "Parametric")
 @eprog\noindent draw successively a circle, two entwined sinusoidal curves
 and a circle cut by the line $y=x$.
 
 \item $2 = \kbd{Recursive}$: \tev{recursive plot}. If this flag is set,
 only \emph{one} curve can be drawn at a time, i.e.~\var{expr} must be either a
 two-component vector (for a single parametric curve, and the parametric flag
 \emph{has} to be set), or a scalar function. The idea is to choose pairs of
 successive reference points, and if their middle point is not too far away
 from the segment joining them, draw this as a local approximation to the
 curve. Otherwise, add the middle point to the reference points. This is
 fast, and usually more precise than usual plot. Compare the results of
 \bprog
 ploth(X=-1,1, sin(1/X), "Recursive")
 ploth(X=-1,1, sin(1/X))
 @eprog\noindent
 for instance. But beware that if you are extremely unlucky, or choose too few
 reference points, you may draw some nice polygon bearing little resemblance
 to the original curve. For instance you should \emph{never} plot recursively
 an odd function in a symmetric interval around 0. Try
 \bprog
 ploth(x = -20, 20, sin(x), "Recursive")
 @eprog\noindent
 to see why. Hence, it's usually a good idea to try and plot the same curve
 with slightly different parameters.
 
 The other values toggle various display options:
 
 \item $4 = \kbd{no\_Rescale}$: do not rescale plot according to the
 computed extrema. This is used in conjunction with \tet{plotscale} when
 graphing multiple functions on a rectwindow (as a \tet{plotrecth} call):
 \bprog
   s = plothsizes();
   plotinit(0, s[2]-1, s[2]-1);
   plotscale(0, -1,1, -1,1);
   plotrecth(0, t=0,2*Pi, [cos(t),sin(t)], "Parametric|no_Rescale")
   plotdraw([0, -1,1]);
 @eprog\noindent
 This way we get a proper circle instead of the distorted ellipse produced by
 \bprog
   ploth(t=0,2*Pi, [cos(t),sin(t)], "Parametric")
 @eprog
 
 \item $8 = \kbd{no\_X\_axis}$: do not print the $x$-axis.
 
 \item $16 = \kbd{no\_Y\_axis}$: do not print the $y$-axis.
 
 \item $32 = \kbd{no\_Frame}$: do not print frame.
 
 \item $64 = \kbd{no\_Lines}$: only plot reference points, do not join them.
 
 \item $128 = \kbd{Points\_too}$: plot both lines and points.
 
 \item $256 = \kbd{Splines}$: use splines to interpolate the points.
 
 \item $512 = \kbd{no\_X\_ticks}$: plot no $x$-ticks.
 
 \item $1024 = \kbd{no\_Y\_ticks}$: plot no $y$-ticks.
 
 \item $2048 = \kbd{Same\_ticks}$: plot all ticks with the same length.
 
 \item $4096 = \kbd{Complex}$: is a parametric plot but where each member of
 \kbd{expr} is considered a complex number encoding the two coordinates of a
 point. For instance:
 \bprog
 ploth(X=0,2*Pi,exp(I*X), "Complex")
 ploth(X=0,2*Pi,[(1+I)*X,exp(I*X)], "Complex")
 @eprog\noindent will draw respectively a circle and a circle cut by the line
 $y=x$.

Function: plothraw
Class: highlevel
Section: graphic
C-Name: plothraw
Prototype: GGD0,L,
Help: plothraw(listx,listy,{flag=0}): plot in high resolution points whose x
 (resp. y) coordinates are in listx (resp. listy). If flag is 1, join points,
 other non-0 flags should be combinations of bits 8,16,32,64,128,256 meaning
 the same as for ploth().
Doc: given \var{listx} and \var{listy} two vectors of equal length, plots (in
 high precision) the points whose $(x,y)$-coordinates are given in
 \var{listx} and \var{listy}. Automatic positioning and scaling is done, but
 with the same scaling factor on $x$ and $y$. If $\fl$ is 1, join points,
 other non-0 flags toggle display options and should be combinations of bits
 $2^k$, $k \geq 3$ as in \kbd{ploth}.

Function: plothsizes
Class: highlevel
Section: graphic
C-Name: plothsizes_flag
Prototype: D0,L,
Help: plothsizes({flag=0}): returns array of 6 elements: terminal width and
 height, sizes for ticks in horizontal and vertical directions, width and
 height of characters. If flag=0, sizes of ticks and characters are in
 pixels, otherwise are fractions of the screen size.
Doc: return data corresponding to the output window
 in the form of a 6-component vector: window width and height, sizes for ticks
 in horizontal and vertical directions (this is intended for the \kbd{gnuplot}
 interface and is currently not significant), width and height of characters.
 
 If $\fl = 0$, sizes of ticks and characters are in
 pixels, otherwise are fractions of the screen size

Function: plotinit
Class: highlevel
Section: graphic
C-Name: initrect_gen
Prototype: vLDGDGD0,L,
Help: plotinit(w,{x},{y},{flag=0}): initialize rectwindow w to size x,y.
 If flag!=0, x and y express fractions of the size of the current output
 device. Omitting x or y means use the full size of the device.
Doc: initialize the rectwindow $w$,
 destroying any rect objects you may have already drawn in $w$. The virtual
 cursor is set to $(0,0)$. The rectwindow size is set to width $x$ and height
 $y$; omitting either $x$ or $y$ means we use the full size of the device
 in that direction.
 If $\fl=0$, $x$ and $y$ represent pixel units. Otherwise, $x$ and $y$
 are understood as fractions of the size of the current output device (hence
 must be between $0$ and $1$) and internally converted to pixels.
 
 The plotting device imposes an upper bound for $x$ and $y$, for instance the
 number of pixels for screen output. These bounds are available through the
 \tet{plothsizes} function. The following sequence initializes in a portable
 way (i.e independent of the output device) a window of maximal size, accessed
 through coordinates in the $[0,1000] \times [0,1000]$ range:
 
 \bprog
 s = plothsizes();
 plotinit(0, s[1]-1, s[2]-1);
 plotscale(0, 0,1000, 0,1000);
 @eprog

Function: plotkill
Class: highlevel
Section: graphic
C-Name: killrect
Prototype: vL
Help: plotkill(w): erase the rectwindow w.
Doc: erase rectwindow $w$ and free the corresponding memory. Note that if you
 want to use the rectwindow $w$ again, you have to use \kbd{plotinit} first
 to specify the new size. So it's better in this case to use \kbd{plotinit}
 directly as this throws away any previous work in the given rectwindow.

Function: plotlines
Class: highlevel
Section: graphic
C-Name: rectlines
Prototype: vLGGD0,L,
Help: plotlines(w,X,Y,{flag=0}): draws an open polygon in rectwindow
 w where X and Y contain the x (resp. y) coordinates of the vertices.
 If X and Y are both single values (i.e not vectors), draw the
 corresponding line (and move cursor). If (optional) flag is non-zero, close
 the polygon.
Doc: draw on the rectwindow $w$
 the polygon such that the (x,y)-coordinates of the vertices are in the
 vectors of equal length $X$ and $Y$. For simplicity, the whole
 polygon is drawn, not only the part of the polygon which is inside the
 rectwindow. If $\fl$ is non-zero, close the polygon. In any case, the
 virtual cursor does not move.
 
 $X$ and $Y$ are allowed to be scalars (in this case, both have to).
 There, a single segment will be drawn, between the virtual cursor current
 position and the point $(X,Y)$. And only the part thereof which
 actually lies within the boundary of $w$. Then \emph{move} the virtual cursor
 to $(X,Y)$, even if it is outside the window. If you want to draw a
 line from $(x1,y1)$ to $(x2,y2)$ where $(x1,y1)$ is not necessarily the
 position of the virtual cursor, use \kbd{plotmove(w,x1,y1)} before using this
 function.

Function: plotlinetype
Class: highlevel
Section: graphic
C-Name: rectlinetype
Prototype: vLL
Help: plotlinetype(w,type): change the type of following lines in rectwindow
 w. type -2 corresponds to frames, -1 to axes, larger values may correspond
 to something else. w=-1 changes highlevel plotting.
Doc: change the type of lines subsequently plotted in rectwindow $w$.
 \var{type} $-2$ corresponds to frames, $-1$ to axes, larger values may
 correspond to something else. $w = -1$ changes highlevel plotting. This is
 only taken into account by the \kbd{gnuplot} interface.

Function: plotmove
Class: highlevel
Section: graphic
C-Name: rectmove
Prototype: vLGG
Help: plotmove(w,x,y): move cursor to position x,y in rectwindow w.
Doc: move the virtual cursor of the rectwindow $w$ to position $(x,y)$.

Function: plotpoints
Class: highlevel
Section: graphic
C-Name: rectpoints
Prototype: vLGG
Help: plotpoints(w,X,Y): draws in rectwindow w the points whose x
 (resp y) coordinates are in X (resp Y). If X and Y are both
 single values (i.e not vectors), draw the corresponding point (and move
 cursor).
Doc: draw on the rectwindow $w$ the
 points whose $(x,y)$-coordinates are in the vectors of equal length $X$ and
 $Y$ and which are inside $w$. The virtual cursor does \emph{not} move. This
 is basically the same function as \kbd{plothraw}, but either with no scaling
 factor or with a scale chosen using the function \kbd{plotscale}.
 
 As was the case with the \kbd{plotlines} function, $X$ and $Y$ are allowed to
 be (simultaneously) scalar. In this case, draw the single point $(X,Y)$ on
 the rectwindow $w$ (if it is actually inside $w$), and in any case
 \emph{move} the virtual cursor to position $(x,y)$.

Function: plotpointsize
Class: highlevel
Section: graphic
C-Name: rectpointsize
Prototype: vLG
Help: plotpointsize(w,size): change the "size" of following points in
 rectwindow w. w=-1 changes global value.
Doc: changes the ``size'' of following points in rectwindow $w$. If $w = -1$,
 change it in all rectwindows. This only works in the \kbd{gnuplot} interface.

Function: plotpointtype
Class: highlevel
Section: graphic
C-Name: rectpointtype
Prototype: vLL
Help: plotpointtype(w,type): change the type of following points in
 rectwindow w. type -1 corresponds to a dot, larger values may correspond to
 something else. w=-1 changes highlevel plotting.
Doc: change the type of points subsequently plotted in rectwindow $w$.
 $\var{type} = -1$ corresponds to a dot, larger values may correspond to
 something else. $w = -1$ changes highlevel plotting. This is only taken into
 account by the \kbd{gnuplot} interface.

Function: plotrbox
Class: highlevel
Section: graphic
C-Name: rectrbox
Prototype: vLGG
Help: plotrbox(w,dx,dy): if the cursor is at (x1,y1), draw a box with
 diagonal (x1,y1)-(x1+dx,y1+dy) in rectwindow w (cursor does not move).
Doc: draw in the rectwindow $w$ the outline of the rectangle which is such
 that the points $(x1,y1)$ and $(x1+dx,y1+dy)$ are opposite corners, where
 $(x1,y1)$ is the current position of the cursor. Only the part of the
 rectangle which is in $w$ is drawn. The virtual cursor does \emph{not} move.

Function: plotrecth
Class: highlevel
Section: graphic
C-Name: rectploth
Prototype: LV=GGEpD0,M,D0,L,\nParametric|1; Recursive|2; no_Rescale|4; no_X_axis|8; no_Y_axis|16; no_Frame|32; no_Lines|64; Points_too|128; Splines|256; no_X_ticks|512; no_Y_ticks|1024; Same_ticks|2048; Complex|4096
Help: plotrecth(w,X=a,b,expr,{flag=0},{n=0}):
 writes to rectwindow w the curve output of
 ploth(w,X=a,b,expr,flag,n). Returns a vector for the bounding box.
Doc: writes to rectwindow $w$ the curve output of
 \kbd{ploth}$(w,X=a,b,\var{expr},\fl,n)$. Returns a vector for the bounding box.

Function: plotrecthraw
Class: highlevel
Section: graphic
C-Name: rectplothraw
Prototype: LGD0,L,
Help: plotrecthraw(w,data,{flags=0}): plot graph(s) for data in rectwindow
 w, where data is a vector of vectors. If plot is parametric, length of data
 should be even, and pairs of entries give curves to plot. If not, first
 entry gives x-coordinate, and the other ones y-coordinates. Admits the same
 optional flags as plotrecth, save that recursive plot is meaningless.
Doc: plot graph(s) for
 \var{data} in rectwindow $w$. $\fl$ has the same significance here as in
 \kbd{ploth}, though recursive plot is no more significant.
 
 \var{data} is a vector of vectors, each corresponding to a list a coordinates.
 If parametric plot is set, there must be an even number of vectors, each
 successive pair corresponding to a curve. Otherwise, the first one contains
 the $x$ coordinates, and the other ones contain the $y$-coordinates
 of curves to plot.

Function: plotrline
Class: highlevel
Section: graphic
C-Name: rectrline
Prototype: vLGG
Help: plotrline(w,dx,dy): if the cursor is at (x1,y1), draw a line from
 (x1,y1) to (x1+dx,y1+dy) (and move the cursor) in the rectwindow w.
Doc: draw in the rectwindow $w$ the part of the segment
 $(x1,y1)-(x1+dx,y1+dy)$ which is inside $w$, where $(x1,y1)$ is the current
 position of the virtual cursor, and move the virtual cursor to
 $(x1+dx,y1+dy)$ (even if it is outside the window).

Function: plotrmove
Class: highlevel
Section: graphic
C-Name: rectrmove
Prototype: vLGG
Help: plotrmove(w,dx,dy): move cursor to position (dx,dy) relative to the
 present position in the rectwindow w.
Doc: move the virtual cursor of the rectwindow $w$ to position
 $(x1+dx,y1+dy)$, where $(x1,y1)$ is the initial position of the cursor
 (i.e.~to position $(dx,dy)$ relative to the initial cursor).

Function: plotrpoint
Class: highlevel
Section: graphic
C-Name: rectrpoint
Prototype: vLGG
Help: plotrpoint(w,dx,dy): draw a point (and move cursor) at position dx,dy
 relative to present position of the cursor in rectwindow w.
Doc: draw the point $(x1+dx,y1+dy)$ on the rectwindow $w$ (if it is inside
 $w$), where $(x1,y1)$ is the current position of the cursor, and in any case
 move the virtual cursor to position $(x1+dx,y1+dy)$.

Function: plotscale
Class: highlevel
Section: graphic
C-Name: rectscale
Prototype: vLGGGG
Help: plotscale(w,x1,x2,y1,y2): scale the coordinates in rectwindow w so
 that x goes from x1 to x2 and y from y1 to y2 (y2<y1 is allowed).
Doc: scale the local coordinates of the rectwindow $w$ so that $x$ goes from
 $x1$ to $x2$ and $y$ goes from $y1$ to $y2$ ($x2<x1$ and $y2<y1$ being
 allowed). Initially, after the initialization of the rectwindow $w$ using
 the function \kbd{plotinit}, the default scaling is the graphic pixel count,
 and in particular the $y$ axis is oriented downwards since the origin is at
 the upper left. The function \kbd{plotscale} allows to change all these
 defaults and should be used whenever functions are graphed.

Function: plotstring
Class: highlevel
Section: graphic
C-Name: rectstring3
Prototype: vLsD0,L,
Help: plotstring(w,x,{flags=0}): draw in rectwindow w the string
 corresponding to x. Bits 1 and 2 of flag regulate horizontal alignment: left
 if 0, right if 2, center if 1. Bits 4 and 8 regulate vertical alignment:
 bottom if 0, top if 8, v-center if 4. Can insert additional gap between
 point and string: horizontal if bit 16 is set, vertical if bit 32 is set.
Doc: draw on the rectwindow $w$ the String $x$ (see \secref{se:strings}), at
 the current position of the cursor.
 
 \fl\ is used for justification: bits 1 and 2 regulate horizontal alignment:
 left if 0, right if 2, center if 1. Bits 4 and 8 regulate vertical
 alignment: bottom if 0, top if 8, v-center if 4. Can insert additional small
 gap between point and string: horizontal if bit 16 is set, vertical if bit
 32 is set (see the tutorial for an example).

Function: polchebyshev
Class: basic
Section: polynomials
C-Name: polchebyshev_eval
Prototype: LD1,L,DG
Help: polchebyshev(n,{flag=1},{a='x}): Chebychev polynomial of the first (flag
 = 1) or second (flag = 2) kind, of degree n, evaluated at a.
Description: 
 (small,?1,?var):gen polchebyshev1($1,$3)
 (small,2,?var):gen  polchebyshev2($1,$3)
 (small,small,?var):gen polchebyshev($1,$2,$3)
Doc: returns the $n^{\text{th}}$
 \idx{Chebyshev} polynomial of the first kind $T_n$ ($\fl=1$) or the second
 kind $U_n$ ($\fl=2$), evaluated at $a$ (\kbd{'x} by default). Both series of
 polynomials satisfy the 3-term relation
 $$ P_{n+1} = 2xP_n - P_{n-1}, $$
 and are determined by the initial conditions $U_0 = T_0 = 1$, $T_1 = x$,
 $U_1 = 2x$. In fact $T_n' = n U_{n-1}$ and, for all complex numbers $z$, we
 have $T_n(\cos z) = \cos (nz)$ and $U_{n-1}(\cos z) = \sin(nz)/\sin z$.
 If $n \geq 0$, then these polynomials have degree $n$.  For $n < 0$,
 $T_n$ is equal to $T_{-n}$ and $U_n$ is equal to $-U_{-2-n}$.
 In particular, $U_{-1} = 0$.
Variant: Also available are \fun{GEN}{polchebyshev1}{long n, long v} and
 \fun{GEN}{polchebyshev2}{long n, long v} for $T_n$ and $U_n$ respectively.

Function: polcoeff
Class: basic
Section: polynomials
C-Name: polcoeff0
Prototype: GLDn
Help: polcoeff(x,n,{v}): coefficient of degree n of x, or the n-th component
 for vectors or matrices (for which it is simpler to use x[]). With respect
 to the main variable if v is omitted, with respect to the variable v
 otherwise.
Description: 
 (pol, 0):gen:copy      constant_term($1)
 (gen, small, ?var):gen polcoeff0($1, $2, $3)
Doc: coefficient of degree $n$ of the polynomial $x$, with respect to the
 main variable if $v$ is omitted, with respect to $v$ otherwise.  If $n$
 is greater than the degree, the result is zero.
 
 Naturally applies to scalars (polynomial of degree $0$), as well as to
 rational functions whose denominator is a monomial.
 It also applies to power series: if $n$ is less than the valuation, the result
 is zero. If it is greater than the largest significant degree, then an error
 message is issued.
 
  For greater flexibility, vector or matrix types are also accepted for $x$,
  and the meaning is then identical with that of \kbd{component(x,n)}.

Function: polcompositum
Class: basic
Section: number_fields
C-Name: polcompositum0
Prototype: GGD0,L,
Help: polcompositum(P,Q,{flag=0}): vector of all possible compositums
 of the number fields defined by the polynomials P and Q. If (optional)
 flag is set (i.e non-null), output for each compositum, not only the
 compositum polynomial pol, but a vector [R,a,b,k] where a (resp. b) is a root
 of P (resp. Q) expressed as a polynomial modulo R,
 and a small integer k such that al2+k*al1 is the chosen root of R.
Doc: \sidx{compositum} $P$ and $Q$
 being squarefree polynomials in $\Z[X]$ in the same variable, outputs
 the simple factors of the \'etale $\Q$-algebra $A = \Q(X, Y) / (P(X), Q(Y))$.
 The factors are given by a list of polynomials $R$ in $\Z[X]$, associated to
 the number field $\Q(X)/ (R)$, and sorted by increasing degree (with respect
 to lexicographic ordering for factors of equal degrees). Returns an error if
 one of the polynomials is not squarefree.
 
 Note that it is more efficient to reduce to the case where $P$ and $Q$ are
 irreducible first. The routine will not perform this for you, since it may be
 expensive, and the inputs are irreducible in most applications anyway.
 Assuming $P$ is irreducible (of smaller degree than $Q$ for efficiency), it
 is in general \emph{much} faster to proceed as follows
 \bprog
 nf = nfinit(P); L = nffactor(nf, Q)[,1];
 vector(#L, i, rnfequation(nf, L[i]))
 @eprog\noindent
 to obtain the same result. If you are only interested in the degrees of the
 simple factors, the \kbd{rnfequation} instruction can be replaced by a
 trivial \kbd{poldegree(P) * poldegree(L[i])}.
 
 If $\fl=1$, outputs a vector of 4-component vectors $[R,a,b,k]$, where $R$
 ranges through the list of all possible compositums as above, and $a$
 (resp. $b$) expresses the root of $P$ (resp. $Q$) as an element of
 $\Q(X)/(R)$. Finally, $k$ is a small integer such that $b + ka = X$ modulo
 $R$.
 
 A compositum is quite often defined by a complicated polynomial, which it is
 advisable to reduce before further work. Here is a simple example involving
 the field $\Q(\zeta_5, 5^{1/5})$:
 \bprog
 ? z = polcompositum(x^5 - 5, polcyclo(5), 1)[1];
 ? pol = z[1]                 \\@com \kbd{pol} defines the compositum
 %2 = x^20 + 5*x^19 + 15*x^18 + 35*x^17 + 70*x^16 + 141*x^15 + 260*x^14 \
 + 355*x^13 + 95*x^12 - 1460*x^11 - 3279*x^10 - 3660*x^9 - 2005*x^8    \
 + 705*x^7 + 9210*x^6 + 13506*x^5 + 7145*x^4 - 2740*x^3 + 1040*x^2     \
 - 320*x + 256
 ? a = z[2]; a^5 - 5          \\@com \kbd{a} is a fifth root of $5$
 %3 = 0
 ? z = polredabs(pol, 1);     \\@com look for a simpler polynomial
 ? pol = z[1]
 %5 = x^20 + 25*x^10 + 5
 ? a = subst(a.pol, x, z[2])  \\@com \kbd{a} in the new coordinates
 %6 = Mod(-5/22*x^19 + 1/22*x^14 - 123/22*x^9 + 9/11*x^4, x^20 + 25*x^10 + 5)
 @eprog
Variant: Also available are
 \fun{GEN}{compositum}{GEN P, GEN Q} ($\fl = 0$) and
 \fun{GEN}{compositum2}{GEN P, GEN Q} ($\fl = 1$).

Function: polcyclo
Class: basic
Section: polynomials
C-Name: polcyclo_eval
Prototype: LDG
Help: polcyclo(n,{a = 'x}): n-th cyclotomic polynomial evaluated at a.
Description: 
  (small,?var):gen     polcyclo($1,$2)
  (small,gen):gen      polcyclo_eval($1,$2)
Doc: $n$-th cyclotomic polynomial, evaluated at $a$ (\kbd{'x} by default). The
 integer $n$ must be positive.
 
 Algorithm used: reduce to the case where $n$ is squarefree; to compute the
 cyclotomic polynomial, use $\Phi_{np}(x)=\Phi_n(x^p)/\Phi(x)$; to compute
 it evaluated, use $\Phi_n(x) = \prod_{d\mid n} (x^d-1)^{\mu(n/d)}$. In the
 evaluated case, the algorithm can deal with all rational values $a$;
 otherwise it assumes that $a^d - 1$ is invertible for all $d\mid n$. If this
 is not the case, use \kbd{subst(polcyclo(n),x,a)}.
Variant: The variant \fun{GEN}{polcyclo}{long n, long v} returns the $n$-th
 cyclotomic polynomial in variable $v$.

Function: poldegree
Class: basic
Section: polynomials
C-Name: poldegree
Prototype: lGDn
Help: poldegree(x,{v}): degree of the polynomial or rational function x with
 respect to main variable if v is omitted, with respect to v otherwise.
 For scalar x, return 0 is x is non-zero and a negative number otherwise.
Description: 
 (pol):small                degpol($1)
 (gen):small                degree($1)
 (gen, var):small           poldegree($1, $2)
Doc: degree of the polynomial $x$ in the main variable if $v$ is omitted, in
 the variable $v$ otherwise.
 
 The degree of $0$ is a fixed negative number, whose exact value should not
 be used. The degree of a non-zero scalar is $0$. Finally, when $x$ is a
 non-zero polynomial or rational function, returns the ordinary degree of
 $x$. Raise an error otherwise.

Function: poldisc
Class: basic
Section: polynomials
C-Name: poldisc0
Prototype: GDn
Help: poldisc(pol,{v}): discriminant of the polynomial pol, with respect to main
 variable if v is omitted, with respect to v otherwise.
Description: 
 (pol):gen        discsr($1)
 (gen):gen        poldisc0($1, -1)
 (gen, var):gen   poldisc0($1, $2)
Doc: discriminant of the polynomial
 \var{pol} in the main variable if $v$ is omitted, in $v$ otherwise. The
 algorithm used is the \idx{subresultant algorithm}.

Function: poldiscreduced
Class: basic
Section: polynomials
C-Name: reduceddiscsmith
Prototype: G
Help: poldiscreduced(f): vector of elementary divisors of Z[a]/f'(a)Z[a],
 where a is a root of the polynomial f.
Doc: reduced discriminant vector of the
 (integral, monic) polynomial $f$. This is the vector of elementary divisors
 of $\Z[\alpha]/f'(\alpha)\Z[\alpha]$, where $\alpha$ is a root of the
 polynomial $f$. The components of the result are all positive, and their
 product is equal to the absolute value of the discriminant of~$f$.

Function: polgalois
Class: basic
Section: number_fields
C-Name: polgalois
Prototype: Gp
Help: polgalois(x): Galois group of the polynomial x (see manual for group
 coding). Return [n, s, k, name] where n is the order, s the signature, k the
 index and name is the GAP4 name of the transitive group.
Doc: \idx{Galois} group of the non-constant
 polynomial $x\in\Q[X]$. In the present version \vers, $x$ must be irreducible
 and the degree of $x$ must be less than or equal to 7. On certain versions for
 which the data file of Galois resolvents has been installed (available in the
 Unix distribution as a separate package), degrees 8, 9, 10 and 11 are also
 implemented.
 
 The output is a 4-component vector $[n,s,k,name]$ with the
 following meaning: $n$ is the cardinality of the group, $s$ is its signature
 ($s=1$ if the group is a subgroup of the alternating group $A_n$, $s=-1$
 otherwise) and name is a character string containing name of the transitive
 group according to the GAP 4 transitive groups library by Alexander Hulpke.
 
 $k$ is more arbitrary and the choice made up to version~2.2.3 of PARI is rather
 unfortunate: for $n > 7$, $k$ is the numbering of the group among all
 transitive subgroups of $S_n$, as given in ``The transitive groups of degree up
 to eleven'', G.~Butler and J.~McKay, \emph{Communications in Algebra}, vol.~11,
 1983,
 pp.~863--911 (group $k$ is denoted $T_k$ there). And for $n \leq 7$, it was ad
 hoc, so as to ensure that a given triple would design a unique group.
 Specifically, for polynomials of degree $\leq 7$, the groups are coded as
 follows, using standard notations
 \smallskip
 In degree 1: $S_1=[1,1,1]$.
 \smallskip
 In degree 2: $S_2=[2,-1,1]$.
 \smallskip
 In degree 3: $A_3=C_3=[3,1,1]$, $S_3=[6,-1,1]$.
 \smallskip
 In degree 4: $C_4=[4,-1,1]$, $V_4=[4,1,1]$, $D_4=[8,-1,1]$, $A_4=[12,1,1]$,
 $S_4=[24,-1,1]$.
 \smallskip
 In degree 5: $C_5=[5,1,1]$, $D_5=[10,1,1]$, $M_{20}=[20,-1,1]$,
 $A_5=[60,1,1]$, $S_5=[120,-1,1]$.
 \smallskip
 In degree 6: $C_6=[6,-1,1]$, $S_3=[6,-1,2]$, $D_6=[12,-1,1]$, $A_4=[12,1,1]$,
 $G_{18}=[18,-1,1]$, $S_4^-=[24,-1,1]$, $A_4\times C_2=[24,-1,2]$,
 $S_4^+=[24,1,1]$, $G_{36}^-=[36,-1,1]$, $G_{36}^+=[36,1,1]$,
 $S_4\times C_2=[48,-1,1]$, $A_5=PSL_2(5)=[60,1,1]$, $G_{72}=[72,-1,1]$,
 $S_5=PGL_2(5)=[120,-1,1]$, $A_6=[360,1,1]$, $S_6=[720,-1,1]$.
 \smallskip
 In degree 7: $C_7=[7,1,1]$, $D_7=[14,-1,1]$, $M_{21}=[21,1,1]$,
 $M_{42}=[42,-1,1]$, $PSL_2(7)=PSL_3(2)=[168,1,1]$, $A_7=[2520,1,1]$,
 $S_7=[5040,-1,1]$.
 \smallskip
 This is deprecated and obsolete, but for reasons of backward compatibility,
 we cannot change this behavior yet. So you can use the default
 \tet{new_galois_format} to switch to a consistent naming scheme, namely $k$ is
 always the standard numbering of the group among all transitive subgroups of
 $S_n$. If this default is in effect, the above groups will be coded as:
 \smallskip
 In degree 1: $S_1=[1,1,1]$.
 \smallskip
 In degree 2: $S_2=[2,-1,1]$.
 \smallskip
 In degree 3: $A_3=C_3=[3,1,1]$, $S_3=[6,-1,2]$.
 \smallskip
 In degree 4: $C_4=[4,-1,1]$, $V_4=[4,1,2]$, $D_4=[8,-1,3]$, $A_4=[12,1,4]$,
 $S_4=[24,-1,5]$.
 \smallskip
 In degree 5: $C_5=[5,1,1]$, $D_5=[10,1,2]$, $M_{20}=[20,-1,3]$,
 $A_5=[60,1,4]$, $S_5=[120,-1,5]$.
 \smallskip
 In degree 6: $C_6=[6,-1,1]$, $S_3=[6,-1,2]$, $D_6=[12,-1,3]$, $A_4=[12,1,4]$,
 $G_{18}=[18,-1,5]$, $A_4\times C_2=[24,-1,6]$, $S_4^+=[24,1,7]$,
 $S_4^-=[24,-1,8]$, $G_{36}^-=[36,-1,9]$, $G_{36}^+=[36,1,10]$,
 $S_4\times C_2=[48,-1,11]$, $A_5=PSL_2(5)=[60,1,12]$, $G_{72}=[72,-1,13]$,
 $S_5=PGL_2(5)=[120,-1,14]$, $A_6=[360,1,15]$, $S_6=[720,-1,16]$.
 \smallskip
 In degree 7: $C_7=[7,1,1]$, $D_7=[14,-1,2]$, $M_{21}=[21,1,3]$,
 $M_{42}=[42,-1,4]$, $PSL_2(7)=PSL_3(2)=[168,1,5]$, $A_7=[2520,1,6]$,
 $S_7=[5040,-1,7]$.
 \smallskip
 
 \misctitle{Warning} The method used is that of resolvent polynomials and is
 sensitive to the current precision. The precision is updated internally but,
 in very rare cases, a wrong result may be returned if the initial precision
 was not sufficient.
Variant: To enable the new format in library mode,
 set the global variable \tet{new_galois_format} to $1$.

Function: polhensellift
Class: basic
Section: polynomials
C-Name: polhensellift
Prototype: GGGL
Help: polhensellift(A, B, p, e): lift the factorization B of A modulo p to a
 factorization modulo p^e using Hensel lift. The factors in B must be
 pairwise relatively prime modulo p.
Doc: given a prime $p$, an integral polynomial $A$ whose leading coefficient
 is a $p$-unit, a vector $B$ of integral polynomials that are monic and
 pairwise relatively prime modulo $p$, and whose product is congruent to
 $A/\text{lc}(A)$ modulo $p$, lift the elements of $B$ to polynomials whose
 product is congruent to $A$ modulo $p^e$.
 
 More generally, if $T$ is an integral polynomial irreducible mod $p$, and
 $B$ is a factorization of $A$ over the finite field $\F_p[t]/(T)$, you can
 lift it to $\Z_p[t]/(T, p^e)$ by replacing the $p$ argument with $[p,T]$:
 \bprog
 ? { T = t^3 - 2; p = 7; A = x^2 + t + 1;
     B = [x + (3*t^2 + t + 1), x + (4*t^2 + 6*t + 6)];
     r = polhensellift(A, B, [p, T], 6) }
 %1 = [x + (20191*t^2 + 50604*t + 75783), x + (97458*t^2 + 67045*t + 41866)]
 ? lift(lift( r[1] * r[2] * Mod(Mod(1,p^6),T) ))
 %2 = x^2 + (t + 1)
 @eprog

Function: polhermite
Class: basic
Section: polynomials
C-Name: polhermite_eval
Prototype: LDG
Help: polhermite(n,{a='x}): Hermite polynomial H(n,v) of degree n, evaluated
 at a.
Description: 
  (small,?var):gen    polhermite($1,$2)
  (small,gen):gen     polhermite_eval($1,$2)
Doc: $n^{\text{th}}$ \idx{Hermite} polynomial $H_n$ evaluated at $a$
 (\kbd{'x} by default), i.e.
 $$ H_n(x) = (-1)^n\*e^{x^2} \dfrac{d^n}{dx^n}e^{-x^2}.$$
Variant: The variant \fun{GEN}{polhermite}{long n, long v} returns the $n$-th
 Hermite polynomial in variable $v$.

Function: polinterpolate
Class: basic
Section: polynomials
C-Name: polint
Prototype: GDGDGD&
Help: polinterpolate(X,{Y},{x},{&e}): polynomial interpolation at x
 according to data vectors X, Y (ie return P such that P(X[i]) = Y[i] for
 all i). If Y is omitted, return P such that P(i) = X[i]. If present, e
 will contain an error estimate on the returned value.
Doc: given the data vectors
 $X$ and $Y$ of the same length $n$ ($X$ containing the $x$-coordinates,
 and $Y$ the corresponding $y$-coordinates), this function finds the
 \idx{interpolating polynomial} passing through these points and evaluates it
 at~$x$. If $Y$ is omitted, return the polynomial interpolating the
 $(i,X[i])$. If present, $e$ will contain an error estimate on the returned
 value.

Function: polisirreducible
Class: basic
Section: polynomials
C-Name: gisirreducible
Prototype: G
Help: polisirreducible(pol): true(1) if pol is an irreducible non-constant
 polynomial, false(0) if pol is reducible or constant.
Doc: \var{pol} being a polynomial (univariate in the present version \vers),
 returns 1 if \var{pol} is non-constant and irreducible, 0 otherwise.
 Irreducibility is checked over the smallest base field over which \var{pol}
 seems to be defined.

Function: pollead
Class: basic
Section: polynomials
C-Name: pollead
Prototype: GDn
Help: pollead(x,{v}): leading coefficient of polynomial or series x, or x
 itself if x is a scalar. Error otherwise. With respect to the main variable
 of x if v is omitted, with respect to the variable v otherwise.
Description: 
 (pol):gen:copy         leading_term($1)
 (gen):gen              pollead($1, -1)
 (gen, var):gen         pollead($1, $2)
Doc: leading coefficient of the polynomial or power series $x$. This is
  computed with respect to the main variable of $x$ if $v$ is omitted, with
  respect to the variable $v$ otherwise.

Function: pollegendre
Class: basic
Section: polynomials
C-Name: pollegendre_eval
Prototype: LDG
Help: pollegendre(n,{a='x}): legendre polynomial of degree n evaluated at a.
Description: 
  (small,?var):gen    pollegendre($1,$2)
  (small,gen):gen     pollegendre_eval($1,$2)
Doc: $n^{\text{th}}$ \idx{Legendre polynomial} evaluated at $a$ (\kbd{'x} by
 default).
Variant: To obtain the $n$-th Legendre polynomial in variable $v$,
 use \fun{GEN}{pollegendre}{long n, long v}.

Function: polrecip
Class: basic
Section: polynomials
C-Name: polrecip
Prototype: G
Help: polrecip(pol): reciprocal polynomial of pol.
Doc: reciprocal polynomial of \var{pol}, i.e.~the coefficients are in
 reverse order. \var{pol} must be a polynomial.

Function: polred
Class: basic
Section: number_fields
C-Name: polred0
Prototype: GD0,L,DG
Help: polred(x,{flag=0},{fa}): reduction of the polynomial x (gives minimal
 polynomials only). Second and third args are optional. The following binary
 digits of flag are significant 1: partial reduction, 2: gives also elements.
 fa, if present, contains the factorization matrix of the discriminant.
Doc: finds polynomials with reasonably
 small coefficients defining subfields of the number field defined by $x$.
 One of the polynomials always defines $\Q$ (hence is equal to $x-1$),
 and another always defines the same number field as $x$ if $x$ is irreducible.
 All $x$ accepted by \tet{nfinit} are also allowed here (e.g. non-monic
 polynomials, \kbd{nf}, \kbd{bnf}, \kbd{[x,Z\_K\_basis]}).
 
 The following binary digits of $\fl$ are significant:
 
 1: possibly use a suborder of the maximal order. The primes dividing the
 index of the order chosen are larger than \tet{primelimit} or divide integers
 stored in the \tet{addprimes} table.
 
 2: gives also elements. The result is a two-column matrix, the first column
 giving primitive elements defining these subfields, the second giving the
 corresponding minimal polynomials.
 \bprog
 ? M = polred(x^4 + 8, 2)
 %1 =
 [1 x - 1]
 
 [1/2*x^2 x^2 + 2]
 
 [1/4*x^3 x^4 + 2]
 
 [x x^4 + 8]
 ? minpoly(Mod(M[2,1], x^4+8))
 %2 = x^2 + 2
 @eprog\noindent
 If $fa$ is given, it is assumed that it is the two-column matrix of the
 factorization of the discriminant of the polynomial $x$.
Variant: Also available is \fun{GEN}{polred}{GEN x} ($\fl = 0$). The function
 \kbd{polred0} is provided for backward compatibility; instead of the above
 hardcoded numerical flags (which happen to be inconsistent), one should use
 \fun{GEN}{Polred}{GEN x, long flag, GEN fa} where  flag  is  an or-ed
 combination of \tet{nf_PARTIALFACT} (partial factorization of the
 discriminant) and \tet{nf_ORIG} (give also elements).

Function: polredabs
Class: basic
Section: number_fields
C-Name: polredabs0
Prototype: GD0,L,
Help: polredabs(T,{flag=0}): a smallest generating polynomial of the number
 field for the T2 norm on the roots, with smallest index for the minimal T2
 norm. flag is optional, whose binary digit mean 1: give the element whose
 characteristic polynomial is the given polynomial. 4: give all polynomials
 of minimal T2 norm (give only one of P(x) and P(-x)). 16: partial reduction.
Doc: returns a canonical defining polynomial $P$ for the same number field
 defined by $T$, such that the sum of the squares of the modulus of the
 roots (i.e.~the $T_2$-norm) is minimal. Different $T$ defining isomorphic
 number fields will yield the same $P$.
 All $T$ accepted by \tet{nfinit} are also allowed here: non-monic
 polynomials, \kbd{nf}, \kbd{bnf}, \kbd{[T, Z\_K\_basis]}.
 
 \misctitle{Warning} This routine uses an exponential-time algorithm to
 enumerate all potential generators, and may be exceedingly slow when the
 number field has many subfields, hence a lot of elements of small $T_2$-norm.
 E.g. do not try it on the compositum of many quadratic fields; in that case,
 use \tet{polred} instead.
 
 The binary digits of $\fl$ mean
 
 1: outputs a two-component row vector $[P,a]$, where $P$ is the default
 output and \kbd{Mod(a, P)} is a root of the original $T$.
 
 4: gives \emph{all} polynomials of minimal $T_2$ norm; of the two polynomials
 $P(x)$ and $\pm P(-x)$, only one is given.
 
 16: possibly use a suborder of the maximal order. The primes dividing the
 index of the order chosen are larger than \tet{primelimit} or divide integers
 stored in the \tet{addprimes} table. In that case the polynomial $P$ is
 no longer canonical, and it may happen that it does not have minimal
 $T_2$ norm. You should always include this flag; without it, the routine
 will often spend infinite time trying to factor the discriminant of $T$. As
 long as the discriminant of the \emph{field} $\Q[X]/(T)$ is easy to factor
 (has at most one large prime factor not in the \kbd{addprimes} table), the
 result is the same.
Variant: Instead of the above hardcoded numerical flags, one should use an
 or-ed combination of
 
 \item \tet{nf_PARTIALFACT}: partial factorization of the discriminant,
 possibly work in a non-maximal order. You should always include this.
 
 \item \tet{nf_ORIG}: return $[P, a]$, where \kbd{Mod(a, P)} is a root of $T$.
 
 \item \tet{nf_RAW}: return $[P, b]$, where \kbd{Mod(b, T)} is a root of $P$.
 The algebraic integer $b$ is the raw result produced by the small vectors
 enumeration in the maximal order; $P$ was computed as the characteristic
 polynomial of \kbd{Mod(b, T)}. \kbd{Mod(a, P)} as in \tet{nf_ORIG}
 is obtained with \tet{modreverse}.
 
 \item \tet{nf_ADDZK}: if $r$ is the result produced with some of the above
 flags (of the form $P$ or $[P,c]$), return \kbd{[r,zk]}, where \kbd{zk} is a
 $\Z$-basis for the maximal order of $\Q[X]/(P)$.
 
 \item \tet{nf_ALL}: return a vector of results of the above form, for all
 polynomials of minimal $T_2$-norm.

Function: polredord
Class: basic
Section: number_fields
C-Name: ordred
Prototype: G
Help: polredord(x): reduction of the polynomial x, staying in the same order.
Doc: finds polynomials with reasonably small
 coefficients and of the same degree as that of $x$ defining suborders of the
 order defined by $x$. One of the polynomials always defines $\Q$ (hence
 is equal to $(x-1)^n$, where $n$ is the degree), and another always defines
 the same order as $x$ if $x$ is irreducible. Useless function: try
 \kbd{polred(,1)} or \kbd{polredabs(,16)}.

Function: polresultant
Class: basic
Section: polynomials
C-Name: polresultant0
Prototype: GGDnD0,L,
Help: polresultant(x,y,{v},{flag=0}): resultant of the polynomials x and y,
 with respect to the main variables of x and y if v is omitted, with respect
 to the variable v otherwise. flag is optional, and can be 0: default,
 uses either the subresultant algorithm, a modular algorithm or Sylvester's
 matrix, depending on the inputs; 1 uses Sylvester's matrix (should always be
 slower than the default).
Doc: resultant of the two
 polynomials $x$ and $y$ with exact entries, with respect to the main
 variables of $x$ and $y$ if $v$ is omitted, with respect to the variable $v$
 otherwise. The algorithm assumes the base ring is a domain. If you also need
 the $u$ and $v$ such that $x*u + y*v = res(x,y)$, use the \tet{bezoutres}
 function.
 
 If $\fl=0$ (default), uses the the algorithm best suited to the inputs,
 either the \idx{subresultant algorithm} (Lazard/Ducos variant, generic case),
 a modular algorithm (inputs in $\Q[X]$) or Sylvester's matrix (inexact
 inputs).
 
 If $\fl=1$, uses the determinant of Sylvester's matrix instead; this should
 always be slower than the default.

Function: polroots
Class: basic
Section: polynomials
C-Name: roots0
Prototype: GD0,L,p
Help: polroots(x,{flag=0}): complex roots of the polynomial x. flag is
 optional, and can be 0: default, uses Schonhage's method modified by
 Gourdon, or 1: uses a modified Newton method.
Doc: complex roots of the polynomial
 \var{pol}, given as a column vector where each root is repeated according to
 its multiplicity. The precision is given as for transcendental functions: in
 GP it is kept in the variable \kbd{realprecision} and is transparent to the
 user, but it must be explicitly given as a second argument in library mode.
 
 The algorithm used is a modification of A.~Sch\"onhage\sidx{Sch\"onage}'s
 root-finding algorithm, due to and implemented by X.~Gourdon. Barring bugs, it
 is guaranteed to converge and to give the roots to the required accuracy.
 
 If $\fl=1$, use a variant of the Newton-Raphson method, which is \emph{not}
 guaranteed to converge, nor to give accurate results, but is rather
 fast when it does. If you get the messages ``too many iterations in roots''
 or ``INTERNAL ERROR: incorrect result in roots'', use the default algorithm.
Variant: Also available is \fun{GEN}{roots}{GEN x, long prec}, as well as
 \fun{GEN}{cleanroots}{GEN x, long prec} which ensures that real roots of
 real polynomials are returned as \typ{REAL} (instead of \typ{COMPLEX}s with
 0 imaginary part).

Function: polrootsff
Class: basic
Section: number_theoretical
C-Name: polrootsff
Prototype: GDGDG
Help: polrootsff(x,{p},{a}): returns the roots of the polynomial x in the finite
 field F_p[X]/a(X)F_p[X]. a or p can be omitted if x has t_FFELT coefficients.
Doc: returns the vector of distinct roots of the polynomial $x$ in the field
 $\F_q$ defined by the irreducible polynomial $a$ over $\F_p$. The
 coefficients of $x$ must be operation-compatible with $\Z/p\Z$.
 Either $a$ or $p$ can omitted (in which case both are ignored) if x has
 \typ{FFELT} coefficients:
 \bprog
 ? polrootsff(x^2 + 1, 5, y^2+3)  \\ over F_5[y]/(y^2+3) ~ F_25
 %1 = [Mod(Mod(3, 5), Mod(1, 5)*y^2 + Mod(3, 5)),
       Mod(Mod(2, 5), Mod(1, 5)*y^2 + Mod(3, 5))]
 ? t = ffgen(y^2 + Mod(3,5), 't); \\ a generator for F_25 as a t_FFELT
 ? polrootsff(x^2 + 1)   \\ not enough information to determine the base field
  ***   at top-level: polrootsff(x^2+1)
  ***                 ^-----------------
  *** polrootsff: incorrect type in factorff.
 ? polrootsff(x^2 + t^0) \\ make sure one coeff. is a t_FFELT
 %3 = [3, 2]
 ? polrootsff(x^2 + t + 1)
 %4 = [2*t + 1, 3*t + 4]
 @eprog\noindent
 Notice that the second syntax is easier to use and much more readable.

Function: polrootsmod
Class: basic
Section: polynomials
C-Name: rootmod0
Prototype: GGD0,L,
Help: polrootsmod(pol,p,{flag=0}): roots mod the prime p of the polynomial pol. flag is
 optional, and can be 0: default, or 1: use a naive search, useful for small p.
Description: 
 (pol, int, ?0):vec           rootmod($1, $2)
 (pol, int, 1):vec            rootmod2($1, $2)
 (pol, int, #small):vec       $"Bad flag in polrootsmod"
 (pol, int, small):vec        rootmod0($1, $2, $3)
Doc: row vector of roots modulo $p$ of the polynomial \var{pol}. The
 particular non-prime value $p=4$ is accepted, mainly for $2$-adic
 computations. Multiple roots are \emph{not} repeated.
 \bprog
 ? polrootsmod(x^2-1,2)
 %1 = [Mod(1, 2)]~
 ? polrootsmod(x^2-1,4)
 %2 = [Mod(1, 4), Mod(3, 4)]~
 @eprog\noindent
 If $p$ is very small, you may set $\fl=1$, which uses a naive search.

Function: polrootspadic
Class: basic
Section: polynomials
C-Name: rootpadic
Prototype: GGL
Help: polrootspadic(x,p,r): p-adic roots of the polynomial x to precision r.
Doc: row vector of $p$-adic roots of
 the polynomial \var{pol}, given to $p$-adic precision $r$. Multiple roots are
 \emph{not} repeated. $p$ is assumed to be a prime, and \var{pol} to be
 non-zero modulo $p$. Note that this is not the same as the roots in
 $\Z/p^r\Z$, rather it gives approximations in $\Z/p^r\Z$ of the true
 roots living in $\Q_p$.
 
 If \var{pol} has inexact \typ{PADIC} coefficients, this is not always
 well-defined; in this case, the equation is first made integral, then lifted
 to $\Z$. Hence the roots given are approximations of the roots of a
 polynomial which is $p$-adically close to the input.

Function: polsturm
Class: basic
Section: polynomials
C-Name: sturmpart
Prototype: lGDGDG
Help: polsturm(pol,{a},{b}): number of real roots of the squarefree polynomial
 pol in the interval ]a,b] (which are respectively taken to be -oo or +oo when
 omitted).
Doc: number of real roots of the real squarefree polynomial \var{pol} in the
 interval $]a,b]$, using Sturm's algorithm. $a$ (resp.~$b$) is taken to be
 $-\infty$ (resp.~$+\infty$) if omitted.
Variant: Also available is \fun{long}{sturm}{GEN pol} (total number of real
 roots).

Function: polsubcyclo
Class: basic
Section: polynomials
C-Name: polsubcyclo
Prototype: LLDn
Help: polsubcyclo(n,d,{v=x}): finds an equation (in variable v) for the d-th
 degree subfields of Q(zeta_n). Output is a polynomial or a vector of
 polynomials is there are several such fields, or none.
Doc: gives polynomials (in variable
 $v$) defining the sub-Abelian extensions of degree $d$ of the cyclotomic
 field $\Q(\zeta_n)$, where $d\mid \phi(n)$.
 
 If there is exactly one such extension the output is a polynomial, else it is
 a vector of polynomials, possibly empty. To get a vector in all cases,
 use \kbd{concat([], polsubcyclo(n,d))}
 
 The function \tet{galoissubcyclo} allows to specify more closely which
 sub-Abelian extension should be computed.

Function: polsylvestermatrix
Class: basic
Section: polynomials
C-Name: sylvestermatrix
Prototype: GG
Help: polsylvestermatrix(x,y): forms the sylvester matrix associated to the
 two polynomials x and y. Warning: the polynomial coefficients are in
 columns, not in rows.
Doc: forms the Sylvester matrix
 corresponding to the two polynomials $x$ and $y$, where the coefficients of
 the polynomials are put in the columns of the matrix (which is the natural
 direction for solving equations afterwards). The use of this matrix can be
 essential when dealing with polynomials with inexact entries, since
 polynomial Euclidean division doesn't make much sense in this case.

Function: polsym
Class: basic
Section: polynomials
C-Name: polsym
Prototype: GL
Help: polsym(x,n): column vector of symmetric powers of the roots of x up to n.
Doc: creates the column vector of the \idx{symmetric powers} of the roots of the
 polynomial $x$ up to power $n$, using Newton's formula.

Function: poltchebi
Class: basic
Section: polynomials
C-Name: polchebyshev1
Prototype: LDn
Help: poltchebi(n,{v=x}): Tchebitcheff polynomial of degree n, in variable v.
 (For backward compatibility.)
Doc: creates the $n^{\text{th}}$ \idx{Chebyshev} polynomial~$T_n$ of the
 first kind in variable $v$. This function is retained for backward
 compatibility only. Use \tet{polchebyshev}.

Function: poltschirnhaus
Class: basic
Section: number_fields
C-Name: tschirnhaus
Prototype: G
Help: poltschirnhaus(x): random Tschirnhausen transformation of the
 polynomial x.
Doc: applies a random Tschirnhausen
 transformation to the polynomial $x$, which is assumed to be non-constant
 and separable, so as to obtain a new equation for the \'etale algebra
 defined by $x$. This is for instance useful when computing resolvents,
 hence is used by the \kbd{polgalois} function.

Function: polylog
Class: basic
Section: transcendental
C-Name: polylog0
Prototype: LGD0,L,p
Help: polylog(m,x,{flag=0}): m-th polylogarithm of x. flag is optional, and
 can be 0: default, 1: D_m~-modified m-th polylog of x, 2: D_m-modified m-th
 polylog of x, 3: P_m-modified m-th polylog of x.
Doc: one of the different polylogarithms, depending on \fl:
 
 If $\fl=0$ or is omitted: $m^\text{th}$ polylogarithm of $x$, i.e.~analytic
 continuation of the power series $\text{Li}_m(x)=\sum_{n\ge1}x^n/n^m$
 ($x < 1$). Uses the functional equation linking the values at $x$ and $1/x$
 to restrict to the case $|x|\leq 1$, then the power series when
 $|x|^2\le1/2$, and the power series expansion in $\log(x)$ otherwise.
 
 Using $\fl$, computes a modified $m^\text{th}$ polylogarithm of $x$.
 We use Zagier's notations; let $\Re_m$ denote $\Re$ or $\Im$ depending
 on whether $m$ is odd or even:
 
 If $\fl=1$: compute $\tilde D_m(x)$, defined for $|x|\le1$ by
 $$\Re_m\left(\sum_{k=0}^{m-1} \dfrac{(-\log|x|)^k}{k!}\text{Li}_{m-k}(x)
 +\dfrac{(-\log|x|)^{m-1}}{m!}\log|1-x|\right).$$
 
 If $\fl=2$: compute $D_m(x)$, defined for $|x|\le1$ by
 $$\Re_m\left(\sum_{k=0}^{m-1}\dfrac{(-\log|x|)^k}{k!}\text{Li}_{m-k}(x)
 -\dfrac{1}{2}\dfrac{(-\log|x|)^m}{m!}\right).$$
 
 If $\fl=3$: compute $P_m(x)$, defined for $|x|\le1$ by
 $$\Re_m\left(\sum_{k=0}^{m-1}\dfrac{2^kB_k}{k!}(\log|x|)^k\text{Li}_{m-k}(x)
 -\dfrac{2^{m-1}B_m}{m!}(\log|x|)^m\right).$$
 
 These three functions satisfy the functional equation
 $f_m(1/x) = (-1)^{m-1}f_m(x)$.
Variant: Also available is
 \fun{GEN}{gpolylog}{long m, GEN x, long prec} (\fl = 0).

Function: polzagier
Class: basic
Section: polynomials
C-Name: polzag
Prototype: LL
Help: polzagier(n,m): Zagier's polynomials of index n,m.
Doc: creates Zagier's polynomial $P_n^{(m)}$ used in
 the functions \kbd{sumalt} and \kbd{sumpos} (with $\fl=1$). One must have $m\le
 n$. The exact definition can be found in ``Convergence acceleration of
 alternating series'', Cohen et al., Experiment.~Math., vol.~9, 2000, pp.~3--12.
 
 %@article {MR2001m:11222,
 %    AUTHOR = {Cohen, Henri and Rodriguez Villegas, Fernando and Zagier, Don},
 %     TITLE = {Convergence acceleration of alternating series},
 %   JOURNAL = {Experiment. Math.},
 %    VOLUME = {9},
 %      YEAR = {2000},
 %    NUMBER = {1},
 %     PAGES = {3--12},
 %}

Function: precision
Class: basic
Section: conversions
C-Name: precision0
Prototype: GD0,L,
Help: precision(x,{n}): change the precision of x to be n. If n is omitted,
 output real precision of object x.
Description: 
 (real):small          prec2ndec(gprecision($1))
 (gen):int             precision0($1, 0)
 (real,0):small        prec2ndec(gprecision($1))
 (gen,0):int           precision0($1, 0)
 (real,#small):real    rtor($1, ndec2prec($2))
 (gen,#small):gen      gprec($1, $2)
 (real,small):real     precision0($1, $2)
 (gen,small):gen       precision0($1, $2)
Doc: gives the precision in decimal digits of the PARI object $x$. If $x$ is
 an exact object, the largest single precision integer is returned.
 \bprog
 ? precision(exp(1e-100))
 %1 = 134                \\ 134 significant decimal digits
 ? precision(2 + x)
 %2 = 2147483647         \\ exact object
 ? precision(0.5 + O(x))
 %3 = 28                 \\ floating point accuracy, NOT series precision
 ? precision( [ exp(1e-100), 0.5 ] )
 %4 = 28                 \\ minimal accuracy among components
 @eprog\noindent
 The return value for exact objects is meaningless since it is not even the
 same on 32 and 64-bit machines. The proper way to test whether an object is
 exact is
 \bprog
 ? isexact(x) = precision(x) == precision(0)
 @eprog
 
 If $n$ is not omitted, creates a new object equal to $x$ with a new
 ``precision'' $n$. (This never changes the type of the result. In particular
 it is not possible to use it to obtain a polynomial from a power series; tor
 that, see \tet{truncate}.) Now the meaning of precision is different from the
 above (floating point accuracy), and depends on the type of $x$:
 
 For exact types, no change. For $x$ a vector or a matrix, the operation is
 done componentwise.
 
 For real $x$, $n$ is the number of desired significant \emph{decimal}
 digits. If $n$ is smaller than the precision of $x$, $x$ is truncated,
 otherwise $x$ is extended with zeros.
 
 For $x$ a $p$-adic or a power series, $n$ is the desired number of
 \emph{significant} $p$-adic or $X$-adic digits, where $X$ is the main
 variable of $x$. (Note: yes, this is inconsistent.)
 Note that the precision is a priori distinct from the exponent $k$ appearing
 in $O(*^k)$; it is indeed equal to $k$ if and only if $x$ is a $p$-adic
 or $X$-adic \emph{unit}.
 \bprog
 ? precision(1 + O(x), 10)
 %1 = 1 + O(x^10)
 ? precision(x^2 + O(x^10), 3)
 %2 = x^2 + O(x^5)
 ? precision(7^2 + O(7^10), 3)
 %3 = 7^2 + O(7^5)
 @eprog\noindent
 For the last two examples, note that $x^2 + O(x^5) = x^2(1 + O(x^3))$
 indeed has 3 significant coefficients
Variant: Also available are \fun{GEN}{gprec}{GEN x, long n} and
 \fun{long}{precision}{GEN x}. In both, the accuracy is expressed in
 \emph{words} (32-bit or 64-bit depending on the architecture).

Function: precprime
Class: basic
Section: number_theoretical
C-Name: gprecprime
Prototype: G
Help: precprime(x): largest pseudoprime <= x, 0 if x<=1.
Description: 
 (int):int        precprime($1)
 (gen):gen        gprecprime($1)
Doc: finds the largest pseudoprime (see
 \tet{ispseudoprime}) less than or equal to $x$. $x$ can be of any real type.
 Returns 0 if $x\le1$. Note that if $x$ is a prime, this function returns $x$
 and not the largest prime strictly smaller than $x$. To rigorously prove that
 the result is prime, use \kbd{isprime}.
 The function accepts vector/matrices arguments, and is then applied
 componentwise.
Variant: For a scalar $x$, \fun{long}{precprime}{GEN n} is also available.

Function: prime
Class: basic
Section: number_theoretical
C-Name: prime
Prototype: L
Help: prime(n): returns the n-th prime (n C-integer).
Doc: the $x^{\text{th}}$ prime number, which must be among
 the precalculated primes.

Function: primepi
Class: basic
Section: number_theoretical
C-Name: primepi
Prototype: G
Help: primepi(x): the prime counting function pi(x) = #{p <= x, p prime}.
Description: 
 (gen):int        primepi($1)
Doc: the prime counting function. Returns the number of
 primes $p$, $p \leq x$. Uses a naive algorithm so that $x$ must be less than
 \kbd{primelimit}.

Function: primes
Class: basic
Section: number_theoretical
C-Name: primes
Prototype: L
Help: primes(x): returns the vector of the first x primes.
Doc: creates a row vector whose components
 are the first $x$ prime numbers, which must be among the precalculated primes.
 \bprog
 ? primes(10)           \\ the first 10 primes
 %1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
 ? primes(primepi(10))  \\ the primes up to 10
 %2 = [2, 3, 5, 7]
 @eprog

Function: print
Class: basic
Section: programming/specific
C-Name: print
Prototype: vs*
Help: print({str}*): outputs its string arguments (in raw format) ending with
 a newline.
Description: 
 (?gen,...):void  pari_printf("${2 format_string}\n"${2 format_args})
Doc: outputs its (string) arguments in raw format, ending with a newline.
 %\syn{NO}

Function: print1
Class: basic
Section: programming/specific
C-Name: print1
Prototype: vs*
Help: print1({str}*): outputs its string arguments (in raw format) without
 ending with newline.
Description: 
 (?gen,...):void  pari_printf("${2 format_string}"${2 format_args})
Doc: outputs its (string) arguments in raw
 format, without ending with a newline. Note that you can still embed newlines
 within your strings, using the \b{n} notation~!
 %\syn{NO}

Function: printf
Class: basic
Section: programming/specific
C-Name: printf0
Prototype: vss*
Help: printf(fmt,{x}*): prints its arguments according to the format fmt.
Doc: This function is based on the C library command of the same name.
 It prints its arguments according to the format \var{fmt}, which specifies how
 subsequent arguments are converted for output. The format is a
 character string composed of zero or more directives:
 
 \item ordinary characters (not \kbd{\%}), printed unchanged,
 
 \item conversions specifications (\kbd{\%} followed by some characters)
 which fetch one argument from the list and prints it according to the
 specification.
 
 More precisely, a conversion specification consists in a \kbd{\%}, one or more
 optional flags (among \kbd{\#}, \kbd{0}, \kbd{-}, \kbd{+}, ` '), an optional
 decimal digit string specifying a minimal field width, an optional precision
 in the form of a period (`\kbd{.}') followed by a decimal digit string, and
 the conversion specifier (among \kbd{d},\kbd{i}, \kbd{o}, \kbd{u},
 \kbd{x},\kbd{X}, \kbd{p}, \kbd{e},\kbd{E}, \kbd{f}, \kbd{g},\kbd{G}, \kbd{s}).
 
 \misctitle{The flag characters} The character \kbd{\%} is followed by zero or
 more of the following flags:
 
 \item \kbd{\#}: The value is converted to an ``alternate form''. For
 \kbd{o} conversion (octal), a \kbd{0} is prefixed to the string. For \kbd{x}
 and \kbd{X} conversions (hexa), respectively \kbd{0x} and \kbd{0X} are
 prepended. For other conversions, the flag is ignored.
 
 \item \kbd{0}: The value should be zero padded. For
 \kbd{d},
 \kbd{i},
 \kbd{o},
 \kbd{u},
 \kbd{x},
 \kbd{X}
 \kbd{e},
 \kbd{E},
 \kbd{f},
 \kbd{F},
 \kbd{g}, and
 \kbd{G} conversions, the value is padded on the left with zeros rather than
 blanks. (If the \kbd{0} and \kbd{-} flags both appear, the \kbd{0} flag is
 ignored.)
 
 \item \kbd{-}: The value is left adjusted on the field boundary. (The
 default is right justification.) The value is padded on the right with
 blanks, rather than on the left with blanks or zeros. A \kbd{-} overrides a
 \kbd{0} if both are given.
 
 \item \kbd{` '} (a space): A blank is left before a positive number
 produced by a signed conversion.
 
 \item \kbd{+}: A sign (+ or -) is placed before a number produced by a
 signed conversion. A \kbd{+} overrides a space if both are used.
 
 \misctitle{The field width} An optional decimal digit string (whose first
 digit is non-zero) specifying a \emph{minimum} field width. If the value has
 fewer characters than the field width, it is padded with spaces on the left
 (or right, if the left-adjustment flag has been given). In no case does a
 small field width cause truncation of a field; if the value is wider than
 the field width, the field is expanded to contain the conversion result.
 Instead of a decimal digit string, one may write \kbd{*} to specify that the
 field width is given in the next argument.
 
 \misctitle{The precision} An optional precision in the form of a period
 (`\kbd{.}') followed by a decimal digit string. This gives
 the number of digits to appear after the radix character for \kbd{e},
 \kbd{E}, \kbd{f}, and \kbd{F} conversions, the maximum number of significant
 digits for \kbd{g} and \kbd{G} conversions, and the maximum number of
 characters to be printed from an \kbd{s} conversion.
 Instead of a decimal digit string, one may write \kbd{*} to specify that the
 field width is given in the next argument.
 
 \misctitle{The length modifier} This is ignored under \kbd{gp}, but
 necessary for \kbd{libpari} programming. Description given here for
 completeness:
 
 \item \kbd{l}: argument is a \kbd{long} integer.
 
 \item \kbd{P}: argument is a \kbd{GEN}.
 
 \misctitle{The conversion specifier} A character that specifies the type of
 conversion to be applied.
 
 \item \kbd{d}, \kbd{i}: A signed integer.
 
 \item \kbd{o}, \kbd{u}, \kbd{x}, \kbd{X}: An unsigned integer, converted
 to unsigned octal (\kbd{o}), decimal (\kbd{u}) or hexadecimal (\kbd{x} or
 \kbd{X}) notation. The letters \kbd{abcdef} are used for \kbd{x}
 conversions;  the letters \kbd{ABCDEF} are used for \kbd{X} conversions.
 
 \item \kbd{e}, \kbd{E}: The (real) argument is converted in the style
 \kbd{[ -]d.ddd e[ -]dd}, where there is one digit before the decimal point,
 and the number of digits after it is equal to the precision; if the
 precision is missing, use the current \kbd{realprecision} for the total
 number of printed digits. If the precision is explicitly 0, no decimal-point
 character appears. An \kbd{E} conversion uses the letter \kbd{E} rather
 than \kbd{e} to introduce the exponent.
 
 \item \kbd{f}, \kbd{F}: The (real) argument is converted in the style
 \kbd{[ -]ddd.ddd}, where the number of digits after the decimal point
 is equal to the precision; if the precision is missing, use the current
 \kbd{realprecision} for the total number of printed digits. If the precision
 is explicitly 0, no decimal-point character appears. If a decimal point
 appears, at least one digit appears before it.
 
 \item \kbd{g}, \kbd{G}: The (real) argument is converted in style
 \kbd{e} or \kbd{f} (or \kbd{E} or \kbd{F} for \kbd{G} conversions)
 \kbd{[ -]ddd.ddd}, where the total number of digits printed
 is equal to the precision; if the precision is missing, use the current
 \kbd{realprecision}. If the precision is explicitly 0, it is treated as 1.
 Style \kbd{e} is used when
 the decimal exponent is $< -4$, to print \kbd{0.}, or when the integer
 part cannot be decided given the known significant digits, and the \kbd{f}
 format otherwise.
 
 \item \kbd{c}: The integer argument is converted to an unsigned char, and the
 resulting character is written.
 
 \item \kbd{s}: Convert to a character string. If a precision is given, no
 more than the specified number of characters are written.
 
 \item \kbd{p}: Print the address of the argument in hexadecimal (as if by
 \kbd{\%\#x}).
 
 \item \kbd{\%}: A \kbd{\%} is written. No argument is converted. The complete
 conversion specification is \kbd{\%\%}.
 
 \noindent Examples:
 
 \bprog
 ? printf("floor: %d, field width 3: %3d, with sign: %+3d\n", Pi, 1, 2);
 floor: 3, field width 3:   1, with sign:  +2
 
 ? printf("%.5g %.5g %.5g\n",123,123/456,123456789);
 123.00 0.26974 1.2346 e8
 
 ? printf("%-2.5s:%2.5s:%2.5s\n", "P", "PARI", "PARIGP");
 P :PARI:PARIG
 
 \\ min field width and precision given by arguments
 ? x = 23; y=-1/x; printf("x=%+06.2f y=%+0*.*f\n", x, 6, 2, y);
 x=+23.00 y=-00.04
 
 \\ minimum fields width 5, pad left with zeroes
 ? for (i = 2, 5, printf("%05d\n", 10^i))
 00100
 01000
 10000
 100000  \\@com don't truncate fields whose length is larger than the minimum width
 ? printf("%.2f  |%06.2f|", Pi,Pi)
 3.14  |  3.14|
 @eprog\noindent All numerical conversions apply recursively to the entries
 of vectors and matrices:
 \bprog
 ? printf("%4d", [1,2,3]);
 [   1,   2,   3]
 ? printf("%5.2f", mathilbert(3));
 [ 1.00  0.50  0.33]
 
 [ 0.50  0.33  0.25]
 
 [ 0.33  0.25  0.20]
 @eprog
 \misctitle{Technical note} Our implementation of \tet{printf}
 deviates from the C89 and C99 standards in a few places:
 
 \item whenever a precision is missing, the current \kbd{realprecision} is
 used to determine the number of printed digits (C89: use 6 decimals after
 the radix character).
 
 \item in conversion style \kbd{e}, we do not impose that the
 exponent has at least two digits; we never write a \kbd{+} sign in the
 exponent; 0 is printed in a special way, always as \kbd{0.E\var{exp}}.
 
 \item in conversion style \kbd{f}, we switch to style \kbd{e} if the
 exponent is greater or equal to the precision.
 
 \item in conversion \kbd{g} and \kbd{G}, we do not remove trailing zeros
  from the fractional part of the result; nor a trailing decimal point;
  0 is printed in a special way, always as \kbd{0.E\var{exp}}.
 %\syn{NO}

Function: printtex
Class: basic
Section: programming/specific
C-Name: printtex
Prototype: vs*
Help: printtex({str}*): outputs its string arguments in TeX format.
Doc: outputs its (string) arguments in \TeX\ format. This output can then be
 used in a \TeX\ manuscript.
 The printing is done on the standard output. If you want to print it to a
 file you should use \kbd{writetex} (see there).
 
 Another possibility is to enable the \tet{log} default
 (see~\secref{se:defaults}).
 You could for instance do:\sidx{logfile}
 %
 \bprog
 default(logfile, "new.tex");
 default(log, 1);
 printtex(result);
 @eprog
 %\syn{NO}

Function: prod
Class: basic
Section: sums
C-Name: produit
Prototype: V=GGEDG
Help: prod(X=a,b,expr,{x=1}): x times the product (X runs from a to b) of
 expression.
Doc: product of expression
 \var{expr}, initialized at $x$, the formal parameter $X$ going from $a$ to
 $b$. As for \kbd{sum}, the main purpose of the initialization parameter $x$
 is to force the type of the operations being performed. For example if it is
 set equal to the integer 1, operations will start being done exactly. If it
 is set equal to the real $1.$, they will be done using real numbers having
 the default precision. If it is set equal to the power series $1+O(X^k)$ for
 a certain $k$, they will be done using power series of precision at most $k$.
 These are the three most common initializations.
 
 \noindent As an extreme example, compare
 
 \bprog
 ? prod(i=1, 100, 1 - X^i);  \\@com this has degree $5050$ !!
 time = 128 ms.
 ? prod(i=1, 100, 1 - X^i, 1 + O(X^101))
 time = 8 ms.
 %2 = 1 - X - X^2 + X^5 + X^7 - X^12 - X^15 + X^22 + X^26 - X^35 - X^40 + \
 X^51 + X^57 - X^70 - X^77 + X^92 + X^100 + O(X^101)
 @eprog\noindent
 Of course, in  this specific case, it is faster to use \tet{eta},
 which is computed using Euler's formula.
 \bprog
 ? prod(i=1, 1000, 1 - X^i, 1 + O(X^1001));
 time = 589 ms.
 ? \ps1000
 seriesprecision = 1000 significant terms
 ? eta(X) - %
 time = 8ms.
 %4 = O(X^1001)
 @eprog
 
 \synt{produit}{GEN a, GEN b, char *expr, GEN x}.

Function: prodeuler
Class: basic
Section: sums
C-Name: prodeuler0
Prototype: V=GGEp
Help: prodeuler(X=a,b,expr): Euler product (X runs over the primes between a
 and b) of real or complex expression.
Doc: product of expression \var{expr},
 initialized at 1. (i.e.~to a \emph{real} number equal to 1 to the current
 \kbd{realprecision}), the formal parameter $X$ ranging over the prime numbers
 between $a$ and $b$.\sidx{Euler product}
 
 \synt{prodeuler}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b, long prec}.

Function: prodinf
Class: basic
Section: sums
C-Name: prodinf0
Prototype: V=GED0,L,p
Help: prodinf(X=a,expr,{flag=0}): infinite product (X goes from a to
 infinity) of real or complex expression. flag can be 0 (default) or 1, in
 which case compute the product of the 1+expr instead.
Wrapper: (,G)
Description: 
  (gen,gen,?small):gen:prec prodinf(${2 cookie}, ${2 wrapper}, $1, $3, prec)
Doc: \idx{infinite product} of
 expression \var{expr}, the formal parameter $X$ starting at $a$. The evaluation
 stops when the relative error of the expression minus 1 is less than the
 default precision. In particular, non-convergent products result in infinite
 loops. The expressions must always evaluate to an element of $\C$.
 
 If $\fl=1$, do the product of the ($1+\var{expr}$) instead.
 
 \synt{prodinf}{void *E, GEN (*eval)(void*,GEN), GEN a, long prec}
 ($\fl=0$), or \tet{prodinf1} with the same arguments ($\fl=1$).

Function: psdraw
Class: highlevel
Section: graphic
C-Name: postdraw_flag
Prototype: vGD0,L,
Help: psdraw(list, {flag=0}): same as plotdraw, except that the output is a
 PostScript program in psfile (pari.ps by default), and flag!=0 scales the
 plot from size of the current output device to the standard PostScript
 plotting size.
Doc: same as \kbd{plotdraw}, except that the output is a PostScript program
 appended to the \kbd{psfile}, and flag!=0 scales the plot from size of the
 current output device to the standard PostScript plotting size

Function: psi
Class: basic
Section: transcendental
C-Name: gpsi
Prototype: Gp
Help: psi(x): psi-function at x.
Doc: the $\psi$-function of $x$, i.e.~the
 logarithmic derivative $\Gamma'(x)/\Gamma(x)$.

Function: psploth
Class: highlevel
Section: graphic
C-Name: postploth
Prototype: V=GGEpD0,L,D0,L,
Help: psploth(X=a,b,expr,{flags=0},{n=0}): same as ploth, except that the
 output is a PostScript program in psfile (pari.ps by default).
Doc: same as \kbd{ploth}, except that the output is a PostScript program
 appended to the \kbd{psfile}.

Function: psplothraw
Class: highlevel
Section: graphic
C-Name: postplothraw
Prototype: GGD0,L,
Help: psplothraw(listx,listy,{flag=0}): same as plothraw, except that the
 output is a postscript program in psfile (pari.ps by default).
Doc: same as \kbd{plothraw}, except that the output is a PostScript program
 appended to the \kbd{psfile}.

Function: qfbclassno
Class: basic
Section: number_theoretical
C-Name: qfbclassno0
Prototype: GD0,L,
Help: qfbclassno(D,{flag=0}): class number of discriminant D using Shanks's
 method by default. If (optional) flag is set to 1, use Euler products.
Doc: ordinary class number of the quadratic
 order of discriminant $D$. In the present version \vers, a $O(D^{1/2})$
 algorithm is used for $D > 0$ (using Euler product and the functional
 equation) so $D$ should not be too large, say $D < 10^8$, for the time to be
 reasonable. On the other hand, for $D < 0$ one can reasonably compute
 \kbd{qfbclassno($D$)} for $|D|<10^{25}$, since the routine uses
 \idx{Shanks}'s method which is in $O(|D|^{1/4})$. For larger values of $|D|$,
 see \kbd{quadclassunit}.
 
 If $\fl=1$, compute the class number using \idx{Euler product}s and the
 functional equation. However, it is in $O(|D|^{1/2})$.
 
 \misctitle{Important warning} For $D < 0$, this function may give incorrect
 results when the class group has many cyclic factors,
 because implementing \idx{Shanks}'s method in full generality slows it down
 immensely. It is therefore strongly recommended to double-check results using
 either the version with $\fl = 1$ or the function \kbd{quadclassunit}.
 
 \misctitle{Warning} Contrary to what its name implies, this routine does not
 compute the number of classes of binary primitive forms of discriminant $D$,
 which is equal to the \emph{narrow} class number. The two notions are the same
 when $D < 0$ or the fundamental unit $\varepsilon$ has negative norm; when $D
 > 0$ and $N\varepsilon > 0$, the number of classes of forms is twice the
 ordinary class number. This is a problem which we cannot fix for backward
 compatibility reasons. Use the following routine if you are only interested
 in the number of classes of forms:
 \bprog
 QFBclassno(D) =
 qfbclassno(D) * if (D < 0 || norm(quadunit(D)) < 0, 1, 2)
 @eprog\noindent
 Here are a few examples:
 \bprog
 ? qfbclassno(400000028)
 time = 3,140 ms.
 %1 = 1
 ? quadclassunit(400000028).no
 time = 20 ms. \\@com{ much faster}
 %2 = 1
 ? qfbclassno(-400000028)
 time = 0 ms.
 %3 = 7253 \\@com{ correct, and fast enough}
 ? quadclassunit(-400000028).no
 time = 0 ms.
 %4 = 7253
 @eprog\noindent
 See also \kbd{qfbhclassno}.
Variant: The following functions are also available:
 
 \fun{GEN}{classno}{GEN D} ($\fl = 0$)
 
 \fun{GEN}{classno2}{GEN D} ($\fl = 1$).
 
 \noindent Finally
 
 \fun{GEN}{hclassno}{GEN D} computes the class number of an imaginary
 quadratic field by counting reduced forms, an $O(|D|)$ algorithm.

Function: qfbcompraw
Class: basic
Section: number_theoretical
C-Name: qfbcompraw
Prototype: GG
Help: qfbcompraw(x,y): Gaussian composition without reduction of the binary
 quadratic forms x and y.
Doc: \idx{composition} of the binary quadratic forms
 $x$ and $y$, without \idx{reduction} of the result. This is useful e.g.~to
 compute a generating element of an ideal.

Function: qfbhclassno
Class: basic
Section: number_theoretical
C-Name: hclassno
Prototype: G
Help: qfbhclassno(x): Hurwitz-Kronecker class number of x>0.
Doc: \idx{Hurwitz class number} of $x$, where
 $x$ is non-negative and congruent to 0 or 3 modulo 4. For $x > 5\cdot
 10^5$, we assume the GRH, and use \kbd{quadclassunit} with default
 parameters.

Function: qfbnucomp
Class: basic
Section: number_theoretical
C-Name: nucomp
Prototype: GGG
Help: qfbnucomp(x,y,L): composite of primitive positive definite quadratic
 forms x and y using nucomp and nudupl, where L=[|D/4|^(1/4)] is precomputed.
Doc: \idx{composition} of the primitive positive
 definite binary quadratic forms $x$ and $y$ (type \typ{QFI}) using the NUCOMP
 and NUDUPL algorithms of \idx{Shanks}, \`a la Atkin. $L$ is any positive
 constant, but for optimal speed, one should take $L=|D|^{1/4}$, where $D$ is
 the common discriminant of $x$ and $y$. When $x$ and $y$ do not have the same
 discriminant, the result is undefined.
 
 The current implementation is straightforward and in general \emph{slower}
 than the generic routine (since the latter takes advantage of asymptotically
 fast operations and careful optimizations).
Variant: Also available is \fun{GEN}{nudupl}{GEN x, GEN L} when $x=y$.

Function: qfbnupow
Class: basic
Section: number_theoretical
C-Name: nupow
Prototype: GG
Help: qfbnupow(x,n): n-th power of primitive positive definite quadratic
 form x using nucomp and nudupl.
Doc: $n$-th power of the primitive positive definite
 binary quadratic form $x$ using \idx{Shanks}'s NUCOMP and NUDUPL algorithms
 (see \kbd{qfbnucomp}, in particular the final warning).

Function: qfbpowraw
Class: basic
Section: number_theoretical
C-Name: qfbpowraw
Prototype: GL
Help: qfbpowraw(x,n): n-th power without reduction of the binary quadratic
 form x.
Doc: $n$-th power of the binary quadratic form
 $x$, computed without doing any \idx{reduction} (i.e.~using \kbd{qfbcompraw}).
 Here $n$ must be non-negative and $n<2^{31}$.

Function: qfbprimeform
Class: basic
Section: number_theoretical
C-Name: primeform
Prototype: GGp
Help: qfbprimeform(x,p): returns the prime form of discriminant x, whose
 first coefficient is p.
Doc: prime binary quadratic form of discriminant
 $x$ whose first coefficient is $p$, where $|p|$ is a prime number.
 By abuse of notation,
 $p = \pm 1$ is also valid and returns the unit form. Returns an
 error if $x$ is not a quadratic residue mod $p$, or if $x < 0$ and $p < 0$.
 (Negative definite \typ{QFI} are not implemented.) In the case where $x>0$,
 the ``distance'' component of the form is set equal to zero according to the
 current precision.

Function: qfbred
Class: basic
Section: number_theoretical
C-Name: qfbred0
Prototype: GD0,L,DGDGDG
Help: qfbred(x,{flag=0},{d},{isd},{sd}): reduction of the binary
 quadratic form x. All other args. are optional. The arguments d, isd and
 sd, if
 present, supply the values of the discriminant, floor(sqrt(d)) and sqrt(d)
 respectively. If d<0, its value is not used and all references to Shanks's
 distance hereafter are meaningless. flag can be any of 0: default, uses
 Shanks's distance function d; 1: use d, do a single reduction step; 2: do
 not use d; 3: do not use d, single reduction step.
Doc: reduces the binary quadratic form $x$ (updating Shanks's distance function
 if $x$ is indefinite). The binary digits of $\fl$ are toggles meaning
 
 \quad 1: perform a single \idx{reduction} step
 
 \quad 2: don't update \idx{Shanks}'s distance
 
 The arguments $d$, \var{isd}, \var{sd}, if present, supply the values of the
 discriminant, $\floor{\sqrt{d}}$, and $\sqrt{d}$ respectively
 (no checking is done of these facts). If $d<0$ these values are useless,
 and all references to Shanks's distance are irrelevant.
Variant: Also available are
 
 \fun{GEN}{redimag}{GEN x} (for definite $x$),
 
 \noindent and for indefinite forms:
 
 \fun{GEN}{redreal}{GEN x}
 
 \fun{GEN}{rhoreal}{GEN x} (= \kbd{qfbred(x,1)}),
 
 \fun{GEN}{redrealnod}{GEN x, GEN isd} (= \kbd{qfbred(x,2,,isd)}),
 
 \fun{GEN}{rhorealnod}{GEN x, GEN isd} (= \kbd{qfbred(x,3,,isd)}).

Function: qfbsolve
Class: basic
Section: number_theoretical
C-Name: qfbsolve
Prototype: GG
Help: qfbsolve(Q,p): Return [x,y] so that Q(x,y)=p where Q is a binary
 quadratic form and p a prime number, or 0 if there is no solution.
Doc: Solve the equation $Q(x,y)=p$ over the integers,
 where $Q$ is a binary quadratic form and $p$ a prime number.
 
 Return $[x,y]$ as a two-components vector, or zero if there is no solution.
 Note that this function returns only one solution and not all the solutions.
 
 Let $D = \disc Q$. The algorithm used runs in probabilistic polynomial time
 in $p$ (through the computation of a square root of $D$ modulo $p$); it is
 polynomial time in $D$ if $Q$ is imaginary, but exponential time if $Q$ is
 real (through the computation of a full cycle of reduced forms). In the
 latter case, note that \tet{bnfisprincipal} provides a solution in heuristic
 subexponential time in $D$ assuming the GRH.

Function: qfgaussred
Class: basic
Section: linear_algebra
C-Name: qfgaussred
Prototype: G
Help: qfgaussred(q): square reduction of the (symmetric) matrix q (returns a
 square matrix whose i-th diagonal term is the coefficient of the i-th square
 in which the coefficient of the i-th variable is 1).
Doc: 
 \idx{decomposition into squares} of the
 quadratic form represented by the symmetric matrix $q$. The result is a
 matrix whose diagonal entries are the coefficients of the squares, and the
 off-diagonal entries on each line represent the bilinear forms. More
 precisely, if $(a_{ij})$ denotes the output, one has
 $$ q(x) = \sum_i a_{ii} (x_i + \sum_{j \neq i} a_{ij} x_j)^2 $$
 \bprog
 ? qfgaussred([0,1;1,0])
 %1 =
 [1/2 1]
 
 [-1 -1/2]
 @eprog\noindent This means that $2xy = (1/2)(x+y)^2 - (1/2)(x-y)^2$.
Variant: \fun{GEN}{qfgaussred_positive}{GEN q} assumes that $q$ is
  positive definite and is a little faster; returns \kbd{NULL} if a vector
  with negative norm occurs (non positive matrix or too many rounding errors).

Function: qfjacobi
Class: basic
Section: linear_algebra
C-Name: jacobi
Prototype: Gp
Help: qfjacobi(x): eigenvalues and orthogonal matrix of eigenvectors of the
 real symmetric matrix x.
Doc: $x$ being a real symmetric matrix, this gives a
 vector having two components: the first one is the vector of (real)
 eigenvalues of $x$, sorted in increasing order, the second is the
 corresponding orthogonal matrix of eigenvectors of $x$. The method used is
 Jacobi's method for symmetric matrices.

Function: qflll
Class: basic
Section: linear_algebra
C-Name: qflll0
Prototype: GD0,L,
Help: qflll(x,{flag=0}): LLL reduction of the vectors forming the matrix x
 (gives the unimodular transformation matrix T such that x*T is LLL-reduced). flag is
 optional, and can be 0: default, 1: assumes x is integral, 2: assumes x is
 integral, returns a partially reduced basis,
 4: assumes x is integral, returns [K,T] where K is the integer kernel of x
 and T the LLL reduced image, 5: same as 4 but x may have polynomial
 coefficients, 8: same as 0 but x may have polynomial coefficients.
Description: 
 (vec, ?0):vec       lll($1)
 (vec, 1):vec        lllint($1)
 (vec, 2):vec        lllintpartial($1)
 (vec, 4):vec        lllkerim($1)
 (vec, 5):vec        lllkerimgen($1)
 (vec, 8):vec        lllgen($1)
 (vec, #small):vec   $"Bad flag in qflll"
 (vec, small):vec    qflll0($1, $2)
Doc: \idx{LLL} algorithm applied to the
 \emph{columns} of the matrix $x$. The columns of $x$ may be linearly
 dependent. The result is a unimodular transformation matrix $T$ such that $x
 \cdot T$ is an LLL-reduced basis of the lattice generated by the column
 vectors of $x$. Note that if $x$ is not of maximal rank $T$ will not be
 square. The LLL parameters are $(0.51,0.99)$, meaning that the Gram-Schmidt
 coefficients for the final basis satisfy $\mu_{i,j} \leq |0.51|$, and the
 Lov\'{a}sz's constant is $0.99$.
 
 If $\fl=0$ (default), assume that $x$ has either exact (integral or
 rational) or real floating point entries. The matrix is rescaled, converted
 to integers and the behavior is then as in $\fl = 1$.
 
 If $\fl=1$, assume that $x$ is integral. Computations involving Gram-Schmidt
 vectors are approximate, with precision varying as needed (Lehmer's trick,
 as generalized by Schnorr). Adapted from Nguyen and Stehl\'e's algorithm
 and Stehl\'e's code (\kbd{fplll-1.3}).
 
 If $\fl=2$, $x$ should be an integer matrix whose columns are linearly
 independent. Returns a partially reduced basis for $x$, using an unpublished
 algorithm by Peter Montgomery: a basis is said to be \emph{partially reduced}
 if $|v_i \pm v_j| \geq |v_i|$ for any two distinct basis vectors $v_i, \,
 v_j$.
 
 This is faster than $\fl=1$, esp. when one row is huge compared
 to the other rows (knapsack-style), and should quickly produce relatively
 short vectors. The resulting basis is \emph{not} LLL-reduced in general.
 If LLL reduction is eventually desired, avoid this partial reduction:
 applying LLL to the partially reduced matrix is significantly \emph{slower}
 than starting from a knapsack-type lattice.
 
 If $\fl=4$, as $\fl=1$, returning a vector $[K, T]$ of matrices: the
 columns of $K$ represent a basis of the integer kernel of $x$
 (not LLL-reduced in general) and $T$ is the transformation
 matrix such that $x\cdot T$ is an LLL-reduced $\Z$-basis of the image
 of the matrix $x$.
 
 If $\fl=5$, case as case $4$, but $x$ may have polynomial coefficients.
 
 If $\fl=8$, same as case $0$, but $x$ may have polynomial coefficients.
Variant: Also available are \fun{GEN}{lll}{GEN x} ($\fl=0$),
 \fun{GEN}{lllint}{GEN x} ($\fl=1$), and \fun{GEN}{lllkerim}{GEN x} ($\fl=4$).

Function: qflllgram
Class: basic
Section: linear_algebra
C-Name: qflllgram0
Prototype: GD0,L,
Help: qflllgram(G,{flag=0}): LLL reduction of the lattice whose gram matrix
 is G (gives the unimodular transformation matrix). flag is optional and can
 be 0: default,1: assumes x is integral, 4: assumes x is integral,
 returns [K,T],  where K is the integer kernel of x
 and T the LLL reduced image, 5: same as 4 but x may have polynomial
 coefficients, 8: same as 0 but x may have polynomial coefficients.
Doc: same as \kbd{qflll}, except that the
 matrix $G = \kbd{x\til * x}$ is the Gram matrix of some lattice vectors $x$,
 and not the coordinates of the vectors themselves. In particular, $G$ must
 now be a square symmetric real matrix, corresponding to a positive
 quadratic form (not necessarily definite: $x$ needs not have maximal rank).
 The result is a unimodular
 transformation matrix $T$ such that $x \cdot T$ is an LLL-reduced basis of
 the lattice generated by the column vectors of $x$. See \tet{qflll} for
 further details about the LLL implementation.
 
 If $\fl=0$ (default), assume that $G$ has either exact (integral or
 rational) or real floating point entries. The matrix is rescaled, converted
 to integers and the behavior is then as in $\fl = 1$.
 
 If $\fl=1$, assume that $G$ is integral. Computations involving Gram-Schmidt
 vectors are approximate, with precision varying as needed (Lehmer's trick,
 as generalized by Schnorr). Adapted from Nguyen and Stehl\'e's algorithm
 and Stehl\'e's code (\kbd{fplll-1.3}).
 
 $\fl=4$: $G$ has integer entries, gives the kernel and reduced image of $x$.
 
 $\fl=5$: same as $4$, but $G$ may have polynomial coefficients.
Variant: Also available are \fun{GEN}{lllgram}{GEN G} ($\fl=0$),
 \fun{GEN}{lllgramint}{GEN G} ($\fl=1$), and \fun{GEN}{lllgramkerim}{GEN G}
 ($\fl=4$).

Function: qfminim
Class: basic
Section: linear_algebra
C-Name: qfminim0
Prototype: GDGDGD0,L,p
Help: qfminim(x,{b},{m},{flag=0}): x being a square and symmetric
 matrix representing a positive definite quadratic form, this function
 deals with the vectors of x whose norm is less than or equal to b,
 enumerated using the Fincke-Pohst algorithm, storing at most m vectors (no
 limit if m is omitted). The function searches for
 the minimal non-zero vectors if b is omitted. The precise behavior
 depends on flag. 0: seeks at most 2m vectors (unless m omitted), returns
 [N,M,mat] where N is the number of vectors found, M the maximum norm among
 these, and mat lists half the vectors (the other half is given by -mat). 1:
 ignores m and returns the first vector whose norm is less than b. 2: as 0
 but uses a more robust, slower implementation, valid for non integral
 quadratic forms.
Doc: $x$ being a square and symmetric matrix representing a positive definite
 quadratic form, this function deals with the vectors of $x$ whose norm is
 less than or equal to $b$, enumerated using the Fincke-Pohst algorithm,
 storing at most $m$ vectors (no limit if $m$ is omitted). The function
 searches for the minimal non-zero vectors if $b$ is omitted. The behavior is
 undefined if $x$ is not positive definite (a ``precision too low'' error is
 most likely, although more precise error messages are possible). The precise
 behavior depends on $\fl$.
 
 If $\fl=0$ (default), seeks at most $2m$ vectors. The result is a
 three-component vector, the first component being the number of vectors
 found, the second being the maximum norm found, and the last vector is a
 matrix whose columns are the vectors found, only one being given for each
 pair $\pm v$ (at most $m$ such pairs, unless $m$ was omitted). The vectors
 are returned in no particular order.
 
 If $\fl=1$, ignores $m$ and returns the first vector whose norm is less
 than $b$. In this variant, an explicit $b$ must be provided.
 
 In these two cases, $x$ must have \emph{integral} entries. The
 implementation uses low precision floating point computations for maximal
 speed, which gives incorrect result when $x$ has large entries. (The
 condition is checked in the code and the routine raises an error if
 large rounding errors occur.) A more robust, but much slower,
 implementation is chosen if the following flag is used:
 
 If $\fl=2$, $x$ can have non integral real entries. In this case, if $b$
 is omitted, the ``minimal'' vectors only have approximately the same norm.
 If $b$ is omitted, $m$ is an upper bound for the number of vectors that
 will be stored and returned, but all minimal vectors are nevertheless
 enumerated. If $m$ is omitted, all vectors found are stored and returned;
 note that this may be a huge vector!
 
 \bprog
 ? x = matid(2);
 ? qfminim(x)  \\@com 4 minimal vectors of norm 1: $\pm[0,1]$, $\pm[1,0]$
 %2 = [4, 1, [0, 1; 1, 0]]
 ? { x =
 [4, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1, 0,-1, 0, 0, 0,-2;
  2, 4,-2,-2, 0,-2, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1, 0, 1,-1,-1;
  0,-2, 4, 0,-2, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 0, 1,-1,-1, 0, 0;
  0,-2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1,-1, 0, 1,-1, 1, 0;
  0, 0,-2, 0, 4, 0, 0, 0, 1,-1, 0, 0, 1, 0, 0, 0,-2, 0, 0,-1, 1, 1, 0, 0;
 -2, -2,0, 0, 0, 4,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,-1, 1, 1;
  0, 0, 0, 0, 0,-2, 4,-2, 0, 0, 0, 0, 0, 1, 0, 0, 0,-1, 0, 0, 0, 1,-1, 0;
  0, 0, 0, 0, 0, 0,-2, 4, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1,-1,-1, 0, 1, 0;
  0, 0, 0, 0, 1,-1, 0, 0, 4, 0,-2, 0, 1, 1, 0,-1, 0, 1, 0, 0, 0, 0, 0, 0;
  0, 0, 0, 0,-1, 0, 0, 0, 0, 4, 0, 0, 1, 1,-1, 1, 0, 0, 0, 1, 0, 0, 1, 0;
  0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 4,-2, 0,-1, 0, 0, 0,-1, 0,-1, 0, 0, 0, 0;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 4,-1, 1, 0, 0,-1, 1, 0, 1, 1, 1,-1, 0;
  1, 0,-1, 1, 1, 0, 0,-1, 1, 1, 0,-1, 4, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1,-1;
 -1,-1, 1,-1, 0, 0, 1, 0, 1, 1,-1, 1, 0, 4, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0;
  0, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 1, 0, 4, 0, 0, 0, 0, 1, 1, 0, 0;
  0, 0, 1, 0,-2, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 4, 1, 1, 1, 0, 0, 1, 1;
  1, 0, 0, 1, 0, 0,-1, 0, 1, 0,-1, 1, 1, 0, 0, 0, 1, 4, 0, 1, 1, 0, 1, 0;
  0, 0, 0,-1, 0, 1, 0,-1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 4, 0, 1, 1, 0, 1;
 -1, -1,1, 0,-1, 1, 0,-1, 0, 1,-1, 1, 0, 1, 0, 0, 1, 1, 0, 4, 0, 0, 1, 1;
  0, 0,-1, 1, 1, 0, 0,-1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 4, 1, 0, 1;
  0, 1,-1,-1, 1,-1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 4, 0, 1;
  0,-1, 0, 1, 0, 1,-1, 1, 0, 1, 0,-1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 4, 1;
 -2,-1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 4]; }
 ? qfminim(x,,0)  \\ the Leech lattice has 196560 minimal vectors of norm 4
 time = 648 ms.
 %4 = [196560, 4, [;]]
 ? qfminim(x,,0,2); \\ safe algorithm. Slower and unnecessary here.
 time = 18,161 ms.
 %5 = [196560, 4.000061035156250000, [;]]
 @eprog\noindent\sidx{Leech lattice}\sidx{minimal vector}
 In the last example, we store 0 vectors to limit memory use. All minimal
 vectors are nevertheless enumerated. Provided \kbd{parisize} is about 50MB,
 \kbd{qfminim(x)} succeeds in 2.5 seconds.
Variant: Also available are
 \fun{GEN}{minim}{GEN x, GEN b = NULL, GEN m = NULL} ($\fl=0$),
 \fun{GEN}{minim2}{GEN x, GEN b = NULL, GEN m = NULL} ($\fl=1$).

Function: qfperfection
Class: basic
Section: linear_algebra
C-Name: perf
Prototype: G
Help: qfperfection(G): rank of matrix of xx~ for x minimal vectors of a gram
 matrix G.
Doc: 
 $G$ being a square and symmetric matrix with
 integer entries representing a positive definite quadratic form, outputs the
 perfection rank of the form. That is, gives the rank of the family of the $s$
 symmetric matrices $v_iv_i^t$, where $s$ is half the number of minimal
 vectors and the $v_i$ ($1\le i\le s$) are the minimal vectors.
 
 Since this requires computing the minimal vectors, the computations can
 become very lengthy as the dimension of $x$ grows.

Function: qfrep
Class: basic
Section: linear_algebra
C-Name: qfrep0
Prototype: GGD0,L,
Help: qfrep(q,B,{flag=0}): vector of (half) the number of vectors of norms
 from 1 to B for the integral and definite quadratic form q. Binary digits of
 flag mean 1: count vectors of even norm from 1 to 2B, 2: return a t_VECSMALL
 instead of a t_VEC.
Doc: 
 $q$ being a square and symmetric
 matrix with integer entries representing a positive definite quadratic form,
 outputs the vector whose $i$-th entry, $1 \leq i \leq B$ is half the number
 of vectors $v$ such that $q(v) = i$. This routine uses a naive algorithm
 based on \tet{qfminim}, and will fail if any entry becomes larger than
 $2^{31}$.
 
 \noindent The binary digits of \fl\ mean:
 
 \item 1: count vectors of even norm from $1$ to $2B$.
 
 \item 2: return a \typ{VECSMALL} instead of a \typ{VEC}

Function: qfsign
Class: basic
Section: linear_algebra
C-Name: qfsign
Prototype: G
Help: qfsign(x): signature of the symmetric matrix x.
Doc: 
 returns $[p,m]$ the signature of the quadratic form represented by the
 symmetric matrix $x$. Namely, $p$ (resp.~$m$) is the number of positive
 (resp.~negative) eigenvalues of $x$.The result is computed using Gaussian
 reduction.

Function: quadclassunit
Class: basic
Section: number_theoretical
C-Name: quadclassunit0
Prototype: GD0,L,DGp
Help: quadclassunit(D,{flag=0},{tech=[]}): compute the structure of the
 class group and the regulator of the quadratic field of discriminant D.
 See manual for the optional technical parameters.
Doc: \idx{Buchmann-McCurley}'s sub-exponential algorithm for computing the
 class group of a quadratic order of discriminant $D$.
 
 This function should be used instead of \tet{qfbclassno} or \tet{quadregula}
 when $D<-10^{25}$, $D>10^{10}$, or when the \emph{structure} is wanted. It
 is a special case of \tet{bnfinit}, which is slower, but more robust.
 
 The result is a vector $v$ whose components should be accessed using member
 functions:
 
 \item \kbd{$v$.no}: the class number
 
 \item \kbd{$v$.cyc}: a vector giving the structure of the class group as a
 product of cyclic groups;
 
 \item \kbd{$v$.gen}: a vector giving generators of those cyclic groups (as
 binary quadratic forms).
 
 \item \kbd{$v$.reg}: the regulator, computed to an accuracy which is the
 maximum of an internal accuracy determined by the program and the current
 default (note that once the regulator is known to a small accuracy it is
 trivial to compute it to very high accuracy, see the tutorial).
 
 The $\fl$ is obsolete and should be left alone. In older versions,
 it supposedly computed the narrow class group when $D>0$, but this did not
 work at all; use the general function \tet{bnfnarrow}.
 
 Optional parameter \var{tech} is a row vector of the form $[c_1, c_2]$,
 where $c_1 \leq c_2$ are positive real numbers which control the execution
 time and the stack size, see \ref{se:GRHbnf}. The parameter is used as a
 threshold to balance the relation finding phase against the final linear
 algebra. Increasing the default $c_1 = 0.2$ means that relations are easier
 to find, but more relations are needed and the linear algebra will be
 harder. The parameter $c_2$ is mostly obsolete and should not be changed,
 but we still document it for completeness: we compute a tentative class
 group by generators and relations using a factorbase of prime ideals $\leq
 c_1 (\log |D|)^2$, then prove that ideals of norm $\leq c_2 (\log |D|)^2$ do
 not generate a larger group. By default an optimal $c_2$ is chosen, so that
 the result is provably correct under the GRH --- a famous result of Bach
 states that $c_2 = 6$ is fine, but it is possible to improve on this
 algorithmically. You may provide a smaller $c_2$, it will be ignored
 (we use the provably correct
 one); you may provide a larger $c_2$ than the default value, which results
 in longer computing times for equally correct outputs (under GRH).
Variant: If you really need to experiment with the \var{tech} parameter, it is
 usually more convenient to use
 \fun{GEN}{Buchquad}{GEN D, double c1, double c2, long prec}

Function: quaddisc
Class: basic
Section: number_theoretical
C-Name: quaddisc
Prototype: G
Help: quaddisc(x): discriminant of the quadratic field Q(sqrt(x)).
Doc: discriminant of the quadratic field $\Q(\sqrt{x})$, where $x\in\Q$.

Function: quadgen
Class: basic
Section: number_theoretical
C-Name: quadgen
Prototype: G
Help: quadgen(D): standard generator of quadratic order of discriminant D.
Doc: creates the quadratic
 number\sidx{omega} $\omega=(a+\sqrt{D})/2$ where $a=0$ if $D\equiv0\mod4$,
 $a=1$ if $D\equiv1\mod4$, so that $(1,\omega)$ is an integral basis for the
 quadratic order of discriminant $D$. $D$ must be an integer congruent to 0 or
 1 modulo 4, which is not a square.

Function: quadhilbert
Class: basic
Section: number_theoretical
C-Name: quadhilbert
Prototype: Gp
Help: quadhilbert(D): relative equation for the Hilbert class field
 of the quadratic field of discriminant D (which can also be a bnf).
Doc: relative equation defining the
 \idx{Hilbert class field} of the quadratic field of discriminant $D$.
 
 If $D < 0$, uses complex multiplication (\idx{Schertz}'s variant).
 
 If $D > 0$ \idx{Stark units} are used and (in rare cases) a
 vector of extensions may be returned whose compositum is the requested class
 field. See \kbd{bnrstark} for details.

Function: quadpoly
Class: basic
Section: number_theoretical
C-Name: quadpoly0
Prototype: GDn
Help: quadpoly(D,{v=x}): quadratic polynomial corresponding to the
 discriminant D, in variable v.
Doc: creates the ``canonical'' quadratic
 polynomial (in the variable $v$) corresponding to the discriminant $D$,
 i.e.~the minimal polynomial of $\kbd{quadgen}(D)$. $D$ must be an integer
 congruent to 0 or 1 modulo 4, which is not a square.

Function: quadray
Class: basic
Section: number_theoretical
C-Name: quadray
Prototype: GGp
Help: quadray(D,f): relative equation for the ray class field of
 conductor f for the quadratic field of discriminant D (which can also be a
 bnf).
Doc: relative equation for the ray
 class field of conductor $f$ for the quadratic field of discriminant $D$
 using analytic methods. A \kbd{bnf} for $x^2 - D$ is also accepted in place
 of $D$.
 
 For $D < 0$, uses the $\sigma$ function and Schertz's method.
 
 For $D>0$, uses Stark's conjecture, and a vector of relative equations may be
 returned. See \tet{bnrstark} for more details.

Function: quadregulator
Class: basic
Section: number_theoretical
C-Name: quadregulator
Prototype: Gp
Help: quadregulator(x): regulator of the real quadratic field of
 discriminant x.
Doc: regulator of the quadratic field of positive discriminant $x$. Returns
 an error if $x$ is not a discriminant (fundamental or not) or if $x$ is a
 square. See also \kbd{quadclassunit} if $x$ is large.

Function: quadunit
Class: basic
Section: number_theoretical
C-Name: quadunit
Prototype: G
Help: quadunit(D): fundamental unit of the quadratic field of discriminant D
 where D must be positive.
Doc: fundamental unit\sidx{fundamental units} of the
 real quadratic field $\Q(\sqrt D)$ where  $D$ is the positive discriminant
 of the field. If $D$ is not a fundamental discriminant, this probably gives
 the fundamental unit of the corresponding order. $D$ must be an integer
 congruent to 0 or 1 modulo 4, which is not a square; the result is a
 quadratic number (see \secref{se:quadgen}).

Function: quit
Class: gp
Section: programming/specific
C-Name: gp_quit
Prototype: vD0,L,
Help: quit({status = 0}): quit, return to the system with exit status
 'status'.
Doc: exits \kbd{gp} and return to the system with exit status
 \kbd{status}, a small integer. A non-zero exit status normally indicates
 abnormal termination. (Note: the system actually sees only
 \kbd{status} mod $256$, see your man pages for \kbd{exit(3)} or \kbd{wait(2)}).

Function: random
Class: basic
Section: conversions
C-Name: genrand
Prototype: DG
Help: random({N=2^31}): random object, depending on the type of N.
 Integer between 0 and N-1 (t_INT), int mod N (t_INTMOD), element in a finite
 field (t_FFELT), point on an elliptic curve (ellinit mod p or over a finite
 field).
Doc: 
 returns a random element in various natural sets depending on the
 argument $N$.
 
 \item \typ{INT}: returns an integer
 uniformly distributed between $0$ and $N-1$. Omitting the argument
 is equivalent to \kbd{random(2\pow31)}.
 
 \item \typ{REAL}: returns a real number in $[0,1[$ with the same accuracy as
 $N$ (whose mantissa has the same number of significant words).
 
 \item \typ{INTMOD}: returns a random intmod for the same modulus.
 
 \item \typ{FFELT}: returns a random element in the same finite field.
 
 \item \typ{VEC} generated by \kbd{ellinit} over a finite field $k$
 (coefficients are \typ{INTMOD}s modulo a prime or \typ{FFELT}s): returns a
 random $k$-rational \emph{affine} point on the curve. More precisely an
 abscissa is drawn uniformly at random until \tet{ellordinate} succeeds.
 In particular, the curves over $\F_2$ with a single point (at infinity!)
 will trigger an infinite loop. Note that this is definitely not a uniform
 distribution over $E(k)$.
 
 \item \typ{POL} return a random polynomial of degree at most the degree of $N$.
 The coefficients are drawn by applying \kbd{random} to the leading
 coefficient of $N$.
 
 \bprog
 ? random(10)
 %1 = 9
 ? random(Mod(0,7))
 %2 = Mod(1, 7)
 ? a = ffgen(ffinit(3,7), 'a); random(a)
 %3 = a^6 + 2*a^5 + a^4 + a^3 + a^2 + 2*a
 ? E = ellinit([0,0,0,3,7]*Mod(1,109)); random(E)
 %4 = [Mod(103, 109), Mod(10, 109)]
 ? E = ellinit([0,0,0,1,7]*a^0); random(E)
 %5 = [a^6 + a^5 + 2*a^4 + 2*a^2, 2*a^6 + 2*a^4 + 2*a^3 + a^2 + 2*a]
 ? random(Mod(1,7)*x^4)
 %6 = Mod(5, 7)*x^4 + Mod(6, 7)*x^3 + Mod(2, 7)*x^2 + Mod(2, 7)*x + Mod(5, 7)
 
 @eprog
 These variants all depend on a single internal generator, and are
 independent from the system's random number generator.
 A random seed may be obtained via \tet{getrand}, and reset
 using \tet{setrand}: from a given seed, and given sequence of \kbd{random}s,
 the exact same values will be generated. The same seed is used at each
 startup, reseed the generator yourself if this is a problem.
 
 \misctitle{Technical note}
 Up to
 version 2.4 included, the internal generator produced pseudo-random numbers
 by means of linear congruences, which were not well distributed in arithmetic
 progressions. We now
 use Brent's XORGEN algorithm, based on Feedback Shift Registers, see
 \kbd{http://wwwmaths.anu.edu.au/\til{}brent/random.html}. The generator has period
 $2^{4096}-1$, passes the Crush battery of statistical tests of L'Ecuyer and
 Simard, but is not suitable for cryptographic purposes: one can reconstruct
 the state vector from a small sample of consecutive values, thus predicting
 the entire sequence.
Variant: 
  Also available: \fun{GEN}{ellrandom}{GEN E} and \fun{GEN}{ffrandom}{GEN a}.

Function: read
Class: gp
Section: programming/specific
C-Name: read0
Prototype: D"",s,
Help: read({filename}): read from the input file filename. If filename is
 omitted, reread last input file, be it from read() or \r.
Description: 
 (str):gen      gp_read_file($1)
Doc: reads in the file
 \var{filename} (subject to string expansion). If \var{filename} is
 omitted, re-reads the last file that was fed into \kbd{gp}. The return
 value is the result of the last expression evaluated.
 
 If a GP \tet{binary file} is read using this command (see
 \secref{se:writebin}), the file is loaded and the last object in the file
 is returned.
 
 In case the file you read in contains an \tet{allocatemem} statement (to be
 generally avoided), you should leave \kbd{read} instructions by themselves,
 and not part of larger instruction sequences.

Function: readvec
Class: basic
Section: programming/specific
C-Name: gp_readvec_file
Prototype: D"",s,
Help: readvec({filename}): create a vector whose components are the evaluation
 of all the expressions found in the input file filename.
Description: 
 (str):gen      gp_readvec_file($1)
Doc: reads in the file
 \var{filename} (subject to string expansion). If \var{filename} is
 omitted, re-reads the last file that was fed into \kbd{gp}. The return
 value is a vector whose components are the evaluation of all sequences
 of instructions contained in the file. For instance, if \var{file} contains
 \bprog
 1
 2
 3
 @eprog\noindent
 then we will get:
 \bprog
 ? \r a
 %1 = 1
 %2 = 2
 %3 = 3
 ? read(a)
 %4 = 3
 ? readvec(a)
 %5 = [1, 2, 3]
 @eprog
 In general a sequence is just a single line, but as usual braces and
 \kbd{\bs} may be used to enter multiline sequences.
Variant: The underlying library function
 \fun{GEN}{gp_readvec_stream}{FILE *f} is usually more flexible.

Function: real
Class: basic
Section: conversions
C-Name: greal
Prototype: G
Help: real(x): real part of x.
Doc: real part of $x$. In the case where $x$ is a quadratic number, this is the
 coefficient of $1$ in the ``canonical'' integral basis $(1,\omega)$.

Function: removeprimes
Class: basic
Section: number_theoretical
C-Name: removeprimes
Prototype: DG
Help: removeprimes({x=[]}): remove primes in the vector x from the prime table.
 x can also be a single integer. List the current extra primes if x is omitted.
Doc: removes the primes listed in $x$ from
 the prime number table. In particular \kbd{removeprimes(addprimes())} empties
 the extra prime table. $x$ can also be a single integer. List the current
 extra primes if $x$ is omitted.

Function: return
Class: basic
Section: programming/control
C-Name: return0
Prototype: DG
Help: return({x=0}): return from current subroutine with result x.
Doc: returns from current subroutine, with
 result $x$. If $x$ is omitted, return the \kbd{(void)} value (return no
 result, like \kbd{print}).

Function: rnfalgtobasis
Class: basic
Section: number_fields
C-Name: rnfalgtobasis
Prototype: GG
Help: rnfalgtobasis(rnf,x): relative version of nfalgtobasis, where rnf is a
 relative numberfield.
Doc: expresses $x$ on the relative
 integral basis. Here, $\var{rnf}$ is a relative number field extension $L/K$
 as output by \kbd{rnfinit}, and $x$ an element of $L$ in absolute form, i.e.
 expressed as a polynomial or polmod with polmod coefficients, \emph{not} on
 the relative integral basis.

Function: rnfbasis
Class: basic
Section: number_fields
C-Name: rnfbasis
Prototype: GG
Help: rnfbasis(bnf,M): given a projective Z_K-module M as output by
 rnfpseudobasis or rnfsteinitz, gives either a basis of M if it is free, or an
 n+1-element generating set.
Doc: let $K$ the field represented by
 \var{bnf}, as output by \kbd{bnfinit}. $M$ is a projective $\Z_K$-module
 of rank $n$ ($M\otimes K$ is an $n$-dimensional $K$-vector space), given by a
 pseudo-basis of size $n$. The routine returns either a true $\Z_K$-basis of
 $M$ (of size $n$) if it exists, or an $n+1$-element generating set of $M$ if
 not.
 
 It is allowed to use an irreducible polynomial $P$ in $K[X]$ instead of $M$,
 in which case, $M$ is defined as the ring of integers of $K[X]/(P)$, viewed
 as a $\Z_K$-module.

Function: rnfbasistoalg
Class: basic
Section: number_fields
C-Name: rnfbasistoalg
Prototype: GG
Help: rnfbasistoalg(rnf,x): relative version of nfbasistoalg, where rnf is a
 relative numberfield.
Doc: computes the representation of $x$
 as a polmod with polmods coefficients. Here, $\var{rnf}$ is a relative number
 field extension $L/K$ as output by \kbd{rnfinit}, and $x$ an element of
 $L$ expressed on the relative integral basis.

Function: rnfcharpoly
Class: basic
Section: number_fields
C-Name: rnfcharpoly
Prototype: GGGDn
Help: rnfcharpoly(nf,T,a,{var=x}): characteristic polynomial of a
 over nf, where a belongs to the algebra defined by T over nf. Returns a
 polynomial in variable var (x by default).
Doc: characteristic polynomial of
 $a$ over $\var{nf}$, where $a$ belongs to the algebra defined by $T$ over
 $\var{nf}$, i.e.~$\var{nf}[X]/(T)$. Returns a polynomial in variable $v$
 ($x$ by default).
 \bprog
 ? nf = nfinit(y^2+1);
 ? rnfcharpoly(nf, x^2+y*x+1, x+y)
 %2 = x^2 + Mod(-y, y^2 + 1)*x + 1
 @eprog

Function: rnfconductor
Class: basic
Section: number_fields
C-Name: rnfconductor
Prototype: GGD0,L,
Help: rnfconductor(bnf,pol): conductor of the Abelian extension
 of bnf defined by pol. The result is [conductor,rayclassgroup,subgroup],
 where conductor is the conductor itself, rayclassgroup the structure of the
 corresponding full ray class group, and subgroup the HNF defining the norm
 group (Artin or Takagi group) on the given generators rayclassgroup[3].
Doc: given $\var{bnf}$
 as output by \kbd{bnfinit}, and \var{pol} a relative polynomial defining an
 \idx{Abelian extension}, computes the class field theory conductor of this
 Abelian extension. The result is a 3-component vector
 $[\var{conductor},\var{rayclgp},\var{subgroup}]$, where \var{conductor} is
 the conductor of the extension given as a 2-component row vector
 $[f_0,f_\infty]$, \var{rayclgp} is the full ray class group corresponding to
 the conductor given as a 3-component vector [h,cyc,gen] as usual for a group,
 and \var{subgroup} is a matrix in HNF defining the subgroup of the ray class
 group on the given generators gen.

Function: rnfdedekind
Class: basic
Section: number_fields
C-Name: rnfdedekind
Prototype: GGDGD0,L,
Help: rnfdedekind(nf,pol,{pr},{flag=0}): relative Dedekind criterion over the
 number field K, represented by nf, applied to the order O_K[X]/(P),
 modulo the prime ideal pr (at all primes if pr omitted, in which case
 flag is automatically set to 1).
 P is assumed to be monic, irreducible, in O_K[X].
 Returns [max,basis,v], where basis is a pseudo-basis of the
 enlarged order, max is 1 iff this order is pr-maximal, and v is the
 valuation at pr of the order discriminant. If flag is set, just return 1 if
 the order is maximal, and 0 if not.
Doc: given a number field $K$ coded by $\var{nf}$ and a monic
 polynomial $P\in \Z_K[X]$, irreducible over $K$ and thus defining a relative
 extension $L$ of $K$, applies \idx{Dedekind}'s criterion to the order
 $\Z_K[X]/(P)$, at the prime ideal \var{pr}. It is possible to set \var{pr}
 to a vector of prime ideals (test maximality at all primes in the vector),
 or to omit altogether, in which case maximality at \emph{all} primes is tested;
 in this situation \fl\ is automatically set to $1$.
 
 The default historic behavior (\fl\ is 0 or omitted and \var{pr} is a
 single prime ideal) is not so useful since
 \kbd{rnfpseudobasis} gives more information and is generally not that
 much slower. It returns a 3-component vector $[\var{max}, \var{basis}, v]$:
 
 \item \var{basis} is a pseudo-basis of an enlarged order $O$ produced by
 Dedekind's criterion, containing the original order $\Z_K[X]/(P)$
 with index a power of \var{pr}. Possibly equal to the original order.
 
 \item \var{max} is a flag equal to 1 if the enlarged order $O$
 could be proven to be \var{pr}-maximal and to 0 otherwise; it may still be
 maximal in the latter case if \var{pr} is ramified in $L$,
 
 \item $v$ is the valuation at \var{pr} of the order discriminant.
 
 If \fl\ is non-zero, on the other hand, we just return $1$ if the order
 $\Z_K[X]/(P)$ is \var{pr}-maximal (resp.~maximal at all relevant primes, as
 described above), and $0$ if not. This is much faster than the default,
 since the enlarged order is not computed.
 \bprog
 ? nf = nfinit(y^2-3); P = x^3 - 2*y;
 ? pr3 = idealprimedec(nf,3)[1];
 ? rnfdedekind(nf, P, pr3)
 %2 = [1, [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, 1]], 8]
 ? rnfdedekind(nf, P, pr3, 1)
 %3 = 1
 @eprog\noindent In this example, \kbd{pr3} is the ramified ideal above $3$,
 and the order generated by the cube roots of $y$ is already
 \kbd{pr3}-maximal. The order-discriminant has valuation $8$. On the other
 hand, the order is not maximal at the prime above 2:
 \bprog
 ? pr2 = idealprimedec(nf,2)[1];
 ? rnfdedekind(nf, P, pr2, 1)
 %5 = 0
 ? rnfdedekind(nf, P, pr2)
 %6 = [0, [[2, 0, 0; 0, 1, 0; 0, 0, 1], [[1, 0; 0, 1], [1, 0; 0, 1],
      [1, 1/2; 0, 1/2]]], 2]
 @eprog
 The enlarged order is not proven to be \kbd{pr2}-maximal yet. In fact, it
 is; it is in fact the maximal order:
 \bprog
 ? B = rnfpseudobasis(nf, P)
 %7 = [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, [1, 1/2; 0, 1/2]],
      [162, 0; 0, 162], -1]
 ? idealval(nf,B[3], pr2)
 %4 = 2
 @eprog\noindent
 It is possible to use this routine with non-monic
 $P = \sum_{i\leq n} a_i X^i \in \Z_K[X]$ if $\fl = 1$;
 in this case, we test maximality of Dedekind's order generated by
 $$1, a_n \alpha, a_n\alpha^2 + a_{n-1}\alpha, \dots,
 a_n\alpha^{n-1} + a_{n-1}\alpha^{n-2} + \cdots + a_1\alpha.$$
 The routine will fail if $P$ is $0$ on the projective line over the residue
 field $\Z_K/\kbd{pr}$ (FIXME).

Function: rnfdet
Class: basic
Section: number_fields
C-Name: rnfdet
Prototype: GG
Help: rnfdet(nf,M): given a pseudo-matrix M, compute its determinant.
Doc: given a pseudo-matrix $M$ over the maximal
 order of $\var{nf}$, computes its determinant.

Function: rnfdisc
Class: basic
Section: number_fields
C-Name: rnfdiscf
Prototype: GG
Help: rnfdisc(nf,pol): given a pol with coefficients in nf, gives a
 2-component vector [D,d], where D is the relative ideal discriminant, and d
 is the relative discriminant in nf^*/nf*^2.
Doc: given a number field $\var{nf}$ as
 output by \kbd{nfinit} and a polynomial \var{pol} with coefficients in
 $\var{nf}$ defining a relative extension $L$ of $\var{nf}$, computes the
 relative discriminant of $L$. This is a two-element row vector $[D,d]$, where
 $D$ is the relative ideal discriminant and $d$ is the relative discriminant
 considered as an element of $\var{nf}^*/{\var{nf}^*}^2$. The main variable of
 $\var{nf}$ \emph{must} be of lower priority than that of \var{pol}, see
 \secref{se:priority}.

Function: rnfeltabstorel
Class: basic
Section: number_fields
C-Name: rnfelementabstorel
Prototype: GG
Help: rnfeltabstorel(rnf,x): transforms the element x from absolute to
 relative representation.
Doc: $\var{rnf}$ being a relative
 number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an
 element of $L$ expressed as a polynomial modulo the absolute equation
 \kbd{\var{rnf}.pol}, computes $x$ as an element of the relative extension
 $L/K$ as a polmod with polmod coefficients.

Function: rnfeltdown
Class: basic
Section: number_fields
C-Name: rnfelementdown
Prototype: GG
Help: rnfeltdown(rnf,x): expresses x on the base field if possible; returns
 an error otherwise.
Doc: $\var{rnf}$ being a relative number
 field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an element of
 $L$ expressed as a polynomial or polmod with polmod coefficients, computes
 $x$ as an element of $K$ as a polmod, assuming $x$ is in $K$ (otherwise an
 error will occur). If $x$ is given on the relative integral basis, apply
 \kbd{rnfbasistoalg} first, otherwise PARI will believe you are dealing with a
 vector.

Function: rnfeltreltoabs
Class: basic
Section: number_fields
C-Name: rnfelementreltoabs
Prototype: GG
Help: rnfeltreltoabs(rnf,x): transforms the element x from relative to
 absolute representation.
Doc: $\var{rnf}$ being a relative
 number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an
 element of $L$ expressed as a polynomial or polmod with polmod
 coefficients, computes $x$ as an element of the absolute extension $L/\Q$ as
 a polynomial modulo the absolute equation \kbd{\var{rnf}.pol}. If $x$ is
 given on the relative integral basis, apply \kbd{rnfbasistoalg} first,
 otherwise PARI will believe you are dealing with a vector.

Function: rnfeltup
Class: basic
Section: number_fields
C-Name: rnfelementup
Prototype: GG
Help: rnfeltup(rnf,x): expresses x (belonging to the base field) on the
 relative field.
Doc: $\var{rnf}$ being a relative number
 field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an element of
 $K$ expressed as a polynomial or polmod, computes $x$ as an element of the
 absolute extension $L/\Q$ as a polynomial modulo the absolute equation
 \kbd{\var{rnf}.pol}. If $x$ is given on the integral basis of $K$, apply
 \kbd{nfbasistoalg} first, otherwise PARI will believe you are dealing with a
 vector.

Function: rnfequation
Class: basic
Section: number_fields
C-Name: rnfequation0
Prototype: GGD0,L,
Help: rnfequation(nf,pol,{flag=0}): given a pol with coefficients in nf,
 gives the absolute equation apol of the number field defined by pol. flag is
 optional, and can be 0: default, or non-zero, gives [apol,th], where th
 expresses the root of nf.pol in terms of the root of apol.
Doc: given a number field
 $\var{nf}$ as output by \kbd{nfinit} (or simply a polynomial) and a
 polynomial \var{pol} with coefficients in $\var{nf}$ defining a relative
 extension $L$ of $\var{nf}$, computes the absolute equation of $L$ over
 $\Q$.
 
 If $\fl$ is non-zero, outputs a 3-component row vector $[z,a,k]$, where
 $z$ is the absolute equation of $L$ over $\Q$, as in the default behavior,
 $a$ expresses as an element of $L$ a root $\alpha$ of the polynomial
 defining the base field $\var{nf}$, and $k$ is a small integer such that
 $\theta = \beta+k\alpha$ where $\theta$ is a root of $z$ and $\beta$ a root
 of $\var{pol}$.
 
 The main variable of $\var{nf}$ \emph{must} be of lower priority than that
 of \var{pol} (see \secref{se:priority}). Note that for efficiency, this does
 not check whether the relative equation is irreducible over $\var{nf}$, but
 only if it is squarefree. If it is reducible but squarefree, the result will
 be the absolute equation of the \'etale algebra defined by \var{pol}. If
 \var{pol} is not squarefree, an error message will be issued.
Variant: Also available are
 \fun{GEN}{rnfequation}{GEN nf, GEN pol} ($\fl = 0$) and
 \fun{GEN}{rnfequation2}{GEN nf, GEN pol} ($\fl = 1$).

Function: rnfhnfbasis
Class: basic
Section: number_fields
C-Name: rnfhnfbasis
Prototype: GG
Help: rnfhnfbasis(bnf,x): given an order x as output by rnfpseudobasis,
 gives either a true HNF basis of the order if it exists, zero otherwise.
Doc: given $\var{bnf}$ as output by
 \kbd{bnfinit}, and either a polynomial $x$ with coefficients in $\var{bnf}$
 defining a relative extension $L$ of $\var{bnf}$, or a pseudo-basis $x$ of
 such an extension, gives either a true $\var{bnf}$-basis of $L$ in upper
 triangular Hermite normal form, if it exists, and returns $0$ otherwise.

Function: rnfidealabstorel
Class: basic
Section: number_fields
C-Name: rnfidealabstorel
Prototype: GG
Help: rnfidealabstorel(rnf,x): transforms the ideal x from absolute to
 relative representation.
Doc: let $\var{rnf}$ be a relative
 number field extension $L/K$ as output by \kbd{rnfinit}, and $x$ an ideal of
 the absolute extension $L/\Q$ given by a $\Z$-basis of elements of $L$.
 Returns the relative pseudo-matrix in HNF giving the ideal $x$ considered as
 an ideal of the relative extension $L/K$.
 
 If $x$ is an ideal in HNF form, associated to an \var{nf} structure, for
 instance as output by $\tet{idealhnf}(\var{nf},\dots)$,
 use \kbd{rnfidealabstorel(rnf, nf.zk * x)} to convert it to a relative ideal.

Function: rnfidealdown
Class: basic
Section: number_fields
C-Name: rnfidealdown
Prototype: GG
Help: rnfidealdown(rnf,x): finds the intersection of the ideal x with the
 base field.
Doc: let $\var{rnf}$ be a relative number
 field extension $L/K$ as output by \kbd{rnfinit}, and $x$ an ideal of
 $L$, given either in relative form or by a $\Z$-basis of elements of $L$
 (see \secref{se:rnfidealabstorel}), returns the ideal of $K$ below $x$,
 i.e.~the intersection of $x$ with $K$.

Function: rnfidealhnf
Class: basic
Section: number_fields
C-Name: rnfidealhermite
Prototype: GG
Help: rnfidealhnf(rnf,x): relative version of idealhnf, where rnf is a
 relative numberfield.
Doc: $\var{rnf}$ being a relative number
 field extension $L/K$ as output by \kbd{rnfinit} and $x$ being a relative
 ideal (which can be, as in the absolute case, of many different types,
 including of course elements), computes the HNF pseudo-matrix associated to
 $x$, viewed as a $\Z_K$-module.

Function: rnfidealmul
Class: basic
Section: number_fields
C-Name: rnfidealmul
Prototype: GGG
Help: rnfidealmul(rnf,x,y): relative version of idealmul, where rnf is a
 relative numberfield.
Doc: $\var{rnf}$ being a relative number
 field extension $L/K$ as output by \kbd{rnfinit} and $x$ and $y$ being ideals
 of the relative extension $L/K$ given by pseudo-matrices, outputs the ideal
 product, again as a relative ideal.

Function: rnfidealnormabs
Class: basic
Section: number_fields
C-Name: rnfidealnormabs
Prototype: GG
Help: rnfidealnormabs(rnf,x): absolute norm of the ideal x.
Doc: $\var{rnf}$ being a relative
 number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being a
 relative ideal (which can be, as in the absolute case, of many different
 types, including of course elements), computes the norm of the ideal $x$
 considered as an ideal of the absolute extension $L/\Q$. This is identical to
 \kbd{idealnorm(rnfidealnormrel(\var{rnf},x))}, but faster.

Function: rnfidealnormrel
Class: basic
Section: number_fields
C-Name: rnfidealnormrel
Prototype: GG
Help: rnfidealnormrel(rnf,x): relative norm of the ideal x.
Doc: $\var{rnf}$ being a relative
 number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being a
 relative ideal (which can be, as in the absolute case, of many different
 types, including of course elements), computes the relative norm of $x$ as a
 ideal of $K$ in HNF.

Function: rnfidealreltoabs
Class: basic
Section: number_fields
C-Name: rnfidealreltoabs
Prototype: GG
Help: rnfidealreltoabs(rnf,x): transforms the ideal x from relative to
 absolute representation.
Doc: $\var{rnf}$ being a relative
 number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being a
 relative ideal, gives the ideal $x\Z_L$ as an absolute ideal of $L/\Q$, in
 the form of a $\Z$-basis, given by a vector of polynomials (modulo
 \kbd{rnf.pol}).
 The following routine might be useful:
 \bprog
 \\ return y = rnfidealreltoabs(rnf,...) as an ideal in HNF form
 \\ associated to nf = nfinit( rnf.pol );
 idealgentoHNF(nf, y) = mathnf( Mat( nfalgtobasis(nf, y) ) );
 @eprog

Function: rnfidealtwoelt
Class: basic
Section: number_fields
C-Name: rnfidealtwoelement
Prototype: GG
Help: rnfidealtwoelt(rnf,x): relative version of idealtwoelt, where rnf
 is a relative numberfield.
Doc: $\var{rnf}$ being a relative
 number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an
 ideal of the relative extension $L/K$ given by a pseudo-matrix, gives a
 vector of two generators of $x$ over $\Z_L$ expressed as polmods with polmod
 coefficients.

Function: rnfidealup
Class: basic
Section: number_fields
C-Name: rnfidealup
Prototype: GG
Help: rnfidealup(rnf,x): lifts the ideal x (of the base field) to the
 relative field.
Doc: $\var{rnf}$ being a relative number
 field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an ideal of
 $K$, gives the ideal $x\Z_L$ as an absolute ideal of $L/\Q$, in the form of a
 $\Z$-basis, given by a vector of polynomials (modulo \kbd{rnf.pol}).
 The following routine might be useful:
 \bprog
 \\ return y = rnfidealup(rnf,...) as an ideal in HNF form
 \\ associated to nf = nfinit( rnf.pol );
 idealgentoHNF(nf, y) = mathnf( Mat( matalgtobasis(nf, y) ) );
 @eprog

Function: rnfinit
Class: basic
Section: number_fields
C-Name: rnfinit
Prototype: GG
Help: rnfinit(nf,pol): pol being a non constant irreducible polynomial
 defined over the number field nf, initializes a vector of data necessary for
 working in relative number fields (rnf functions). See manual for technical
 details.
Doc: $\var{nf}$ being a number field in \kbd{nfinit}
 format considered as base field, and \var{pol} a polynomial defining a relative
 extension over $\var{nf}$, this computes all the necessary data to work in the
 relative extension. The main variable of \var{pol} must be of higher priority
 (see \secref{se:priority}) than that of $\var{nf}$, and the coefficients of
 \var{pol} must be in $\var{nf}$.
 
 The result is a row vector, whose components are technical. In the following
 description, we let $K$ be the base field defined by $\var{nf}$, $m$ the
 degree of the base field, $n$ the relative degree, $L$ the large field (of
 relative degree $n$ or absolute degree $nm$), $r_1$ and $r_2$ the number of
 real and complex places of $K$.
 
 $\var{rnf}[1]$ contains the relative polynomial \var{pol}.
 
 $\var{rnf}[2]$ is currently unused.
 
 $\var{rnf}[3]$ is a two-component row vector $[\goth{d}(L/K),s]$ where
 $\goth{d}(L/K)$ is the relative ideal discriminant of $L/K$ and $s$ is the
 discriminant of $L/K$ viewed as an element of $K^*/(K^*)^2$, in other words
 it is the output of \kbd{rnfdisc}.
 
 $\var{rnf}[4]$ is the ideal index $\goth{f}$, i.e.~such that
 $d(pol)\Z_K=\goth{f}^2\goth{d}(L/K)$.
 
 $\var{rnf}[5]$ is currently unused.
 
 $\var{rnf}[6]$ is currently unused.
 
 $\var{rnf}[7]$ is a two-component row vector, where the first component is
 the relative integral pseudo basis expressed as polynomials (in the variable of
 $pol$) with polmod coefficients in $\var{nf}$, and the second component is the
 ideal list of the pseudobasis in HNF.
 
 $\var{rnf}[8]$ is the inverse matrix of the integral basis matrix, with
 coefficients polmods in $\var{nf}$.
 
 $\var{rnf}[9]$ is currently unused.
 
 $\var{rnf}[10]$ is $\var{nf}$.
 
 $\var{rnf}[11]$ is the output of \kbd{rnfequation(nf, pol, 1)}. Namely, a
 vector \var{vabs} with 3 entries describing the \emph{absolute} extension
 $L/\Q$. $\var{vabs}[1]$ is an absolute equation, more conveniently obtained
 as \kbd{rnf.pol}. $\var{vabs}[2]$ expresses the generator $\alpha$ of the
 number field $\var{nf}$ as a polynomial modulo the absolute equation
 $\var{vabs}[1]$. $\var{vabs}[3]$ is a small integer $k$ such that, if $\beta$
 is an abstract root of \var{pol} and $\alpha$ the generator of $\var{nf}$,
 the generator whose root is \var{vabs} will be
 $\beta + k \alpha$. Note that one must be very careful if $k\neq0$ when
 dealing simultaneously with absolute and relative quantities since the
 generator chosen for the absolute extension is not the same as for the
 relative one. If this happens, one can of course go on working, but we
 strongly advise to change the relative polynomial so that its root will be
 $\beta + k \alpha$. Typically, the GP instruction would be
 
 \kbd{pol = subst(pol, x, x - k*Mod(y,\var{nf}.pol))}
 
 $\var{rnf}[12]$ is by default unused and set equal to 0. This
 field is used to store further information about the field as it becomes
 available (which is rarely needed, hence would be too expensive to compute
 during the initial \kbd{rnfinit} call).

Function: rnfisabelian
Class: basic
Section: number_fields
C-Name: rnfisabelian
Prototype: lGG
Help: rnfisabelian(nf,T): T being a relative polynomial with coefficients
 in nf, return 1 if it defines an abelian extension, and 0 otherwise.
Doc: $T$ being a relative polynomial with coefficients
 in \var{nf}, return 1 if it defines an abelian extension, and 0 otherwise.
 \bprog
 ? K = nfinit(y^2 + 23);
 ? rnfisabelian(K, x^3 - 3*x - y)
 %2 = 1
 @eprog

Function: rnfisfree
Class: basic
Section: number_fields
C-Name: rnfisfree
Prototype: lGG
Help: rnfisfree(bnf,x): given an order x as output by rnfpseudobasis or
 rnfsteinitz, outputs true (1) or false (0) according to whether the order is
 free or not.
Doc: given $\var{bnf}$ as output by
 \kbd{bnfinit}, and either a polynomial $x$ with coefficients in $\var{bnf}$
 defining a relative extension $L$ of $\var{bnf}$, or a pseudo-basis $x$ of
 such an extension, returns true (1) if $L/\var{bnf}$ is free, false (0) if
 not.

Function: rnfisnorm
Class: basic
Section: number_fields
C-Name: rnfisnorm
Prototype: GGD0,L,
Help: rnfisnorm(T,a,{flag=0}): T is as output by rnfisnorminit applied to
 L/K. Tries to tell whether a is a norm from L/K. Returns a vector [x,q]
 where a=Norm(x)*q. Looks for a solution which is a S-integer, with S a list
 of places in K containing the ramified primes, generators of the class group
 of ext, as well as those primes dividing a. If L/K is Galois, omit flag,
 otherwise it is used to add more places to S: all the places above the
 primes p <= flag (resp. p | flag) if flag > 0 (resp. flag < 0). The answer
 is guaranteed (i.e a is a norm iff q=1) if L/K is Galois or, under GRH, if S
 contains all primes less than 12.log(disc(M))^2, where M is the normal
 closure of L/K.
Doc: similar to
 \kbd{bnfisnorm} but in the relative case. $T$ is as output by
 \tet{rnfisnorminit} applied to the extension $L/K$. This tries to decide
 whether the element $a$ in $K$ is the norm of some $x$ in the extension
 $L/K$.
 
 The output is a vector $[x,q]$, where $a = \Norm(x)*q$. The
 algorithm looks for a solution $x$ which is an $S$-integer, with $S$ a list
 of places of $K$ containing at least the ramified primes, the generators of
 the class group of $L$, as well as those primes dividing $a$. If $L/K$ is
 Galois, then this is enough; otherwise, $\fl$ is used to add more primes to
 $S$: all the places above the primes $p \leq \fl$ (resp.~$p|\fl$) if $\fl>0$
 (resp.~$\fl<0$).
 
 The answer is guaranteed (i.e.~$a$ is a norm iff $q = 1$) if the field is
 Galois, or, under \idx{GRH}, if $S$ contains all primes less than
 $12\log^2\left|\disc(M)\right|$, where $M$ is the normal
 closure of $L/K$.
 
 If \tet{rnfisnorminit} has determined (or was told) that $L/K$ is
 \idx{Galois}, and $\fl \neq 0$, a Warning is issued (so that you can set
 $\fl = 1$ to check whether $L/K$ is known to be Galois, according to $T$).
 Example:
 
 \bprog
 bnf = bnfinit(y^3 + y^2 - 2*y - 1);
 p = x^2 + Mod(y^2 + 2*y + 1, bnf.pol);
 T = rnfisnorminit(bnf, p);
 rnfisnorm(T, 17)
 @eprog\noindent
 checks whether $17$ is a norm in the Galois extension $\Q(\beta) /
 \Q(\alpha)$, where $\alpha^3 + \alpha^2 - 2\alpha - 1 = 0$ and $\beta^2 +
 \alpha^2 + 2\alpha + 1 = 0$ (it is).

Function: rnfisnorminit
Class: basic
Section: number_fields
C-Name: rnfisnorminit
Prototype: GGD2,L,
Help: rnfisnorminit(pol,polrel,{flag=2}): let K be defined by a root of pol,
 L/K the extension defined by polrel. Compute technical data needed by
 rnfisnorm to solve norm equations Nx = a, for x in L, and a in K. If flag=0,
 do not care whether L/K is Galois or not; if flag = 1, assume L/K is Galois;
 if flag = 2, determine whether L/K is Galois.
Doc: let $K$ be defined by a root of \var{pol}, and $L/K$ the extension defined
 by the polynomial \var{polrel}. As usual, \var{pol} can in fact be an \var{nf},
 or \var{bnf}, etc; if \var{pol} has degree $1$ (the base field is $\Q$),
 polrel is also allowed to be an \var{nf}, etc. Computes technical data needed
 by \tet{rnfisnorm} to solve norm equations $Nx = a$, for $x$ in $L$, and $a$
 in $K$.
 
 If $\fl = 0$, do not care whether $L/K$ is Galois or not.
 
 If $\fl = 1$, $L/K$ is assumed to be Galois (unchecked), which speeds up
 \tet{rnfisnorm}.
 
 If $\fl = 2$, let the routine determine whether $L/K$ is Galois.

Function: rnfkummer
Class: basic
Section: number_fields
C-Name: rnfkummer
Prototype: GDGD0,L,p
Help: rnfkummer(bnr,{subgp},{d=0}): bnr being as output by bnrinit,
 finds a relative equation for the class field corresponding to the module in
 bnr and the given congruence subgroup (the ray class field if subgp is
 omitted). d can be zero (default), or positive, and in this case the
 output is the list of all relative equations of degree d for the given bnr,
 with the same conductor as (bnr, subgp).
Doc: \var{bnr}
 being as output by \kbd{bnrinit}, finds a relative equation for the
 class field corresponding to the module in \var{bnr} and the given
 congruence subgroup (the full ray class field if \var{subgp} is omitted).
 If $d$ is positive, outputs the list of all relative equations of
 degree $d$ contained in the ray class field defined by \var{bnr}, with
 the \emph{same} conductor as $(\var{bnr}, \var{subgp})$.
 
 \misctitle{Warning} This routine only works for subgroups of prime index. It
 uses Kummer theory, adjoining necessary roots of unity (it needs to compute a
 tough \kbd{bnfinit} here), and finds a generator via Hecke's characterization
 of ramification in Kummer extensions of prime degree. If your extension does
 not have prime degree, for the time being, you have to split it by hand as a
 tower / compositum of such extensions.

Function: rnflllgram
Class: basic
Section: number_fields
C-Name: rnflllgram
Prototype: GGGp
Help: rnflllgram(nf,pol,order): given a pol with coefficients in nf and an
 order as output by rnfpseudobasis or similar, gives [[neworder],U], where
 neworder is a reduced order and U is the unimodular transformation matrix.
Doc: given a polynomial
 \var{pol} with coefficients in \var{nf} defining a relative extension $L$ and
 a suborder \var{order} of $L$ (of maximal rank), as output by
 \kbd{rnfpseudobasis}$(\var{nf},\var{pol})$ or similar, gives
 $[[\var{neworder}],U]$, where \var{neworder} is a reduced order and $U$ is
 the unimodular transformation matrix.

Function: rnfnormgroup
Class: basic
Section: number_fields
C-Name: rnfnormgroup
Prototype: GG
Help: rnfnormgroup(bnr,pol): norm group (or Artin or Takagi group)
 corresponding to the Abelian extension of bnr.bnf defined by pol, where
 the module corresponding to bnr is assumed to be a multiple of the
 conductor. The result is the HNF defining the norm group on the
 generators in bnr.gen.
Doc: 
 \var{bnr} being a big ray
 class field as output by \kbd{bnrinit} and \var{pol} a relative polynomial
 defining an \idx{Abelian extension}, computes the norm group (alias Artin
 or Takagi group) corresponding to the Abelian extension of
 $\var{bnf}=$\kbd{bnr.bnf}
 defined by \var{pol}, where the module corresponding to \var{bnr} is assumed
 to be a multiple of the conductor (i.e.~\var{pol} defines a subextension of
 bnr). The result is the HNF defining the norm group on the given generators
 of \kbd{bnr.gen}. Note that neither the fact that \var{pol} defines an
 Abelian extension nor the fact that the module is a multiple of the conductor
 is checked. The result is undefined if the assumption is not correct.

Function: rnfpolred
Class: basic
Section: number_fields
C-Name: rnfpolred
Prototype: GGp
Help: rnfpolred(nf,pol): given a pol with coefficients in nf, finds a list
 of relative polynomials defining some subfields, hopefully simpler.
Doc: relative version of \kbd{polred}.
 Given a monic polynomial \var{pol} with coefficients in $\var{nf}$, finds a
 list of relative polynomials defining some subfields, hopefully simpler and
 containing the original field. In the present version \vers, this is slower
 and less efficient than \kbd{rnfpolredabs}.

Function: rnfpolredabs
Class: basic
Section: number_fields
C-Name: rnfpolredabs
Prototype: GGD0,L,
Help: rnfpolredabs(nf,pol,{flag=0}): given a pol with coefficients in nf,
 finds a relative simpler polynomial defining the same field. Binary digits
 of flag mean: 1: return also the element whose characteristic polynomial is
 the given polynomial, 2: return an absolute polynomial, 16: partial
 reduction.
Doc: relative version of
 \kbd{polredabs}. Given a monic polynomial \var{pol} with coefficients in
 $\var{nf}$, finds a simpler relative polynomial defining the same field. The
 binary digits of $\fl$ mean
 
 1: returns $[P,a]$ where $P$ is the default output and $a$ is an
 element expressed on a root of $P$ whose characteristic polynomial is
 \var{pol}
 
 2: returns an absolute polynomial (same as
 {\tt rnfequation(\var{nf},rnfpolredabs(\var{nf},\var{pol}))}
 but faster).
 
 16: possibly use a suborder of the maximal order. This is slower than the
 default when the relative discriminant is smooth, and much faster otherwise.
 See \secref{se:polredabs}.
 
 \misctitle{Remark} In the present implementation, this is both faster and
 much more efficient than \kbd{rnfpolred}, the difference being more
 dramatic than in the absolute case. This is because the implementation of
 \kbd{rnfpolred} is based on (a partial implementation of) an incomplete
 reduction theory of lattices over number fields, the function
 \kbd{rnflllgram}, which deserves to be improved.

Function: rnfpseudobasis
Class: basic
Section: number_fields
C-Name: rnfpseudobasis
Prototype: GG
Help: rnfpseudobasis(nf,pol): given a pol with coefficients in nf, gives a
 4-component vector [A,I,D,d] where [A,I] is a pseudo basis of the maximal
 order in HNF on the power basis, D is the relative ideal discriminant, and d
 is the relative discriminant in nf^*/nf*^2.
Doc: given a number field
 $\var{nf}$ as output by \kbd{nfinit} and a polynomial \var{pol} with
 coefficients in $\var{nf}$ defining a relative extension $L$ of $\var{nf}$,
 computes a pseudo-basis $(A,I)$ for the maximal order $\Z_L$ viewed as a
 $\Z_K$-module, and the relative discriminant of $L$. This is output as a
 four-element row vector $[A,I,D,d]$, where $D$ is the relative ideal
 discriminant and $d$ is the relative discriminant considered as an element of
 $\var{nf}^*/{\var{nf}^*}^2$.

Function: rnfsteinitz
Class: basic
Section: number_fields
C-Name: rnfsteinitz
Prototype: GG
Help: rnfsteinitz(nf,x): given an order x as output by rnfpseudobasis,
 gives [A,I,D,d] where (A,I) is a pseudo basis where all the ideals except
 perhaps the last are trivial.
Doc: given a number field $\var{nf}$ as
 output by \kbd{nfinit} and either a polynomial $x$ with coefficients in
 $\var{nf}$ defining a relative extension $L$ of $\var{nf}$, or a pseudo-basis
 $x$ of such an extension as output for example by \kbd{rnfpseudobasis},
 computes another pseudo-basis $(A,I)$ (not in HNF in general) such that all
 the ideals of $I$ except perhaps the last one are equal to the ring of
 integers of $\var{nf}$, and outputs the four-component row vector $[A,I,D,d]$
 as in \kbd{rnfpseudobasis}. The name of this function comes from the fact
 that the ideal class of the last ideal of $I$, which is well defined, is the
 \idx{Steinitz class} of the $\Z_K$-module $\Z_L$ (its image in $SK_0(\Z_K)$).

Function: round
Class: basic
Section: conversions
C-Name: round0
Prototype: GD&
Help: round(x,{&e}): take the nearest integer to all the coefficients of x.
 If e is present, do not take into account loss of integer part precision,
 and set e = error estimate in bits.
Description: 
 (small):small:parens   $1
 (int):int:copy:parens  $1
 (real):int             roundr($1)
 (mp):int               mpround($1)
 (mp, &small):int       grndtoi($1, &$2)
 (mp, &int):int         round0($1, &$2)
 (gen):gen              ground($1)
 (gen, &small):gen      grndtoi($1, &$2)
 (gen, &int):gen        round0($1, &$2)
Doc: If $x$ is in $\R$, rounds $x$ to the nearest integer (rounding to
 $+\infty$ in case of ties), then and sets $e$ to the number of error bits,
 that is the binary exponent of the difference between the original and the
 rounded value (the ``fractional part''). If the exponent of $x$ is too large
 compared to its precision (i.e.~$e>0$), the result is undefined and an error
 occurs if $e$ was not given.
 
 \misctitle{Important remark} Contrary to the other truncation functions,
 this function operates on every coefficient at every level of a PARI object.
 For example
 $$\text{truncate}\left(\dfrac{2.4*X^2-1.7}{X}\right)=2.4*X,$$
 whereas
 $$\text{round}\left(\dfrac{2.4*X^2-1.7}{X}\right)=\dfrac{2*X^2-2}{X}.$$
 An important use of \kbd{round} is to get exact results after an approximate
 computation, when theory tells you that the coefficients must be integers.
Variant: Also available are \fun{GEN}{grndtoi}{GEN x, long *e} and
 \fun{GEN}{ground}{GEN x}.

Function: select
Class: basic
Section: programming/specific
C-Name: select0
Prototype: GG
Help: select(f, A): selects elements of A according to the selection function f.
Wrapper: (bG)
Description: 
  (gen,gen):gen    genselect(${1 cookie}, ${1 wrapper}, $2)
Doc: Given a vector, list or matrix \kbd{A} and a \typ{CLOSURE} \kbd{f},
 returns the elements $x$ of \kbd{A} such that $f(x)$ is non-zero. In other
 words, \kbd{f} is seen as a selection function returning a boolean value.
 \bprog
 ? select(x->isprime(x), vector(50,i,i^2+1))
 %1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
 ? select(x->(x<100), %)
 %2 = [2, 5, 17, 37]
 @eprog\noindent returns the primes of the form $i^2+1$ for some $i\leq 50$,
 then the elements less than 100 in the preceding result. The following
 function lists the elements in $(\Z/N\Z)^*$:
 \bprog
 ? invertibles(N) = select(x->gcd(x,N) == 1, vector(N,i,i))
 @eprog
 
 \noindent Finally
 \bprog
 ? select(x->x, M)
 @eprog\noindent selects the non-0 entries in \kbd{M}. If the latter is a
 \typ{MAT}, we extract the matrix of non-0 columns. Note that \emph{removing}
 entries instead of selecting them just involves replacing the selection
 function \kbd{f} with its negation:
 \bprog
 ? select(x->!isprime(x), vector(50,i,i^2+1))
 @eprog
 
 \synt{genselect}{void *E, long (*fun)(void*,GEN), GEN a}.

Function: serconvol
Class: basic
Section: polynomials
C-Name: convol
Prototype: GG
Help: serconvol(x,y): convolution (or Hadamard product) of two power series.
Doc: convolution (or \idx{Hadamard product}) of the
 two power series $x$ and $y$; in other words if $x=\sum a_k*X^k$ and $y=\sum
 b_k*X^k$ then $\kbd{serconvol}(x,y)=\sum a_k*b_k*X^k$.

Function: serlaplace
Class: basic
Section: polynomials
C-Name: laplace
Prototype: G
Help: serlaplace(x): replaces the power series sum of a_n*x^n/n! by sum of
 a_n*x^n. For the reverse operation, use serconvol(x,exp(X)).
Doc: $x$ must be a power series with non-negative
 exponents. If $x=\sum (a_k/k!)*X^k$ then the result is $\sum a_k*X^k$.

Function: serreverse
Class: basic
Section: polynomials
C-Name: recip
Prototype: G
Help: serreverse(x): reversion of the power series x.
Doc: reverse power series (i.e.~$x^{-1}$, not $1/x$)
 of $x$. $x$ must be a power series whose valuation is exactly equal to one.

Function: setintersect
Class: basic
Section: linear_algebra
C-Name: setintersect
Prototype: GG
Help: setintersect(x,y): intersection of the sets x and y.
Description: 
 (vec, vec):vec        setintersect($1, $2)
Doc: intersection of the two sets $x$ and $y$ (see \kbd{setisset}).
 The function also works if both $x$ and $y$ are vectors of strictly increasing
 entries, according to \kbd{<}); in that case we return a vector of strictly
 increasing entries, not a set. Otherwise, the result is undefined.

Function: setisset
Class: basic
Section: linear_algebra
C-Name: setisset
Prototype: lG
Help: setisset(x): true(1) if x is a set (row vector with strictly
 increasing entries), false(0) if not.
Doc: 
 returns true (1) if $x$ is a set, false (0) if
 not. In PARI, a set is a row vector whose entries are strictly
 increasing \typ{STR}s. To convert any object into a set (this is most useful for
 vectors, of course), use the function \kbd{Set}.
 \bprog
 ? a = [3, 1, 1, 2];
 ? setisset(a)
 %2 = 0
 ? Set(a)
 %3 = ["1", "2", "3"]
 @eprog

Function: setminus
Class: basic
Section: linear_algebra
C-Name: setminus
Prototype: GG
Help: setminus(x,y): set of elements of x not belonging to y.
Description: 
 (vec, vec):vec        setminus($1, $2)
Doc: difference of the two sets $x$ and $y$ (see \kbd{setisset}),
 i.e.~set of elements of $x$ which do not belong to $y$.
 The function also works if both $x$ and $y$ are vectors of strictly increasing
 entries, according to \kbd{<}); in that case we return a vector of strictly
 increasing entries, not a set. Otherwise, the result is undefined.

Function: setrand
Class: basic
Section: programming/specific
C-Name: setrand
Prototype: vG
Help: setrand(n): reset the seed of the random number generator to n.
Doc: reseeds the random number generator using the seed $n$. No value is
 returned. The seed is either a technical array output by \kbd{getrand}, or a
 small positive integer, used to generate deterministically a suitable state
 array. For instance, running a randomized computation starting by
 \kbd{setrand(1)} twice will generate the exact same output.

Function: setsearch
Class: basic
Section: linear_algebra
C-Name: setsearch
Prototype: lGGD0,L,
Help: setsearch(S,x,{flag=0}): looks if x belongs to the set S. If flag is 0
 or omitted, returns 0 if it is not, otherwise returns the index j such that
 x==S[j]. If flag is non-zero, return 0 if x belongs to S, otherwise the
 index j where it should be inserted.
Doc: searches if $x$ belongs to the set $S$ (see \kbd{setisset}).
 A set is a vector of \typ{STR}, but this function
 works also if $S$ is a arbitrary \emph{sorted} vector or list (see
 \kbd{listsort}): if $x$ is not a \typ{STR}, we first
 replace it by \kbd{Str}$(x)$ \emph{unless} the first element of $S$ is also
 not a \typ{STR}.
 
 If $x$ belongs to the set and $\fl$ is zero or omitted, returns the
 index $j$ such that $S[j]=x$, otherwise returns 0. If $\fl$ is non-zero
 returns the index $j$ where $x$ should be inserted, and $0$ if it already
 belongs to $S$ (this is meant to be used in conjunction with
 \kbd{listinsert}, see below).
 \bprog
 ? T = [2,3,5,7]; S = Set(T);
 ? setsearch(S, 2)      \\ search in a true set, t_INT 2 converted to string
 %2 = 1
 ? setsearch(S, Str(2)) \\ search in a true set, no need for conversion
 %3 = 1
 ? setsearch(T, 2)      \\ search in a sorted vector, no need for conversion
 %4 = 1
 ? setsearch(T, Str(2)) \\ search in a sorted vector, t_STR "2" not found
 %5 = 0
 ? setsearch(S, 4)      \\ not found
 %6 = 0
 ? setsearch(S, 4, 1)   \\ should have been inserted at index 3
 %7 = 3
 @eprog

Function: setunion
Class: basic
Section: linear_algebra
C-Name: setunion
Prototype: GG
Help: setunion(x,y): union of the sets x and y.
Description: 
 (vec, vec):vec        setunion($1, $2)
Doc: union of the two sets $x$ and $y$ (see \kbd{setisset}).
 The function also works if both $x$ and $y$ are vectors of strictly increasing
 entries, according to \kbd{<}); in that case we return a vector of strictly
 increasing entries, not a set. Otherwise, the result is undefined.

Function: shift
Class: basic
Section: operators
C-Name: gshift
Prototype: GL
Help: shift(x,n): shift x left n bits if n>=0, right -n bits if
 n<0.
Doc: shifts $x$ componentwise left by $n$ bits if $n\ge0$ and right by $|n|$
 bits if $n<0$. May be abbreviated as $x$ \kbd{<<} $n$ or $x$ \kbd{>>} $(-n)$.
 A left shift by $n$ corresponds to multiplication by $2^n$. A right shift of an
 integer $x$ by $|n|$ corresponds to a Euclidean division of $x$ by $2^{|n|}$
 with a remainder of the same sign as $x$, hence is not the same (in general) as
 $x \kbd{\bs} 2^n$.

Function: shiftmul
Class: basic
Section: operators
C-Name: gmul2n
Prototype: GL
Help: shiftmul(x,n): multiply x by 2^n (n>=0 or n<0)
Doc: multiplies $x$ by $2^n$. The difference with
 \kbd{shift} is that when $n<0$, ordinary division takes place, hence for
 example if $x$ is an integer the result may be a fraction, while for shifts
 Euclidean division takes place when $n<0$ hence if $x$ is an integer the result
 is still an integer.

Function: sigma
Class: basic
Section: number_theoretical
C-Name: gsumdivk
Prototype: GD1,L,
Help: sigma(x,{k=1}): sum of the k-th powers of the divisors of x. k is
 optional and if omitted is assumed to be equal to 1.
Description: 
 (int, ?1):int           sumdiv($1)
 (int, 0):int            numbdiv($1)
 (gen, ?1):gen           gsumdiv($1)
 (gen, 0):gen            gnumbdiv($1)
 (int, small):int        sumdivk($1, $2)
 (gen, small):gen        gsumdivk($1, $2)
Doc: sum of the $k^{\text{th}}$ powers of the positive divisors of $|x|$. $x$
 and $k$ must be of type integer.
 The function accepts vector/matrices arguments for $x$, and is then applied
 componentwise.
Variant: Also available are
 \fun{GEN}{gsumdiv}{GEN n} ($k = 1$), \fun{GEN}{sumdivk}{GEN n,long k}
 ($n$ a \typ{INT}) and \fun{GEN}{sumdiv}{GEN n} ($k = 1$, $n$ a \typ{INT})

Function: sign
Class: basic
Section: operators
C-Name: gsigne
Prototype: iG
Help: sign(x): sign of x, of type integer, real or fraction
Description: 
 (mp):small          signe($1)
 (gen):small        gsigne($1)
Doc: \idx{sign} ($0$, $1$ or $-1$) of $x$, which must be of
 type integer, real or fraction.

Function: simplify
Class: basic
Section: conversions
C-Name: simplify
Prototype: G
Help: simplify(x): simplify the object x as much as possible.
Doc: 
 this function simplifies $x$ as much as it can. Specifically, a complex or
 quadratic number whose imaginary part is the integer 0 (i.e.~not \kbd{Mod(0,2)}
 or \kbd{0.E-28}) is converted to its real part, and a polynomial of degree $0$
 is converted to its constant term. Simplifications occur recursively.
 
 This function is especially useful before using arithmetic functions,
 which expect integer arguments:
 \bprog
 ? x = 2 + y - y
 %1 = 2
 ? isprime(x)
   ***   at top-level: isprime(x)
   ***                 ^----------
   *** isprime: not an integer argument in an arithmetic function
 ? type(x)
 %2 = "t_POL"
 ? type(simplify(x))
 %3 = "t_INT"
 @eprog
 Note that GP results are simplified as above before they are stored in the
 history. (Unless you disable automatic simplification with \b{y}, that is.)
 In particular
 \bprog
 ? type(%1)
 %4 = "t_INT"
 @eprog

Function: sin
Class: basic
Section: transcendental
C-Name: gsin
Prototype: Gp
Help: sin(x): sine of x.
Doc: sine of $x$.

Function: sinh
Class: basic
Section: transcendental
C-Name: gsh
Prototype: Gp
Help: sinh(x): hyperbolic sine of x.
Doc: hyperbolic sine of $x$.

Function: sizebyte
Class: basic
Section: conversions
C-Name: gsizebyte
Prototype: lG
Help: sizebyte(x): number of bytes occupied by the complete tree of the
 object x.
Doc: outputs the total number of bytes occupied by the tree representing the
 PARI object $x$.
Variant: Also available is \fun{long}{gsizeword}{GEN x} returning a
 number of \emph{words}.

Function: sizedigit
Class: basic
Section: conversions
C-Name: sizedigit
Prototype: lG
Help: sizedigit(x): maximum number of decimal digits minus one of (the
 coefficients of) x.
Doc: 
 outputs a quick bound for the number of decimal
 digits of (the components of) $x$, off by at most $1$. If you want the
 exact value, you can use \kbd{\#Str(x)}, which is slower.

Function: solve
Class: basic
Section: sums
C-Name: zbrent0
Prototype: V=GGEp
Help: solve(X=a,b,expr): real root of expression expr (X between a and b),
 where expr(a)*expr(b)<=0.
Wrapper: (,,G)
Description: 
  (gen,gen,gen):gen:prec zbrent(${3 cookie}, ${3 wrapper}, $1, $2, prec)
Doc: find a real root of expression
 \var{expr} between $a$ and $b$, under the condition
 $\var{expr}(X=a) * \var{expr}(X=b) \le 0$. (You will get an error message
 \kbd{roots must be bracketed in solve} if this does not hold.)
 This routine uses Brent's method and can fail miserably if \var{expr} is
 not defined in the whole of $[a,b]$ (try \kbd{solve(x=1, 2, tan(x))}).
 
 \synt{zbrent}{void *E,GEN (*eval)(void*,GEN),GEN a,GEN b,long prec}.

Function: sqr
Class: basic
Section: transcendental
C-Name: gsqr
Prototype: G
Help: sqr(x): square of x. NOT identical to x*x.
Description: 
 (int):int        sqri($1)
 (mp):mp          gsqr($1)
 (gen):gen        gsqr($1)
Doc: square of $x$. This operation is not completely
 straightforward, i.e.~identical to $x * x$, since it can usually be
 computed more efficiently (roughly one-half of the elementary
 multiplications can be saved). Also, squaring a $2$-adic number increases
 its precision. For example,
 \bprog
 ? (1 + O(2^4))^2
 %1 = 1 + O(2^5)
 ? (1 + O(2^4)) * (1 + O(2^4))
 %2 = 1 + O(2^4)
 @eprog\noindent
 Note that this function is also called whenever one multiplies two objects
 which are known to be \emph{identical}, e.g.~they are the value of the same
 variable, or we are computing a power.
 \bprog
 ? x = (1 + O(2^4)); x * x
 %3 = 1 + O(2^5)
 ? (1 + O(2^4))^4
 %4 = 1 + O(2^6)
 @eprog\noindent
 (note the difference between \kbd{\%2} and \kbd{\%3} above).

Function: sqrt
Class: basic
Section: transcendental
C-Name: gsqrt
Prototype: Gp
Help: sqrt(x): square root of x.
Description: 
 (real):gen           sqrtr($1)
 (gen):gen:prec       gsqrt($1, prec)
Doc: principal branch of the square root of $x$, defined as $\sqrt{x} =
 \exp(\log x / 2)$. In particular, we have
 $\text{Arg}(\text{sqrt}(x))\in{} ]-\pi/2, \pi/2]$, and if $x\in \R$ and $x<0$,
 then the result is complex with positive imaginary part.
 
 Intmod a prime $p$ and $p$-adics are allowed as arguments. In that case,
 the square root (if it exists) which is returned is the one whose
 first $p$-adic digit is in the interval $[0,p/2]$. When the argument is an
 intmod a non-prime (or a non-prime-adic), the result is undefined.
Variant: For a \typ{PADIC} $x$, the function
 \fun{GEN}{Qp_sqrt}{GEN x} is also available.

Function: sqrtint
Class: basic
Section: number_theoretical
C-Name: sqrtint
Prototype: G
Help: sqrtint(x): integer square root of x (x integer).
Description: 
 (gen):int sqrtint($1)
Doc: integer square root of $x$, which must be a non-negative integer. The
 result is non-negative and rounded towards zero.

Function: sqrtn
Class: basic
Section: transcendental
C-Name: gsqrtn
Prototype: GGD&p
Help: sqrtn(x,n,{&z}): nth-root of x, n must be integer. If present, z is
 set to a suitable root of unity to recover all solutions. If it was not
 possible, z is set to zero.
Doc: principal branch of the $n$th root of $x$,
 i.e.~such that $\text{Arg}(\text{sqrt}(x))\in{} ]-\pi/n, \pi/n]$. Intmod
 a prime and $p$-adics are allowed as arguments.
 
 If $z$ is present, it is set to a suitable root of unity allowing to
 recover all the other roots. If it was not possible, z is
 set to zero. In the case this argument is present and no square root exist,
 $0$ is returned instead or raising an error.
 \bprog
 ? sqrtn(Mod(2,7), 2)
 %1 = Mod(4, 7)
 ? sqrtn(Mod(2,7), 2, &z); z
 %2 = Mod(6, 7)
 ? sqrtn(Mod(2,7), 3)
   ***   at top-level: sqrtn(Mod(2,7),3)
   ***                 ^-----------------
   *** sqrtn: nth-root does not exist in gsqrtn.
 ? sqrtn(Mod(2,7), 3,  &z)
 %2 = 0
 ? z
 %3 = 0
 @eprog
 
 The following script computes all roots in all possible cases:
 \bprog
 sqrtnall(x,n)=
 { my(V,r,z,r2);
   r = sqrtn(x,n, &z);
   if (!z, error("Impossible case in sqrtn"));
   if (type(x) == "t_INTMOD" || type(x)=="t_PADIC" ,
   r2 = r*z; n = 1;
   while (r2!=r, r2*=z;n++));
   V = vector(n); V[1] = r;
   for(i=2, n, V[i] = V[i-1]*z);
   V
 }
 addhelp(sqrtnall,"sqrtnall(x,n):compute the vector of nth-roots of x");
 @eprog\noindent
Variant: If $x$ is a \typ{PADIC}, the function
 \fun{GEN}{Qp_sqrt}{GEN x, GEN n, GEN *z} is also available.

Function: stirling
Class: basic
Section: number_theoretical
C-Name: stirling
Prototype: LLD1,L,
Help: stirling(n,k,{flag=1}): If flag=1 (default) return the Stirling number
 of the first kind s(n,k), if flag=2, return the Stirling number of the second
 kind S(n,k).
Doc: \idx{Stirling number} of the first kind $s(n,k)$ ($\fl=1$, default) or
 of the second kind $S(n,k)$ (\fl=2), where $n$, $k$ are non-negative
 integers. The former is $(-1)^{n-k}$ times the
 number of permutations of $n$ symbols with exactly $k$ cycles; the latter is
 the number of ways of partitioning a set of $n$ elements into $k$ non-empty
 subsets. Note that if all $s(n,k)$ are needed, it is much faster to compute
 $$\sum_k s(n,k) x^k = x(x-1)\dots(x-n+1).$$
 Similarly, if a large number of $S(n,k)$ are needed for the same $k$,
 one should use
 $$\sum_n S(n,k) x^n = \dfrac{x^k}{(1-x)\dots(1-kx)}.$$
 (Should be implemented using a divide and conquer product.) Here are
 simple variants for $n$ fixed:
 \bprog
 /* list of s(n,k), k = 1..n */
 vecstirling(n) = Vec( factorback(vector(n-1,i,1-i*'x)) )
 
 /* list of S(n,k), k = 1..n */
 vecstirling2(n) =
 { my(Q = x^(n-1), t);
   vector(n, i, t = divrem(Q, x-i); Q=t[1]; t[2]);
 }
 @eprog
Variant: Also available are \fun{GEN}{stirling1}{ulong n, ulong k}
 ($\fl=1$) and \fun{GEN}{stirling2}{ulong n, ulong k} ($\fl=2$).

Function: subgrouplist
Class: basic
Section: number_fields
C-Name: subgrouplist0
Prototype: GDGD0,L,
Help: subgrouplist(bnr,{bound},{flag=0}): bnr being as output by bnrinit or
 a list of cyclic components of a finite Abelian group G, outputs the list of
 subgroups of G (of index bounded by bound, if not omitted), given as HNF
 left divisors of the SNF matrix corresponding to G. If flag=0 (default) and
 bnr is as output by bnrinit, gives only the subgroups for which the modulus
 is the conductor.
Doc: \var{bnr} being as output by \kbd{bnrinit} or a list of cyclic components
 of a finite Abelian group $G$, outputs the list of subgroups of $G$. Subgroups
 are given as HNF left divisors of the SNF matrix corresponding to $G$.
 
 If $\fl=0$ (default) and \var{bnr} is as output by \kbd{bnrinit}, gives
 only the subgroups whose modulus is the conductor. Otherwise, the modulus is
 not taken into account.
 
 If \var{bound} is present, and is a positive integer, restrict the output to
 subgroups of index less than \var{bound}. If \var{bound} is a vector
 containing a single positive integer $B$, then only subgroups of index
 exactly equal to $B$ are computed. For instance
 \bprog
 ? subgrouplist([6,2])
 %1 = [[6, 0; 0, 2], [2, 0; 0, 2], [6, 3; 0, 1], [2, 1; 0, 1], [3, 0; 0, 2],
 [1, 0; 0, 2], [6, 0; 0, 1], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
 ? subgrouplist([6,2],3)    \\@com index less than 3
 %2 = [[2, 1; 0, 1], [1, 0; 0, 2], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
 ? subgrouplist([6,2],[3])  \\@com index 3
 %3 = [[3, 0; 0, 1]]
 ? bnr = bnrinit(bnfinit(x), [120,[1]], 1);
 ? L = subgrouplist(bnr, [8]);
 @eprog\noindent
 In the last example, $L$ corresponds to the 24 subfields of
 $\Q(\zeta_{120})$, of degree $8$ and conductor $120\infty$ (by setting \fl,
 we see there are a total of $43$ subgroups of degree $8$).
 \bprog
 ? vector(#L, i, galoissubcyclo(bnr, L[i]))
 @eprog\noindent
 will produce their equations. (For a general base field, you would
 have to rely on \tet{bnrstark}, or \tet{rnfkummer}.)

Function: subst
Class: basic
Section: polynomials
C-Name: gsubst
Prototype: GnG
Help: subst(x,y,z): in expression x, replace the variable y by the
 expression z.
Doc: replace the simple variable $y$ by the argument $z$ in the ``polynomial''
 expression $x$. Every type is allowed for $x$, but if it is not a genuine
 polynomial (or power series, or rational function), the substitution will be
 done as if the scalar components were polynomials of degree zero. In
 particular, beware that:
 
 \bprog
 ? subst(1, x, [1,2; 3,4])
 %1 =
 [1 0]
 
 [0 1]
 
 ? subst(1, x, Mat([0,1]))
   ***   at top-level: subst(1,x,Mat([0,1])
   ***                 ^--------------------
   *** subst: forbidden substitution by a non square matrix.
 @eprog\noindent
 If $x$ is a power series, $z$ must be either a polynomial, a power
 series, or a rational function. Finally, if $x$ is a vector,
 matrix or list, the substitution is applied to each individual entry.
 
 Use the function \kbd{substvec} to replace several variables at once,
 or the function \kbd{substpol} to replace a polynomial expression.

Function: substpol
Class: basic
Section: polynomials
C-Name: gsubstpol
Prototype: GGG
Help: substpol(x,y,z): in expression x, replace the polynomial y by the
 expression z, using remainder decomposition of x.
Doc: replace the ``variable'' $y$ by the argument $z$ in the ``polynomial''
 expression $x$. Every type is allowed for $x$, but the same behavior
 as \kbd{subst} above apply.
 
 The difference with \kbd{subst} is that $y$ is allowed to be any polynomial
 here. The substitution is done moding out all components of $x$
 (recursively) by $y - t$, where $t$ is a new free variable of lowest
 priority. Then substituting $t$ by $z$ in the resulting expression. For
 instance
 \bprog
 ? substpol(x^4 + x^2 + 1, x^2, y)
 %1 = y^2 + y + 1
 ? substpol(x^4 + x^2 + 1, x^3, y)
 %2 = x^2 + y*x + 1
 ? substpol(x^4 + x^2 + 1, (x+1)^2, y)
 %3 = (-4*y - 6)*x + (y^2 + 3*y - 3)
 @eprog
Variant: Further, \fun{GEN}{gdeflate}{GEN T, long v, long d} attempts to
 write $T(x)$ in the form $t(x^d)$, where $x=$\kbd{pol\_x}$(v)$, and returns
 \kbd{NULL} if the substitution fails (for instance in the example \kbd{\%2}
 above).

Function: substvec
Class: basic
Section: polynomials
C-Name: gsubstvec
Prototype: GGG
Help: substvec(x,v,w): in expression x, make a best effort to replace the
 variables v1,...,vn by the expression w1,...,wn.
Doc: $v$ being a vector of monomials of degree 1 (variables),
 $w$ a vector of expressions of the same length, replace in the expression
 $x$ all occurrences of $v_i$ by $w_i$. The substitutions are done
 simultaneously; more precisely, the $v_i$ are first replaced by new
 variables in $x$, then these are replaced by the $w_i$:
 
 \bprog
 ? substvec([x,y], [x,y], [y,x])
 %1 = [y, x]
 ? substvec([x,y], [x,y], [y,x+y])
 %2 = [y, x + y]     \\ not [y, 2*y]
 @eprog

Function: sum
Class: basic
Section: sums
C-Name: somme
Prototype: V=GGEDG
Help: sum(X=a,b,expr,{x=0}): x plus the sum (X goes from a to b) of
 expression expr.
Doc: sum of expression \var{expr},
 initialized at $x$, the formal parameter going from $a$ to $b$. As for
 \kbd{prod}, the initialization parameter $x$ may be given to force the type
 of the operations being performed.
 
 \noindent As an extreme example, compare
 
 \bprog
 ? sum(i=1, 10^4, 1/i); \\@com rational number: denominator has $4345$ digits.
 time = 236 ms.
 ? sum(i=1, 5000, 1/i, 0.)
 time = 8 ms.
 %2 = 9.787606036044382264178477904
 @eprog
 
 \synt{somme}{GEN a, GEN b, char *expr, GEN x}.

Function: sumalt
Class: basic
Section: sums
C-Name: sumalt0
Prototype: V=GED0,L,p
Help: sumalt(X=a,expr,{flag=0}): Cohen-Villegas-Zagier's acceleration of
 alternating series expr, X starting at a. flag is optional, and can be 0:
 default, or 1: uses a slightly different method using Zagier's polynomials.
Wrapper: (,G)
Description: 
  (gen,gen,?0):gen:prec sumalt(${2 cookie}, ${2 wrapper}, $1, prec)
  (gen,gen,1):gen:prec sumalt2(${2 cookie}, ${2 wrapper}, $1, prec)
Doc: numerical summation of the series \var{expr}, which should be an
 \idx{alternating series}, the formal variable $X$ starting at $a$. Use an
 algorithm of Cohen, Villegas and Zagier (\emph{Experiment. Math.} {\bf 9}
 (2000), no.~1, 3--12).
 
 If $\fl=1$, use a variant with slightly different polynomials. Sometimes
 faster.
 
 The routine is heuristic and a rigorous proof assumes that the values of
 \var{expr} are the moments of a positive measure on $[0,1]$. Divergent
 alternating series can sometimes be summed by this method, as well as series
 which are not exactly alternating (see for example
 \secref{se:user_defined}). It should be used to try and guess the value of
 an infinite sum. (However, see the example at the end of
 \secref{se:userfundef}.)
 
 If the series already converges geometrically,
 \tet{suminf} is often a better choice:
 \bprog
 ? \p28
 ? sumalt(i = 1, -(-1)^i / i)  - log(2)
 time = 0 ms.
 %1 = -2.524354897 E-29
 ? suminf(i = 1, -(-1)^i / i)   \\@com Had to hit <C-C>
   ***   at top-level: suminf(i=1,-(-1)^i/i)
   ***                                ^------
   *** suminf: user interrupt after 10min, 20,100 ms.
 ? \p1000
 ? sumalt(i = 1, -(-1)^i / i)  - log(2)
 time = 90 ms.
 %2 = 4.459597722 E-1002
 
 ? sumalt(i = 0, (-1)^i / i!) - exp(-1)
 time = 670 ms.
 %3 = -4.03698781490633483156497361352190615794353338591897830587 E-944
 ? suminf(i = 0, (-1)^i / i!) - exp(-1)
 time = 110 ms.
 %4 = -8.39147638 E-1000   \\ @com faster and more accurate
 @eprog
 
 \synt{sumalt}{void *E, GEN (*eval)(void*,GEN),GEN a,long prec}. Also
 available is \tet{sumalt2} with the same arguments ($\fl = 1$).

Function: sumdedekind
Class: basic
Section: number_theoretical
C-Name: sumdedekind
Prototype: GG
Help: sumdedekind(h,k): Dedekind sum associated to h,k
Doc: returns the \idx{Dedekind sum} associated to the integers $h$ and $k$,
  corresponding to a fast implementation of
  \bprog
   s(h,k) = sum(n = 1, k-1, (n/k)*(frac(h*n/k) - 1/2))
  @eprog

Function: sumdiv
Class: basic
Section: sums
C-Name: divsum
Prototype: GVE
Help: sumdiv(n,X,expr): sum of expression expr, X running over the divisors
 of n.
Doc: sum of expression \var{expr} over the positive divisors of $n$.
 This function is a trivial wrapper essentially equivalent to
 \bprog
   D = divisors(n);
   for (i = 1, #D, X = D[i]; eval(expr))
 @eprog\noindent (except that \kbd{X} is lexically scoped to the \kbd{sumdiv}
 loop).
 Arithmetic functions like \tet{sigma} use the multiplicativity of the
 underlying expression to speed up the computation. Since there is no way to
 indicate that \var{expr} is multiplicative in $n$, specialized functions
 should always be preferred.
 %\syn{NO}

Function: suminf
Class: basic
Section: sums
C-Name: suminf0
Prototype: V=GEp
Help: suminf(X=a,expr): infinite sum (X goes from a to infinity) of real or
 complex expression expr.
Wrapper: (,G)
Description: 
  (gen,gen):gen:prec suminf(${2 cookie}, ${2 wrapper}, $1, prec)
Doc: \idx{infinite sum} of expression
 \var{expr}, the formal parameter $X$ starting at $a$. The evaluation stops
 when the relative error of the expression is less than the default precision
 for 3 consecutive evaluations. The expressions must always evaluate to a
 complex number.
 
 If the series converges slowly, make sure \kbd{realprecision} is low (even 28
 digits may be too much). In this case, if the series is alternating or the
 terms have a constant sign, \tet{sumalt} and \tet{sumpos} should be used
 instead.
 
 \bprog
 ? \p28
 ? suminf(i = 1, -(-1)^i / i)   \\@com Had to hit <C-C>
   ***   at top-level: suminf(i=1,-(-1)^i/i)
   ***                                ^------
   *** suminf: user interrupt after 10min, 20,100 ms.
 ? sumalt(i = 1, -(-1)^i / i) - log(2)
 time = 0 ms.
 %1 = -2.524354897 E-29
 @eprog
 
 \synt{suminf}{void *E, GEN (*eval)(void*,GEN), GEN a, long prec}.

Function: sumnum
Class: basic
Section: sums
C-Name: sumnum0
Prototype: V=GGEDGD0,L,p
Help: sumnum(X=a,sig,expr,{tab},{flag=0}): numerical summation of expr from
 X = ceiling(a) to +infinity. sig is either a scalar or a two-component vector
 coding the function's decrease rate at infinity. It is assumed that the
 scalar part of sig is to the right of all poles of expr. If present, tab
 must be initialized by sumnuminit. If flag is nonzero, assumes that
 conj(expr(z)) = expr(conj(z)).
Wrapper: (,,G)
Description: 
  (gen,gen,gen,?gen,?small):gen:prec sumnum(${3 cookie}, ${3 wrapper}, $1, $2, $4, $5, prec)
Doc: numerical summation of \var{expr}, the variable $X$ taking integer values
 from ceiling of $a$ to $+\infty$, where \var{expr} is assumed to be a
 holomorphic function $f(X)$ for $\Re(X)\ge \sigma$.
 
 The parameter $\sigma\in\R$ is coded in the argument \kbd{sig} as follows: it
 is either
 
 \item a real number $\sigma$. Then the function $f$ is assumed to
 decrease at least as $1/X^2$ at infinity, but not exponentially;
 
 \item a two-component vector $[\sigma,\alpha]$, where $\sigma$ is as
 before, $\alpha < -1$. The function $f$ is assumed to decrease like
 $X^{\alpha}$. In particular, $\alpha\le-2$ is equivalent to no $\alpha$ at all.
 
 \item a two-component vector $[\sigma,\alpha]$, where $\sigma$ is as
 before, $\alpha > 0$. The function $f$ is assumed to decrease like
 $\exp(-\alpha X)$. In this case it is essential that $\alpha$ be exactly the
 rate of exponential decrease, and it is usually a good idea to increase
 the default value of $m$ used for the integration step. In practice, if
 the function is exponentially decreasing \kbd{sumnum} is slower and less
 accurate than \kbd{sumpos} or \kbd{suminf}, so should not be used.
 
 The function uses the \tet{intnum} routines and integration on the line
 $\Re(s) = \sigma$. The optional argument \var{tab} is as in intnum, except it
 must be initialized with \kbd{sumnuminit} instead of \kbd{intnuminit}.
 
 When \var{tab} is not precomputed, \kbd{sumnum} can be slower than
 \kbd{sumpos}, when the latter is applicable. It is in general faster for
 slowly decreasing functions.
 
 Finally, if $\fl$ is nonzero, we assume that the function $f$ to be summed is
 of real type, i.e. satisfies $\overline{f(z)}=f(\overline{z})$, which
 speeds up the computation.
 
 \bprog
 ? \p 308
 ? a = sumpos(n=1, 1/(n^3+n+1));
 time = 1,410 ms.
 ? tab = sumnuminit(2);
 time = 1,620 ms. \\@com slower but done once and for all.
 ? b = sumnum(n=1, 2, 1/(n^3+n+1), tab);
 time = 460 ms. \\@com 3 times as fast as \kbd{sumpos}
 ? a - b
 %4 = -1.0... E-306 + 0.E-320*I \\@com perfect.
 ? sumnum(n=1, 2, 1/(n^3+n+1), tab, 1) - a; \\@com function of real type
 time = 240 ms.
 %2 = -1.0... E-306 \\@com twice as fast, no imaginary part.
 ? c = sumnum(n=1, 2, 1/(n^2+1), tab, 1);
 time = 170 ms. \\@com fast
 ? d = sumpos(n=1, 1 / (n^2+1));
 time = 2,700 ms. \\@com slow.
 ? d - c
 time = 0 ms.
 %5 = 1.97... E-306 \\@com perfect.
 @eprog
 
 For slowly decreasing function, we must indicate singularities:
 \bprog
 ? \p 308
 ? a = sumnum(n=1, 2, n^(-4/3));
 time = 9,930 ms. \\@com slow because of the computation of $n^{-4/3}$.
 ? a - zeta(4/3)
 time = 110 ms.
 %1 = -2.42... E-107 \\@com lost 200 decimals because of singularity at $\infty$
 ? b = sumnum(n=1, [2,-4/3], n^(-4/3), /*omitted*/, 1); \\@com of real type
 time = 12,210 ms.
 ? b - zeta(4/3)
 %3 = 1.05... E-300 \\@com better
 @eprog
 
 Since the \emph{complex} values of the function are used, beware of
 determination problems. For instance:
 \bprog
 ? \p 308
 ? tab = sumnuminit([2,-3/2]);
 time = 1,870 ms.
 ? sumnum(n=1,[2,-3/2], 1/(n*sqrt(n)), tab,1) - zeta(3/2)
 time = 690 ms.
 %1 = -1.19... E-305 \\@com fast and correct
 ? sumnum(n=1,[2,-3/2], 1/sqrt(n^3), tab,1) - zeta(3/2)
 time = 730 ms.
 %2 = -1.55... \\@com nonsense. However
 ? sumnum(n=1,[2,-3/2], 1/n^(3/2), tab,1) - zeta(3/2)
 time = 8,990 ms.
 %3 = -1.19... E-305 \\@com perfect, as $1/(n*\sqrt{n})$ above but much slower
 @eprog
 
 For exponentially decreasing functions, \kbd{sumnum} is given for
 completeness, but one of \tet{suminf} or \tet{sumpos} should always be
 preferred. If you experiment with such functions and \kbd{sumnum} anyway,
 indicate the exact rate of decrease and increase $m$ by $1$ or $2$:
 
 \bprog
 ? suminf(n=1, 2^(-n)) - 1
 time = 10 ms.
 %1 = -1.11... E-308 \\@com fast and perfect
 ? sumpos(n=1, 2^(-n)) - 1
 time = 10 ms.
 %2 = -2.78... E-308 \\@com also fast and perfect
 ? sumnum(n=1,2, 2^(-n)) - 1
 %3 = -1.321115060 E320 + 0.E311*I \\@com nonsense
 ? sumnum(n=1, [2,log(2)], 2^(-n), /*omitted*/, 1) - 1 \\@com of real type
 time = 5,860 ms.
 %4 = -1.5... E-236 \\@com slow and lost $70$ decimals
 ? m = intnumstep()
 %5 = 9
 ? sumnum(n=1,[2,log(2)], 2^(-n), m+1, 1) - 1
 time = 11,770 ms.
 %6 = -1.9... E-305 \\@com now perfect, but slow.
 @eprog
 
 \synt{sumnum}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN sig,GEN tab,long flag, long prec}.

Function: sumnumalt
Class: basic
Section: sums
C-Name: sumnumalt0
Prototype: V=GGEDGD0,L,p
Help: sumnumalt(X=a,sig,expr,{tab},{flag=0}): numerical summation of (-1)^X
 expr(X)
 from X = ceiling(a) to +infinity. Note that the (-1)^X must not be included.
 sig is either a scalar or a two-component vector coded as in intnum, and the
 scalar part is larger than all the real parts of the poles of expr. Uses intnum,
 hence tab is as in intnum. If flag is nonzero, assumes that the function to
 be summed satisfies conj(f(z))=f(conj(z)), and then up to twice faster.
Wrapper: (,,G)
Description: 
  (gen,gen,gen,?gen,?small):gen:prec sumnumalt(${3 cookie}, ${3 wrapper}, $1, $2, $4, $5, prec)
Doc: numerical
 summation of $(-1)^X\var{expr}(X)$, the variable $X$ taking integer values from
 ceiling of $a$ to $+\infty$, where \var{expr} is assumed to be a holomorphic
 function for $\Re(X)\ge sig$ (or $sig[1]$).
 
 \misctitle{Warning} This function uses the \kbd{intnum} routines and is
 orders of magnitude slower than \kbd{sumalt}. It is only given for
 completeness and should not be used in practice.
 
 \misctitle{Warning 2} The expression \var{expr} must \emph{not} include the
 $(-1)^X$ coefficient. Thus $\kbd{sumalt}(n=a,(-1)^nf(n))$ is (approximately)
 equal to $\kbd{sumnumalt}(n=a,sig,f(n))$.
 
 $sig$ is coded as in \kbd{sumnum}. However for slowly decreasing functions
 (where $sig$ is coded as $[\sigma,\alpha]$ with $\alpha<-1$), it is not
 really important to indicate $\alpha$. In fact, as for \kbd{sumalt}, the
 program will often give meaningful results (usually analytic continuations)
 even for divergent series. On the other hand the exponential decrease must be
 indicated.
 
 \var{tab} is as in \kbd{intnum}, but if used must be initialized with
 \kbd{sumnuminit}. If $\fl$ is nonzero, assumes that the function $f$ to be
 summed is of real type, i.e. satisfies $\overline{f(z)}=f(\overline{z})$, and
 then twice faster when \var{tab} is precomputed.
 
 \bprog
 ? \p 308
 ? tab = sumnuminit(2, /*omitted*/, -1); \\@com abscissa $\sigma=2$, alternating sums.
 time = 1,620 ms. \\@com slow, but done once and for all.
 ? a = sumnumalt(n=1, 2, 1/(n^3+n+1), tab, 1);
 time = 230 ms. \\@com similar speed to \kbd{sumnum}
 ? b = sumalt(n=1, (-1)^n/(n^3+n+1));
 time = 0 ms. \\@com infinitely faster!
 ? a - b
 time = 0 ms.
 %1 = -1.66... E-308 \\@com perfect
 @eprog
 
 \synt{sumnumalt}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN sig, GEN tab, long flag, long prec}.

Function: sumnuminit
Class: basic
Section: sums
C-Name: sumnuminit
Prototype: GD0,L,D1,L,p
Help: sumnuminit(sig, {m=0}, {sgn=1}): initialize tables for numerical
 summation. sgn is 1 (in fact >= 0), the default, for sumnum (ordinary sums)
 or -1 (in fact < 0) for sumnumalt (alternating sums). sig is as in sumnum and
 m is as in intnuminit.
Doc: initialize tables for numerical summation using \kbd{sumnum} (with
 $\var{sgn}=1$) or \kbd{sumnumalt} (with $\var{sgn}=-1$), $sig$ is the
 abscissa of integration coded as in \kbd{sumnum}, and $m$ is as in
 \kbd{intnuminit}.

Function: sumpos
Class: basic
Section: sums
C-Name: sumpos0
Prototype: V=GED0,L,p
Help: sumpos(X=a,expr,{flag=0}): sum of positive (or negative) series expr,
 the formal
 variable X starting at a. flag is optional, and can be 0: default, or 1:
 uses a slightly different method using Zagier's polynomials.
Wrapper: (,G)
Description: 
  (gen,gen,?0):gen:prec sumpos(${2 cookie}, ${2 wrapper}, $1, prec)
  (gen,gen,1):gen:prec sumpos2(${2 cookie}, ${2 wrapper}, $1, prec)
Doc: numerical summation of the series \var{expr}, which must be a series of
 terms having the same sign, the formal variable $X$ starting at $a$. The
 algorithm used is Van Wijngaarden's trick for converting such a series into
 an alternating one, then we use \tet{sumalt}. For regular functions, the
 function \kbd{sumnum} is in general much faster once the initializations
 have been made using \kbd{sumnuminit}.
 
 The routine is heuristic and assumes that \var{expr} is more or less a
 decreasing function of $X$. In particular, the result will be completely
 wrong if \var{expr} is 0 too often. We do not check either that all terms
 have the same sign. As \tet{sumalt}, this function should be used to
 try and guess the value of an infinite sum.
 
 If $\fl=1$, use slightly different polynomials. Sometimes faster.
 
 \synt{sumpos}{void *E, GEN (*eval)(void*,GEN),GEN a,long prec}. Also
 available is \tet{sumpos2} with the same arguments ($\fl = 1$).

Function: system
Class: gp
Section: programming/specific
C-Name: system0
Prototype: vs
Help: system(str): str being a string, execute the system command str.
Doc: \var{str} is a string representing a system command. This command is
 executed, its output written to the standard output (this won't get into your
 logfile), and control returns to the PARI system. This simply calls the C
 \kbd{system} command.

Function: tan
Class: basic
Section: transcendental
C-Name: gtan
Prototype: Gp
Help: tan(x): tangent of x.
Doc: tangent of $x$.

Function: tanh
Class: basic
Section: transcendental
C-Name: gth
Prototype: Gp
Help: tanh(x): hyperbolic tangent of x.
Doc: hyperbolic tangent of $x$.

Function: taylor
Class: basic
Section: polynomials
C-Name: tayl
Prototype: GnDP
Help: taylor(x,t,{d=seriesprecision}): taylor expansion of x with respect to
 t, adding O(t^d) to all components of x.
Doc: Taylor expansion around $0$ of $x$ with respect to
 the simple variable $t$. $x$ can be of any reasonable type, for example a
 rational function. Contrary to \tet{Ser}, which takes the valuation into
 account, this function adds $O(t^d)$ to all components of $x$.
 \bprog
 ? taylor(x/(1+y), y, 5)
 %1 = (y^4 - y^3 + y^2 - y + 1)*x + O(y^5)
 ? Ser(x/(1+y), y, 5)
  ***   at top-level: Ser(x/(1+y),y,5)
  ***                 ^----------------
  *** Ser: main variable must have higher priority in gtoser.
 @eprog

Function: teichmuller
Class: basic
Section: transcendental
C-Name: teich
Prototype: G
Help: teichmuller(x): teichmuller character of p-adic number x.
Doc: Teichm\"uller character of the $p$-adic number $x$, i.e. the unique
 $(p-1)$-th root of unity congruent to $x / p^{v_p(x)}$ modulo $p$.

Function: theta
Class: basic
Section: transcendental
C-Name: theta
Prototype: GGp
Help: theta(q,z): Jacobi sine theta-function.
Doc: Jacobi sine theta-function
 $$ \theta_1(z, q) = 2q^{1/4} \sum_{n\geq 0} (-1)^n q^{n(n+1)} \sin((2n+1)z).$$

Function: thetanullk
Class: basic
Section: transcendental
C-Name: thetanullk
Prototype: GLp
Help: thetanullk(q,k): k'th derivative at z=0 of theta(q,z).
Doc: $k$-th derivative at $z=0$ of $\kbd{theta}(q,z)$.
Variant: 
 \fun{GEN}{vecthetanullk}{GEN q, long k, long prec} returns the vector
 of all $\dfrac{d^i\theta}{dz^i}(q,0)$ for all odd $i = 1, 3, \dots, 2k-1$.

Function: thue
Class: basic
Section: polynomials
C-Name: thue
Prototype: GGDG
Help: thue(tnf,a,{sol}): solve the equation P(x,y)=a, where tnf was created
 with thueinit(P), and sol, if present, contains the solutions of Norm(x)=a
 modulo units in the number field defined by P. If tnf was computed without
 assuming GRH (flag 1 in thueinit), the result is unconditional.
Doc: returns all solutions of the equation
 $P(x,y)=a$ in integers $x$ and $y$, where \var{tnf} was created with
 $\kbd{thueinit}(P)$. If present, \var{sol} must contain the solutions of
 $\Norm(x)=a$ modulo units of positive norm in the number field
 defined by $P$ (as computed by \kbd{bnfisintnorm}). If there are infinitely
 many solutions, an error will be issued.
 
 If \var{tnf} was computed without assuming GRH (flag $1$ in \tet{thueinit}),
 then the result is unconditional. Otherwise, it depends in principle of the
 truth of the GRH, but may still be unconditionally correct in some
 favourable cases. The result is conditional on the GRH if
 $a\neq \pm 1$ and, $P$ has a single irreducible rational factor, whose
 associated tentative class number $h$ and regulator $R$ (as computed
 assuming the GRH) satisfy
 
 \item $h > 1$,
 
 \item $R/0.2 > 1.5$.
 
 Here's how to solve the Thue equation $x^{13} - 5y^{13} = - 4$:
 \bprog
 ? tnf = thueinit(x^13 - 5);
 ? thue(tnf, -4)
 %1 = [[1, 1]]
 @eprog
 Hence, the only solution is $(x,y) = (1,1)$, and the result is
 unconditional. On the other hand:
 \bprog
 ? P = x^3-2*x^2+3*x-17; tnf = thueinit(P);
 ? thue(tnf, -15)
 %2 = [[1, 1]]  \\ a priori conditional on the GRH.
 ? K = bnfinit(P); K.no
 %3 = 3
 ? K.ref
 %4 = 2.8682185139262873674706034475498755834
 @eprog
 This time the result is conditional. All results computed using this
 particular \var{tnf} are likewise conditional, \emph{except} for a right-hand
 side of $\pm 1$.
 The above result is in fact correct, so we did not just disprove the GRH:
 \bprog
 ? tnf = thueinit(x^3-2*x^2+3*x-17, 1 /*unconditional*/);
 ? thue(tnf, -15)
 %4 = [[1, 1]]
 @eprog
 Note that reducible or non-monic polynomials are allowed:
 \bprog
 ? tnf = thueinit((2*x+1)^5 * (4*x^3-2*x^2+3*x-17), 1);
 ? thue(tnf, 128)
 %2 = [[-1, 0], [1, 0]]
 @eprog\noindent Reducible polynomials are in fact much easier to handle.

Function: thueinit
Class: basic
Section: polynomials
C-Name: thueinit
Prototype: GD0,L,p
Help: thueinit(P,{flag=0}): initialize the tnf corresponding to P, that will
 be used to solve Thue equations P(x,y) = some-integer. If flag is non-zero,
 certify the result unconditionnaly. Otherwise, assume GRH (much faster of
 course).
Doc: initializes the \var{tnf} corresponding to $P$, a univariate polynomial
 with integer coefficients. The result is meant to be used in conjunction with
 \tet{thue} to solve Thue equations $P(X / Y)Y^{\deg P} = a$, where $a$ is an
 integer.
 
 If $\fl$ is non-zero, certify results unconditionally. Otherwise, assume
 \idx{GRH}, this being much faster of course. In the latter case, the result
 may still be unconditionally correct, see \tet{thue}. For instance in most
 cases where $P$ is reducible (not a pure power of an irreducible), \emph{or}
 conditional computed class groups are trivial \emph{or} the right hand side
 is $\pm1$, then results are always unconditional.

Function: trace
Class: basic
Section: linear_algebra
C-Name: gtrace
Prototype: G
Help: trace(x): trace of x.
Doc: this applies to quite general $x$. If $x$ is not a
 matrix, it is equal to the sum of $x$ and its conjugate, except for polmods
 where it is the trace as an algebraic number.
 
 For $x$ a square matrix, it is the ordinary trace. If $x$ is a
 non-square matrix (but not a vector), an error occurs.

Function: trap
Class: basic
Section: programming/specific
C-Name: trap0
Prototype: DrDEDE
Help: trap({e}, {rec}, seq): try to execute seq, trapping runtime error e (all
 of them if e ommitted); sequence rec is executed if the error occurs and
 is the result of the command.
Wrapper: (,_,_)
Description: 
 (?str,?closure,?closure):gen trap0($1, $2, $3)
Doc: tries to
 evaluate \var{seq}, trapping runtime error $e$, that is effectively preventing
 it from aborting computations in the usual way; the recovery sequence
 \var{rec} is executed if the error occurs and the evaluation of \var{rec}
 becomes the result of the command. If $e$ is omitted, all exceptions are
 trapped. See \secref{se:errorrec} for an introduction to error recovery
 under \kbd{gp}.
 
 \bprog
 ? \\@com trap division by 0
 ? inv(x) = trap (gdiver, INFINITY, 1/x)
 ? inv(2)
 %1 = 1/2
 ? inv(0)
 %2 = INFINITY
 @eprog\noindent
 Note that \var{seq} is effectively evaluated up to the point that produced
 the error, and the recovery sequence is evaluated starting from that same
 context, it does not "undo" whatever happened in the other branch (restore
 the evaluation context):
 \bprog
 ? x = 1; trap (, /* recover: */ x, /* try: */ x = 0; 1/x)
 %1 = 0
 @eprog
 
 \misctitle{Note} The interface is currently not adequate for trapping
 individual exceptions. In the current version \vers, the following keywords
 are recognized, but the name list will be expanded and changed in the
 future (all library mode errors can be trapped: it's a matter of defining
 the keywords to \kbd{gp}):
 
 \kbd{alarmer}: alarm time-out
 
 \kbd{archer}: not available on this architecture or operating system
 
 \kbd{errpile}: the PARI stack overflows
 
 \kbd{gdiver}: division by 0
 
 \kbd{impl}: not yet implemented
 
 \kbd{invmoder}: impossible inverse modulo
 
 \kbd{overflower}: all forms of arithmetic overflow, including length
 or exponent overflow (when a larger value is supplied than the
 implementation can handle).
 
 \kbd{syntaxer}: syntax error
 
 \kbd{talker}: miscellaneous error
 
 \kbd{typeer}: wrong type
 
 \kbd{user}: user error (from the \kbd{error} function)

Function: truncate
Class: basic
Section: conversions
C-Name: trunc0
Prototype: GD&
Help: truncate(x,{&e}): truncation of x; when x is a power series,take away
 the O(X^). If e is present, do not take into account loss of integer part
 precision, and set e = error estimate in bits.
Description: 
 (small):small:parens   $1
 (int):int:copy:parens  $1
 (real):int             truncr($1)
 (mp):int               mptrunc($1)
 (mp, &small):int       gcvtoi($1, &$2)
 (mp, &int):int         trunc0($1, &$2)
 (gen):gen              gtrunc($1)
 (gen, &small):gen      gcvtoi($1, &$2)
 (gen, &int):gen        trunc0($1, &$2)
Doc: truncates $x$ and sets $e$ to the number of
 error bits. When $x$ is in $\R$, this means that the part after the decimal
 point is chopped away, $e$ is the binary exponent of the difference between
 the original and the truncated value (the ``fractional part''). If the
 exponent of $x$ is too large compared to its precision (i.e.~$e>0$), the
 result is undefined and an error occurs if $e$ was not given. The function
 applies componentwise on vector / matrices; $e$ is then the maximal number of
 error bits. If $x$ is a rational function, the result is the ``integer part''
 (Euclidean quotient of numerator by denominator) and $e$ is not set.
 
 Note a very special use of \kbd{truncate}: when applied to a power series, it
 transforms it into a polynomial or a rational function with denominator
 a power of $X$, by chopping away the $O(X^k)$. Similarly, when applied to
 a $p$-adic number, it transforms it into an integer or a rational number
 by chopping away the $O(p^k)$.
Variant: The following functions are also available: \fun{GEN}{gtrunc}{GEN x}
 and \fun{GEN}{gcvtoi}{GEN x, long *e}.

Function: type
Class: basic
Section: programming/specific
C-Name: type0
Prototype: G
Help: type(x): return the type of the GEN x.
Description: 
 (gen):typ              typ($1)
Doc: this is useful only under \kbd{gp}. Returns the internal type name of
 the PARI object $x$ as a  string. Check out existing type names with the
 metacommand \b{t}. For example \kbd{type(1)} will return "\typ{INT}".
Variant: The macro \kbd{typ} is usually simpler to use since it returns a
 \kbd{long} that can easily be matched with the symbols \typ{*}. The name
 \kbd{type} was avoided since it is a reserved identifier for some compilers.

Function: unclone
Class: gp2c
Description: 
 (small):void   (void)0 /*unclone*/
 (gen):void     gunclone($1)

Function: until
Class: basic
Section: programming/control
C-Name: untilpari
Prototype: vEI
Help: until(a,seq): evaluate the expression sequence seq until a is nonzero.
Doc: evaluates \var{seq} until $a$ is not
 equal to 0 (i.e.~until $a$ is true). If $a$ is initially not equal to 0,
 \var{seq} is evaluated once (more generally, the condition on $a$ is tested
 \emph{after} execution of the \var{seq}, not before as in \kbd{while}).

Function: valuation
Class: basic
Section: conversions
C-Name: ggval
Prototype: lGG
Help: valuation(x,p): valuation of x with respect to p.
Doc: 
 computes the highest
 exponent of $p$ dividing $x$. If $p$ is of type integer, $x$ must be an
 integer, an intmod whose modulus is divisible by $p$, a fraction, a
 $q$-adic number with $q=p$, or a polynomial or power series in which case the
 valuation is the minimum of the valuation of the coefficients.
 
 If $p$ is of type polynomial, $x$ must be of type polynomial or rational
 function, and also a power series if $x$ is a monomial. Finally, the
 valuation of a vector, complex or quadratic number is the minimum of the
 component valuations.
 
 If $x=0$, the result is \tet{LONG_MAX} ($2^{31}-1$ for 32-bit machines or
 $2^{63}-1$ for 64-bit machines) if $x$ is an exact object. If $x$ is a
 $p$-adic numbers or power series, the result is the exponent of the zero.
 Any other type combinations gives an error.

Function: variable
Class: basic
Section: conversions
C-Name: gpolvar
Prototype: DG
Help: variable({x}): main variable of object x. Gives p for p-adic x, error
 for scalars. Returns the list of user variables if x is omitted.
Description: 
 (pol):var:parens:copy        $var:1
 (gen):gen        gpolvar($1)
Doc: 
 gives the main variable of the object $x$, and
 $p$ if $x$ is a $p$-adic number. Gives an error if $x$ has no variable
 associated to it. If $x$ is omitted, returns the list of user variables known
 to the interpreter, by order of decreasing priority. (Highest priority is $x$,
 which always come first.)
Variant: However, in library mode, this function should not be used for $x$
 non-\kbd{NULL}, since \tet{gvar} is more appropriate. Instead, for
 $x$ a $p$-adic (type \typ{PADIC}), $p$ is $gel(x,2)$; otherwise, use
 \fun{long}{gvar}{GEN x} which returns the variable number of $x$ if
 it exists, \kbd{NO\_VARIABLE} otherwise, which satisfies the property
 $\kbd{varncmp}(\kbd{NO\_VARIABLE}, v) > 0$ for all valid variable number
 $v$, i.e. it has lower priority than any variable.

Function: vecextract
Class: basic
Section: linear_algebra
C-Name: extract0
Prototype: GGDG
Help: vecextract(x,y,{z}): extraction of the components of the matrix or
 vector x according to y and z. If z is omitted, y represents columns, otherwise
 y corresponds to rows and z to columns. y and z can be vectors (of indices),
 strings (indicating ranges as in "1..10") or masks (integers whose binary
 representation indicates the indices to extract, from left to right 1, 2, 4,
 8, etc.).
Description: 
 (vec,gen,?gen):vec  extract0($1, $2, $3)
Doc: extraction of components of the
 vector or matrix $x$ according to $y$. In case $x$ is a matrix, its
 components are as usual the \emph{columns} of $x$. The parameter $y$ is a
 component specifier, which is either an integer, a string describing a
 range, or a vector.
 
 If $y$ is an integer, it is considered as a mask: the binary bits of $y$ are
 read from right to left, but correspond to taking the components from left to
 right. For example, if $y=13=(1101)_2$ then the components 1,3 and 4 are
 extracted.
 
 If $y$ is a vector, which must have integer entries, these entries correspond
 to the component numbers to be extracted, in the order specified.
 
 If $y$ is a string, it can be
 
 \item a single (non-zero) index giving a component number (a negative
 index means we start counting from the end).
 
 \item a range of the form \kbd{"$a$..$b$"}, where $a$ and $b$ are
 indexes as above. Any of $a$ and $b$ can be omitted; in this case, we take
 as default values $a = 1$ and $b = -1$, i.e.~ the first and last components
 respectively. We then extract all components in the interval $[a,b]$, in
 reverse order if $b < a$.
 
 In addition, if the first character in the string is \kbd{\pow}, the
 complement of the given set of indices is taken.
 
 If $z$ is not omitted, $x$ must be a matrix. $y$ is then the \emph{line}
 specifier, and $z$ the \emph{column} specifier, where the component specifier
 is as explained above.
 
 \bprog
 ? v = [a, b, c, d, e];
 ? vecextract(v, 5)          \\@com mask
 %1 = [a, c]
 ? vecextract(v, [4, 2, 1])  \\@com component list
 %2 = [d, b, a]
 ? vecextract(v, "2..4")     \\@com interval
 %3 = [b, c, d]
 ? vecextract(v, "-1..-3")   \\@com interval + reverse order
 %4 = [e, d, c]
 ? vecextract(v, "^2")       \\@com complement
 %5 = [a, c, d, e]
 ? vecextract(matid(3), "2..", "..")
 %6 =
 [0 1 0]
 
 [0 0 1]
 @eprog

Function: vecmax
Class: basic
Section: operators
C-Name: vecmax
Prototype: G
Help: vecmax(x): maximum of the elements of the vector/matrix x
Description: 
  (vecsmall):small vecsmall_max($1)
  (gen):gen        vecmax($1)
Doc: if $x$ is a vector or a matrix, returns the maximum
 of the elements of $x$, otherwise returns a copy of $x$. Error if $x$ is
 empty.

Function: vecmin
Class: basic
Section: operators
C-Name: vecmin
Prototype: G
Help: vecmin(x): minimum of the elements of the vector/matrix x
Description: 
  (vecsmall):small vecsmall_min($1)
  (gen):gen        vecmin($1)
Doc: if $x$ is a vector or a matrix, returns the minimum
 of the elements of $x$, otherwise returns a copy of $x$. Error if $x$ is
 empty.

Function: vecsort
Class: basic
Section: linear_algebra
C-Name: vecsort0
Prototype: GDGD0,L,
Help: vecsort(x,{cmp},{flag=0}): sorts the vector of vectors (or matrix) x in
 ascending order, according to the comparison function cmp, if not omitted.
 (If cmp is an integer, sort according to the value of the k-th component
 of each entry.) Binary digits of flag (if present) mean: 1: indirect sorting,
 return the permutation instead of the permuted vector, 2: sort using
 lexicographic order, 4: use descending instead of ascending order, 8: remove
 duplicate entries.
Description: 
 (vecsmall,?gen):vecsmall       vecsort0($1, $2, 0)
 (vecsmall,?gen,small):vecsmall vecsort0($1, $2, $3)
 (vec, , ?0):vec                sort($1)
 (vec, , 1):vecsmall            indexsort($1)
 (vec, , 2):vec                 lexsort($1)
 (vec, gen):vec                 vecsort0($1, $2, 0)
 (vec, ?gen, 1):vecsmall        vecsort0($1, $2, 1)
 (vec, ?gen, 3):vecsmall        vecsort0($1, $2, 3)
 (vec, ?gen, 5):vecsmall        vecsort0($1, $2, 5)
 (vec, ?gen, 7):vecsmall        vecsort0($1, $2, 7)
 (vec, ?gen, 9):vecsmall        vecsort0($1, $2, 9)
 (vec, ?gen, 11):vecsmall       vecsort0($1, $2, 11)
 (vec, ?gen, 13):vecsmall       vecsort0($1, $2, 13)
 (vec, ?gen, 15):vecsmall       vecsort0($1, $2, 15)
 (vec, ?gen, #small):vec        vecsort0($1, $2, $3)
 (vec, ?gen, small):gen         vecsort0($1, $2, $3)
Doc: sorts the vector $x$ in ascending order, using a mergesort method.
 $x$ must be a list, vector or matrix (seen as a vector of its columns).
 Note that mergesort is stable, hence the initial ordering of ``equal''
 entries (with respect to the sorting criterion) is not changed.
 
 If \kbd{cmp} is omitted, we use the standard comparison function
 \kbd{<}, thereby restricting the possible types for the elements of $x$
 (integers, fractions or reals). If \kbd{cmp} is present, it is understood as
 a comparison function and we sort according to it. The following
 possibilities exist:
 
 \item an integer $k$: sort according to the value of the $k$-th
 subcomponents of the components of~$x$.
 
 \item a vector: sort lexicographically according to the components listed in
 the vector. For example, if $\kbd{cmp}=\kbd{[2,1,3]}$, sort with respect to
 the second component, and when these are equal, with respect to the first,
 and when these are equal, with respect to the third.
 
 \item a comparison function (\typ{CLOSURE}), with two arguments $x$ and $y$,
 and returning an integer which is $<0$, $>0$ or $=0$ if $x<y$, $x>y$ or
 $x=y$ respectively. The \tet{sign} function is very useful in this context:
 \bprog
 ? vecsort([3,0,2; 1,0,2],lex) \\ sort columns according to lex order
 %1 =
 [2 3]
 
 [2 1]
 ? vecsort(v, (x,y)->sign(y-x))            \\@com reverse sort
 ? vecsort(v, (x,y)->sign(abs(x)-abs(y)))  \\@com sort by increasing absolute value
 ? cmp(x,y) = my(dx = poldisc(x), dy = poldisc(y)); sign(abs(dx) - abs(dy))
 ? vecsort([x^2+1, x^3-2, x^4+5*x+1], cmp)
 @eprog\noindent
 The last example used the named \kbd{cmp} instead of an anonymous function,
 and sorts polynomials with respect to the absolute value of their
 discriminant. A more efficient approach would use precomputations to ensure
 a given discriminant is computed only once:
 \bprog
 ? DISC = vector(#v, i, abs(poldisc(v[i])));
 ? perm = vecsort(vector(#v,i,i), (x,y)->sign(DISC[x]-DISC[y]))
 ? vecextract(v, perm)
 @eprog\noindent Similar ideas apply whenever we sort according to the values
 of a function which is expensive to compute.
 
 \noindent The binary digits of \fl\ mean:
 
 \item 1: indirect sorting of the vector $x$, i.e.~if $x$ is an
 $n$-component vector, returns a permutation of $[1,2,\dots,n]$ which
 applied to the components of $x$ sorts $x$ in increasing order.
 For example, \kbd{vecextract(x, vecsort(x,,1))} is equivalent to
 \kbd{vecsort(x)}.
 
 \item 2: sorts $x$ by ascending lexicographic order (as per the
 \kbd{lex} comparison function).
 
 \item 4: use descending instead of ascending order.
 
 \item 8: remove ``duplicate'' entries with respect to the sorting function
 (keep the first occurring entry).  For example:
 \bprog
   ? vecsort([Pi,Mod(1,2),z], (x,y)->0, 8)   \\@com make everything compare equal
   %1 = [3.141592653589793238462643383]
   ? vecsort([[2,3],[0,1],[0,3]], 2, 8)
   %2 = [[0, 1], [2, 3]]
 @eprog

Function: vector
Class: basic
Section: linear_algebra
C-Name: vecteur
Prototype: GDVDE
Help: vector(n,{X},{expr=0}): row vector with n components of expression
 expr (X ranges from 1 to n). By default, fill with 0s.
Doc: creates a row vector (type
 \typ{VEC}) with $n$ components whose components are the expression
 \var{expr} evaluated at the integer points between 1 and $n$. If one of the
 last two arguments is omitted, fill the vector with zeroes.
 
 Avoid modifying $X$ within \var{expr}; if you do, the formal variable
 still runs from $1$ to $n$. In particular, \kbd{vector(n,i,expr)} is not
 equivalent to
 \bprog
 v = vector(n)
 for (i = 1, n, v[i] = expr)
 @eprog\noindent
 as the following example shows:
 \bprog
 n = 3
 v = vector(n); vector(n, i, i++)            ----> [2, 3, 4]
 v = vector(n); for (i = 1, n, v[i] = i++)   ----> [2, 0, 4]
 @eprog\noindent
 %\syn{NO}

Function: vectorsmall
Class: basic
Section: linear_algebra
C-Name: vecteursmall
Prototype: GDVDE
Help: vectorsmall(n,{X},{expr=0}): VECSMALL with n components of expression
 expr (X ranges from 1 to n) which must be small integers. By default, fill
 with 0s.
Doc: creates a row vector of small integers (type
 \typ{VECSMALL}) with $n$ components whose components are the expression
 \var{expr} evaluated at the integer points between 1 and $n$. If one of the
 last two arguments is omitted, fill the vector with zeroes.
 %\syn{NO}

Function: vectorv
Class: basic
Section: linear_algebra
C-Name: vvecteur
Prototype: GDVDE
Help: vectorv(n,{X},{expr=0}): column vector with n components of expression
 expr (X ranges from 1 to n). By default, fill with 0s.
Doc: as \tet{vector}, but returns a column vector (type \typ{COL}).
 %\syn{NO}

Function: version
Class: basic
Section: programming/specific
C-Name: pari_version
Prototype: 
Help: version(): returns the PARI version as [major,minor,patch] or [major,minor,patch,VCSversion].
Doc: returns the current version number as a \typ{VEC} with three integer
 components (major version number, minor version number and patchlevel);
 if your sources were obtained through our version control system, this will
 be followed by a more precise version string, e.g.~\kbd{git-}\emph{commit
 hash}.
 
 This function is present in all versions of PARI following releases 2.3.4
 (stable) and 2.4.3 (testing).
 
 Unless you are working with multiple development versions, you probably only
 care about the 3 first numeric components. In any case, the \kbd{lex} function
 offers a clever way to check against a particular version number, since it will
 compare each successive vector entry, numerically or as strings, and will not
 mind if the vectors it compares have different lengths :
 \bprog
    if (lex(version(), [2,3,5]) >= 0,
      \\ code to be executed if we are running 2.3.5 or more recent.
    ,
      \\ compatibility code
    );
 @eprog\noindent On a number of different machines, \kbd{version()} could return either of
 \bprog
  %1 = [2, 3, 4]    \\ released version, stable branch
  %1 = [2, 4, 3]    \\ released version, testing branch
  %1 = [2, 6, 0, "git-2cce227"] \\ development
 @eprog
 
 In particular the first line of the gp introductory message can be essentially
 emulated by
 \bprog
    v = version();
    n = Str(v[1], ".", v[2], ".", v[3]);
    s = if (#v > 3, v[4], "");
    print("GP/PARI CALCULATOR Version ", n, " (", s, ")");
  @eprog\noindent If you \emph{are} working with many development versions of
  PARI/GP, the last component can be profitably included in the name of
  your logfile, for instance.

Function: warning
Class: basic
Section: programming/specific
C-Name: warning0
Prototype: vs*
Help: warning({str}*): display warning message str
Description: 
 (?gen,...):void  pari_warn(user, "${2 format_string}"${2 format_args})
Doc: outputs the message ``user warning''
 and the argument list (each of them interpreted as a string).
 If colors are enabled, this warning will be in a different color,
 making it easy to distinguish.
 \bprog
 warning(n, " is very large, this might take a while.")
 @eprog
 % \syn{NO}

Function: weber
Class: basic
Section: transcendental
C-Name: weber0
Prototype: GD0,L,p
Help: weber(x,{flag=0}): One of Weber's f function of x. flag is optional,
 and can be 0: default, function f(x)=exp(-i*Pi/24)*eta((x+1)/2)/eta(x),
 1: function f1(x)=eta(x/2)/eta(x)
 2: function f2(x)=sqrt(2)*eta(2*x)/eta(x). Note that
 j = (f^24-16)^3/f^24 = (f1^24+16)^3/f1^24 = (f2^24+16)^3/f2^24.
Doc: one of Weber's three $f$ functions.
 If $\fl=0$, returns
 $$f(x)=\exp(-i\pi/24)\cdot\eta((x+1)/2)\,/\,\eta(x) \quad\hbox{such that}\quad
 j=(f^{24}-16)^3/f^{24}\,,$$
 where $j$ is the elliptic $j$-invariant  (see the function \kbd{ellj}).
 If $\fl=1$, returns
 $$f_1(x)=\eta(x/2)\,/\,\eta(x)\quad\hbox{such that}\quad
 j=(f_1^{24}+16)^3/f_1^{24}\,.$$
 Finally, if $\fl=2$, returns
 $$f_2(x)=\sqrt{2}\eta(2x)\,/\,\eta(x)\quad\hbox{such that}\quad
 j=(f_2^{24}+16)^3/f_2^{24}.$$
 Note the identities $f^8=f_1^8+f_2^8$ and $ff_1f_2=\sqrt2$.
Variant: Also available are \fun{GEN}{weberf}{GEN x, long prec},
 \fun{GEN}{weberf1}{GEN x, long prec} and \fun{GEN}{weberf2}{GEN x, long prec}.

Function: whatnow
Class: gp
Section: programming/specific
C-Name: whatnow0
Prototype: vr
Help: whatnow(key): if key was present in GP version 1.39.15 or lower, gives
 the new function name.
Description: 
 (str):void             whatnow($1, 0)
Doc: if keyword \var{key} is the name of a function that was present in GP
 version 1.39.15 or lower, outputs the new function name and syntax, if it
 changed at all ($387$ out of $560$ did).

Function: while
Class: basic
Section: programming/control
C-Name: whilepari
Prototype: vEI
Help: while(a,seq): while a is nonzero evaluate the expression sequence seq.
 Otherwise 0.
Doc: while $a$ is non-zero, evaluates the expression sequence \var{seq}. The
 test is made \emph{before} evaluating the $seq$, hence in particular if $a$
 is initially equal to zero the \var{seq} will not be evaluated at all.

Function: write
Class: basic
Section: programming/specific
C-Name: write0
Prototype: vss*
Help: write(filename,{str}*): appends the remaining arguments (same output as
 print) to filename.
Doc: writes (appends) to \var{filename} the remaining arguments, and appends a
 newline (same output as \kbd{print}).
 %\syn{NO}

Function: write1
Class: basic
Section: programming/specific
C-Name: write1
Prototype: vss*
Help: write1(filename,{str}*): appends the remaining arguments (same output as
 print1) to filename.
Doc: writes (appends) to \var{filename} the remaining arguments without a
 trailing newline (same output as \kbd{print1}).
 %\syn{NO}

Function: writebin
Class: basic
Section: programming/specific
C-Name: gpwritebin
Prototype: vsDG
Help: writebin(filename,{x}): write x as a binary object to file filename.
 If x is omitted, write all session variables.
Doc: writes (appends) to
 \var{filename} the object $x$ in binary format. This format is not human
 readable, but contains the exact internal structure of $x$, and is much
 faster to save/load than a string expression, as would be produced by
 \tet{write}. The binary file format includes a magic number, so that such a
 file can be recognized and correctly input by the regular \tet{read} or \b{r}
 function. If saved objects refer to (polynomial) variables that are not
 defined in the new session, they will be displayed in a funny way (see
 \secref{se:kill}).
 
 If $x$ is omitted, saves all user variables from the session, together with
 their names. Reading such a ``named object'' back in a \kbd{gp} session will set
 the corresponding user variable to the saved value. E.g after
 \bprog
 x = 1; writebin("log")
 @eprog\noindent
 reading \kbd{log} into a clean session will set \kbd{x} to $1$.
 The relative variables priorities (see \secref{se:priority}) of new variables
 set in this way remain the same (preset variables retain their former
 priority, but are set to the new value). In particular, reading such a
 session log into a clean session will restore all variables exactly as they
 were in the original one.
 
 User functions, installed functions and history objects can not be saved via
 this function. Just as a regular input file, a binary file can be compressed
 using \tet{gzip}, provided the file name has the standard \kbd{.gz}
 extension.\sidx{binary file}
 
 In the present implementation, the binary files are architecture dependent
 and compatibility with future versions of \kbd{gp} is not guaranteed. Hence
 binary files should not be used for long term storage (also, they are
 larger and harder to compress than text files).

Function: writetex
Class: basic
Section: programming/specific
C-Name: writetex
Prototype: vss*
Help: writetex(filename,{str}*): appends the remaining arguments (same format as
 print) to filename, in TeX format.
Doc: as \kbd{write}, in \TeX\ format.
 %\syn{NO}

Function: zeta
Class: basic
Section: transcendental
C-Name: gzeta
Prototype: Gp
Help: zeta(s): Riemann zeta function at s with s a complex or a p-adic number.
Doc: For $s$ a complex number, Riemann's zeta
 function \sidx{Riemann zeta-function} $\zeta(s)=\sum_{n\ge1}n^{-s}$,
 computed using the \idx{Euler-Maclaurin} summation formula, except
 when $s$ is of type integer, in which case it is computed using
 Bernoulli numbers\sidx{Bernoulli numbers} for $s\le0$ or $s>0$ and
 even, and using modular forms for $s>0$ and odd.
 
 For $s$ a $p$-adic number, Kubota-Leopoldt zeta function at $s$, that
 is the unique continuous $p$-adic function on the $p$-adic integers
 that interpolates the values of $(1 - p^{-k}) \zeta(k)$ at negative
 integers $k$ such that $k \equiv 1 \pmod{p-1}$ (resp. $k$ is odd) if
 $p$ is odd (resp. $p = 2$).

Function: zetak
Class: basic
Section: number_fields
C-Name: gzetakall
Prototype: GGD0,L,p
Help: zetak(nfz,x,{flag=0}): Dedekind zeta function of the number field nfz
 at x, where nfz is the vector computed by zetakinit (NOT by nfinit); flag is
 optional, and can be 0: default, compute zetak, or non-zero: compute the
 lambdak function, i.e. with the gamma factors.
Doc: \var{znf} being a number
 field initialized by \kbd{zetakinit} (\emph{not} by \kbd{nfinit}),
 computes the value of the \idx{Dedekind} zeta function of the number
 field at the complex number $x$. If $\fl=1$ computes Dedekind $\Lambda$
 function instead (i.e.~the product of the Dedekind zeta function by its gamma
 and exponential factors).
 
 \misctitle{CAVEAT} This implementation is not satisfactory and must be
 rewritten. In particular
 
 \item The accuracy of the result depends in an essential way on the
 accuracy of both the \kbd{zetakinit} program and the current accuracy.
 Be wary in particular that $x$ of large imaginary part or, on the
 contrary, very close to an ordinary integer will suffer from precision
 loss, yielding fewer significant digits than expected. Computing with 28
 digits of relative accuracy, we have
 \bprog
 ? zeta(3)
 %1 = 1.202056903159594285399738161
 ? zeta(3-1e-20)
 %2 = 1.202056903159594285401719424
 ? zetak(zetakinit(x), 3-1e-20)
 %3 = 1.2020569031595952919  \\ 5 digits are wrong
 ? zetak(zetakinit(x), 3-1e-28)
 %4 = -25.33411749           \\ junk
 @eprog
 
 \item As the precision increases, results become unexpectedly
 completely wrong:
 \bprog
 ? \p100
 ? zetak(zetakinit(x^2-5), -1) - 1/30
 %1 = 7.26691813 E-108    \\ perfect
 ? \p150
 ? zetak(zetakinit(x^2-5), -1) - 1/30
 %2 = -2.486113578 E-156  \\ perfect
 ? \p200
 ? zetak(zetakinit(x^2-5), -1) - 1/30
 %3 = 4.47... E-75        \\ more than half of the digits are wrong
 ? \p250
 ? zetak(zetakinit(x^2-5), -1) - 1/30
 %4 = 1.6 E43             \\ junk
 @eprog
Variant: See also \fun{GEN}{glambdak}{GEN znf, GEN x, long prec} or
 \fun{GEN}{gzetak}{GEN znf, GEN x, long prec}.

Function: zetakinit
Class: basic
Section: number_fields
C-Name: initzeta
Prototype: Gp
Help: zetakinit(bnf): compute number field information necessary to use zetak.
 bnf may also be an irreducible polynomial.
Doc: computes a number of initialization data
 concerning the number field associated to \kbd{bnf} so as to be able
 to compute the \idx{Dedekind} zeta and lambda functions, respectively
 $\kbd{zetak}(x)$ and $\kbd{zetak}(x,1)$, at the current real precision. If
 you do not need the \kbd{bnfinit} data somewhere else, you may call it
 with an irreducible polynomial instead of a \var{bnf}: it will call
 \kbd{bnfinit} itself.
 
 The result is a 9-component vector $v$ whose components are very technical
 and cannot really be used except through the \kbd{zetak} function.
 
 This function is very inefficient and should be rewritten. It needs to
 computes millions of coefficients of the corresponding Dirichlet series if
 the precision is big. Unless the discriminant is small it will not be able
 to handle more than 9 digits of relative precision. For instance,
 \kbd{zetakinit(x\pow 8 - 2)} needs 440MB of memory at default precision.

Function: zncoppersmith
Class: basic
Section: number_theoretical
C-Name: zncoppersmith
Prototype: GGGDG
Help: zncoppersmith(P, N, X, {B=N}): finds all integers x
 with |x| <= X such that  gcd(N, P(x)) >= B. X should be smaller than
 exp((log B)^2 / (deg(P) log N)).
Doc: $N$ being an integer and $P\in \Z[X]$, finds all integers $x$ with
 $|x| \leq X$ such that
 $$\gcd(N, P(x)) \geq B,$$
 using \idx{Coppersmith}'s algorithm (a famous application of the \idx{LLL}
 algorithm). $X$ must be smaller than $\exp(\log^2 B / (\deg(P) \log N))$:
 for $B = N$, this means $X < N^{1/\deg(P)}$. Some $x$ larger than $X$ may
 be returned if you are very lucky. The smaller $B$ (or the larger $X$), the
 slower the routine will be. The strength of Coppersmith method is the
 ability to find roots modulo a general \emph{composite} $N$: if $N$ is a prime
 or a prime power, \tet{polrootsmod} or \tet{polrootspadic} will be much
 faster.
 
 We shall now present two simple applications. The first one is
 finding non-trivial factors of $N$, given some partial information on the
 factors; in that case $B$ must obviously be smaller than the largest
 non-trivial divisor of $N$.
 \bprog
 setrand(1); \\ to make the example reproducible
 p = nextprime(random(10^30));
 q = nextprime(random(10^30)); N = p*q;
 p0 = p % 10^20; \\ assume we know 1) p > 10^29, 2) the last 19 digits of p
 p1 = zncoppersmith(10^19*x + p0, N, 10^12, 10^29)
 
 \\ result in 10ms.
 %1 = [35023733690]
 ? gcd(p1[1] * 10^19 + p0, N) == p
 %2 = 1
 @eprog\noindent and we recovered $p$, faster than by trying all
 possibilities $ < 10^{12}$.
 
 The second application is an attack on RSA with low exponent, when the
 message $x$ is short and the padding $P$ is known to the attacker. We use
 the same RSA modulus $N$ as in the first example:
 \bprog
 setrand(1);
 P = random(N);    \\ known padding
 e = 3;            \\ small public encryption exponent
 X = floor(N^0.3); \\ N^(1/e - epsilon)
 x0 = random(X);   \\ unknown short message
 C = lift( (Mod(x0,N) + P)^e ); \\ known ciphertext, with padding P
 zncoppersmith((P + x)^3 - C, N, X)
 
 \\ result in 3.8s.
 %3 = [265174753892462432]
 ? %[1] == x0
 %4 = 1
 @eprog\noindent
 We guessed an integer of the order of $10^{18}$ in a couple of seconds.

Function: znlog
Class: basic
Section: number_theoretical
C-Name: znlog
Prototype: GGDG
Help: znlog(x,g,{o}): return the discrete logarithm of x in
 (Z/nZ)* in base g. If present, o represents the multiplicative
 order of g. If no o is given, assume that g generate (Z/nZ)*.
Doc: discrete logarithm of $x$ in $(\Z/N\Z)^*$ in base $g$.
 If present, $o$ represents the multiplicative order of $g$, see
 \secref{se:DLfun}; the preferred format for this parameter is
 \kbd{[ord, factor(ord)]}, where \kbd{ord} is the order of $g$.
 If no $o$ is given, assume that $g$ generate $(\Z/N\Z)^*$.
 
 This function uses a simple-minded combination of generic
 discrete log algorithms (index calculus methods are not yet implemented).
 
 \item Pohlig-Hellman algorithm, to reduce to groups of prime order $q$,
 where $q | p-1$ and $p$ is an odd prime divisor of $N$,
 
 \item Shanks baby-step/giant-step ($q$ small),
 
 \item Pollard rho method ($q$ large).
 
 The latter two algorithms require $O(\sqrt{q})$ operations in the group on
 average, hence will not be able to treat cases where $q > 10^{30}$, say.
 \bprog
 ? g = znprimroot(101)
 %1 = Mod(2,101)
 ? znlog(5, g)
 %2 = 24
 ? g^24
 %3 = Mod(5, 101)
 
 ? G = znprimroot(2 * 101^10)
 %4 = Mod(110462212541120451003, 220924425082240902002)
 ? znlog(5, G)
 %5 = 76210072736547066624
 ? G^% == 5
 %6 = 1
 @eprog\noindent The result is undefined when $x$ is not a power of $g$ or
 when $x$ is not invertible mod $N$:
 \bprog
 ? znlog(6, Mod(2,3))
   ***   at top-level: znlog(6,Mod(2,3))
   ***                 ^-----------------
   *** znlog: impossible inverse modulo: Mod(0, 3).
 @eprog\noindent For convenience, $g$ is also allowed to be a $p$-adic number:
 \bprog
 ? g = 3+O(5^10); znlog(2, g)
 %1 = 1015243
 ? g^%
 %2 = 2 + O(5^10)
 @eprog

Function: znorder
Class: basic
Section: number_theoretical
C-Name: znorder
Prototype: GDG
Help: znorder(x,{o}): order of the integermod x in (Z/nZ)*.
 Optional o represents a multiple of the order of the element.
Description: 
 (gen):int             order($1)
 (gen,):int            order($1)
 (gen,int):int         znorder($1, $2)
Doc: $x$ must be an integer mod $n$, and the
 result is the order of $x$ in the multiplicative group $(\Z/n\Z)^*$. Returns
 an error if $x$ is not invertible.
 The parameter o, if present, represents a non-zero
 multiple of the order of $x$, see \secref{se:DLfun}; the preferred format for
 this parameter is \kbd{[ord, factor(ord)]}, where \kbd{ord = eulerphi(n)}
 is the cardinality of the group.
Variant: Also available is \fun{GEN}{order}{GEN x}.

Function: znprimroot
Class: basic
Section: number_theoretical
C-Name: znprimroot0
Prototype: G
Help: znprimroot(n): returns a primitive root of n when it exists.
Description: 
 (int):gen        znprimroot($1)
 (gen):gen        znprimroot0($1)
Doc: returns a primitive root (generator) of $(\Z/n\Z)^*$, whenever this
 latter group is cyclic ($n = 4$ or $n = 2p^k$ or $n = p^k$, where $p$ is an
 odd prime and $k \geq 0$). If the group is not cyclic, the result is
 undefined. If $n$ is a prime, then the smallest positive primitive root is
 returned. This is no longer true for composites.
 
 Note that this function requires factoring $p-1$ for $p$ as above,
 in order to determine the exact order of elements in
 $(\Z/n\Z)^*$: this is likely to be very costly if $p$ is large.
 The function accepts vector/matrices arguments, and is then applied
 componentwise.
Variant: For a \typ{INT} $x$, the special case
 \fun{GEN}{znprimroot}{GEN n} is also available.

Function: znstar
Class: basic
Section: number_theoretical
C-Name: znstar
Prototype: G
Help: znstar(n): 3-component vector v, giving the structure of (Z/nZ)^*.
 v[1] is the order (i.e. eulerphi(n)), v[2] is a vector of cyclic components,
 and v[3] is a vector giving the corresponding generators.
Doc: gives the structure of the multiplicative group
 $(\Z/n\Z)^*$ as a 3-component row vector $v$, where $v[1]=\phi(n)$ is the
 order of that group, $v[2]$ is a $k$-component row-vector $d$ of integers
 $d[i]$ such that $d[i]>1$ and $d[i]\mid d[i-1]$ for $i \ge 2$ and
 $(\Z/n\Z)^* \simeq \prod_{i=1}^k(\Z/d[i]\Z)$, and $v[3]$ is a $k$-component row
 vector giving generators of the image of the cyclic groups $\Z/d[i]\Z$.