/usr/share/pari/pari.desc is in libpari-dev 2.5.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685 | Function: !_
Class: basic
Section: symbolic_operators
C-Name: gnot
Prototype: G
Help: !_
Description:
(negbool):bool:parens $1
(bool):negbool:parens $1
Function: #_
Class: basic
Section: symbolic_operators
C-Name: glength
Prototype: lG
Help: #x: number of non code words in x, number of characters for a string.
Description:
(vecsmall):lg lg($1)
(vec):lg lg($1)
(pol):small lgpol($1)
(gen):small glength($1)
Function: %
Class: basic
Section: symbolic_operators
C-Name: pari_get_hist
Prototype: D0,L,
Help: last history item.
Function: +_
Class: basic
Section: symbolic_operators
Help: +_
Description:
(small):small:parens $1
(int):int:parens:copy $1
(real):real:parens:copy $1
(mp):mp:parens:copy $1
(gen):gen:parens:copy $1
Function: -_
Class: basic
Section: symbolic_operators
C-Name: gneg
Prototype: G
Help: -_
Description:
(small):small:parens -$(1)
(int):int negi($1)
(real):real negr($1)
(mp):mp mpneg($1)
(gen):gen gneg($1)
Function: Col
Class: basic
Section: conversions
C-Name: gtocol
Prototype: DG
Help: Col({x=[]}): transforms the object x into a column vector.
Empty vector if x is omitted.
Description:
():vec cgetg(1,t_COL)
(gen):vec gtocol($1)
Doc:
transforms the object $x$ into a column vector.
The vector has a single component , except when $x$ is
\item a vector or a quadratic form (in which case the resulting vector is
simply the initial object considered as a column vector),
\item a matrix (the column of row vectors comprising the matrix is
returned),
\item a character string (a column of individual characters is returned),
\item a polynomial or a power series. In the case of a polynomial, the
coefficients of the vector start with the leading coefficient of the
polynomial, while for power series only the significant coefficients are
taken into account, but this time by increasing order of degree. In this last
case, \kbd{Col} is the reciprocal function of \kbd{Pol} and \kbd{Ser}
respectively.
Note that the function \kbd{Colrev} does not exist, use \kbd{Vecrev}.
Function: Euler
Class: basic
Section: transcendental
C-Name: mpeuler
Prototype: p
Help: Euler=Euler(): Euler's constant with current precision.
Description:
():real:prec mpeuler(prec)
Doc: Euler's constant $\gamma=0.57721\cdots$. Note that
\kbd{Euler} is one of the few special reserved names which cannot be used for
variables (the others are \kbd{I} and \kbd{Pi}, as well as all function
names).
Function: I
Class: basic
Section: transcendental
C-Name: gen_I
Prototype:
Help: I=I(): square root of -1.
Description:
Doc: the complex number $\sqrt{-1}$.
Function: List
Class: basic
Section: conversions
C-Name: gtolist
Prototype: DG
Help: List({x=[]}): transforms the vector or list x into a list. Empty list
if x is omitted.
Description:
():list listcreate()
(gen):list gtolist($1)
Doc:
transforms a (row or column) vector $x$ into a list, whose components are
the entries of $x$. Similarly for a list, but rather useless in this case.
For other types, creates a list with the single element $x$. Note that,
except when $x$ is omitted, this function creates a small memory leak; so,
either initialize all lists to the empty list, or use them sparingly.
Variant: The variant \fun{GEN}{listcreate}{void} creates an empty list.
Function: Mat
Class: basic
Section: conversions
C-Name: gtomat
Prototype: DG
Help: Mat({x=[]}): transforms any GEN x into a matrix. Empty matrix if x is
omitted.
Doc:
transforms the object $x$ into a matrix.
If $x$ is already a matrix, a copy of $x$ is created.
If $x$ is a row (resp. column) vector, this creates a 1-row (resp.
1-column) matrix, \emph{unless} all elements are column (resp.~row) vectors
of the same length, in which case the vectors are concatenated sideways
and the associated big matrix is returned.
If $x$ is a binary quadratic form, creates the associated $2\times 2$
matrix. Otherwise, this creates a $1\times 1$ matrix containing $x$.
\bprog
? Mat(x + 1)
%1 =
[x + 1]
? Vec( matid(3) )
%2 = [[1, 0, 0]~, [0, 1, 0]~, [0, 0, 1]~]
? Mat(%)
%3 =
[1 0 0]
[0 1 0]
[0 0 1]
? Col( [1,2; 3,4] )
%4 = [[1, 2], [3, 4]]~
? Mat(%)
%5 =
[1 2]
[3 4]
? Mat(Qfb(1,2,3))
%6 =
[1 1]
[1 3]
@eprog
Function: Mod
Class: basic
Section: conversions
C-Name: gmodulo
Prototype: GG
Help: Mod(x,y): creates 'x modulo y'.
Description:
(small, small):gen gmodulss($1, $2)
(small, gen):gen gmodulsg($1, $2)
(gen, gen):gen gmodulo($1, $2)
Doc:
creates the PARI object
$(x \mod y)$, i.e.~an intmod or a polmod. $y$ must be an integer or a
polynomial. If $y$ is an integer, $x$ must be an integer, a rational
number, or a $p$-adic number compatible with the modulus $y$. If $y$ is a
polynomial, $x$ must be a scalar (which is not a polmod), a polynomial, a
rational function, or a power series.
This function is not the same as $x$ \kbd{\%} $y$, the result of which is an
integer or a polynomial.
Function: O
Class: basic
Section: polynomials
C-Name: ggrando
Prototype:
Help: O(p^e): p-adic or power series zero with precision given by e
Doc: if $p$ is an integer
greater than $2$, returns a $p$-adic $0$ of precision $e$. In all other
cases, returns a power series zero with precision given by $e v$, where $v$
is the $X$-adic valuation of $p$ with respect to its main variable.
Variant: \fun{GEN}{zeropadic}{GEN p, long e} for a $p$-adic and
\fun{GEN}{zeroser}{long v, long e} for a power series zero in variable $v$.
Function: O(_^_)
Class: basic
Section: programming/internals
C-Name: ggrando
Prototype: GD1,L,
Help: O(p^e): p-adic or power series zero with precision given by e.
Description:
(gen):gen ggrando($1, 1)
(1,small):gen ggrando(gen_1, $2)
(int,small):gen zeropadic($1, $2)
(gen,small):gen ggrando($1, $2)
(var,small):gen zeroser($1, $2)
Function: Pi
Class: basic
Section: transcendental
C-Name: mppi
Prototype: p
Help: Pi=Pi(): the constant pi, with current precision.
Description:
():real:prec mppi(prec)
Doc: the constant $\pi$ ($3.14159\cdots$).
Function: Pol
Class: basic
Section: conversions
C-Name: gtopoly
Prototype: GDn
Help: Pol(x,{v=x}): convert x (usually a vector or a power series) into a
polynomial with variable v, starting with the leading coefficient.
Description:
(gen,?var):pol gtopoly($1, $2)
Doc:
transforms the object $x$ into a polynomial with main variable $v$. If $x$
is a scalar, this gives a constant polynomial. If $x$ is a power series with
non-negative valuation or a rational function, the effect is similar to
\kbd{truncate}, i.e.~we chop off the $O(X^k)$ or compute the Euclidean
quotient of the numerator by the denominator, then change the main variable
of the result to $v$.
The main use of this function is when $x$ is a vector: it creates the
polynomial whose coefficients are given by $x$, with $x[1]$ being the leading
coefficient (which can be zero). It is much faster to evaluate
\kbd{Pol} on a vector of coefficients in this way, than the corresponding
formal expression $a_n X^n + \dots + a_0$, which is evaluated naively exactly
as written (linear versus quadratic time in $n$). \tet{Polrev} can be used if
one wants $x[1]$ to be the constant coefficient:
\bprog
? Pol([1,2,3])
%1 = x^2 + 2*x + 3
? Polrev([1,2,3])
%2 = 3*x^2 + 2*x + 1
@eprog\noindent
The reciprocal function of \kbd{Pol} (resp.~\kbd{Polrev}) is \kbd{Vec} (resp.~
\kbd{Vecrev}).
\bprog
? Vec(Pol([1,2,3]))
%1 = [1, 2, 3]
? Vecrev( Polrev([1,2,3]) )
%2 = [1, 2, 3]
@eprog\noindent
\misctitle{Warning} This is \emph{not} a substitution function. It will not
transform an object containing variables of higher priority than~$v$.
\bprog
? Pol(x + y, y)
*** at top-level: Pol(x+y,y)
*** ^----------
*** Pol: variable must have higher priority in gtopoly.
@eprog
Function: Polrev
Class: basic
Section: conversions
C-Name: gtopolyrev
Prototype: GDn
Help: Polrev(x,{v=x}): convert x (usually a vector or a power series) into a
polynomial with variable v, starting with the constant term.
Description:
(gen,?var):pol gtopolyrev($1, $2)
Doc:
transform the object $x$ into a polynomial
with main variable $v$. If $x$ is a scalar, this gives a constant polynomial.
If $x$ is a power series, the effect is identical to \kbd{truncate}, i.e.~it
chops off the $O(X^k)$.
The main use of this function is when $x$ is a vector: it creates the
polynomial whose coefficients are given by $x$, with $x[1]$ being the
constant term. \tet{Pol} can be used if one wants $x[1]$ to be the leading
coefficient:
\bprog
? Polrev([1,2,3])
%1 = 3*x^2 + 2*x + 1
? Pol([1,2,3])
%2 = x^2 + 2*x + 3
@eprog
The reciprocal function of \kbd{Pol} (resp.~\kbd{Polrev}) is \kbd{Vec} (resp.~
\kbd{Vecrev}).
Function: Qfb
Class: basic
Section: conversions
C-Name: Qfb0
Prototype: GGGDGp
Help: Qfb(a,b,c,{D=0.}): binary quadratic form a*x^2+b*x*y+c*y^2. D is
optional (0.0 by default) and initializes Shanks's distance if b^2-4*a*c>0.
Doc: creates the binary quadratic form\sidx{binary quadratic form}
$ax^2+bxy+cy^2$. If $b^2-4ac>0$, initialize \idx{Shanks}' distance
function to $D$. Negative definite forms are not implemented,
use their positive definite counterpart instead.
Variant: Also available are
\fun{GEN}{qfi}{GEN a, GEN b, GEN c} (assumes $b^2-4ac<0$) and
\fun{GEN}{qfr}{GEN a, GEN b, GEN c, GEN D} (assumes $b^2-4ac>0$).
Function: Ser
Class: basic
Section: conversions
C-Name: gtoser
Prototype: GDnDP
Help: Ser(s,{v=x},{d=seriesprecision}): convert s into a power series with
variable v and precision d, starting with the constant coefficient.
Doc: transforms the object $s$ into a power series with main variable $v$
($x$ by default) and precision (number of significant terms) equal to
$d$ (= the default \kbd{seriesprecision} by default). If $s$ is a
scalar, this gives a constant power series with precision \kbd{d}. If $s$
is a polynomial, the precision is the maximum of \kbd{d} and the degree of
the polynomial. If $s$ is a vector, the
coefficients of the vector are understood to be the coefficients of the power
series starting from the constant term (as in \tet{Polrev}$(x)$), and the
precision $d$ is ignored.
\bprog
? Ser(x^2,, 5)
%1 = x^2 + O(x^7)
? Ser([1,2,3], t)
%2 = 1 + 2*t + 3*t^2 + O(t^3)
@eprog\noindent
The warning given for \kbd{Pol} also applies here: this is not a substitution
function.
Function: Set
Class: basic
Section: conversions
C-Name: gtoset
Prototype: DG
Help: Set({x=[]}): convert x into a set, i.e. a row vector with strictly
increasing coefficients. Empty set if x is omitted.
Description:
():vec cgetg(1,t_VEC)
(gen):vec gtoset($1)
Doc:
converts $x$ into a set, i.e.~into a row
vector of character strings, with strictly increasing entries with respect to
lexicographic ordering. The components of $x$ are put in canonical form (type
\typ{STR}) so as to be easily sorted. To recover an ordinary \kbd{GEN} from
such an element, you can apply \tet{eval} to it.
Note that most set functions also accept ordinary vectors, provided their
components can be compared with \kbd{<}. Sets as created by this function
are only useful when e.g. polynomial or vector entries are involved.
Function: Str
Class: basic
Section: conversions
C-Name: Str
Prototype: s*
Help: Str({x}*): concatenates its (string) argument into a single string.
Description:
(gen):genstr:copy:parens $genstr:1
Doc:
converts its argument list into a
single character string (type \typ{STR}, the empty string if $x$ is omitted).
To recover an ordinary \kbd{GEN} from a string, apply \kbd{eval} to it. The
arguments of \kbd{Str} are evaluated in string context, see \secref{se:strings}.
\bprog
? x2 = 0; i = 2; Str(x, i)
%1 = "x2"
? eval(%)
%2 = 0
@eprog\noindent
This function is mostly useless in library mode. Use the pair
\tet{strtoGEN}/\tet{GENtostr} to convert between \kbd{GEN} and \kbd{char*}.
The latter returns a malloced string, which should be freed after usage.
%\syn{NO}
Function: Strchr
Class: basic
Section: conversions
C-Name: Strchr
Prototype: G
Help: Strchr(x): converts x to a string, translating each integer into a
character.
Doc:
converts $x$ to a string, translating each integer
into a character.
\bprog
? Strchr(97)
%1 = "a"
? Vecsmall("hello world")
%2 = Vecsmall([104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100])
? Strchr(%)
%3 = "hello world"
@eprog
Function: Strexpand
Class: basic
Section: conversions
C-Name: Strexpand
Prototype: s*
Help: Strexpand({x}*): concatenates its (string) argument into a single
string, performing tilde expansion.
Doc:
converts its argument list into a
single character string (type \typ{STR}, the empty string if $x$ is omitted).
Then perform \idx{environment expansion}, see \secref{se:envir}.
This feature can be used to read \idx{environment variable} values.
\bprog
? Strexpand("$HOME/doc")
%1 = "/home/pari/doc"
@eprog
The individual arguments are read in string context, see \secref{se:strings}.
%\syn{NO}
Function: Strprintf
Class: basic
Section: programming/specific
C-Name: Strprintf
Prototype: ss*
Help: Strprintf(fmt,{x}*): returns a string built from the remaining
arguments according to the format fmt.
Doc: returns a string built from the remaining arguments according to the
format fmt. The format consists of ordinary characters (not \%), printed
unchanged, and conversions specifications. See \kbd{printf}.
%\syn{NO}
Function: Strtex
Class: basic
Section: conversions
C-Name: Strtex
Prototype: s*
Help: Strtex({x}*): translates its (string) arguments to TeX format and
returns the resulting string.
Doc:
translates its arguments to TeX
format, and concatenates the results into a single character string (type
\typ{STR}, the empty string if $x$ is omitted).
The individual arguments are read in string context, see \secref{se:strings}.
%\syn{NO}
Function: Vec
Class: basic
Section: conversions
C-Name: gtovec
Prototype: DG
Help: Vec({x=[]}): transforms the object x into a vector.
Empty vector if x is omitted.
Description:
():vec cgetg(1,t_VEC)
(gen):vec gtovec($1)
Doc:
transforms the object $x$ into a row vector.
That vector has a single component, except when $x$ is
\item a vector or a quadratic form (in which case the resulting vector
is simply the initial object considered as a row vector),
\item a matrix (the vector of columns comprising the matrix is return),
\item a character string (a vector of individual
characters is returned),
\item a polynomial or a power series. In the case of a polynomial, the
coefficients of the vector start with the leading coefficient of the
polynomial, while for power series only the significant coefficients are
taken into account, but this time by increasing order of degree.
In this last case, \kbd{Vec} is the reciprocal function of \kbd{Pol} and
\kbd{Ser} respectively.
Function: Vecrev
Class: basic
Section: conversions
C-Name: gtovecrev
Prototype: DG
Help: Vecrev({x=[]}): transforms the object x into a vector.
Empty vector if x is omitted.
Description:
():vec cgetg(1,t_VEC)
(gen):vec gtovecrev($1)
Doc:
as $\kbd{Vec}(x)$, then reverse the result. In particular
In this case, \kbd{Vecrev} is the reciprocal function of \kbd{Polrev}: the
coefficients of the vector start with the constant coefficient of the
polynomial and the others follow by increasing degree.
Function: Vecsmall
Class: basic
Section: conversions
C-Name: gtovecsmall
Prototype: DG
Help: Vecsmall({x=[]}): transforms the object x into a VECSMALL. Empty
vector if x is omitted.
Description:
(gen):vecsmall gtovecsmall($1)
Doc:
transforms the object $x$ into a row
vector of type \typ{VECSMALL}. This acts as \kbd{Vec}, but only on a
limited set of objects (the result must be representable as a vector of small
integers). In particular, polynomials and power series are forbidden.
If $x$ is a character string, a vector of individual characters in ASCII
encoding is returned (\tet{Strchr} yields back the character string).
Function: _!
Class: basic
Section: symbolic_operators
C-Name: mpfact
Prototype: L
Help: n!: factorial of n.
Description:
(small):int mpfact($1)
Function: _!=_
Class: basic
Section: symbolic_operators
C-Name: gne
Prototype: GG
Help: _!=_
Description:
(small, small):bool:parens $(1) != $(2)
(lg, lg):bool:parens $(1) != $(2)
(small, int):bool:parens cmpsi($1, $2) != 0
(int, small):bool:parens cmpis($1, $2) != 0
(int, 1):negbool equali1($1)
(int, -1):negbool equalim1($1)
(int, int):negbool equalii($1, $2)
(real,real):bool cmprr($1, $2) != 0
(mp, mp):bool:parens mpcmp($1, $2) != 0
(typ, typ):bool:parens $(1) != $(2)
(typ, #str):bool:parens $(1) != $(typ:2)
(#str, typ):bool:parens $(typ:1) != $(2)
(str, str):bool strcmp($1, $2)
(typ, typ):bool:parens $(1) != $(2)
(small, gen):negbool gequalsg($1, $2)
(gen, small):negbool gequalgs($1, $2)
(gen, gen):negbool gequal($1, $2)
Function: _%=_
Class: basic
Section: symbolic_operators
C-Name: gmode
Prototype: &G
Help: x%=y: shortcut for x=x%y.
Description:
(*small, small):small:parens $1 = smodss($1, $2)
(*int, small):int:parens $1 = modis($1, $2)
(*int, int):int:parens $1 = modii($1, $2)
(*pol, gen):gen:parens $1 = gmod($1, $2)
(*gen, small):gen:parens $1 = gmodgs($1, $2)
(*gen, gen):gen:parens $1 = gmod($1, $2)
Function: _%_
Class: basic
Section: symbolic_operators
C-Name: gmod
Prototype: GG
Help: x%y: Euclidean remainder of x and y.
Description:
(small, small):small smodss($1, $2)
(small, int):int modsi($1, $2)
(int, small):small smodis($1, $2)
(int, int):int modii($1, $2)
(gen, small):gen gmodgs($1, $2)
(small, gen):gen gmodsg($1, $2)
(gen, gen):gen gmod($1, $2)
Function: _&&_
Class: basic
Section: symbolic_operators
C-Name: andpari
Prototype: GE
Help: _&&_
Description:
(bool, bool):bool:parens $(1) && $(2)
Function: _'
Class: basic
Section: symbolic_operators
C-Name: deriv
Prototype: GDn
Help: x': derivative of x with respect to the main variable.
Description:
(gen):gen deriv($1,-1)
Function: _(_)
Class: symbolic_operators
Help: f(a,b,...): evaluates the function f on a,b,...
Description:
(gen):gen closure_callgenall($1, 0)
(gen,gen):gen closure_callgen1($1, $2)
(gen,gen,gen):gen closure_callgen2($1, $2, $3)
(gen,gen,...):gen closure_callgenall($1, ${nbarg 1 sub}, $3)
Function: _*=_
Class: basic
Section: symbolic_operators
C-Name: gmule
Prototype: &G
Help: x*=y: shortcut for x=x*y.
Description:
(*small, small):small:parens $1 *= $(2)
(*int, small):int:parens $1 = mulis($1, $2)
(*int, int):int:parens $1 = mulii($1, $2)
(*real, small):real:parens $1 = mulrs($1, $2)
(*real, int):real:parens $1 = mulri($1, $2)
(*real, real):real:parens $1 = mulrr($1, $2)
(*mp, mp):mp:parens $1 = mpmul($1, $2)
(*pol, small):gen:parens $1 = gmulgs($1, $2)
(*pol, gen):gen:parens $1 = gmul($1, $2)
(*vec, gen):gen:parens $1 = gmul($1, $2)
(*gen, small):gen:parens $1 = gmulgs($1, $2)
(*gen, gen):gen:parens $1 = gmul($1, $2)
Function: _*_
Class: basic
Section: symbolic_operators
C-Name: gmul
Prototype: GG
Help: x*y: product of x and y.
Description:
(small, small):small:parens $(1)*$(2)
(int, small):int mulis($1, $2)
(small, int):int mulsi($1, $2)
(int, int):int mulii($1, $2)
(0, mp):small ($2, 0)/*for side effect*/
(#small, real):real mulsr($1, $2)
(small, real):mp mulsr($1, $2)
(real, small):mp mulrs($1, $2)
(real, real):real mulrr($1, $2)
(mp, mp):mp mpmul($1, $2)
(gen, small):gen gmulgs($1, $2)
(small, gen):gen gmulsg($1, $2)
(vecsmall, vecsmall):vecsmall perm_mul($1, $2)
(gen, gen):gen gmul($1, $2)
Function: _++
Class: basic
Section: symbolic_operators
C-Name: gadd1e
Prototype: &
Help: x++
Description:
(*bptr):bptr ++$1
(*small):small ++$1
(*lg):lg ++$1
(*int):int:parens $1 = addis($1, 1)
(*real):real:parens $1 = addrs($1, 1)
(*mp):mp:parens $1 = mpadd($1, gen_1)
(*pol):pol:parens $1 = gaddgs($1, 1)
(*gen):gen:parens $1 = gaddgs($1, 1)
Function: _+=_
Class: basic
Section: symbolic_operators
C-Name: gadde
Prototype: &G
Help: x+=y: shortcut for x=x+y.
Description:
(*small, small):small:parens $1 += $(2)
(*lg, small):lg:parens $1 += $(2)
(*int, small):int:parens $1 = addis($1, $2)
(*int, int):int:parens $1 = addii($1, $2)
(*real, small):real:parens $1 = addrs($1, $2)
(*real, int):real:parens $1 = addir($2, $1)
(*real, real):real:parens $1 = addrr($1, $2)
(*mp, mp):mp:parens $1 = mpadd($1, $2)
(*pol, small):gen:parens $1 = gaddgs($1, $2)
(*pol, gen):gen:parens $1 = gadd($1, $2)
(*vec, gen):gen:parens $1 = gadd($1, $2)
(*gen, small):gen:parens $1 = gaddgs($1, $2)
(*gen, gen):gen:parens $1 = gadd($1, $2)
Function: _+_
Class: basic
Section: symbolic_operators
C-Name: gadd
Prototype: GG
Help: x+y: sum of x and y.
Description:
(lg, 1):small:parens $(1)
(small, small):small:parens $(1) + $(2)
(lg, small):lg:parens $(1) + $(2)
(small, lg):lg:parens $(1) + $(2)
(int, small):int addis($1, $2)
(small, int):int addsi($1, $2)
(int, int):int addii($1, $2)
(real, small):real addrs($1, $2)
(small, real):real addsr($1, $2)
(real, real):real addrr($1, $2)
(mp, real):real mpadd($1, $2)
(real, mp):real mpadd($1, $2)
(mp, mp):mp mpadd($1, $2)
(gen, small):gen gaddgs($1, $2)
(small, gen):gen gaddsg($1, $2)
(gen, gen):gen gadd($1, $2)
Function: _--
Class: basic
Section: symbolic_operators
C-Name: gsub1e
Prototype: &
Help: x--
Description:
(*bptr):bptr --$1
(*small):small --$1
(*lg):lg --$1
(*int):int:parens $1 = subis($1, 1)
(*real):real:parens $1 = subrs($1, 1)
(*mp):mp:parens $1 = mpsub($1, gen_1)
(*pol):pol:parens $1 = gsubgs($1, 1)
(*gen):gen:parens $1 = gsubgs($1, 1)
Function: _-=_
Class: basic
Section: symbolic_operators
C-Name: gsube
Prototype: &G
Help: x-=y: shortcut for x=x-y.
Description:
(*small, small):small:parens $1 -= $(2)
(*lg, small):lg:parens $1 -= $(2)
(*int, small):int:parens $1 = subis($1, $2)
(*int, int):int:parens $1 = subii($1, $2)
(*real, small):real:parens $1 = subrs($1, $2)
(*real, int):real:parens $1 = subri($1, $2)
(*real, real):real:parens $1 = subrr($1, $2)
(*mp, mp):mp:parens $1 = mpsub($1, $2)
(*pol, small):gen:parens $1 = gsubgs($1, $2)
(*pol, gen):gen:parens $1 = gsub($1, $2)
(*vec, gen):gen:parens $1 = gsub($1, $2)
(*gen, small):gen:parens $1 = gsubgs($1, $2)
(*gen, gen):gen:parens $1 = gsub($1, $2)
Function: _-_
Class: basic
Section: symbolic_operators
C-Name: gsub
Prototype: GG
Help: x-y: difference of x and y.
Description:
(small, small):small:parens $(1) - $(2)
(lg, small):lg:parens $(1) - $(2)
(int, small):int subis($1, $2)
(small, int):int subsi($1, $2)
(int, int):int subii($1, $2)
(real, small):real subrs($1, $2)
(small, real):real subsr($1, $2)
(real, real):real subrr($1, $2)
(mp, real):real mpsub($1, $2)
(real, mp):real mpsub($1, $2)
(mp, mp):mp mpsub($1, $2)
(gen, small):gen gsubgs($1, $2)
(small, gen):gen gsubsg($1, $2)
(gen, gen):gen gsub($1, $2)
Function: _.a1
Class: basic
Section: member_functions
C-Name: member_a1
Prototype: mG
Help: _.a1
Description:
(ell):gen:copy ell_get_a1($1)
Function: _.a2
Class: basic
Section: member_functions
C-Name: member_a2
Prototype: mG
Help: _.a2
Description:
(ell):gen:copy ell_get_a2($1)
Function: _.a3
Class: basic
Section: member_functions
C-Name: member_a3
Prototype: mG
Help: _.a3
Description:
(ell):gen:copy ell_get_a3($1)
Function: _.a4
Class: basic
Section: member_functions
C-Name: member_a4
Prototype: mG
Help: _.a4
Description:
(ell):gen:copy ell_get_a4($1)
Function: _.a6
Class: basic
Section: member_functions
C-Name: member_a6
Prototype: mG
Help: _.a6
Description:
(ell):gen:copy ell_get_a6($1)
Function: _.area
Class: basic
Section: member_functions
C-Name: member_area
Prototype: mG
Help: _.area
Description:
(bell):gen:copy gel($1, 19)
Function: _.b2
Class: basic
Section: member_functions
C-Name: member_b2
Prototype: mG
Help: _.b2
Description:
(ell):gen:copy ell_get_b2($1)
Function: _.b4
Class: basic
Section: member_functions
C-Name: member_b4
Prototype: mG
Help: _.b4
Description:
(ell):gen:copy ell_get_b4($1)
Function: _.b6
Class: basic
Section: member_functions
C-Name: member_b6
Prototype: mG
Help: _.b6
Description:
(ell):gen:copy ell_get_b6($1)
Function: _.b8
Class: basic
Section: member_functions
C-Name: member_b8
Prototype: mG
Help: _.b8
Description:
(ell):gen:copy ell_get_b8($1)
Function: _.bid
Class: basic
Section: member_functions
C-Name: member_bid
Prototype: mG
Help: _.bid
Description:
(bnr):gen:copy bnr_get_bid($1)
(gen):gen:copy member_bid($1)
Function: _.bnf
Class: basic
Section: member_functions
C-Name: member_bnf
Prototype: mG
Help: _.bnf
Description:
(bnf):bnf:parens $1
(bnr):bnf:copy:parens $bnf:1
(gen):bnf:copy member_bnf($1)
Function: _.c4
Class: basic
Section: member_functions
C-Name: member_c4
Prototype: mG
Help: _.c4
Description:
(ell):gen:copy ell_get_c4($1)
Function: _.c6
Class: basic
Section: member_functions
C-Name: member_c6
Prototype: mG
Help: _.c6
Description:
(ell):gen:copy ell_get_c6($1)
Function: _.clgp
Class: basic
Section: member_functions
C-Name: member_clgp
Prototype: mG
Help: _.clgp
Description:
(bnf):clgp:copy:parens $clgp:1
(bnr):clgp:copy:parens $clgp:1
(clgp):clgp:parens $1
(gen):clgp:copy member_clgp($1)
Function: _.codiff
Class: basic
Section: member_functions
C-Name: member_codiff
Prototype: mG
Help: _.codiff
Function: _.cyc
Class: basic
Section: member_functions
C-Name: member_cyc
Prototype: mG
Help: _.cyc
Description:
(bnr):vec:copy bnr_get_cyc($1)
(bnf):vec:copy bnf_get_cyc($1)
(clgp):vec:copy gel($1, 2)
(gen):vec:copy member_cyc($1)
Function: _.diff
Class: basic
Section: member_functions
C-Name: member_diff
Prototype: mG
Help: _.diff
Description:
(nf):gen:copy nf_get_diff($1)
(gen):gen:copy member_diff($1)
Function: _.disc
Class: basic
Section: member_functions
C-Name: member_disc
Prototype: mG
Help: _.disc
Description:
(nf):int:copy nf_get_disc($1)
(ell):gen:copy ell_get_disc($1)
(gen):gen:copy member_disc($1)
Function: _.e
Class: basic
Section: member_functions
C-Name: member_e
Prototype: mG
Help: _.e
Description:
(prid):small pr_get_e($1)
Function: _.eta
Class: basic
Section: member_functions
C-Name: member_eta
Prototype: mG
Help: _.eta
Function: _.f
Class: basic
Section: member_functions
C-Name: member_f
Prototype: mG
Help: _.f
Description:
(prid):small pr_get_f($1)
Function: _.fu
Class: basic
Section: member_functions
C-Name: member_fu
Prototype: G
Help: _.fu
Description:
(bnr):void $"ray units not implemented"
(bnf):gen:copy bnf_get_fu($1)
(gen):gen member_fu($1)
Function: _.futu
Class: basic
Section: member_functions
C-Name: member_futu
Prototype: mG
Help: _.futu
Function: _.gen
Class: basic
Section: member_functions
C-Name: member_gen
Prototype: mG
Help: _.gen
Description:
(bnr):vec:copy bnr_get_gen($1)
(bnf):vec:copy bnf_get_gen($1)
(gal):vec:copy gal_get_gen($1)
(clgp):vec:copy gel($1, 3)
(prid):gen:copy pr_get_gen($1)
(gen):gen:copy member_gen($1)
Function: _.group
Class: basic
Section: member_functions
C-Name: member_group
Prototype: mG
Help: _.group
Description:
(gal):vec:copy gal_get_group($1)
(gen):vec:copy member_group($1)
Function: _.index
Class: basic
Section: member_functions
C-Name: member_index
Prototype: mG
Help: _.index
Description:
(nf):int:copy nf_get_index($1)
(gen):int:copy member_index($1)
Function: _.j
Class: basic
Section: member_functions
C-Name: member_j
Prototype: mG
Help: _.j
Description:
(ell):gen:copy ell_get_j($1)
Function: _.mod
Class: basic
Section: member_functions
C-Name: member_mod
Prototype: mG
Help: _.mod
Function: _.nf
Class: basic
Section: member_functions
C-Name: member_nf
Prototype: mG
Help: _.nf
Description:
(nf):nf:parens $1
(gen):nf:copy member_nf($1)
Function: _.no
Class: basic
Section: member_functions
C-Name: member_no
Prototype: mG
Help: _.no
Description:
(bnr):int:copy bnr_get_no($1)
(bnf):int:copy bnf_get_no($1)
(clgp):int:copy gel($1, 1)
(gen):int:copy member_no($1)
Function: _.omega
Class: basic
Section: member_functions
C-Name: member_omega
Prototype: mG
Help: _.omega
Function: _.orders
Class: basic
Section: member_functions
C-Name: member_orders
Prototype: mG
Help: _.orders
Description:
(gal):vecsmall:copy gal_get_orders($1)
Function: _.p
Class: basic
Section: member_functions
C-Name: member_p
Prototype: mG
Help: _.p
Description:
(gal):int:copy gal_get_p($1)
(prid):int:copy pr_get_p($1)
(gen):int:copy member_p($1)
Function: _.pol
Class: basic
Section: member_functions
C-Name: member_pol
Prototype: mG
Help: _.pol
Description:
(gal):gen:copy gal_get_pol($1)
(nf):gen:copy nf_get_pol($1)
(gen):gen:copy member_pol($1)
Function: _.r1
Class: basic
Section: member_functions
C-Name: member_r1
Prototype: mG
Help: _.r1
Description:
(nf):small nf_get_r1($1)
(gen):int:copy member_r1($1)
Function: _.r2
Class: basic
Section: member_functions
C-Name: member_r2
Prototype: mG
Help: _.r2
Description:
(nf):small nf_get_r2($1)
(gen):int:copy member_r2($1)
Function: _.reg
Class: basic
Section: member_functions
C-Name: member_reg
Prototype: mG
Help: _.reg
Description:
(bnr):real $"ray regulator not implemented"
(bnf):real:copy bnf_get_reg($1)
(gen):real:copy member_reg($1)
Function: _.roots
Class: basic
Section: member_functions
C-Name: member_roots
Prototype: mG
Help: _.roots
Description:
(gal):vec:copy gal_get_roots($1)
(bell):vec:copy ell_get_roots($1)
(nf):vec:copy nf_get_roots($1)
(gen):vec:copy member_roots($1)
Function: _.sign
Class: basic
Section: member_functions
C-Name: member_sign
Prototype: mG
Help: _.sign
Description:
(nf):vec:copy gel($1, 2)
(gen):vec:copy member_sign($1)
Function: _.t2
Class: basic
Section: member_functions
C-Name: member_t2
Prototype: G
Help: _.t2
Description:
(gen):vec member_t2($1)
Function: _.tate
Class: basic
Section: member_functions
C-Name: member_tate
Prototype: mG
Help: _.tate
Function: _.tu
Class: basic
Section: member_functions
C-Name: member_tu
Prototype: G
Help: _.tu
Description:
(gen):gen:copy member_tu($1)
Function: _.tufu
Class: basic
Section: member_functions
C-Name: member_tufu
Prototype: mG
Help: _.tufu
Function: _.w
Class: basic
Section: member_functions
C-Name: member_w
Prototype: mG
Help: _.w
Description:
(bell):gen:copy gel($1, 18)
Function: _.zk
Class: basic
Section: member_functions
C-Name: member_zk
Prototype: mG
Help: _.zk
Description:
(nf):vec:copy nf_get_zk($1)
(gen):vec:copy member_zk($1)
Function: _.zkst
Class: basic
Section: member_functions
C-Name: member_zkst
Prototype: mG
Help: _.zkst
Description:
(bnr):gen:copy bnr_get_bid($1)
Function: _/=_
Class: basic
Section: symbolic_operators
C-Name: gdive
Prototype: &G
Help: x/=y: shortcut for x=x/y.
Description:
(*small, gen):void $"cannot divide small: use \= instead."
(*int, gen):void $"cannot divide int: use \= instead."
(*real, real):real:parens $1 = divrr($1, $2)
(*real, small):real:parens $1 = divrs($1, $2)
(*real, mp):real:parens $1 = mpdiv($1, $2)
(*mp, real):mp:parens $1 = mpdiv($1, $2)
(*pol, gen):gen:parens $1 = gdiv($1, $2)
(*vec, gen):gen:parens $1 = gdiv($1, $2)
(*gen, small):gen:parens $1 = gdivgs($1, $2)
(*gen, gen):gen:parens $1 = gdiv($1, $2)
Function: _/_
Class: basic
Section: symbolic_operators
C-Name: gdiv
Prototype: GG
Help: x/y: quotient of x and y.
Description:
(0, mp):small ($2, 0)/*for side effect*/
(1, real):real invr($2)
(#small, real):real divsr($1, $2)
(small, real):mp divsr($1, $2)
(real, small):real divrs($1, $2)
(real, real):real divrr($1, $2)
(real, mp):real mpdiv($1, $2)
(mp, real):mp mpdiv($1, $2)
(1, gen):gen ginv($2)
(gen, small):gen gdivgs($1, $2)
(small, gen):gen gdivsg($1, $2)
(gen, gen):gen gdiv($1, $2)
Function: _<<=_
Class: basic
Section: symbolic_operators
C-Name: gshiftle
Prototype: &L
Help: x<<=y: shortcut for x=x<<y.
Description:
(*small, small):small:parens $1 <<= $(2)
(*int, small):int:parens $1 = shifti($1, $2)
(*mp, small):mp:parens $1 = mpshift($1, $2)
(*gen, small):mp:parens $1 = gshift($1, $2)
Function: _<<_
Class: basic
Section: symbolic_operators
C-Name: gshift
Prototype: GL
Help: x<<y
Description:
(int, small):int shifti($1, $2)
(mp, small):mp mpshift($1, $2)
(gen, small):mp gshift($1, $2)
Function: _<=_
Class: basic
Section: symbolic_operators
C-Name: gle
Prototype: GG
Help: _<=_
Description:
(small, small):bool:parens $(1) <= $(2)
(small, lg):bool:parens $(1) < $(2)
(lg, lg):bool:parens $(1) <= $(2)
(small, int):bool:parens cmpsi($1, $2) <= 0
(int, lg):bool:parens cmpis($1, $2) < 0
(int, small):bool:parens cmpis($1, $2) <= 0
(int, int):bool:parens cmpii($1, $2) <= 0
(mp, mp):bool:parens mpcmp($1, $2) <= 0
(str, str):bool:parens strcmp($1, $2) <= 0
(small, gen):bool:parens gcmpsg($1, $2) <= 0
(gen, small):bool:parens gcmpgs($1, $2) <= 0
(gen, gen):bool:parens gcmp($1, $2) <= 0
Function: _<_
Class: basic
Section: symbolic_operators
C-Name: glt
Prototype: GG
Help: _<_
Description:
(small, small):bool:parens $(1) < $(2)
(lg, lg):bool:parens $(1) < $(2)
(lg, small):bool:parens $(1) <= $(2)
(small, int):bool:parens cmpsi($1, $2) < 0
(int, small):bool:parens cmpis($1, $2) < 0
(int, int):bool:parens cmpii($1, $2) < 0
(mp, mp):bool:parens mpcmp($1, $2) < 0
(str, str):bool:parens strcmp($1, $2) < 0
(small, gen):bool:parens gcmpsg($1, $2) < 0
(gen, small):bool:parens gcmpgs($1, $2) < 0
(gen, gen):bool:parens gcmp($1, $2) < 0
Function: _===_
Class: basic
Section: symbolic_operators
C-Name: gidentical
Prototype: iGG
Help: a === b : true if a and b are identical
Function: _==_
Class: basic
Section: symbolic_operators
C-Name: geq
Prototype: GG
Help: _==_
Description:
(small, small):bool:parens $(1) == $(2)
(lg, lg):bool:parens $(1) == $(2)
(small, int):bool:parens cmpsi($1, $2) == 0
(mp, 0):bool !signe($1)
(int, 1):bool equali1($1)
(int, -1):bool equalim1($1)
(int, small):bool:parens cmpis($1, $2) == 0
(int, int):bool equalii($1, $2)
(gen, 0):bool gequal0($1)
(gen, 1):bool gequal1($1)
(gen, -1):bool gequalm1($1)
(real,real):bool cmprr($1, $2) == 0
(mp, mp):bool:parens mpcmp($1, $2) == 0
(typ, typ):bool:parens $(1) == $(2)
(typ, #str):bool:parens $(1) == $(typ:2)
(#str, typ):bool:parens $(typ:1) == $(2)
(str, str):negbool strcmp($1, $2)
(small, gen):bool gequalsg($1, $2)
(gen, small):bool gequalgs($1, $2)
(gen, gen):bool gequal($1, $2)
Function: _=_
Class: basic
Section: symbolic_operators
C-Name: gstore
Prototype: m&G
Help: x=y: store value y in variable x.
Function: _>=_
Class: basic
Section: symbolic_operators
C-Name: gge
Prototype: GG
Help: _>=_
Description:
(small, small):bool:parens $(1) >= $(2)
(lg, lg):bool:parens $(1) >= $(2)
(lg, small):bool:parens $(1) > $(2)
(small, int):bool:parens cmpsi($1, $2) >= 0
(int, small):bool:parens cmpis($1, $2) >= 0
(int, int):bool:parens cmpii($1, $2) >= 0
(mp, mp):bool:parens mpcmp($1, $2) >= 0
(str, str):bool:parens strcmp($1, $2) >= 0
(small, gen):bool:parens gcmpsg($1, $2) >= 0
(gen, small):bool:parens gcmpgs($1, $2) >= 0
(gen, gen):bool:parens gcmp($1, $2) >= 0
Function: _>>=_
Class: basic
Section: symbolic_operators
C-Name: gshiftre
Prototype: &L
Help: x>>=y: shortcut for x=x>>y.
Description:
(*small, small):small:parens $1 >>= $(2)
(*int, small):int:parens $1 = shifti($1, -$(2))
(*mp, small):mp:parens $1 = mpshift($1, -$(2))
(*gen, small):mp:parens $1 = gshift($1, -$(2))
Function: _>>_
Class: basic
Section: symbolic_operators
C-Name: gshift_right
Prototype: GL
Help: x>>y
Description:
(small, small):small:parens $(1)>>$(2)
(int, small):int shifti($1, -$(2))
(mp, small):mp mpshift($1, -$(2))
(gen, small):mp gshift($1, -$(2))
Function: _>_
Class: basic
Section: symbolic_operators
C-Name: ggt
Prototype: GG
Help: _>_
Description:
(small, small):bool:parens $(1) > $(2)
(lg, lg):bool:parens $(1) > $(2)
(small, lg):bool:parens $(1) >= $(2)
(small, int):bool:parens cmpsi($1, $2) > 0
(int, small):bool:parens cmpis($1, $2) > 0
(int, int):bool:parens cmpii($1, $2) > 0
(mp, mp):bool:parens mpcmp($1, $2) > 0
(str, str):bool:parens strcmp($1, $2) > 0
(small, gen):bool:parens gcmpsg($1, $2) > 0
(gen, small):bool:parens gcmpgs($1, $2) > 0
(gen, gen):bool:parens gcmp($1, $2) > 0
Function: _[_,]
Class: symbolic_operators
Help: x[y,]: y-th row of x.
Description:
(mp,small):gen $"Scalar has no rows"
(vec,small):vec rowcopy($1, $2)
(gen,small):vec rowcopy($1, $2)
Function: _[_,_]
Class: symbolic_operators
Description:
(mp,small):gen $"Scalar has no components"
(mp,small,small):gen $"Scalar has no components"
(vecsmall,small):small $(1)[$2]
(vecsmall,small,small):gen $"Vecsmall are single-dimensional"
(list,small):gen:copy gel(list_data($1), $2)
(vec,small):gen:copy gel($1, $2)
(vec,small,small):gen:copy gcoeff($1, $2, $3)
(gen,small):gen:copy gel($1, $2)
(gen,small,small):gen:copy gcoeff($1, $2, $3)
Function: _\/=_
Class: basic
Section: symbolic_operators
C-Name: gdivrounde
Prototype: &G
Help: x\/=y: shortcut for x=x\/y.
Description:
(*int, int):int:parens $1 = gdivround($1, $2)
(*pol, gen):gen:parens $1 = gdivround($1, $2)
(*gen, gen):gen:parens $1 = gdivround($1, $2)
Function: _\/_
Class: basic
Section: symbolic_operators
C-Name: gdivround
Prototype: GG
Help: x\/y: rounded Euclidean quotient of x and y.
Description:
(int, int):int gdivround($1, $2)
(gen, gen):gen gdivround($1, $2)
Function: _\=_
Class: basic
Section: symbolic_operators
C-Name: gdivente
Prototype: &G
Help: x\=y: shortcut for x=x\y.
Description:
(*small, small):small:parens $1 /= $(2)
(*int, int):int:parens $1 = gdivent($1, $2)
(*pol, gen):gen:parens $1 = gdivent($1, $2)
(*gen, gen):gen:parens $1 = gdivent($1, $2)
Function: _\_
Class: basic
Section: symbolic_operators
C-Name: gdivent
Prototype: GG
Help: x\y: Euclidean quotient of x and y.
Description:
(small, small):small:parens $(1)/$(2)
(int, small):int truedivis($1, $2)
(small, int):int gdiventsg($1, $2)
(int, int):int truedivii($1, $2)
(gen, small):gen gdiventgs($1, $2)
(small, gen):gen gdiventsg($1, $2)
(gen, gen):gen gdivent($1, $2)
Function: _^_
Class: basic
Section: symbolic_operators
C-Name: gpow
Prototype: GGp
Help: x^y: compute x to the power y.
Description:
(int, 2):int sqri($1)
(int, 3):int powiu($1, 3)
(int, 4):int powiu($1, 4)
(int, 5):int powiu($1, 5)
(real, -1):real invr($1)
(mp, -1):mp ginv($1)
(gen, -1):gen ginv($1)
(real, 2):real sqrr($1)
(mp, 2):mp mpsqr($1)
(gen, 2):gen gsqr($1)
(int, small):gen powis($1, $2)
(real, small):real gpowgs($1, $2)
(gen, small):gen gpowgs($1, $2)
(real, int):real powgi($1, $2)
(gen, int):gen powgi($1, $2)
(gen, gen):gen:prec gpow($1, $2, prec)
Function: _^s
Class: basic
Section: programming/internals
C-Name: gpowgs
Prototype: GL
Help: return x^n where n is a small integer
Function: __
Class: basic
Section: symbolic_operators
Help: __
Description:
(genstr, genstr):genstr concat($1, $2)
(genstr, gen):genstr concat($1, $2)
(gen, genstr):genstr concat($1, $2)
(gen, gen):genstr concat($genstr:1, $2)
Function: _avma
Class: gp2c_internal
Description:
():pari_sp avma
Function: _badtype
Class: gp2c_internal
Help: Code to check types. If not void, will be used as if(...).
Description:
(int):bool:parens typ($1) != t_INT
(real):bool:parens typ($1) != t_REAL
(mp):negbool is_intreal_t(typ($1))
(vec):negbool is_matvec_t(typ($1))
(vecsmall):bool:parens typ($1) != t_VECSMALL
(pol):bool:parens typ($1) != t_POL
(*nf):void:parens $1 = checknf($1)
(*bnf):void:parens $1 = checkbnf($1)
(bnr):void checkbnr($1)
(prid):void checkprid($1)
(@clgp):bool:parens lg($1) != 3 || typ($(1)[2]) != t_POLMOD
(ell):void checksmallell($1)
(bell):void checkell($1)
(*gal):gal:parens $1 = checkgal($1)
Function: _call_GG
Class: gp2c_internal
Help: Call a function with proto GG on two GENs.
Description:
(func_GG, gen, gen):gen $(1)($2, $3)
Function: _cast
Class: gp2c_internal
Help: (type1):type2 : cast expression of type1 to type2
Description:
(void):bool 0
(#negbool):bool ${1 value not}
(negbool):bool !$(1)
(small_int):bool
(small):bool
(lg):bool:parens $(1)!=1
(bptr):bool *$(1)
(gen):bool !gequal0($1)
(real):bool signe($1)
(int):bool signe($1)
(mp):bool signe($1)
(pol):bool signe($1)
(void):negbool 1
(#bool):negbool ${1 value not}
(bool):negbool !$(1)
(lg):negbool:parens $(1)==1
(bptr):negbool !*$(1)
(gen):negbool gequal0($1)
(int):negbool !signe($1)
(real):negbool !signe($1)
(mp):negbool !signe($1)
(pol):negbool !signe($1)
(bool):small_int
(typ):small_int
(small):small_int
(bool):small
(typ):small
(small_int):small
(bptr):small *$(1)
(int):small itos($1)
(#lg):small:parens ${1 value 1 sub}
(lg):small:parens $(1)-1
(gen):small gtos($1)
(void):int gen_0
(-2):int gen_m2
(-1):int gen_m1
(0):int gen_0
(1):int gen_1
(2):int gen_2
(bool):int stoi($1)
(small):int stoi($1)
(mp):int
(gen):int
(mp):real
(gen):real
(int):mp
(real):mp
(gen):mp
(#bool):lg:parens ${1 1 value add}
(bool):lg:parens $(1)+1
(#small):lg:parens ${1 1 value add}
(small):lg:parens $(1)+1
(gen):closure
(gen):vecsmall
(nf):vec
(bnf):vec
(bnr):vec
(ell):vec
(bell):vec
(clgp):vec
(prid):vec
(gal):vec
(gen):vec
(gen):list
(pol):var varn($1)
(gen):var gvar($1)
(var):pol pol_x($1)
(gen):pol
(int):gen
(mp):gen
(vecsmall):gen
(vec):gen
(list):gen
(pol):gen
(genstr):gen
(closure):gen
(gen):genstr GENtoGENstr($1)
(str):genstr strtoGENstr($1)
(genstr):str GSTR($1)
(typ):str type_name($1)
(#str):typ ${1 str_format}
(bnf):nf bnf_get_nf($1)
(gen):nf
(bnr):bnf bnr_get_bnf($1)
(gen):bnf
(gen):bnr
(bnf):clgp bnf_get_clgp($1)
(bnr):clgp bnr_get_clgp($1)
(gen):clgp
(bell):ell
(gen):ell
(gen):bell
(gen):gal
(gen):prid
Function: _cgetg
Class: gp2c_internal
Description:
(lg,#str):gen cgetg($1, ${2 str_raw})
(gen,lg,#str):gen $1 = cgetg($2, ${3 str_raw})
Function: _const_expr
Class: gp2c_internal
Description:
(str):gen readseq($1)
Function: _const_quote
Class: gp2c_internal
Description:
(str):var fetch_user_var($1)
Function: _const_real
Class: gp2c_internal
Description:
(str):real:prec strtor($1, prec)
Function: _const_smallreal
Class: gp2c_internal
Description:
(0):real:prec real_0(prec)
(1):real:prec real_1(prec)
(-1):real:prec real_m1(prec)
(small):real:prec stor($1, prec)
Function: _decl_base
Class: gp2c_internal
Description:
(C!void) void
(C!long) long
(C!int) int
(C!GEN) GEN
(C!char*) char
(C!byteptr) byteptr
(C!pari_sp) pari_sp
(C!func_GG) GEN
Function: _decl_ext
Class: gp2c_internal
Description:
(C!char*) *$1
(C!func_GG) (*$1)(GEN, GEN)
Function: _def_TeXstyle
Class: default
Section: default
C-Name: sd_TeXstyle
Prototype:
Help:
Doc: the bits of this default allow
\kbd{gp} to use less rigid TeX formatting commands in the logfile. This
default is only taken into account when $\kbd{log} = 3$. The bits of
\kbd{TeXstyle} have the following meaning
2: insert \kbd{\bs right} / \kbd{\bs left} pairs where appropriate.
4: insert discretionary breaks in polynomials, to enhance the probability of
a good line break.
The default value is \kbd{0}.
Function: _def_breakloop
Class: gp_default
Section: default
C-Name: sd_breakloop
Prototype:
Help:
Doc: if true, enables the ``break loop'' debugging mode, see
\secref{se:break_loop}.
The default value is \kbd{1} if we are running an interactive \kbd{gp}
session, and \kbd{0} otherwise.
Function: _def_colors
Class: default
Section: default
C-Name: sd_colors
Prototype:
Help:
Doc: this default is only usable if \kbd{gp}
is running within certain color-capable terminals. For instance \kbd{rxvt},
\kbd{color\_xterm} and modern versions of \kbd{xterm} under X Windows, or
standard Linux/DOS text consoles. It causes \kbd{gp} to use a small palette of
colors for its output. With xterms, the colormap used corresponds to the
resources \kbd{Xterm*color$n$} where $n$ ranges from $0$ to $15$ (see the
file \kbd{misc/color.dft} for an example). Accepted values for this
default are strings \kbd{"$a_1$,\dots,$a_k$"} where $k\le7$ and each
$a_i$ is either
\noindent $\bullet$ the keyword \kbd{no} (use the default color, usually
black on transparent background)
\noindent $\bullet$ an integer between 0 and 15 corresponding to the
aforementioned colormap
\noindent $\bullet$ a triple $[c_0,c_1,c_2]$ where $c_0$ stands for foreground
color, $c_1$ for background color, and $c_2$ for attributes (0 is default, 1
is bold, 4 is underline).
The output objects thus affected are respectively error messages,
history numbers, prompt, input line, output, help messages, timer (that's
seven of them). If $k < 7$, the remaining $a_i$ are assumed to be $no$. For
instance
%
\bprog
default(colors, "9, 5, no, no, 4")
@eprog
\noindent
typesets error messages in color $9$, history numbers in color $5$, output in
color $4$, and does not affect the rest.
A set of default colors for dark (reverse video or PC console) and light
backgrounds respectively is activated when \kbd{colors} is set to
\kbd{darkbg}, resp.~\kbd{lightbg} (or any proper prefix: \kbd{d} is
recognized as an abbreviation for \kbd{darkbg}). A bold variant of
\kbd{darkbg}, called \kbd{boldfg}, is provided if you find the former too
pale.
\emacs In the present version, this default is incompatible with PariEmacs.
Changing it will just fail silently (the alternative would be to display
escape sequences as is, since Emacs will refuse to interpret them).
You must customize color highlighting from the PariEmacs side, see its
documentation.
The default value is \kbd{""} (no colors).
Function: _def_compatible
Class: default
Section: default
C-Name: sd_compatible
Prototype:
Help:
Doc: The GP function names and syntax
have changed tremendously between versions 1.xx and 2.00. To help you cope
with this we provide some kind of backward compatibility, depending on the
value of this default:
\quad \kbd{compatible} = 0: no backward compatibility. In this mode, a very
handy function, to be described in \secref{se:whatnow}, is \kbd{whatnow},
which tells you what has become of your favourite functions, which \kbd{gp}
suddenly can't seem to remember.
\quad \kbd{compatible} = 1: warn when using obsolete functions, but
otherwise accept them. The output uses the new conventions though, and
there may be subtle incompatibilities between the behavior of former and
current functions, even when they share the same name (the current function
is used in such cases, of course!). We thought of this one as a transitory
help for \kbd{gp} old-timers. Thus, to encourage switching to \kbd{compatible}=0,
it is not possible to disable the warning.
\quad \kbd{compatible} = 2: use only the old function naming scheme (as
used up to version 1.39.15), but \emph{taking case into account}. Thus
\kbd{I} (${}=\sqrt{-1}$) is not the same as \kbd{i} (user variable, unbound
by default), and you won't get an error message using \kbd{i} as a loop
index as used to be the case.
\quad \kbd{compatible} = 3: try to mimic exactly the former behavior. This
is not always possible when functions have changed in a fundamental way.
But these differences are usually for the better (they were meant to,
anyway), and will probably not be discovered by the casual user.
One adverse side effect is that any user functions and aliases that have
been defined \emph{before} changing \kbd{compatible} will get erased if this
change modifies the function list, i.e.~if you move between groups
$\{0,1\}$ and $\{2,3\}$ (variables are unaffected). We of course strongly
encourage you to try and get used to the setting \kbd{compatible}=0.
Note that the default \tet{new_galois_format} is another compatibility setting,
which is completely independent of \kbd{compatible}.
The default value is \kbd{0}.
Function: _def_datadir
Class: default
Section: default
C-Name: sd_datadir
Prototype:
Help:
Doc: the name of directory containing the optional data files. For now,
this includes the \kbd{elldata}, \kbd{galdata}, \kbd{galpol}, \kbd{seadata}
packages.
The default value is \datadir (the location of installed precomputed data,
can be specified via \kbd{Configure --datadir=}).
Function: _def_debug
Class: default
Section: default
C-Name: sd_debug
Prototype:
Help:
Doc: debugging level. If it is non-zero, some extra messages may be printed,
according to what is going on (see~\b{g}).
The default value is \kbd{0} (no debugging messages).
Function: _def_debugfiles
Class: default
Section: default
C-Name: sd_debugfiles
Prototype:
Help:
Doc: file usage debugging level. If it is non-zero, \kbd{gp} will print
information on file descriptors in use, from PARI's point of view
(see~\b{gf}).
The default value is \kbd{0} (no debugging messages).
Function: _def_debugmem
Class: default
Section: default
C-Name: sd_debugmem
Prototype:
Help:
Doc: memory debugging level. If it is non-zero, \kbd{gp} will regularly print
information on memory usage. If it's greater than 2, it will indicate any
important garbage collecting and the function it is taking place in
(see~\b{gm}).
\noindent {\bf Important Note:} As it noticeably slows down the performance,
the first functionality (memory usage) is disabled if you're not running a
version compiled for debugging (see Appendix~A).
The default value is \kbd{0} (no debugging messages).
Function: _def_echo
Class: gp_default
Section: default
C-Name: sd_echo
Prototype:
Help:
Doc: this toggle is either 1 (on) or 0 (off). When \kbd{echo}
mode is on, each command is reprinted before being executed. This can be
useful when reading a file with the \b{r} or \kbd{read} commands. For
example, it is turned on at the beginning of the test files used to check
whether \kbd{gp} has been built correctly (see \b{e}).
The default value is \kbd{0} (no echo).
Function: _def_factor_add_primes
Class: default
Section: default
C-Name: sd_factor_add_primes
Prototype:
Help:
Doc: this toggle is either 1 (on) or 0 (off). If on,
the integer factorization machinery calls \tet{addprimes} on primes
factor that were difficult to find (larger than $2^24$), so they are
automatically tried first in other factorizations. If a routine is performing
(or has performed) a factorization and is interrupted by an error or via
Control-C, this lets you recover the prime factors already found. The
downside is that a huge \kbd{addprimes} table unrelated to the current
computations will slow down arithmetic functions relying on integer
factorization; one should then empty the table using \tet{removeprimes}.
The defaut value is \kbd{0}.
Function: _def_factor_proven
Class: default
Section: default
C-Name: sd_factor_proven
Prototype:
Help:
Doc: this toggle is either 1 (on) or 0 (off). By
default, the factors output by the integer factorization machinery are
only pseudo-primes, not proven primes. If this toggle is
set, a primality proof is done for each factor and all results depending on
integer factorization are fully proven. This flag does not affect partial
factorization when it is explicitly requested. It also does not affect the
private table managed by \tet{addprimes}: its entries are included as is in
factorizations, without being tested for primality.
The defaut value is \kbd{0}.
Function: _def_format
Class: default
Section: default
C-Name: sd_format
Prototype:
Help:
Doc: of the form x$.n$, where x (conversion style)
is a letter in $\{\kbd{e},\kbd{f},\kbd{g}\}$, and $n$ (precision) is an
integer; this affects the way real numbers are printed:
\item If the conversion style is \kbd{e}, real numbers are printed in
\idx{scientific format}, always with an explicit exponent,
e.g.~\kbd{3.3 E-5}.
\item In style \kbd{f}, real numbers are generally printed in \idx{fixed
floating point format} without exponent, e.g.~\kbd{0.000033}. A large
real number, whose integer part is not well defined (not enough significant
digits), is printed in style~\kbd{e}. For instance \kbd{10.\pow 100} known to
ten significant digits is always printed in style \kbd{e}.
\item In style \kbd{g}, non-zero real numbers are printed in \kbd{f} format,
except when their decimal exponent is $< -4$, in which case they are printed in
\kbd{e} format. Real zeroes (of arbitrary exponent) are printed in \kbd{e}
format.
The precision $n$ is the number of significant digits printed for real
numbers, except if $n<0$ where all the significant digits will be printed
(initial default 28, or 38 for 64-bit machines). For more powerful formatting
possibilities, see \tet{printf} and \tet{Strprintf}.
The default value is \kbd{"g.28"} and \kbd{"g.38"} on 32-bit and
64-bit machines, respectively.
Function: _def_graphcolormap
Class: gp_default
Section: default
C-Name: sd_graphcolormap
Prototype:
Help:
Doc: a vector of colors, to be
used by hi-res graphing routines. Its length is arbitrary, but it must
contain at least 3 entries: the first 3 colors are used for background,
frame/ticks and axes respectively. All colors in the colormap may be freely
used in \tet{plotcolor} calls.
A color is either given as in the default by character strings or by an RGB
code. For valid character strings, see the standard \kbd{rgb.txt} file in X11
distributions, where we restrict to lowercase letters and remove all
whitespace from color names. An RGB code is a vector with 3 integer entries
between 0 and 255. For instance \kbd{[250, 235, 215]} and \kbd{"antique
white"} represent the same color. RGB codes are a little cryptic but often
easier to generate.
The default value is [\kbd{"white"}, \kbd{"black"}, \kbd{"blue"},
\kbd{"violetred"}, \kbd{"red"}, \kbd{"green"}, \kbd{"grey"},
\kbd{"gainsboro"}].
Function: _def_graphcolors
Class: gp_default
Section: default
C-Name: sd_graphcolors
Prototype:
Help:
Doc: entries in the
\tet{graphcolormap} that will be used to plot multi-curves. The successive
curves are drawn in colors
\kbd{graphcolormap[graphcolors[1]]}, \kbd{graphcolormap[graphcolors[2]]},
\dots
cycling when the \kbd{graphcolors} list is exhausted.
The default value is \kbd{[4,5]}.
Function: _def_help
Class: gp_default
Section: default
C-Name: sd_help
Prototype:
Help:
Doc: name of the external help program which will be used from within
\kbd{gp} when extended help is invoked, usually through a \kbd{??} or
\kbd{???} request (see \secref{se:exthelp}), or \kbd{M-H} under readline (see
\secref{se:readline}).
The default value is the local of the \kbd{gphelp} script.
Function: _def_histfile
Class: gp_default
Section: default
C-Name: sd_histfile
Prototype:
Help:
Doc: name of a file where
\kbd{gp} will keep a history of all \emph{input} commands (results are
omitted). If this file exists when the value of \kbd{histfile} changes,
it is read in and becomes part of the session history. Thus, setting this
default in your gprc saves your readline history between sessions. Setting
this default to the empty string \kbd{""} changes it to
\kbd{$<$undefined$>$}
The default value is \kbd{$<$undefined$>$} (no history file).
Function: _def_histsize
Class: default
Section: default
C-Name: sd_histsize
Prototype:
Help:
Doc: \kbd{gp} keeps a history of the last
\kbd{histsize} results computed so far, which you can recover using the
\kbd{\%} notation (see \secref{se:history}). When this number is exceeded,
the oldest values are erased. Tampering with this default is the only way to
get rid of the ones you do not need anymore.
The default value is \kbd{5000}.
Function: _def_lines
Class: gp_default
Section: default
C-Name: sd_lines
Prototype:
Help:
Doc: if set to a positive value, \kbd{gp} prints at
most that many lines from each result, terminating the last line shown with
\kbd{[+++]} if further material has been suppressed. The various \kbd{print}
commands (see \secref{se:gp_program}) are unaffected, so you can always type
\kbd{print(\%)} or \b{a} to view the full result. If the actual screen width
cannot be determined, a ``line'' is assumed to be 80 characters long.
The default value is \kbd{0}.
Function: _def_log
Class: default
Section: default
C-Name: sd_log
Prototype:
Help:
Doc: this can be either 0 (off) or 1, 2, 3
(on, see below for the various modes). When logging mode is turned on, \kbd{gp}
opens a log file, whose exact name is determined by the \kbd{logfile}
default. Subsequently, all the commands and results will be written to that
file (see \b{l}). In case a file with this precise name already existed, it
will not be erased: your data will be \emph{appended} at the end.
The specific positive values of \kbd{log} have the following meaning
1: plain logfile
2: emit color codes to the logfile (if \kbd{colors} is set).
3: write LaTeX output to the logfile (can be further customized using
\tet{TeXstyle}).
The default value is \kbd{0}.
Function: _def_logfile
Class: default
Section: default
C-Name: sd_logfile
Prototype:
Help:
Doc: name of the log file to be used when the \kbd{log} toggle is on.
Environment and time expansion are performed.
The default value is \kbd{"pari.log"}.
Function: _def_new_galois_format
Class: default
Section: default
C-Name: sd_new_galois_format
Prototype:
Help:
Doc: this toggle is either 1 (on) or 0 (off). If on,
the \tet{polgalois} command will use a different, more
consistent, naming scheme for Galois groups. This default is provided to
ensure that scripts can control this behavior and do not break unexpectedly.
The defaut value is \kbd{0}. This value will change to $1$ (set) in the next
major version.
Function: _def_output
Class: default
Section: default
C-Name: sd_output
Prototype:
Help:
Doc: there are three possible values: 0
(=~\var{raw}), 1 (=~\var{prettymatrix}), or 3
(=~\var{external} \var{prettyprint}). This
means that, independently of the default \kbd{format} for reals which we
explained above, you can print results in three ways:
$\bullet$ \tev{raw format}, i.e.~a format which is equivalent to what you
input, including explicit multiplication signs, and everything typed on a
line instead of two dimensional boxes. This can have several advantages, for
instance it allows you to pick the result with a mouse or an editor, and to
paste it somewhere else.
$\bullet$ \tev{prettymatrix format}: this is identical to raw format, except
that matrices are printed as boxes instead of horizontally. This is
prettier, but takes more space and cannot be used for input. Column vectors
are still printed horizontally.
$\bullet$ \tev{external prettyprint}: pipes all \kbd{gp}
output in TeX format to an external prettyprinter, according to the value of
\tet{prettyprinter}. The default script (\tet{tex2mail}) converts its input
to readable two-dimensional text.
Independently of the setting of this default, an object can be printed
in any of the three formats at any time using the commands \b{a} and \b{m}
and \b{B} respectively.
The default value is \kbd{1} (\var{prettymatrix}).
Function: _def_parisize
Class: default
Section: default
C-Name: sd_parisize
Prototype:
Help:
Doc: \kbd{gp}, and in fact any program using the PARI
library, needs a \tev{stack} in which to do its computations. \kbd{parisize}
is the stack size, in bytes. It is strongly recommended you increase this
default (using the \kbd{-s} command-line switch, or a \tet{gprc}) if you can
afford it. Don't increase it beyond the actual amount of RAM installed on
your computer or \kbd{gp} will spend most of its time paging.
In case of emergency, you can use the \tet{allocatemem} function to
increase \kbd{parisize}, once the session is started.
The default value is 4M, resp.~8M on a 32-bit, resp.~64-bit machine.
Function: _def_path
Class: default
Section: default
C-Name: sd_path
Prototype:
Help:
Doc: this is a list of directories, separated by colons ':'
(semicolons ';' in the DOS world, since colons are preempted for drive names).
When asked to read a file whose name is not given by an absolute path
(does not start with \kbd{/}, \kbd{./} or \kbd{../}), \kbd{gp} will look for
it in these directories, in the order they were written in \kbd{path}. Here,
as usual, \kbd{.} means the current directory, and \kbd{..} its immediate
parent. Environment expansion is performed.
The default value is \kbd{".:\til:\til/gp"} on UNIX systems,
\kbd{".;C:\bs;C:\bs GP"} on DOS, OS/2 and Windows, and \kbd{"."} otherwise.
Function: _def_prettyprinter
Class: default
Section: default
C-Name: sd_prettyprinter
Prototype:
Help:
Doc: the name of an external prettyprinter to use when
\kbd{output} is~3 (alternate prettyprinter). Note that the default
\tet{tex2mail} looks much nicer than the built-in ``beautified
format'' ($\kbd{output} = 2$).
The default value is \kbd{"tex2mail -TeX -noindent -ragged -by\_par"}.
Function: _def_primelimit
Class: default
Section: default
C-Name: sd_primelimit
Prototype:
Help:
Doc: \kbd{gp} precomputes a list of
all primes less than \kbd{primelimit} at initialization time. These are used
by many arithmetic functions, usually for trial division purposes. If you do
not plan to invoke any of them, you can just set this to 1. The maximal value
is a little less than $2^{32}$ (resp $2^{64}$) on a 32-bit (resp.~64-bit)
machine.
Since almost all arithmetic functions eventually require some table of prime
numbers, PARI currently guarantees that the first 6547 primes, up to and
including 65557, are precomputed, even if \kbd{primelimit} is $1$.
The default value is \kbd{500k}.
Function: _def_prompt
Class: gp_default
Section: default
C-Name: sd_prompt
Prototype:
Help:
Doc: a string that will be printed as
prompt. Note that most usual escape sequences are available there: \b{e} for
Esc, \b{n} for Newline, \dots, \kbd{\bs\bs} for \kbd{\bs}. Time expansion is
performed.
This string is sent through the library function \tet{strftime} (on a
Unix system, you can try \kbd{man strftime} at your shell prompt). This means
that \kbd{\%} constructs have a special meaning, usually related to the time
and date. For instance, \kbd{\%H} = hour (24-hour clock) and \kbd{\%M} =
minute [00,59] (use \kbd{\%\%} to get a real \kbd{\%}).
If you use \kbd{readline}, escape sequences in your prompt will result in
display bugs. If you have a relatively recent \kbd{readline} (see the comment
at the end of \secref{se:def,colors}), you can brace them with special sequences
(\kbd{\bs[} and \kbd{\bs]}), and you will be safe. If these just result in
extra spaces in your prompt, then you'll have to get a more recent
\kbd{readline}. See the file \kbd{misc/gprc.dft} for an example.
\emacs {\bf Caution}: PariEmacs needs to know about the prompt pattern to
separate your input from previous \kbd{gp} results, without ambiguity. It is
not a trivial problem to adapt automatically this regular expression to an
arbitrary prompt (which can be self-modifying!). See PariEmacs's
documentation.
The default value is \kbd{"? "}.
Function: _def_prompt_cont
Class: gp_default
Section: default
C-Name: sd_prompt_cont
Prototype:
Help:
Doc: a string that will be printed
to prompt for continuation lines (e.g. in between braces, or after a
line-terminating backslash). Everything that applies to \kbd{prompt}
applies to \kbd{prompt\_cont} as well.
The defaut value is \kbd{""}.
Function: _def_psfile
Class: gp_default
Section: default
C-Name: sd_psfile
Prototype:
Help:
Doc: name of the default file where
\kbd{gp} is to dump its PostScript drawings (these are appended, so that no
previous data are lost). Environment and time expansion are performed.
The default value is \kbd{"pari.ps"}.
Function: _def_readline
Class: gp_default
Section: default
C-Name: sd_readline
Prototype:
Help:
Doc: switches readline line-editing
facilities on and off. This may be useful if you are running \kbd{gp} in a Sun
\tet{cmdtool}, which interacts badly with readline. Of course, until readline
is switched on again, advanced editing features like automatic completion
and editing history are not available.
The default value is \kbd{1}.
Function: _def_realprecision
Class: default
Section: default
C-Name: sd_realprecision
Prototype:
Help:
Doc:
\subsecidx{realprecision} : the number of significant digits and, at the same
time, the number of printed digits of real numbers (see~\b{p}). Note that
PARI internal precision works on a word basis (32 or 64 bits), hence may not
coincide with the number of decimal digits you input. For instance to get 2
decimal digits you need one word of precision which, on a 32-bit machine,
actually gives you 9 digits ($9 < \log_{10}(2^{32}) < 10$):
\bprog
? default(realprecision, 2)
realprecision = 9 significant digits (2 digits displayed)
@eprog
The default value is \kbd{28}, resp.~\kbd{38} on a 32-bit, resp~.64-bit,
machine.
Function: _def_recover
Class: gp_default
Section: default
C-Name: sd_recover
Prototype:
Help:
Doc: this toggle is either 1 (on) or 0 (off). If you change this to $0$, any
error becomes fatal and causes the gp interpreter to exit immediately. Can be
useful in batch job scripts.
The default value is \kbd{1}.
Function: _def_secure
Class: default
Section: default
C-Name: sd_secure
Prototype:
Help:
Doc: this toggle is either 1 (on) or 0 (off). If on, the \tet{system} and
\tet{extern} command are disabled. These two commands are potentially
dangerous when you execute foreign scripts since they let \kbd{gp} execute
arbitrary UNIX commands. \kbd{gp} will ask for confirmation before letting
you (or a script) unset this toggle.
The default value is \kbd{0}.
Function: _def_seriesprecision
Class: default
Section: default
C-Name: sd_seriesprecision
Prototype:
Help:
Doc: number of significant terms
when converting a polynomial or rational function to a power series
(see~\b{ps}).
The default value is \kbd{16}.
Function: _def_simplify
Class: default
Section: default
C-Name: sd_simplify
Prototype:
Help:
Doc: this toggle is either 1 (on) or 0 (off). When the PARI library computes
something, the type of the
result is not always the simplest possible. The only type conversions which
the PARI library does automatically are rational numbers to integers (when
they are of type \typ{FRAC} and equal to integers), and similarly rational
functions to polynomials (when they are of type \typ{RFRAC} and equal to
polynomials). This feature is useful in many cases, and saves time, but can
be annoying at times. Hence you can disable this and, whenever you feel like
it, use the function \kbd{simplify} (see Chapter 3) which allows you to
simplify objects to the simplest possible types recursively (see~\b{y}).
\sidx{automatic simplification}
The default value is \kbd{1}.
Function: _def_strictmatch
Class: default
Section: default
C-Name: sd_strictmatch
Prototype:
Help:
Doc: this toggle is either 1 (on) or 0 (off). If on, unused characters after a
sequence has been
processed will produce an error. Otherwise just a warning is printed. This
can be useful when you are unsure how many parentheses you have to close
after complicated nested loops. Please do not use this; find a decent
text-editor instead.
The default value is \kbd{1}.
Function: _def_timer
Class: gp_default
Section: default
C-Name: sd_timer
Prototype:
Help:
Doc: this toggle is either 1 (on) or 0 (off). If on, every instruction
sequence (anything ended by a
newline in your input) is timed, to some accuracy depending on the hardware
and operating system. The time measured is the user \idx{CPU time},
\emph{not} including the time for printing the results (see \kbd{\#} and
\kbd{\#\#}).
The default value is \kbd{0}.
Function: _default_check
Class: gp2c_internal
Help: Code to check for the default marker
Description:
(C!GEN):bool !$(1)
(var):bool $(1) == -1
Function: _default_marker
Class: gp2c_internal
Help: Code for default value of GP function
Description:
(C!GEN) NULL
(var) -1
(small) 0
(str) ""
Function: _derivfun
Class: basic
Section: programming/internals
C-Name: derivfun0
Prototype: GGp
Help: _derivfun(closure,[args]) numerical derivation of closure with respect to
the first variable at (args).
Function: _diffptr
Class: gp2c_internal
Help: Table of difference of primes.
Description:
():bptr diffptr
Function: _err_primes
Class: gp2c_internal
Description:
():void pari_err(primer1)
Function: _err_type
Class: gp2c_internal
Description:
(str):void pari_err(typeer, $1)
Function: _eval_mnemonic
Class: basic
Section: programming/internals
C-Name: eval_mnemonic
Prototype: lGs
Help: Convert a mnemonic string to a flag.
Function: _factor_Aurifeuille
Class: basic
Section: programming/internals
C-Name: factor_Aurifeuille
Prototype: GL
Help: _factor_Aurifeuille(a,d): return an algebraic factor of Phi_d(a), a != 0
Function: _factor_Aurifeuille_prime
Class: basic
Section: programming/internals
C-Name: factor_Aurifeuille_prime
Prototype: GL
Help: _factor_Aurifeuille_prime(p,d): return an algebraic factor of Phi_d(p), p prime
Function: _formatcode
Class: gp2c_internal
Description:
(#small):void $1
(small):small %ld
(#str):void $%1
(str):str %s
(gen):gen %Ps
Function: _forprime_next
Class: gp2c_internal
Help: Compute the next prime from the diffptr table.
Description:
(*small,*bptr):void NEXT_PRIME_VIADIFF($1, $2)
Function: _forvec_start
Class: gp2c_internal
Help: Initializes parameters for forvec_start.
Description:
(gen, small, &gen, &func_GG):vec forvec_start($1, $2, &$3, &$4)
Function: _gerepileall
Class: gp2c_internal
Description:
(pari_sp,gen):void:parens $2 = gerepilecopy($1, $2)
(pari_sp,gen,...):void gerepileall($1, ${nbarg 1 sub}, ${stdref 3 code})
Function: _gerepileupto
Class: gp2c_internal
Description:
(pari_sp, int):int gerepileuptoint($1, $2)
(pari_sp, mp):mp gerepileuptoleaf($1, $2)
(pari_sp, vecsmall):vecsmall gerepileuptoleaf($1, $2)
(pari_sp, vec):vec gerepileupto($1, $2)
(pari_sp, gen):gen gerepileupto($1, $2)
Function: _low_stack_lim
Class: gp2c_internal
Description:
(pari_sp,pari_sp):bool low_stack($1, stack_lim($2, 1))
Function: _maxprime
Class: gp2c_internal
Description:
():small maxprime()
Function: _proto_code
Class: gp2c_internal
Help: Code for argument of a function
Description:
(var) n
(C!long) L
(C!GEN) G
(C!char*) s
Function: _proto_max_args
Class: gp2c_internal
Help: Max number of arguments supported by install.
Description:
(20)
Function: _proto_ret
Class: gp2c_internal
Help: Code for return value of functions
Description:
(C!void) v
(C!int) i
(C!long) l
(C!GEN)
Function: _stack_lim
Class: gp2c_internal
Description:
(pari_sp,small):pari_sp stack_lim($1, $2)
Function: _strtoclosure
Class: gp2c_internal
Description:
(str):closure strtofunction($1)
(str,gen,...):closure strtoclosure($1, ${nbarg 1 sub}, $3)
Function: _toGENstr
Class: gp2c_internal
Description:
(str):genstr strtoGENstr($1)
(gen):genstr GENtoGENstr($1)
Function: _tovec
Class: gp2c_internal
Help: Create a vector holding the arguments (shallow)
Description:
():vec cgetg(1, t_VEC)
(gen):vec mkvec($1)
(gen,gen):vec mkvec2($1, $2)
(gen,gen,gen):vec mkvec3($1, $2, $3)
(gen,gen,gen,gen):vec mkvec4($1, $2, $3, $4)
(gen,...):vec mkvecn($#, $2)
Function: _tovecprec
Class: gp2c_internal
Help: Create a vector holding the arguments and prec (shallow)
Description:
():vec:prec mkvecs(prec)
(gen):vec:prec mkvec2($1, stoi(prec))
(gen,gen):vec:prec mkvec3($1, $2, stoi(prec))
(gen,gen,gen):vec:prec mkvec4($1, $2, $3, stoi(prec))
(gen,...):vec:prec mkvecn(${nbarg 1 add}, $2, stoi(prec))
Function: _type_preorder
Class: gp2c_internal
Help: List of chains of type preorder.
Description:
(empty, void, bool, small, int, mp, gen)
(empty, real, mp)
(empty, bptr, small)
(empty, bool, lg, small)
(empty, bool, small_int, small)
(empty, void, negbool, bool)
(empty, typ, str, genstr,gen)
(empty, vecsmall, gen)
(empty, vec, gen)
(empty, list, gen)
(empty, closure, gen)
(empty, bnr, bnf, nf, vec)
(empty, bnr, bnf, clgp, vec)
(empty, bell, ell, vec)
(empty, prid, vec)
(empty, gal, vec)
(empty, var, pol, gen)
Function: _typedef
Class: gp2c_internal
Description:
(empty) void
(void) void
(negbool) long
(bool) long
(small_int) int
(small) long
(int) GEN
(real) GEN
(mp) GEN
(lg) long
(vecsmall) GEN
(vec) GEN
(list) GEN
(var) long
(pol) GEN
(gen) GEN
(closure) GEN
(genstr) GEN
(str) char*
(bptr) byteptr
(func_GG) func_GG
(pari_sp) pari_sp
(typ) long
(nf) GEN
(bnf) GEN
(bnr) GEN
(ell) GEN
(bell) GEN
(clgp) GEN
(prid) GEN
(gal) GEN
Function: _void_if
Class: basic
Section: programming/internals
C-Name: ifpari_void
Prototype: vGDIDI
Help: internal variant of if() that does not return a value.
Function: _wrap_G
Class: gp2c_internal
C-Name: gp_call
Prototype: G
Description:
(gen):gen $1
Function: _wrap_bG
Class: gp2c_internal
C-Name: gp_callbool
Prototype: lG
Description:
(bool):bool $1
Function: _wrap_vG
Class: gp2c_internal
C-Name: gp_callvoid
Prototype: lG
Description:
(void):small 0
Function: _||_
Class: basic
Section: symbolic_operators
C-Name: orpari
Prototype: GE
Help: x||y: inclusive OR.
Description:
(bool, bool):bool:parens $(1) || $(2)
Function: _~
Class: basic
Section: symbolic_operators
C-Name: gtrans
Prototype: G
Help: x~: transpose of x.
Description:
(vec):vec gtrans($1)
(gen):gen gtrans($1)
Function: abs
Class: basic
Section: transcendental
C-Name: gabs
Prototype: Gp
Help: abs(x): absolute value (or modulus) of x.
Description:
(small):small labs($1)
(int):int mpabs($1)
(real):real mpabs($1)
(mp):mp mpabs($1)
(gen):gen:prec gabs($1, prec)
Doc: absolute value of $x$ (modulus if $x$ is complex).
Rational functions are not allowed. Contrary to most transcendental
functions, an exact argument is \emph{not} converted to a real number before
applying \kbd{abs} and an exact result is returned if possible.
\bprog
? abs(-1)
%1 = 1
? abs(3/7 + 4/7*I)
%2 = 5/7
? abs(1 + I)
%3 = 1.414213562373095048801688724
@eprog\noindent
If $x$ is a polynomial, returns $-x$ if the leading coefficient is
real and negative else returns $x$. For a power series, the constant
coefficient is considered instead.
Function: acos
Class: basic
Section: transcendental
C-Name: gacos
Prototype: Gp
Help: acos(x): arc cosine of x.
Doc: principal branch of $\text{cos}^{-1}(x) = -i \log (x + i\sqrt{1-x^2})$.
In particular, $\text{Re(acos}(x))\in [0,\pi]$ and if $x\in \R$ and $|x|>1$,
then $\text{acos}(x)$ is complex. The branch cut is in two pieces:
$]-\infty,-1]$ , continuous with quadrant II, and $[1,+\infty[$, continuous
with quadrant IV. We have $\text{acos}(x) = \pi/2 - \text{asin}(x)$ for all
$x$.
Function: acosh
Class: basic
Section: transcendental
C-Name: gach
Prototype: Gp
Help: acosh(x): inverse hyperbolic cosine of x.
Doc: principal branch of $\text{cosh}^{-1}(x) = 2
\log(\sqrt{(x+1)/2} + \sqrt{(x-1)/2})$. In particular,
$\text{Re}(\text{acosh}(x))\geq 0$ and
$\text{In}(\text{acosh}(x))\in ]-\pi,\pi]0$; if $x\in \R$ and $x<1$, then
$\text{acosh}(x)$ is complex.
Function: addhelp
Class: basic
Section: programming/specific
C-Name: addhelp
Prototype: vrs
Help: addhelp(sym,str): add/change help message for the symbol sym.
Doc: changes the help message for the symbol \kbd{sym}. The string \var{str} is
expanded on the spot and stored as the online help for \kbd{sym}. If \kbd{sym}
is a function \emph{you} have defined, its definition will still be printed
before the message \var{str}. It is recommended that you document global
variables and user functions in this way. Of course \kbd{gp} will not protest
if you skip this. It is possible to attach a help text to an alias, but it
will never be shown: aliases are expanded by the \kbd{?} help operator and we
get the help of the functions the alias points to.
Nothing prevents you from modifying the help of built-in PARI
functions. But if you do, we would like to hear why you needed to do it!
Function: addprimes
Class: basic
Section: number_theoretical
C-Name: addprimes
Prototype: DG
Help: addprimes({x=[]}): add primes in the vector x to the prime table to
be used in trial division. x may also be a single integer. Composite
"primes" are NOT allowed!
Doc: adds the integers contained in the
vector $x$ (or the single integer $x$) to a special table of
``user-defined primes'', and returns that table. Whenever \kbd{factor} is
subsequently called, it will trial divide by the elements in this table.
If $x$ is empty or omitted, just returns the current list of extra
primes.
The entries in $x$ must be primes: there is no internal check, even if
the \tet{factor_proven} default is set. To remove primes from the list use
\kbd{removeprimes}.
Function: agm
Class: basic
Section: transcendental
C-Name: agm
Prototype: GGp
Help: agm(x,y): arithmetic-geometric mean of x and y.
Doc: arithmetic-geometric mean of $x$ and $y$. In the
case of complex or negative numbers, the principal square root is always
chosen. $p$-adic or power series arguments are also allowed. Note that
a $p$-adic agm exists only if $x/y$ is congruent to 1 modulo $p$ (modulo
16 for $p=2$). $x$ and $y$ cannot both be vectors or matrices.
Function: alarm
Class: gp
Section: programming/specific
C-Name: alarm0
Prototype: vD0,L,
Help: alarm({s = 0}): trigger an "alarmer" exception after s seconds,
cancelling any previously set alarm. Stop a pending alarm if s = 0 or is
omitted.
Doc: trigger an \var{alarmer} exception after $s$ seconds, cancelling any
previously set alarm. Stop a pending alarm if s = 0 or is omitted.
For example, the function \kbd{timefact(N,sec)} below
will try to factor $N$ and give up after \var{sec} seconds,
returning a partial factorisation.
\bprog
default(factor_add_primes,1);
default(primelimit,16777216);
timefact(N,sec)=
{
trap(alarmer,factor(N,0),alarm(sec);my(F=factor(N));alarm(0);F);
}
@eprog
Function: algdep
Class: basic
Section: linear_algebra
C-Name: algdep0
Prototype: GLD0,L,
Help: algdep(x,k,{flag=0}): algebraic relations up to degree n of x, using
lindep([1,x,...,x^(k-1)], flag).
Doc: \sidx{algebraic dependence}
$x$ being real/complex, or $p$-adic, finds a polynomial of degree at most
$k$ with integer coefficients having $x$ as approximate root. Note that the
polynomial which is obtained is not necessarily the ``correct'' one. In fact
it is not even guaranteed to be irreducible. One can check the closeness
either by a polynomial evaluation (use \tet{subst}), or by computing the
roots of the polynomial given by \kbd{algdep} (use \tet{polroots}).
Internally, \tet{lindep}$([1,x,\ldots,x^k], \fl)$ is used. If
\tet{lindep} is not able to find a relation and returns a lower bound for the
sup norm of the smallest relation, \tet{algdep} returns that bound instead.
A non-zero value of $\fl$ may improve on the default behavior
if the input number is known to a \emph{huge} accuracy, and you suspect the
last bits are incorrect (this truncates the number, throwing away the least
significant bits), but default values are usually sufficient:
\bprog
\\\\\\\\\ LLL
? \p200
? algdep(2^(1/6)+3^(1/5), 30); \\ wrong in 0.8s
? algdep(2^(1/6)+3^(1/5), 30, 100); \\ wrong in 0.4s
? algdep(2^(1/6)+3^(1/5), 30, 170); \\ right in 0.8s
? algdep(2^(1/6)+3^(1/5), 30, 200); \\ wrong in 1.0s
? \p250
? algdep(2^(1/6)+3^(1/5), 30); \\ right in 1.0s
? algdep(2^(1/6)+3^(1/5), 30, 200); \\ right in 1.0s
? \p500
? algdep(2^(1/6)+3^(1/5), 30); \\ right in 2.9s
? \p1000
? algdep(2^(1/6)+3^(1/5), 30); \\ right in 10.6s
\\\\\\\\\ PSLQ
? \p200
? algdep(2^(1/6)+3^(1/5), 30, -3); \\ failure in 15s
? \p250
? algdep(2^(1/6)+3^(1/5), 30, -3); \\ right in 20s
? \p500
? algdep(2^(1/6)+3^(1/5), 30, -3); \\ right in 52s
? \p1000
? algdep(2^(1/6)+3^(1/5), 30, -3); \\ right in 164s
@eprog\noindent
The changes in \kbd{defaultprecision} only affect the quality of the
initial approximation to $2^{1/6} + 3^{1/5}$, \kbd{algdep} itself uses
exact operations (the size of its operands depend on the accuracy of the
input of course: more accurate input means slower operations).
Proceeding by increments of 5 digits of accuracy, \kbd{algdep} with default
flag produces its first correct result at 205 digits, and from then on a
steady stream of correct results. Interestingly enough, our PSLQ also
reliably succeeds from 205 digits on (and is 15 times slower at that
accuracy).
The above example is the test case studied in a 2000 paper by Borwein and
Lisonek: Applications of integer relation algorithms, \emph{Discrete Math.},
{\bf 217}, p.~65--82. The paper concludes in the superiority of the PSLQ
algorithm, which either shows that PARI's implementation of PSLQ is lacking,
or that its LLL is extremely good. The version of PARI tested there was
1.39, which succeeded reliably from precision 265 on, in about 200 as much
time as the current version.
Variant: Also available is \fun{GEN}{algdep}{GEN x, long k} ($\fl=0$).
Function: alias
Class: basic
Section: programming/specific
C-Name: alias0
Prototype: vrr
Help: alias(newsym,sym): defines the symbol newsym as an alias for the symbol
sym.
Doc: defines the symbol \var{newsym} as an alias for the the symbol \var{sym}:
\bprog
? alias("det", "matdet");
? det([1,2;3,4])
%1 = -2
@eprog\noindent
You are not restricted to ordinary functions, as in the above example:
to alias (from/to) member functions, prefix them with `\kbd{\_.}';
to alias operators, use their internal name, obtained by writing
\kbd{\_} in lieu of the operators argument: for instance, \kbd{\_!} and
\kbd{!\_} are the internal names of the factorial and the
logical negation, respectively.
\bprog
? alias("mod", "_.mod");
? alias("add", "_+_");
? alias("_.sin", "sin");
? mod(Mod(x,x^4+1))
%2 = x^4 + 1
? add(4,6)
%3 = 10
? Pi.sin
%4 = 0.E-37
@eprog
Alias expansion is performed directly by the internal GP compiler.
Note that since alias is performed at compilation-time, it does not
require any run-time processing, however it only affects GP code
compiled \emph{after} the alias command is evaluated. A slower but more
flexible alternative is to use variables. Compare
\bprog
? fun = sin;
? g(a,b) = intnum(t=a,b,fun(t));
? g(0, Pi)
%3 = 2.0000000000000000000000000000000000000
? fun = cos;
? g(0, Pi)
%5 = 1.8830410776607851098 E-39
@eprog\noindent
with
\bprog
? alias(fun, sin);
? g(a,b) = intnum(t=a,b,fun(t));
? g(0,Pi)
%2 = 2.0000000000000000000000000000000000000
? alias(fun, cos); \\ Oops. Does not affect *previous* definition!
? g(0,Pi)
%3 = 2.0000000000000000000000000000000000000
? g(a,b) = intnum(t=a,b,fun(t)); \\ Redefine, taking new alias into account
? g(0,Pi)
%5 = 1.8830410776607851098 E-39
@eprog
A sample alias file \kbd{misc/gpalias} is provided with
the standard distribution.
Function: allocatemem
Class: gp
Section: programming/specific
C-Name: allocatemem0
Prototype: vDG
Help: allocatemem({s=0}): allocates a new stack of s bytes. doubles the
stack if s is omitted.
Doc: this very special operation
allows the user to change the stack size \emph{after} initialization. $x$
must be a non-negative integer. If $x \neq 0$, a new stack of size
$16*\ceil{x/16}$ bytes is allocated. If $x=0$, the size of
the new stack is twice the size of the old one. The old stack is discarded.
\misctitle{Warning} This function should be typed at the \kbd{gp} prompt in
interactive usage, or left by itself at the start of batch files.
It cannot be used meaningfully in loop-like constructs, or as part of a
larger expression sequence, e.g
\bprog
allocatemem(); x = 1; \\@com This will not set \kbd{x}!
@eprog\noindent
In fact, all loops are immediately exited, user functions terminated, and
the rest of the sequence following \kbd{allocatemem()} is silently
discarded, as well as all pending sequences of instructions. We just go on
reading the next instruction sequence from the file we're in (or from the
user). In particular, we have the following possibly unexpected behavior: in
\bprog
read("file.gp"); x = 1
@eprog\noindent were \kbd{file.gp} contains an \kbd{allocatemem} statement,
the \kbd{x = 1} is never executed, since all pending instructions in the
current sequence are discarded.
The technical reason is that this routine moves the stack, so temporary
objects created during the current expression evaluation are not correct
anymore. (In particular byte-compiled expressions, which are allocated on
the stack.) To avoid accessing obsolete pointers to the old stack, this
routine ends by a \kbd{longjmp}.
Function: apply
Class: basic
Section: programming/specific
C-Name: apply0
Prototype: GG
Help: apply(f, A): apply function f to each entry in A.
Wrapper: (G)
Description:
(closure,gen):gen genapply(${1 cookie}, ${1 wrapper}, $2)
Doc: Apply the \typ{CLOSURE} \kbd{f} to the entries of \kbd{A}. If \kbd{A}
is a scalar, return \kbd{f(A)}. If \kbd{A} is a polynomial or power series,
apply \kbd{f} on all coefficients. If \kbd{A} is a vector or list, return
the elements $f(x)$ where $x$ runs through \kbd{A}. If \kbd{A} is a matrix,
return the matrix whose entries are the $f(\kbd{A[i,j]})$.
\bprog
? apply(x->x^2, [1,2,3,4])
%1 = [1, 4, 9, 16]
? apply(x->x^2, [1,2;3,4])
%2 =
[1 4]
[9 16]
? apply(x->x^2, 4*x^2 + 3*x+ 2)
%3 = 16*x^2 + 9*x + 4
@eprog\noindent Note that many functions already act componentwise on
vectors or matrices, but they almost never act on lists; in this
case, \kbd{apply} is a good solution:
\bprog
? L = List([Mod(1,3), Mod(2,4)]);
? lift(L)
*** at top-level: lift(L)
*** ^-------
*** lift: incorrect type in lift.
? apply(lift, L);
%2 = List([1, 2])
@eprog
\synt{genapply}{void *E, GEN (*fun)(void*,GEN), GEN a}.
Function: arg
Class: basic
Section: transcendental
C-Name: garg
Prototype: Gp
Help: arg(x): argument of x,such that -pi<arg(x)<=pi.
Doc: argument of the complex number $x$, such that $-\pi<\text{arg}(x)\le\pi$.
Function: asin
Class: basic
Section: transcendental
C-Name: gasin
Prototype: Gp
Help: asin(x): arc sine of x.
Doc: principal branch of $\text{sin}^{-1}(x) = -i \log(ix + \sqrt{1 - x^2})$.
In particular, $\text{Re(asin}(x))\in [-\pi/2,\pi/2]$ and if $x\in \R$ and
$|x|>1$ then $\text{asin}(x)$ is complex. The branch cut is in two pieces:
$]-\infty,-1]$, continuous with quadrant II, and $[1,+\infty[$ continuous
with quadrant IV. The function satisfies $i \text{asin}(x) =
\text{asinh}(ix)$.
Function: asinh
Class: basic
Section: transcendental
C-Name: gash
Prototype: Gp
Help: asinh(x): inverse hyperbolic sine of x.
Doc: principal branch of $\text{sinh}^{-1}(x) = \log(x + \sqrt{1+x^2})$. In
particular $\text{Im(asinh}(x))\in [-\pi/2,\pi/2]$.
The branch cut is in two pieces: [-i oo ,-i], continuous with quadrant III
and [i,+i oo [ continuous with quadrant I.
Function: atan
Class: basic
Section: transcendental
C-Name: gatan
Prototype: Gp
Help: atan(x): arc tangent of x.
Doc: principal branch of $\text{tan}^{-1}(x) = \log ((1+ix)/(1-ix)) /
2i$. In particular the real part of $\text{atan}(x))$ belongs to
$]-\pi/2,\pi/2[$.
The branch cut is in two pieces:
$]-i\infty,-i[$, continuous with quadrant IV, and $]i,+i \infty[$ continuous
with quadrant II. The function satisfies $i \text{atan}(x) =
-i\text{atanh}(ix)$ for all $x\neq \pm i$.
Function: atanh
Class: basic
Section: transcendental
C-Name: gath
Prototype: Gp
Help: atanh(x): inverse hyperbolic tangent of x.
Doc: principal branch of $\text{tanh}^{-1}(x) = log ((1+x)/(1-x)) / 2$. In
particular the imaginary part of $\text{atanh}(x)$ belongs to
$[-\pi/2,\pi/2]$; if $x\in \R$ and $|x|>1$ then $\text{atanh}(x)$ is complex.
Function: bernfrac
Class: basic
Section: transcendental
C-Name: bernfrac
Prototype: L
Help: bernfrac(x): Bernoulli number B_x, as a rational number.
Doc: Bernoulli number\sidx{Bernoulli numbers} $B_x$,
where $B_0=1$, $B_1=-1/2$, $B_2=1/6$,\dots, expressed as a rational number.
The argument $x$ should be of type integer.
Function: bernreal
Class: basic
Section: transcendental
C-Name: bernreal
Prototype: Lp
Help: bernreal(x): Bernoulli number B_x, as a real number with the current
precision.
Doc: Bernoulli number\sidx{Bernoulli numbers}
$B_x$, as \kbd{bernfrac}, but $B_x$ is returned as a real number
(with the current precision).
Function: bernvec
Class: basic
Section: transcendental
C-Name: bernvec
Prototype: L
Help: bernvec(x): Vector of rational Bernoulli numbers B_0, B_2,...up to
B_(2x).
Doc: creates a vector containing, as rational numbers,
the \idx{Bernoulli numbers} $B_0$, $B_2$,\dots, $B_{2x}$.
This routine is obsolete. Use \kbd{bernfrac} instead each time you need a
Bernoulli number in exact form.
\misctitle{Note} This routine is implemented using repeated independent
calls to \kbd{bernfrac}, which is faster than the standard recursion in exact
arithmetic. It is only kept for backward compatibility: it is not faster than
individual calls to \kbd{bernfrac}, its output uses a lot of memory space,
and coping with the index shift is awkward.
Function: besselh1
Class: basic
Section: transcendental
C-Name: hbessel1
Prototype: GGp
Help: besselh1(nu,x): H^1-bessel function of index nu and argument x.
Doc: $H^1$-Bessel function of index \var{nu} and argument $x$.
Function: besselh2
Class: basic
Section: transcendental
C-Name: hbessel2
Prototype: GGp
Help: besselh2(nu,x): H^2-bessel function of index nu and argument x.
Doc: $H^2$-Bessel function of index \var{nu} and argument $x$.
Function: besseli
Class: basic
Section: transcendental
C-Name: ibessel
Prototype: GGp
Help: besseli(nu,x): I-bessel function of index nu and argument x.
Doc: $I$-Bessel function of index \var{nu} and
argument $x$. If $x$ converts to a power series, the initial factor
$(x/2)^\nu/\Gamma(\nu+1)$ is omitted (since it cannot be represented in PARI
when $\nu$ is not integral).
Function: besselj
Class: basic
Section: transcendental
C-Name: jbessel
Prototype: GGp
Help: besselj(nu,x): J-bessel function of index nu and argument x.
Doc: $J$-Bessel function of index \var{nu} and
argument $x$. If $x$ converts to a power series, the initial factor
$(x/2)^\nu/\Gamma(\nu+1)$ is omitted (since it cannot be represented in PARI
when $\nu$ is not integral).
Function: besseljh
Class: basic
Section: transcendental
C-Name: jbesselh
Prototype: GGp
Help: besseljh(n,x): J-bessel function of index n+1/2 and argument x, where
n is a non-negative integer.
Doc: $J$-Bessel function of half integral index.
More precisely, $\kbd{besseljh}(n,x)$ computes $J_{n+1/2}(x)$ where $n$
must be of type integer, and $x$ is any element of $\C$. In the
present version \vers, this function is not very accurate when $x$ is small.
Function: besselk
Class: basic
Section: transcendental
C-Name: kbessel
Prototype: GGp
Help: besselk(nu,x): K-bessel function of index nu and argument x.
Doc: $K$-Bessel function of index \var{nu} and argument $x$.
Function: besseln
Class: basic
Section: transcendental
C-Name: nbessel
Prototype: GGp
Help: besseln(nu,x): N-bessel function of index nu and argument x.
Doc: $N$-Bessel function of index \var{nu} and argument $x$.
Function: bestappr
Class: basic
Section: number_theoretical
C-Name: bestappr0
Prototype: GDGDG
Help: bestappr(x, {A},{B}): if x is real, gives the best approximation to x with
denominator less or equal to A. If x is an intmod, returns a rational number
congruent to x with numerator less than A and denominator less than B, which
must be given. If x is a polmod, returns a rational functions congruent to x
with numerator degree less than A and denominator degree less than B, which
must be given. Otherwise applies recursively to all components.
Doc: if $B$ is omitted, finds the best rational approximation to $x\in\R$
using continued fractions. If $A$ is omitted, return the best approximation
affordable given the input accuracy; otherwise make sure that denominator is
at most equal to $A$.
If $B$ is
present perform rational modular reconstruction (see below). In both cases,
the function applies recursively to components of complex objects
(polynomials, vectors, \dots).
\bprog
? bestappr(Pi, 100)
%1 = 22/7
? bestappr(0.1428571428571428571428571429)
%2 = 1/7
? bestappr([Pi, sqrt(2) + 'x], 10^3)
%3 = [355/113, x + 1393/985]
@eprog
By definition, $n/d$ is the best rational approximation to $x$ if
$|d x - n| < |v x - u|$ for all integers $(u,v)$ with $v \leq A$. (Which
implies that $n/d$ is a convergent of the continued fraction of $x$.)
If $x$ is an \typ{INTMOD}, (or a recursive combination of
those), modulo $N$ say, $B$ must be present. The routine then returns the
unique rational number $a/b$ in coprime integers $a\leq A$ and $b\leq B$ which
is congruent to $x$ modulo $N$. If $N \leq 2AB$, uniqueness is not guaranteed
and the function fails with an error message. If rational reconstruction is not
possible (no such $a/b$ exists for at least one component of $x$), returns
$-1$.
\bprog
? bestappr(Mod(18526731858, 11^10), 10^10, 10^10)
*** at top-level: bestappr(Mod(1852673
*** ^--------------------
*** bestappr: ratlift: must have 2*amax*bmax < m, found
amax=10000000000
bmax=10000000000
m=25937424601
? bestappr(Mod(18526731858, 11^10), 10^5, 10^5)
%1 = 1/7
? bestappr(Mod(18526731858, 11^20), 10^10, 10^10)
%2 = -1
@eprog\noindent In most concrete uses, $B$ is a prime power and we performed
Hensel lifting to obtain $x$.
If $x$ is a \typ{POLMOD}, modulo $T$ say, $B$ must be present. The routine
then returns the unique rational function $P/Q$ with $\deg P\leq A$ and $\deg
Q\leq B$ which is congruent to $x$ modulo $T$. If $\deg T \leq A+B$, uniqueness
is not guaranteed and the function fails with an error message. If rational
reconstruction is not possible, returns $-1$.
Variant: Also available is \fun{GEN}{bestappr}{GEN x, GEN A}.
Function: bezout
Class: basic
Section: number_theoretical
C-Name: vecbezout
Prototype: GG
Help: bezout(x,y): returns [u,v,d] such that d=gcd(x,y) and u*x+v*y=d.
Doc: Returns $[u,v,d]$ such that $d$ is the gcd of $x,y$,
$x*u+y*v=\gcd(x,y)$, and $u$ and $v$ minimal in a natural sense.
The arguments must be integers or polynomials. \sidx{extended gcd}
If $x,y$ are polynomials in the same variable and \emph{inexact}
coefficients, then compute $u,v,d$ such that $x*u+y*v = d$, where $d$
approximately divides both and $x$ and $y$; in particular, we do not obtain
\kbd{gcd(x,y)} which is \emph{defined} to be a scalar in this case:
\bprog
? a = x + 0.0; gcd(a,a)
%1 = 1
? bezout(a,a)
%2 = [0, 1, x + 0.E-28]
? bezout(x-Pi,6*x^2-zeta(2))
%3 = [-6*x - 18.8495559, 1, 57.5726923]
@eprog\noindent For inexact inputs, the output is thus not well defined
mathematically, but you obtain explicit polynomials to check whether the
approximation is close enough for your needs.
Function: bezoutres
Class: basic
Section: number_theoretical
C-Name: vecbezoutres
Prototype: GG
Help: bezoutres(x,y): gives a 3-dimensional row vector [u,v,d] such that
d=resultant(x,y) and u*x+v*y=d, where x and y are polynomials.
Doc: finds $u$ and $v$ such that $x*u + y*v = d$, where $d$ is the resultant
of $x$ and $y$. The result is the row vector $[u,v,d]$. \sidx{extended gcd}
The algorithm used (subresultant) assumes that the base ring is a domain.
Function: bigomega
Class: basic
Section: number_theoretical
C-Name: gbigomega
Prototype: G
Help: bigomega(x): number of prime divisors of x, counted with multiplicity.
Description:
(int):small bigomega($1)
(gen):gen gbigomega($1)
Doc: number of prime divisors of the integer $|x|$ counted with
multiplicity:
\bprog
? factor(392)
%1 =
[2 3]
[7 2]
? bigomega(392)
%2 = 5; \\ = 3+2
? omega(392)
%3 = 2; \\ without multiplicity
@eprog
The function accepts vector/matrices arguments, and is then applied
componentwise.
Variant: For a \typ{INT} $x$, the variant
\fun{long}{bigomega}{GEN n} is generally easier to use.
Function: binary
Class: basic
Section: conversions
C-Name: binaire
Prototype: G
Help: binary(x): gives the vector formed by the binary digits of x (x
integer).
Doc:
outputs the vector of the binary digits of $|x|$.
Here $x$ can be an integer, a real number (in which case the result has two
components, one for the integer part, one for the fractional part) or a
vector/matrix.
Function: binomial
Class: basic
Section: number_theoretical
C-Name: binomial
Prototype: GL
Help: binomial(x,y): binomial coefficient x*(x-1)...*(x-y+1)/y! defined for
y in Z and any x.
Doc: \idx{binomial coefficient} $\binom{x}{y}$.
Here $y$ must be an integer, but $x$ can be any PARI object.
Variant: The function
\fun{GEN}{binomialuu}{ulong n, ulong k} is also available, and so is
\fun{GEN}{vecbinome}{long n}, which returns a vector $v$
with $n+1$ components such that $v[k+1] = \kbd{binomial}(n,k)$ for $k$ from
$0$ up to $n$.
Function: bitand
Class: basic
Section: conversions
C-Name: gbitand
Prototype: GG
Help: bitand(x,y): bitwise "and" of two integers x and y. Negative numbers
behave as if modulo big power of 2.
Description:
(small, small):small:parens $(1)&$(2)
(gen, gen):int gbitand($1, $2)
Doc:
bitwise \tet{and}
\sidx{bitwise and}of two integers $x$ and $y$, that is the integer
$$\sum_i (x_i~\kbd{and}~y_i) 2^i$$
Negative numbers behave $2$-adically, i.e.~the result is the $2$-adic limit
of \kbd{bitand}$(x_n,y_n)$, where $x_n$ and $y_n$ are non-negative integers
tending to $x$ and $y$ respectively. (The result is an ordinary integer,
possibly negative.)
\bprog
? bitand(5, 3)
%1 = 1
? bitand(-5, 3)
%2 = 3
? bitand(-5, -3)
%3 = -7
@eprog
Variant: Also available is
\fun{GEN}{ibitand}{GEN x, GEN y}, which returns the bitwise \emph{and}
of $|x|$ and $|y|$, two integers.
Function: bitneg
Class: basic
Section: conversions
C-Name: gbitneg
Prototype: GD-1,L,
Help: bitneg(x,{n=-1}): bitwise negation of an integers x truncated to n
bits. n=-1 means represent infinite sequences of bit 1 as negative numbers.
Negative numbers behave as if modulo big power of 2.
Doc:
\idx{bitwise negation} of an integer $x$,
truncated to $n$ bits, that is the integer $$\sum_{i=0}^{n-1} \kbd{not}(x_i)
2^i$$ The special case $n=-1$ means no truncation: an infinite sequence of
leading $1$ is then represented as a negative number.
See \secref{se:bitand} for the behavior for negative arguments.
Function: bitnegimply
Class: basic
Section: conversions
C-Name: gbitnegimply
Prototype: GG
Help: bitnegimply(x,y): bitwise "negated imply" of two integers x and y,
in other words, x BITAND BITNEG(y). Negative numbers behave as if modulo big
power of 2.
Description:
(small, small):small:parens $(1)&~$(2)
(gen, gen):int gbitnegimply($1, $2)
Doc:
bitwise negated imply of two integers $x$ and
$y$ (or \kbd{not} $(x \Rightarrow y)$), that is the integer $$\sum
(x_i~\kbd{and not}(y_i)) 2^i$$
See \secref{se:bitand} for the behavior for negative arguments.
Variant: Also available is
\fun{GEN}{ibitnegimply}{GEN x, GEN y}, which returns the bitwise negated
imply of $|x|$ and $|y|$, two integers.
Function: bitor
Class: basic
Section: conversions
C-Name: gbitor
Prototype: GG
Help: bitor(x,y): bitwise "or" of two integers x and y. Negative numbers
behave as if modulo big power of 2.
Description:
(small, small):small:parens $(1)|$(2)
(gen, gen):int gbitor($1, $2)
Doc:
\sidx{bitwise inclusive or}bitwise (inclusive)
\tet{or} of two integers $x$ and $y$, that is the integer $$\sum
(x_i~\kbd{or}~y_i) 2^i$$
See \secref{se:bitand} for the behavior for negative arguments.
Variant: Also available is
\fun{GEN}{ibitor}{GEN x, GEN y}, which returns the bitwise \emph{ir}
of $|x|$ and $|y|$, two integers.
Function: bittest
Class: basic
Section: conversions
C-Name: gbittest
Prototype: GL
Help: bittest(x,n): gives bit number n (coefficient of 2^n) of the integer x.
Negative numbers behave as if modulo big power of 2.
Description:
(small, small):bool:parens ($(1)>>$(2))&1
(int, small):bool bittest($1, $2)
(gen, small):gen gbittest($1, $2)
Doc:
outputs the $n^{\text{th}}$ bit of $x$ starting
from the right (i.e.~the coefficient of $2^n$ in the binary expansion of $x$).
The result is 0 or 1.
\bprog
? bittest(7, 3)
%1 = 1 \\ the 3rd bit is 1
? bittest(7, 4)
%2 = 0 \\ the 4th bit is 0
@eprog\noindent
See \secref{se:bitand} for the behavior at negative arguments.
Variant: For a \typ{INT} $x$, the variant \fun{long}{bittest}{GEN x, long n} is
generally easier to use.
Function: bitxor
Class: basic
Section: conversions
C-Name: gbitxor
Prototype: GG
Help: bitxor(x,y): bitwise "exclusive or" of two integers x and y.
Negative numbers behave as if modulo big power of 2.
Description:
(small, small):small:parens $(1)^$(2)
(gen, gen):int gbitxor($1, $2)
Doc:
bitwise (exclusive) \tet{or}
\sidx{bitwise exclusive or}of two integers $x$ and $y$, that is the integer
$$\sum (x_i~\kbd{xor}~y_i) 2^i$$
See \secref{se:bitand} for the behavior for negative arguments.
Variant: Also available is
\fun{GEN}{ibitxor}{GEN x, GEN y}, which returns the bitwise \emph{xor}
of $|x|$ and $|y|$, two integers.
Function: bnfcertify
Class: basic
Section: number_fields
C-Name: bnfcertify0
Prototype: lGD0,L,
Help: bnfcertify(bnf,{flag = 0}): certify the correctness (i.e. remove the GRH) of the bnf data output by bnfinit. If flag is present, only certify that the class group is a quotient of the one computed in bnf (much simpler in general).
Doc: $\var{bnf}$ being as output by
\kbd{bnfinit}, checks whether the result is correct, i.e.~whether it is
possible to remove the assumption of the Generalized Riemann
Hypothesis\sidx{GRH}. It is correct if and only if the answer is 1. If it is
incorrect, the program may output some error message, or loop indefinitely.
You can check its progress by increasing the debug level.
If flag is present, only certify that the class group is a quotient of the
one computed in bnf (much simpler in general).
Variant: Also available is \fun{GEN}{bnfcertify}{GEN bnf} ($\fl=0$).
Function: bnfcompress
Class: basic
Section: number_fields
C-Name: bnfcompress
Prototype: G
Help: bnfcompress(bnf): converts bnf to a much smaller sbnf, containing the
same information. Use bnfinit(sbnf) to recover a true bnf.
Doc: computes a compressed version of \var{bnf} (from \tet{bnfinit}), a
``small Buchmann's number field'' (or \var{sbnf} for short) which contains
enough information to recover a full $\var{bnf}$ vector very rapidly, but
which is much smaller and hence easy to store and print. Calling
\kbd{bnfinit} on the result recovers a true \kbd{bnf}, in general different
from the original. Note that an \tev{snbf} is useless for almost all
purposes besides storage, and must be converted back to \tev{bnf} form
before use; for instance, no \kbd{nf*}, \kbd{bnf*} or member function
accepts them.
An \var{sbnf} is a 12 component vector $v$, as follows. Let \kbd{bnf} be
the result of a full \kbd{bnfinit}, complete with units. Then $v[1]$ is
\kbd{bnf.pol}, $v[2]$ is the number of real embeddings \kbd{bnf.sign[1]},
$v[3]$ is \kbd{bnf.disc}, $v[4]$ is \kbd{bnf.zk}, $v[5]$ is the list of roots
\kbd{bnf.roots}, $v[7]$ is the matrix $\kbd{W} = \kbd{bnf[1]}$,
$v[8]$ is the matrix $\kbd{matalpha}=\kbd{bnf[2]}$,
$v[9]$ is the prime ideal factor base \kbd{bnf[5]} coded in a compact way,
and ordered according to the permutation \kbd{bnf[6]}, $v[10]$ is the
2-component vector giving the number of roots of unity and a generator,
expressed on the integral basis, $v[11]$ is the list of fundamental units,
expressed on the integral basis, $v[12]$ is a vector containing the algebraic
numbers alpha corresponding to the columns of the matrix \kbd{matalpha},
expressed on the integral basis.
All the components are exact (integral or rational), except for the roots in
$v[5]$.
Function: bnfdecodemodule
Class: basic
Section: number_fields
C-Name: decodemodule
Prototype: GG
Help: bnfdecodemodule(nf,m): given a coded module m as in bnrdisclist,
gives the true module.
Doc: if $m$ is a module as output in the
first component of an extension given by \kbd{bnrdisclist}, outputs the
true module.
Function: bnfinit
Class: basic
Section: number_fields
C-Name: bnfinit0
Prototype: GD0,L,DGp
Help: bnfinit(P,{flag=0},{tech=[]}): compute the necessary data for future
use in ideal and unit group computations, including fundamental units if
they are not too large. flag and tech are both optional. flag can be any of
0: default, 1: insist on having fundamental units.
See manual for details about tech.
Description:
(gen):bnf:prec Buchall($1, 0, prec)
(gen, 0):bnf:prec Buchall($1, 0, prec)
(gen, 1):bnf:prec Buchall($1, nf_FORCE, prec)
(gen, ?small, ?gen):bnf:prec bnfinit0($1, $2, $3, prec)
Doc: initializes a
\var{bnf} structure. Used in programs such as \kbd{bnfisprincipal},
\kbd{bnfisunit} or \kbd{bnfnarrow}. By default, the results are conditional
on the GRH, see \ref{se:GRHbnf}. The result is a
10-component vector \var{bnf}.
This implements \idx{Buchmann}'s sub-exponential algorithm for computing the
class group, the regulator and a system of \idx{fundamental units} of the
general algebraic number field $K$ defined by the irreducible polynomial $P$
with integer coefficients.
If the precision becomes insufficient, \kbd{gp} does not strive to compute
the units by default ($\fl=0$).
When $\fl=1$, we insist on finding the fundamental units exactly. Be
warned that this can take a very long time when the coefficients of the
fundamental units on the integral basis are very large. If the fundamental
units are simply too large to be represented in this form, an error message
is issued. They could be obtained using the so-called compact representation
of algebraic numbers as a formal product of algebraic integers. The latter is
implemented internally but not publicly accessible yet.
$\var{tech}$ is a technical vector (empty by default, see \ref{se:GRHbnf}).
Careful use of this parameter may speed up your computations,
but it is mostly obsolete and you should leave it alone.
\smallskip
The components of a \var{bnf} or \var{sbnf} are technical and never used by
the casual user. In fact: \emph{never access a component directly, always use
a proper member function.} However, for the sake of completeness and internal
documentation, their description is as follows. We use the notations
explained in the book by H. Cohen, \emph{A Course in Computational Algebraic
Number Theory}, Graduate Texts in Maths \key{138}, Springer-Verlag, 1993,
Section 6.5, and subsection 6.5.5 in particular.
$\var{bnf}[1]$ contains the matrix $W$, i.e.~the matrix in Hermite normal
form giving relations for the class group on prime ideal generators
$(\goth{p}_i)_{1\le i\le r}$.
$\var{bnf}[2]$ contains the matrix $B$, i.e.~the matrix containing the
expressions of the prime ideal factorbase in terms of the $\goth{p}_i$.
It is an $r\times c$ matrix.
$\var{bnf}[3]$ contains the complex logarithmic embeddings of the system of
fundamental units which has been found. It is an $(r_1+r_2)\times(r_1+r_2-1)$
matrix.
$\var{bnf}[4]$ contains the matrix $M''_C$ of Archimedean components of the
relations of the matrix $(W|B)$.
$\var{bnf}[5]$ contains the prime factor base, i.e.~the list of prime
ideals used in finding the relations.
$\var{bnf}[6]$ used to contain a permutation of the prime factor base, but
has been obsoleted. It contains a dummy $0$.
$\var{bnf}[7]$ or \kbd{\var{bnf}.nf} is equal to the number field data
$\var{nf}$ as would be given by \kbd{nfinit}.
$\var{bnf}[8]$ is a vector containing the classgroup \kbd{\var{bnf}.clgp}
as a finite abelian group, the regulator \kbd{\var{bnf}.reg}, a $1$ (used to
contain an obsolete ``check number''), the number of roots of unity and a
generator \kbd{\var{bnf}.tu}, the fundamental units \kbd{\var{bnf}.fu}.
$\var{bnf}[9]$ is a 3-element row vector used in \tet{bnfisprincipal} only
and obtained as follows. Let $D = U W V$ obtained by applying the
\idx{Smith normal form} algorithm to the matrix $W$ (= $\var{bnf}[1]$) and
let $U_r$ be the reduction of $U$ modulo $D$. The first elements of the
factorbase are given (in terms of \kbd{bnf.gen}) by the columns of $U_r$,
with Archimedean component $g_a$; let also $GD_a$ be the Archimedean
components of the generators of the (principal) ideals defined by the
\kbd{bnf.gen[i]\pow bnf.cyc[i]}. Then $\var{bnf}[9]=[U_r, g_a, GD_a]$.
$\var{bnf}[10]$ is by default unused and set equal to 0. This field is used
to store further information about the field as it becomes available, which
is rarely needed, hence would be too expensive to compute during the initial
\kbd{bnfinit} call. For instance, the generators of the principal ideals
\kbd{bnf.gen[i]\pow bnf.cyc[i]} (during a call to \tet{bnrisprincipal}), or
those corresponding to the relations in $W$ and $B$ (when the \kbd{bnf}
internal precision needs to be increased).
Variant:
Also available is \fun{GEN}{Buchall}{GEN P, long flag, long prec},
corresponding to \kbd{tech = NULL}, where
\kbd{flag} is either $0$ (default) or \tet{nf_FORCE} (insist on finding
fundamental units). The function
\fun{GEN}{Buchall_param}{GEN P, double c1, double c2, long nrpid, long
flag, long prec} gives direct access to the technical parameters.
Function: bnfisintnorm
Class: basic
Section: number_fields
C-Name: bnfisintnorm
Prototype: GG
Help: bnfisintnorm(bnf,x): compute a complete system of solutions (modulo
units of positive norm) of the absolute norm equation N(a)=x, where a
belongs to the maximal order of big number field bnf (if bnf is not
certified, this depends on GRH).
Doc: computes a complete system of
solutions (modulo units of positive norm) of the absolute norm equation
$\Norm(a)=x$,
where $a$ is an integer in $\var{bnf}$. If $\var{bnf}$ has not been certified,
the correctness of the result depends on the validity of \idx{GRH}.
See also \tet{bnfisnorm}.
Function: bnfisnorm
Class: basic
Section: number_fields
C-Name: bnfisnorm
Prototype: GGD1,L,
Help: bnfisnorm(bnf,x,{flag=1}): Tries to tell whether x (in Q) is the norm
of some fractional y (in bnf). Returns a vector [a,b] where x=Norm(a)*b.
Looks for a solution which is a S-unit, with S a certain list of primes (in
bnf) containing (among others) all primes dividing x. If bnf is known to be
Galois, set flag=0 (in this case, x is a norm iff b=1). If flag is non zero
the program adds to S all the primes : dividing flag if flag<0, or less than
flag if flag>0. The answer is guaranteed (i.e x norm iff b=1) under GRH, if
S contains all primes less than 12.log(disc(Bnf))^2, where Bnf is the Galois
closure of bnf.
Doc: tries to tell whether the
rational number $x$ is the norm of some element y in $\var{bnf}$. Returns a
vector $[a,b]$ where $x=Norm(a)*b$. Looks for a solution which is an $S$-unit,
with $S$ a certain set of prime ideals containing (among others) all primes
dividing $x$. If $\var{bnf}$ is known to be \idx{Galois}, set $\fl=0$ (in
this case, $x$ is a norm iff $b=1$). If $\fl$ is non zero the program adds to
$S$ the following prime ideals, depending on the sign of $\fl$. If $\fl>0$,
the ideals of norm less than $\fl$. And if $\fl<0$ the ideals dividing $\fl$.
Assuming \idx{GRH}, the answer is guaranteed (i.e.~$x$ is a norm iff $b=1$),
if $S$ contains all primes less than $12\log(\disc(\var{Bnf}))^2$, where
$\var{Bnf}$ is the Galois closure of $\var{bnf}$.
See also \tet{bnfisintnorm}.
Function: bnfisprincipal
Class: basic
Section: number_fields
C-Name: bnfisprincipal0
Prototype: GGD1,L,
Help: bnfisprincipal(bnf,x,{flag=1}): bnf being output by bnfinit (with
flag<=2), gives [v,alpha], where v is the vector of exponents on
the class group generators and alpha is the generator of the resulting
principal ideal. In particular x is principal if and only if v is the zero
vector. flag is optional, whose binary digits mean 1: output [v,alpha] (only v
if unset); 2: increase precision until alpha can be computed (do not insist
if unset).
Doc: $\var{bnf}$ being the \sidx{principal ideal}
number field data output by \kbd{bnfinit}, and $x$ being an ideal, this
function tests whether the ideal is principal or not. The result is more
complete than a simple true/false answer and solves general discrete
logarithm problem. Assume the class group is $\oplus (\Z/d_i\Z)g_i$
(where the generators $g_i$ and their orders $d_i$ are respectively given by
\kbd{bnf.gen} and \kbd{bnf.cyc}). The routine returns a row vector $[e,t]$,
where $e$ is a vector of exponents $0 \leq e_i < d_i$, and $t$ is a number
field element such that
$$ x = (t) \prod_i g_i^{e_i}.$$
For \emph{given} $g_i$ (i.e. for a given \kbd{bnf}), the $e_i$ are unique,
and $t$ is unique modulo units.
In particular, $x$ is principal if and only if $e$ is the zero vector. Note
that the empty vector, which is returned when the class number is $1$, is
considered to be a zero vector (of dimension $0$).
\bprog
? K = bnfinit(y^2+23);
? K.cyc
%2 = [3]
? K.gen
%3 = [[2, 0; 0, 1]] \\ a prime ideal above 2
? P = idealprimedec(K,3)[1]; \\ a prime ideal above 3
? v = bnfisprincipal(K, P)
%5 = [[2]~, [3/4, 1/4]~]
? idealmul(K, v[2], idealfactorback(K, K.gen, v[1]))
%6 =
[3 0]
[0 1]
? % == idealhnf(K, P)
%7 = 1
@eprog
\noindent The binary digits of \fl mean:
\item $1$: If set, outputs $[e,t]$ as explained above, otherwise returns
only $e$, which is much easier to compute. The following idiom only tests
whether an ideal is principal:
\bprog
is_principal(bnf, x) = !bnfisprincipal(bnf,x,0);
@eprog
\item $2$: It may not be possible to recover $t$, given the initial accuracy
to which \kbd{bnf} was computed. In that case, a warning is printed and $t$ is
set equal to the empty vector \kbd{[]\til}. If this bit is set,
increase the precision and recompute needed quantities until $t$ can be
computed. Warning: setting this may induce \emph{very} lengthy computations.
Variant: Instead of the above hardcoded numerical flags, one should
rather use an or-ed combination of the symbolic flags \tet{nf_GEN} (include
generators, possibly a place holder if too difficult) and \tet{nf_FORCE}
(insist on finding the generators).
Function: bnfissunit
Class: basic
Section: number_fields
C-Name: bnfissunit
Prototype: GGG
Help: bnfissunit(bnf,sfu,x): bnf being output by bnfinit (with flag<=2), sfu
by bnfsunit, gives the column vector of exponents of x on the fundamental
S-units and the roots of unity if x is a unit, the empty vector otherwise.
Doc: $\var{bnf}$ being output by
\kbd{bnfinit}, \var{sfu} by \kbd{bnfsunit}, gives the column vector of
exponents of $x$ on the fundamental $S$-units and the roots of unity.
If $x$ is not a unit, outputs an empty vector.
Function: bnfisunit
Class: basic
Section: number_fields
C-Name: bnfisunit
Prototype: GG
Help: bnfisunit(bnf,x): bnf being output by bnfinit, gives
the column vector of exponents of x on the fundamental units and the roots
of unity if x is a unit, the empty vector otherwise.
Doc: \var{bnf} being the number field data
output by \kbd{bnfinit} and $x$ being an algebraic number (type integer,
rational or polmod), this outputs the decomposition of $x$ on the fundamental
units and the roots of unity if $x$ is a unit, the empty vector otherwise.
More precisely, if $u_1$,\dots,$u_r$ are the fundamental units, and $\zeta$
is the generator of the group of roots of unity (\kbd{bnf.tu}), the output is
a vector $[x_1,\dots,x_r,x_{r+1}]$ such that $x=u_1^{x_1}\cdots
u_r^{x_r}\cdot\zeta^{x_{r+1}}$. The $x_i$ are integers for $i\le r$ and is an
integer modulo the order of $\zeta$ for $i=r+1$.
Note that \var{bnf} need not contain the fundamental unit explicitly:
\bprog
? setrand(1); bnf = bnfinit(x^2-x-100000);
? bnf.fu
*** at top-level: bnf.fu
*** ^--
*** _.fu: missing units in .fu.
? u = [119836165644250789990462835950022871665178127611316131167, \
379554884019013781006303254896369154068336082609238336]~;
? bnfisunit(bnf, u)
%3 = [-1, Mod(0, 2)]~
@eprog\noindent The given $u$ is the inverse of the fundamental unit
implicitly stored in \var{bnf}. In this case, the fundamental unit was not
computed and stored in algebraic form since the default accuracy was too
low. (Re-run the command at \bs g1 or higher to see such diagnostics.)
Function: bnfnarrow
Class: basic
Section: number_fields
C-Name: buchnarrow
Prototype: G
Help: bnfnarrow(bnf): given a big number field as output by bnfinit, gives
as a 3-component vector the structure of the narrow class group.
Doc: $\var{bnf}$ being as output by
\kbd{bnfinit}, computes the narrow class group of $\var{bnf}$. The output is
a 3-component row vector $v$ analogous to the corresponding class group
component \kbd{\var{bnf}.clgp} (\kbd{\var{bnf}[8][1]}): the first component
is the narrow class number \kbd{$v$.no}, the second component is a vector
containing the SNF\sidx{Smith normal form} cyclic components \kbd{$v$.cyc} of
the narrow class group, and the third is a vector giving the generators of
the corresponding \kbd{$v$.gen} cyclic groups. Note that this function is a
special case of \kbd{bnrinit}.
Function: bnfsignunit
Class: basic
Section: number_fields
C-Name: signunits
Prototype: G
Help: bnfsignunit(bnf): matrix of signs of the real embeddings of the system
of fundamental units found by bnfinit.
Doc: $\var{bnf}$ being as output by
\kbd{bnfinit}, this computes an $r_1\times(r_1+r_2-1)$ matrix having $\pm1$
components, giving the signs of the real embeddings of the fundamental units.
The following functions compute generators for the totally positive units:
\bprog
/* exponents of totally positive units generators on bnf.tufu */
tpuexpo(bnf)=
{ my(S,d,K);
S = bnfsignunit(bnf); d = matsize(S);
S = matrix(d[1],d[2], i,j, if (S[i,j] < 0, 1,0));
S = concat(vectorv(d[1],i,1), S); \\ add sign(-1)
K = lift(matker(S * Mod(1,2)));
if (K, mathnfmodid(K, 2), 2*matid(d[1]))
}
/* totally positive units */
tpu(bnf)=
{ my(vu = bnf.tufu, ex = tpuexpo(bnf));
vector(#ex-1, i, factorback(vu, ex[,i+1])) \\ ex[,1] is 1
}
@eprog
Function: bnfsunit
Class: basic
Section: number_fields
C-Name: bnfsunit
Prototype: GGp
Help: bnfsunit(bnf,S): compute the fundamental S-units of the number field
bnf output by bnfinit, S being a list of prime ideals. res[1] contains the
S-units, res[5] the S-classgroup. See manual for details.
Doc: computes the fundamental $S$-units of the
number field $\var{bnf}$ (output by \kbd{bnfinit}), where $S$ is a list of
prime ideals (output by \kbd{idealprimedec}). The output is a vector $v$ with
6 components.
$v[1]$ gives a minimal system of (integral) generators of the $S$-unit group
modulo the unit group.
$v[2]$ contains technical data needed by \kbd{bnfissunit}.
$v[3]$ is an empty vector (used to give the logarithmic embeddings of the
generators in $v[1]$ in version 2.0.16).
$v[4]$ is the $S$-regulator (this is the product of the regulator, the
determinant of $v[2]$ and the natural logarithms of the norms of the ideals
in $S$).
$v[5]$ gives the $S$-class group structure, in the usual format
(a row vector whose three components give in order the $S$-class number,
the cyclic components and the generators).
$v[6]$ is a copy of $S$.
Function: bnrL1
Class: basic
Section: number_fields
C-Name: bnrL1
Prototype: GDGD0,L,p
Help: bnrL1(bnr, {subgrp}, {flag=0}): bnr being output by bnrinit(,,1) and
subgrp being a square matrix defining a congruence subgroup of bnr (the
trivial subgroup if omitted), for each character of bnr trivial on this
subgroup, compute L(1, chi) (or equivalently the first non-zero term c(chi)
of the expansion at s = 0). The binary digits of flag mean 1: if 0 then
compute the term c(chi) and return [r(chi), c(chi)] where r(chi) is the
order of L(s, chi) at s = 0, or if 1 then compute the value at s = 1 (and in
this case, only for non-trivial characters), 2: if 0 then compute the value
of the primitive L-function associated to chi, if 1 then compute the value
of the L-function L_S(s, chi) where S is the set of places dividing the
modulus of bnr (and the infinite places), 3: return also the characters.
Doc: \var{bnr} being
the number field data which is output by \kbd{bnrinit(,,1)} and
\var{subgrp} being a square matrix defining a congruence subgroup of the
ray class group corresponding to \var{bnr} (the trivial congruence subgroup
if omitted), returns for each \idx{character} $\chi$ of the ray class group
which is trivial on this subgroup, the value at $s = 1$ (or $s = 0$) of the
abelian $L$-function associated to $\chi$. For the value at $s = 0$, the
function returns in fact for each character $\chi$ a vector $[r_\chi ,
c_\chi]$ where $r_\chi$ is the order of $L(s, \chi)$ at $s = 0$ and $c_\chi$
the first non-zero term in the expansion of $L(s, \chi)$ at $s = 0$; in other
words
%
$$L(s, \chi) = c_\chi \cdot s^{r_\chi} + O(s^{r_\chi + 1})$$
%
\noindent near $0$. \fl\ is optional, default value is 0; its binary digits
mean 1: compute at $s = 1$ if set to 1 or $s = 0$ if set to 0, 2: compute the
primitive $L$-functions associated to $\chi$ if set to 0 or the $L$-function
with Euler factors at prime ideals dividing the modulus of \var{bnr} removed
if set to 1 (this is the so-called $L_S(s, \chi)$ function where $S$ is the
set of infinite places of the number field together with the finite prime
ideals dividing the modulus of \var{bnr}, see the example below), 3: returns
also the character. Example:
\bprog
bnf = bnfinit(x^2 - 229);
bnr = bnrinit(bnf,1,1);
bnrL1(bnr)
@eprog\noindent
returns the order and the first non-zero term of the abelian
$L$-functions $L(s, \chi)$ at $s = 0$ where $\chi$ runs through the
characters of the class group of $\Q(\sqrt{229})$. Then
\bprog
bnr2 = bnrinit(bnf,2,1);
bnrL1(bnr2,,2)
@eprog\noindent
returns the order and the first non-zero terms of the abelian
$L$-functions $L_S(s, \chi)$ at $s = 0$ where $\chi$ runs through the
characters of the class group of $\Q(\sqrt{229})$ and $S$ is the set
of infinite places of $\Q(\sqrt{229})$ together with the finite prime
$2$. Note that the ray class group modulo $2$ is in fact the class
group, so \kbd{bnrL1(bnr2,0)} returns exactly the same answer as
\kbd{bnrL1(bnr,0)}.
Function: bnrclassno
Class: basic
Section: number_fields
C-Name: bnrclassno
Prototype: GG
Help: bnrclassno(bnf,I): ray class number of the module I for the big number
field bnf. Faster than bnrinit if only the ray class number is wanted.
Doc: $\var{bnf}$ being as output by
\kbd{bnfinit} (units are mandatory unless the ideal is trivial), and $I$
being a modulus, computes the ray class number of the number field for the
modulus $I$. One can input the associated \var{bid} for $I$ instead of the
module itself, saving some time.
This function is faster than \kbd{bnrinit} and should be used if only the
ray class number is desired. See \tet{bnrclassnolist} if you need ray class
numbers for all moduli less than some bound.
Function: bnrclassnolist
Class: basic
Section: number_fields
C-Name: bnrclassnolist
Prototype: GG
Help: bnrclassnolist(bnf,list): if list is as output by ideallist or
similar, gives list of corresponding ray class numbers.
Doc: $\var{bnf}$ being as
output by \kbd{bnfinit}, and \var{list} being a list of moduli (with units) as
output by \kbd{ideallist} or \kbd{ideallistarch}, outputs the list of the
class numbers of the corresponding ray class groups. To compute a single
class number, \tet{bnrclassno} is more efficient.
\bprog
? bnf = bnfinit(x^2 - 2);
? L = ideallist(bnf, 100, 2);
? H = bnrclassnolist(bnf, L);
? H[98]
%4 = [1, 3, 1]
? l = L[1][98]; ids = vector(#l, i, l[i].mod[1])
%5 = [[98, 88; 0, 1], [14, 0; 0, 7], [98, 10; 0, 1]]
@eprog
The weird \kbd{l[i].mod[1]}, is the first component of \kbd{l[i].mod}, i.e.
the finite part of the conductor. (This is cosmetic: since by construction
the Archimedean part is trivial, I do not want to see it). This tells us that
the ray class groups modulo the ideals of norm 98 (printed as \kbd{\%5}) have
respectively order $1$, $3$ and $1$. Indeed, we may check directly :
\bprog
? bnrclassno(bnf, ids[2])
%6 = 3
@eprog
Function: bnrconductor
Class: basic
Section: number_fields
C-Name: bnrconductor0
Prototype: GDGDGD0,L,
Help: bnrconductor(A,{B},{C},{flag=0}): conductor f of the subfield of
the ray class field given by A,B,C. flag is optional and
can be 0: default, 1: returns [f, Cl_f, H], H subgroup of the ray class
group modulo f defining the extension, 2: returns [f, bnr(f), H].
Doc: conductor $f$ of the subfield of a ray class field as defined by $[A,B,C]$
(of type \kbd{[\var{bnr}]},
\kbd{[\var{bnr}, \var{subgroup}]},
\kbd{[\var{bnf}, \var{modulus}]} or
\kbd{[\var{bnf}, \var{modulus}, \var{subgroup}]},
\secref{se:CFT})
If $\fl = 0$, returns $f$.
If $\fl = 1$, returns $[f, Cl_f, H]$, where $Cl_f$ is the ray class group
modulo $f$, as a finite abelian group; finally $H$ is the subgroup of $Cl_f$
defining the extension.
If $\fl = 2$, returns $[f, \var{bnr}(f), H]$, as above except $Cl_f$ is
replaced by a \kbd{bnr} structure, as output by $\tet{bnrinit}(,f,1)$.
Variant:
Also available is \fun{GEN}{bnrconductor}{GEN bnr, GEN H, long flag}
Function: bnrconductorofchar
Class: basic
Section: number_fields
C-Name: bnrconductorofchar
Prototype: GG
Help: bnrconductorofchar(bnr,chi): conductor of the character chi on the ray
class group bnr.
Doc: \var{bnr} being a big
ray number field as output by \kbd{bnrinit}, and \var{chi} being a row vector
representing a \idx{character} as expressed on the generators of the ray
class group, gives the conductor of this character as a modulus.
Function: bnrdisc
Class: basic
Section: number_fields
C-Name: bnrdisc0
Prototype: GDGDGD0,L,
Help: bnrdisc(A,{B},{C},{flag=0}): absolute or relative [N,R1,discf] of
the field defined by A,B,C. [A,{B},{C}] is of type [bnr],
[bnr,subgroup], [bnf, modulus] or [bnf,modulus,subgroup], where bnf is as
output by bnfinit, bnr by bnrinit, and
subgroup is the HNF matrix of a subgroup of the corresponding ray class
group (if omitted, the trivial subgroup). flag is optional whose binary
digits mean 1: give relative data; 2: return 0 if modulus is not the
conductor.
Doc: $A$, $B$, $C$ defining a class field $L$ over a ground field $K$
(of type \kbd{[\var{bnr}]},
\kbd{[\var{bnr}, \var{subgroup}]},
\kbd{[\var{bnf}, \var{modulus}]} or
\kbd{[\var{bnf}, \var{modulus}, \var{subgroup}]},
\secref{se:CFT}), outputs data $[N,r_1,D]$ giving the discriminant and
signature of $L$, depending on the binary digits of \fl:
\item 1: if this bit is unset, output absolute data related to $L/\Q$:
$N$ is the absolute degree $[L:\Q]$, $r_1$ the number of real places of $L$,
and $D$ the discriminant of $L/\Q$. Otherwise, output relative data for $L/K$:
$N$ is the relative degree $[L:K]$, $r_1$ is the number of real places of $K$
unramified in $L$ (so that the number of real places of $L$ is equal to $r_1$
times $N$), and $D$ is the relative discriminant ideal of $L/K$.
\item 2: if this bit is set and if the modulus is not the conductor of $L$,
only return 0.
Function: bnrdisclist
Class: basic
Section: number_fields
C-Name: bnrdisclist0
Prototype: GGDG
Help: bnrdisclist(bnf,bound,{arch}): gives list of discriminants of
ray class fields of all conductors up to norm bound, in a long vector
The ramified Archimedean places are given by arch; all possible values are
taken if arch is omitted. Supports the alternative syntax
bnrdisclist(bnf,list), where list is as output by ideallist or ideallistarch
(with units).
Doc: $\var{bnf}$ being as output by \kbd{bnfinit} (with units), computes a
list of discriminants of Abelian extensions of the number field by increasing
modulus norm up to bound \var{bound}. The ramified Archimedean places are
given by \var{arch}; all possible values are taken if \var{arch} is omitted.
The alternative syntax $\kbd{bnrdisclist}(\var{bnf},\var{list})$ is
supported, where \var{list} is as output by \kbd{ideallist} or
\kbd{ideallistarch} (with units), in which case \var{arch} is disregarded.
The output $v$ is a vector of vectors, where $v[i][j]$ is understood to be in
fact $V[2^{15}(i-1)+j]$ of a unique big vector $V$. (This awkward scheme
allows for larger vectors than could be otherwise represented.)
$V[k]$ is itself a vector $W$, whose length is the number of ideals of norm
$k$. We consider first the case where \var{arch} was specified. Each
component of $W$ corresponds to an ideal $m$ of norm $k$, and
gives invariants associated to the ray class field $L$ of $\var{bnf}$ of
conductor $[m, \var{arch}]$. Namely, each contains a vector $[m,d,r,D]$ with
the following meaning: $m$ is the prime ideal factorization of the modulus,
$d = [L:\Q]$ is the absolute degree of $L$, $r$ is the number of real places
of $L$, and $D$ is the factorization of its absolute discriminant. We set $d
= r = D = 0$ if $m$ is not the finite part of a conductor.
If \var{arch} was omitted, all $t = 2^{r_1}$ possible values are taken and a
component of $W$ has the form $[m, [[d_1,r_1,D_1], \dots, [d_t,r_t,D_t]]]$,
where $m$ is the finite part of the conductor as above, and
$[d_i,r_i,D_i]$ are the invariants of the ray class field of conductor
$[m,v_i]$, where $v_i$ is the $i$-th Archimedean component, ordered by
inverse lexicographic order; so $v_1 = [0,\dots,0]$, $v_2 = [1,0\dots,0]$,
etc. Again, we set $d_i = r_i = D_i = 0$ if $[m,v_i]$ is not a conductor.
Finally, each prime ideal $pr = [p,\alpha,e,f,\beta]$ in the prime
factorization $m$ is coded as the integer $p\cdot n^2+(f-1)\cdot n+(j-1)$,
where $n$ is the degree of the base field and $j$ is such that
\kbd{pr = idealprimedec(\var{nf},p)[j]}.
\noindent $m$ can be decoded using \tet{bnfdecodemodule}.
Note that to compute such data for a single field, either \tet{bnrclassno}
or \tet{bnrdisc} is more efficient.
Function: bnrinit
Class: basic
Section: number_fields
C-Name: bnrinit0
Prototype: GGD0,L,
Help: bnrinit(bnf,f,{flag=0}): given a bnf as output by
bnfinit and a modulus f, initializes data
linked to the ray class group structure corresponding to this module. flag
is optional, and can be 0: default, 1: compute also the generators.
Description:
(gen,gen,?small):bnr bnrinit0($1, $2, $3)
Doc: $\var{bnf}$ is as
output by \kbd{bnfinit}, $f$ is a modulus, initializes data linked to
the ray class group structure corresponding to this module, a so-called
\var{bnr} structure. The following member functions are available
on the result: \kbd{.bnf} is the underlying \var{bnf},
\kbd{.mod} the modulus, \kbd{.bid} the \var{bid} structure associated to the
modulus; finally, \kbd{.clgp}, \kbd{.no}, \kbd{.cyc}, \kbd{.gen} refer to the
ray class group (as a finite abelian group), its cardinality, its elementary
divisors, its generators.
The last group of functions are different from the members of the underlying
\var{bnf}, which refer to the class group; use \kbd{\var{bnr}.bnf.\var{xxx}}
to access these, e.g.~\kbd{\var{bnr}.bnf.cyc} to get the cyclic decomposition
of the class group.
They are also different from the members of the underlying \var{bid}, which
refer to $(\Z_K/f)^*$; use \kbd{\var{bnr}.bid.\var{xxx}} to access these,
e.g.~\kbd{\var{bnr}.bid.no} to get $\phi(f)$.
If $\fl=0$ (default), the generators of the ray class group are not computed,
which saves time. Hence \kbd{\var{bnr}.gen} would produce an error.
If $\fl=1$, as the default, except that generators are computed.
Variant: Instead the above hardcoded numerical flags, one should rather use
\fun{GEN}{Buchray}{GEN bnf, GEN module, long flag}
where flag is an or-ed combination of \kbd{nf\_GEN} (include generators)
and \kbd{nf\_INIT} (if omitted, return just the cardinal of the ray class group
and its structure), possibly 0.
Function: bnrisconductor
Class: basic
Section: number_fields
C-Name: bnrisconductor0
Prototype: lGDGDG
Help: bnrisconductor(A,{B},{C}): returns 1 if the modulus is the
conductor of the subfield of the ray class field given by A,B,C (see
bnrdisc), and 0 otherwise. Slightly faster than bnrconductor if this is the
only desired result.
Doc: $A$, $B$, $C$ represent
an extension of the base field, given by class field theory
(see~\secref{se:CFT}). Outputs 1 if this modulus is the conductor, and 0
otherwise. This is slightly faster than \kbd{bnrconductor}.
Function: bnrisprincipal
Class: basic
Section: number_fields
C-Name: bnrisprincipal
Prototype: GGD1,L,
Help: bnrisprincipal(bnr,x,{flag=1}): bnr being output by bnrinit, gives
[v,alpha], where v is the vector of exponents on the class group
generators and alpha is the generator of the resulting principal ideal. In
particular x is principal if and only if v is the zero vector. If (optional)
flag is set to 0, output only v.
Doc: \var{bnr} being the
number field data which is output by \kbd{bnrinit}$(,,1)$ and $x$ being an
ideal in any form, outputs the components of $x$ on the ray class group
generators in a way similar to \kbd{bnfisprincipal}. That is a 2-component
vector $v$ where $v[1]$ is the vector of components of $x$ on the ray class
group generators, $v[2]$ gives on the integral basis an element $\alpha$ such
that $x=\alpha\prod_ig_i^{x_i}$.
If $\fl=0$, outputs only $v_1$. In that case, \var{bnr} need not contain the
ray class group generators, i.e.~it may be created with \kbd{bnrinit}$(,,0)$
If $x$ is not coprime to the modulus of \var{bnr} the result is undefined.
Variant: Instead of hardcoded numerical flags, one should rather
use
\fun{GEN}{isprincipalray}{GEN bnr, GEN x} for $\kbd{flag} = 0$, and if you
want generators:
\bprog
bnrisprincipal(bnr, x, nf_GEN)
@eprog
Function: bnrrootnumber
Class: basic
Section: number_fields
C-Name: bnrrootnumber
Prototype: GGD0,L,p
Help: bnrrootnumber(bnr,chi,{flag=0}): returns the so-called Artin Root
Number, i.e. the constant W appearing in the functional equation of the
Hecke L-function associated to chi. Set flag = 1 if the character is known
to be primitive.
Doc: if $\chi=\var{chi}$ is a
\idx{character} over \var{bnr}, not necessarily primitive, let
$L(s,\chi) = \sum_{id} \chi(id) N(id)^{-s}$ be the associated
\idx{Artin L-function}. Returns the so-called \idx{Artin root number}, i.e.~the
complex number $W(\chi)$ of modulus 1 such that
%
$$\Lambda(1-s,\chi) = W(\chi) \Lambda(s,\overline{\chi})$$
%
\noindent where $\Lambda(s,\chi) = A(\chi)^{s/2}\gamma_\chi(s) L(s,\chi)$ is
the enlarged L-function associated to $L$.
The generators of the ray class group are needed, and you can set $\fl=1$ if
the character is known to be primitive. Example:
\bprog
bnf = bnfinit(x^2 - x - 57);
bnr = bnrinit(bnf, [7,[1,1]], 1);
bnrrootnumber(bnr, [2,1])
@eprog\noindent
returns the root number of the character $\chi$ of
$\Cl_{7\infty_1\infty_2}(\Q(\sqrt{229}))$ defined by $\chi(g_1^ag_2^b)
= \zeta_1^{2a}\zeta_2^b$. Here $g_1, g_2$ are the generators of the
ray-class group given by \kbd{bnr.gen} and $\zeta_1 = e^{2i\pi/N_1},
\zeta_2 = e^{2i\pi/N_2}$ where $N_1, N_2$ are the orders of $g_1$ and
$g_2$ respectively ($N_1=6$ and $N_2=3$ as \kbd{bnr.cyc} readily tells us).
Function: bnrstark
Class: basic
Section: number_fields
C-Name: bnrstark
Prototype: GDGp
Help: bnrstark(bnr,{subgroup}): bnr being as output by
bnrinit(,,1), finds a relative equation for the class field corresponding to
the module in bnr and the given congruence subgroup (the trivial subgroup if
omitted) using Stark's units. The ground field and the class field must be
totally real.
Doc: \var{bnr} being as output by \kbd{bnrinit(,,1)}, finds a relative equation
for the class field corresponding to the modulus in \var{bnr} and the given
congruence subgroup (as usual, omit $\var{subgroup}$ if you want the whole ray
class group).
The main variable of \var{bnr} must not be $x$, and the ground field and the
class field must be totally real. When the base field is $\Q$, the vastly
simpler \tet{galoissubcyclo} is used instead. Here is an example:
\bprog
bnf = bnfinit(y^2 - 3);
bnr = bnrinit(bnf, 5, 1);
bnrstark(bnr)
@eprog\noindent
returns the ray class field of $\Q(\sqrt{3})$ modulo $5$. Usually, one wants
to apply to the result one of
\bprog
rnfpolredabs(bnf, pol, 16) \\@com compute a reduced relative polynomial
rnfpolredabs(bnf, pol, 16 + 2) \\@com compute a reduced absolute polynomial
@eprog
The routine uses \idx{Stark units} and needs to find a suitable auxiliary
conductor, which may not exist when the class field is not cyclic over the
base. In this case \kbd{bnrstark} is allowed to return a vector of
polynomials defining \emph{independent} relative extensions, whose compositum
is the requested class field. It was decided that it was more useful
to keep the extra information thus made available, hence the user has to take
the compositum herself.
Even if it exists, the auxiliary conductor may be so large that later
computations become unfeasible. (And of course, Stark's conjecture may simply
be wrong.) In case of difficulties, try \tet{rnfkummer}:
\bprog
? bnr = bnrinit(bnfinit(y^8-12*y^6+36*y^4-36*y^2+9,1), 2, 1);
? bnrstark(bnr)
*** at top-level: bnrstark(bnr)
*** ^-------------
*** bnrstark: need 3919350809720744 coefficients in initzeta.
*** Computation impossible.
? lift( rnfkummer(bnr) )
time = 24 ms.
%2 = x^2 + (1/3*y^6 - 11/3*y^4 + 8*y^2 - 5)
@eprog
Function: break
Class: basic
Section: programming/control
C-Name: break0
Prototype: D1,L,
Help: break({n=1}): interrupt execution of current instruction sequence, and
exit from the n innermost enclosing loops.
Doc: interrupts execution of current \var{seq}, and
immediately exits from the $n$ innermost enclosing loops, within the
current function call (or the top level loop); the integer $n$ must be
positive. If $n$ is greater than the number of enclosing loops, all
enclosing loops are exited.
Function: ceil
Class: basic
Section: conversions
C-Name: gceil
Prototype: G
Help: ceil(x): ceiling of x = smallest integer >= x.
Description:
(small):small:parens $1
(int):int:copy:parens $1
(real):int ceilr($1)
(mp):int mpceil($1)
(gen):gen gceil($1)
Doc:
ceiling of $x$. When $x$ is in $\R$, the result is the
smallest integer greater than or equal to $x$. Applied to a rational
function, $\kbd{ceil}(x)$ returns the Euclidean quotient of the numerator by
the denominator.
Function: centerlift
Class: basic
Section: conversions
C-Name: centerlift0
Prototype: GDn
Help: centerlift(x,{v}): centered lift of x. Same as lift except for
integermods.
Description:
(pol):pol centerlift($1)
(vec):vec centerlift($1)
(gen):gen centerlift($1)
(pol, var):pol centerlift0($1, $2)
(vec, var):vec centerlift0($1, $2)
(gen, var):gen centerlift0($1, $2)
Doc:
lifts an element $x=a \bmod n$ of $\Z/n\Z$
to $a$ in $\Z$, and similarly lifts a polmod to a polynomial. This is the
same as \tet{lift} except that in the particular case of elements of
$\Z/n\Z$, the lift $y$ is such that $-n/2<y\le n/2$. A \typ{PADIC} is lifted
as above if its valuation $v$ is non-negative; if not, returns the fraction
$p^v$ \kbd{centerlift}$(x^{-v})$; in particular, note that rational
reconstruction is not attempted.
If $x$ is of type fraction, complex, quadratic, polynomial, power series,
rational function, vector or matrix, the lift is done for each coefficient.
Reals are forbidden.
Variant: Also available is \fun{GEN}{centerlift}{GEN x} corresponding to
\kbd{centerlift0(x,-1)}.
Function: charpoly
Class: basic
Section: linear_algebra
C-Name: charpoly0
Prototype: GDnD3,L,
Help: charpoly(A,{v=x},{flag=3}): det(v*Id-A)=characteristic polynomial of
the matrix or polmod A. flag is optional and ignored unless A is a matrix;
it may be set to 0 (Le Verrier), 1
(Lagrange interpolation) or 2 (use Hessenberg form), 3 (Berkowitz, default).
All algorithms except flag = 3 (Berkowitz) assume that n! is invertible,
where n is the dimension of the matrix.
Doc:
\idx{characteristic polynomial}
of $A$ with respect to the variable $v$, i.e.~determinant of $v*I-A$ if $A$
is a square matrix. If $A$ is not a square matrix, it returns the
characteristic polynomial of the map ``multiplication by $A$'' if $A$ is a
scalar, in particular a polmod. E.g.~\kbd{charpoly(I) = x\pow2+1}.
The value of $\fl$ is only significant for matrices. Let $n$ be the dimension
of $A$.
If $\fl=0$, same method (Le Verrier's) as for computing the adjoint matrix,
i.e.~using the traces of the powers of $A$. Assumes that $n!$ is
invertible; uses $O(n^4)$ scalar operations.
If $\fl=1$, uses Lagrange interpolation which is usually the slowest method.
Assumes that $n!$ is invertible; uses $O(n^4)$ scalar operations.
If $\fl=2$, uses the Hessenberg form. Assumes that the base ring is a field.
Uses $O(n^3)$ scalar operations, but suffers from coefficient explosion
unless the base field is finite or $\R$.
If $\fl=3$, uses Berkowitz's division free algorithm, valid over any
ring (commutative, with unit). Uses $O(n^4)$ scalar operations.
If $\fl=4$, $x$ must be integral. Uses a modular algorithm.
In practice one should use the default (Berkowitz) unless the base ring is
$\Z$ (use $\fl=4$) or a field where coefficient explosion does not occur,
e.g.~a finite field or the reals (use $\fl=2$).
Variant: Also available are \fun{GEN}{caract}{GEN A, long v} ($\fl=1$),
\fun{GEN}{carhess}{GEN A, long v} ($\fl=2$), \fun{GEN}{carberkowitz}{GEN A,
long v} ($\fl=3$) and \fun{GEN}{caradj}{GEN A, long v, GEN *pt}. In this
last case, if \var{pt} is not \kbd{NULL}, \kbd{*pt} receives the address of
the adjoint matrix of $A$ (see \tet{matadjoint}), so both can be obtained at
once.
Function: chinese
Class: basic
Section: number_theoretical
C-Name: chinese
Prototype: GDG
Help: chinese(x,{y}): x,y being both intmods (or polmods) computes z in the
same residue classes as x and y.
Description:
(gen):gen chinese1($1)
(gen, gen):gen chinese($1, $2)
Doc: if $x$ and $y$ are both intmods or both
polmods, creates (with the same type) a $z$ in the same residue class
as $x$ and in the same residue class as $y$, if it is possible.
This function also allows vector and matrix arguments, in which case the
operation is recursively applied to each component of the vector or matrix.
For polynomial arguments, it is applied to each coefficient.
If $y$ is omitted, and $x$ is a vector, \kbd{chinese} is applied recursively
to the components of $x$, yielding a residue belonging to the same class as all
components of $x$.
Finally $\kbd{chinese}(x,x) = x$ regardless of the type of $x$; this allows
vector arguments to contain other data, so long as they are identical in both
vectors.
Variant: \fun{GEN}{chinese1}{GEN x} is also available.
Function: clone
Class: gp2c
Description:
(small):small:parens $1
(int):int gclone($1)
(real):real gclone($1)
(mp):mp gclone($1)
(vecsmall):vecsmall gclone($1)
(vec):vec gclone($1)
(pol):pol gclone($1)
(gen):gen gclone($1)
Function: component
Class: basic
Section: conversions
C-Name: compo
Prototype: GL
Help: component(x,n): the n'th component of the internal representation of
x. For vectors or matrices, it is simpler to use x[]. For list objects such
as nf, bnf, bnr or ell, it is much easier to use member functions starting
with ".".
Doc: extracts the $n^{\text{th}}$-component of $x$. This is to be understood
as follows: every PARI type has one or two initial \idx{code words}. The
components are counted, starting at 1, after these code words. In particular
if $x$ is a vector, this is indeed the $n^{\text{th}}$-component of $x$, if
$x$ is a matrix, the $n^{\text{th}}$ column, if $x$ is a polynomial, the
$n^{\text{th}}$ coefficient (i.e.~of degree $n-1$), and for power series,
the $n^{\text{th}}$ significant coefficient.
For polynomials and power series, one should rather use \tet{polcoeff}, and
for vectors and matrices, the \kbd{[$\,$]} operator. Namely, if $x$ is a
vector, then \tet{x[n]} represents the $n^{\text{th}}$ component of $x$. If
$x$ is a matrix, \tet{x[m,n]} represents the coefficient of row \kbd{m} and
column \kbd{n} of the matrix, \tet{x[m,]} represents the $m^{\text{th}}$
\emph{row} of $x$, and \tet{x[,n]} represents the $n^{\text{th}}$
\emph{column} of $x$.
Using of this function requires detailed knowledge of the structure of the
different PARI types, and thus it should almost never be used directly.
Some useful exceptions:
\bprog
? x = 3 + O(3^5);
? component(x, 2)
%2 = 81 \\ p^(p-adic acurracy)
? component(x, 1)
%3 = 3 \\ p
? q = Qfb(1,2,3);
? component(q, 1)
%5 = 1
@eprog
Function: concat
Class: basic
Section: linear_algebra
C-Name: concat
Prototype: GDG
Help: concat(x,{y}): concatenation of x and y, which can be scalars, vectors
or matrices, or lists (in this last case, both x and y have to be lists). If
y is omitted, x has to be a list or row vector and its elements are
concatenated.
Description:
(mp,mp):vec concat($1, $2)
(vec,mp):vec concat($1, $2)
(mp,vec):vec concat($1, $2)
(vec,vec):vec concat($1, $2)
(list,list):list concat($1, $2)
(genstr,gen):genstr concat($1, $2)
(gen,genstr):genstr concat($1, $2)
(gen,?gen):gen concat($1, $2)
Doc: concatenation of $x$ and $y$. If $x$ or $y$ is
not a vector or matrix, it is considered as a one-dimensional vector. All
types are allowed for $x$ and $y$, but the sizes must be compatible. Note
that matrices are concatenated horizontally, i.e.~the number of rows stays
the same. Using transpositions, it is easy to concatenate them vertically.
To concatenate vectors sideways (i.e.~to obtain a two-row or two-column
matrix), use \tet{Mat} instead (see the example there). Concatenating a row
vector to a matrix having the same number of columns will add the row to the
matrix (top row if the vector is $x$, i.e.~comes first, and bottom row
otherwise).
The empty matrix \kbd{[;]} is considered to have a number of rows compatible
with any operation, in particular concatenation. (Note that this is
definitely \emph{not} the case for empty vectors \kbd{[~]} or \kbd{[~]\til}.)
If $y$ is omitted, $x$ has to be a row vector or a list, in which case its
elements are concatenated, from left to right, using the above rules.
\bprog
? concat([1,2], [3,4])
%1 = [1, 2, 3, 4]
? a = [[1,2]~, [3,4]~]; concat(a)
%2 =
[1 3]
[2 4]
? concat([1,2; 3,4], [5,6]~)
%3 =
[1 2 5]
[3 4 6]
? concat([%, [7,8]~, [1,2,3,4]])
%5 =
[1 2 5 7]
[3 4 6 8]
[1 2 3 4]
@eprog
Variant: \fun{GEN}{concat1}{GEN x} is a shortcut for \kbd{concat(x,NULL)}.
Function: conj
Class: basic
Section: conversions
C-Name: gconj
Prototype: G
Help: conj(x): the algebraic conjugate of x.
Doc:
conjugate of $x$. The meaning of this
is clear, except that for real quadratic numbers, it means conjugation in the
real quadratic field. This function has no effect on integers, reals,
intmods, fractions or $p$-adics. The only forbidden type is polmod
(see \kbd{conjvec} for this).
Function: conjvec
Class: basic
Section: conversions
C-Name: conjvec
Prototype: Gp
Help: conjvec(z): conjugate vector of the algebraic number z.
Doc:
conjugate vector representation of $z$. If $z$ is a
polmod, equal to \kbd{Mod}$(a,T)$, this gives a vector of length
$\text{degree}(T)$ containing:
\item the complex embeddings of $z$ if $T$ has rational coefficients,
i.e.~the $a(r[i])$ where $r = \kbd{polroots}(T)$;
\item the conjugates of $z$ if $T$ has some intmod coefficients;
\noindent if $z$ is a finite field element, the result is the vector of
conjugates $[z,z^p,z^{p^2},\ldots,z^{p^{n-1}}]$ where $n=\text{degree}(T)$.
\noindent If $z$ is an integer or a rational number, the result is~$z$. If
$z$ is a (row or column) vector, the result is a matrix whose columns are
the conjugate vectors of the individual elements of $z$.
Function: content
Class: basic
Section: number_theoretical
C-Name: content
Prototype: G
Help: content(x): gcd of all the components of x, when this makes sense.
Doc: computes the gcd of all the coefficients of $x$,
when this gcd makes sense. This is the natural definition
if $x$ is a polynomial (and by extension a power series) or a
vector/matrix. This is in general a weaker notion than the \emph{ideal}
generated by the coefficients:
\bprog
? content(2*x+y)
%1 = 1 \\ = gcd(2,y) over Q[y]
@eprog
If $x$ is a scalar, this simply returns the absolute value of $x$ if $x$ is
rational (\typ{INT} or \typ{FRAC}), and either $1$ (inexact input) or $x$
(exact input) otherwise; the result should be identical to \kbd{gcd(x, 0)}.
The content of a rational function is the ratio of the contents of the
numerator and the denominator. In recursive structures, if a
matrix or vector \emph{coefficient} $x$ appears, the gcd is taken
not with $x$, but with its content:
\bprog
? content([ [2], 4*matid(3) ])
%1 = 2
@eprog
Function: contfrac
Class: basic
Section: number_theoretical
C-Name: contfrac0
Prototype: GDGD0,L,
Help: contfrac(x,{b},{nmax}): continued fraction expansion of x (x
rational,real or rational function). b and nmax are both optional, where b
is the vector of numerators of the continued fraction, and nmax is a bound
for the number of terms in the continued fraction expansion.
Doc: returns the row vector whose components are the partial quotients of the
\idx{continued fraction} expansion of $x$. In other words, a result
$[a_0,\dots,a_n]$ means that $x \approx a_0+1/(a_1+\dots+1/a_n)$. The
output is normalized so that $a_n \neq 1$ (unless we also have $n = 0$).
The number of partial quotients $n+1$ is limited by \kbd{nmax}. If
\kbd{nmax} is omitted, the expansion stops at the last significant partial
quotient.
\bprog
? \p19
realprecision = 19 significant digits
? contfrac(Pi)
%1 = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2]
? contfrac(Pi,, 3) \\ n = 2
%2 = [3, 7, 15]
@eprog\noindent
$x$ can also be a rational function or a power series.
If a vector $b$ is supplied, the numerators are equal to the coefficients
of $b$, instead of all equal to $1$ as above; more precisely, $x \approx
(1/b_0)(a_0+b_1/(a_1+\dots+b_n/a_n))$; for a numerical continued fraction
($x$ real), the $a_i$ are integers, as large as possible; if $x$ is a
rational function, they are polynomials with $\deg a_i = \deg b_i + 1$.
The length of the result is then equal to the length of $b$, unless the next
partial quotient cannot be reliably computed, in which case the expansion
stops. This happens when a partial remainder is equal to zero (or too small
compared to the available significant digits for $x$ a \typ{REAL}).
A direct implementation of the numerical continued fraction
\kbd{contfrac(x,b)} described above would be
\bprog
\\ "greedy" generalized continued fraction
cf(x, b) =
{ my( a= vector(#b), t );
x *= b[1];
for (i = 1, #b,
a[i] = floor(x);
t = x - a[i]; if (!t || i == #b, break);
x = b[i+1] / t;
); a;
}
@eprog\noindent There is some degree of freedom when choosing the $a_i$; the
program above can easily be modified to derive variants of the standard
algorithm. In the same vein, although no builtin
function implements the related \idx{Engel expansion} (a special kind of
\idx{Egyptian fraction} decomposition: $x = 1/a_1 + 1/(a_1a_2) + \dots$ ),
it can be obtained as follows:
\bprog
\\ n terms of the Engel expansion of x
engel(x, n = 10) =
{ my( u = x, a = vector(n) );
for (k = 1, n,
a[k] = ceil(1/u);
u = u*a[k] - 1;
if (!u, break);
); a
}
@eprog
\misctitle{Obsolete hack} (don't use this): If $b$ is an integer, \var{nmax}
is ignored and the command is understood as \kbd{contfrac($x,, b$)}.
Variant: Also available are \fun{GEN}{gboundcf}{GEN x, long nmax},
\fun{GEN}{gcf}{GEN x} and \fun{GEN}{gcf2}{GEN b, GEN x}.
Function: contfracpnqn
Class: basic
Section: number_theoretical
C-Name: pnqn
Prototype: G
Help: contfracpnqn(x): [p_n,p_{n-1}; q_n,q_{n-1}] corresponding to the
continued fraction x.
Doc: when $x$ is a vector or a one-row matrix, $x$
is considered as the list of partial quotients $[a_0,a_1,\dots,a_n]$ of a
rational number, and the result is the 2 by 2 matrix
$[p_n,p_{n-1};q_n,q_{n-1}]$ in the standard notation of continued fractions,
so $p_n/q_n=a_0+1/(a_1+\dots+1/a_n)$. If $x$ is a matrix with two rows
$[b_0,b_1,\dots,b_n]$ and $[a_0,a_1,\dots,a_n]$, this is then considered as a
generalized continued fraction and we have similarly
$p_n/q_n=(1/b_0)(a_0+b_1/(a_1+\dots+b_n/a_n))$. Note that in this case one
usually has $b_0=1$.
Function: copy
Class: gp2c
Description:
(small):small:parens $1
(int):int icopy($1)
(real):real gcopy($1)
(mp):mp gcopy($1)
(vecsmall):vecsmall gcopy($1)
(vec):vec gcopy($1)
(pol):pol gcopy($1)
(gen):gen gcopy($1)
Function: core
Class: basic
Section: number_theoretical
C-Name: core0
Prototype: GD0,L,
Help: core(n,{flag=0}): unique squarefree integer d
dividing n such that n/d is a square. If (optional) flag is non-null, output
the two-component row vector [d,f], where d is the unique squarefree integer
dividing n such that n/d=f^2 is a square.
Doc: if $n$ is an integer written as
$n=df^2$ with $d$ squarefree, returns $d$. If $\fl$ is non-zero,
returns the two-element row vector $[d,f]$. By convention, we write $0 = 0
\times 1^2$, so \kbd{core(0, 1)} returns $[0,1]$.
Variant: Also available are \fun{GEN}{core}{GEN n} ($\fl = 0$) and
\fun{GEN}{core2}{GEN n} ($\fl = 1$)
Function: coredisc
Class: basic
Section: number_theoretical
C-Name: coredisc0
Prototype: GD0,L,
Help: coredisc(n,{flag=0}): discriminant of the quadratic field Q(sqrt(n)).
If (optional) flag is non-null, output a two-component row vector [d,f],
where d is the discriminant of the quadratic field Q(sqrt(n)) and n=df^2. f
may be a half integer.
Doc: a \emph{fundamental discriminant} is an integer of the form $t\equiv 1
\mod 4$ or $4t \equiv 8,12 \mod 16$, with $t$ squarefree (i.e.~$1$ or the
discriminant of a quadratic number field). Given a non-zero integer
$n$, this routine returns the (unique) fundamental discriminant $d$
such that $n=df^2$, $f$ a positive rational number. If $\fl$ is non-zero,
returns the two-element row vector $[d,f]$. If $n$ is congruent to
0 or 1 modulo 4, $f$ is an integer, and a half-integer otherwise.
By convention, \kbd{coredisc(0, 1))} returns $[0,1]$.
Note that \tet{quaddisc}$(n)$ returns the same value as \kbd{coredisc}$(n)$,
and also works with rational inputs $n\in\Q^*$.
Variant: Also available are \fun{GEN}{coredisc}{GEN n} ($\fl = 0$) and
\fun{GEN}{coredisc2}{GEN n} ($\fl = 1$)
Function: cos
Class: basic
Section: transcendental
C-Name: gcos
Prototype: Gp
Help: cos(x): cosine of x.
Doc: cosine of $x$.
Function: cosh
Class: basic
Section: transcendental
C-Name: gch
Prototype: Gp
Help: cosh(x): hyperbolic cosine of x.
Doc: hyperbolic cosine of $x$.
Function: cotan
Class: basic
Section: transcendental
C-Name: gcotan
Prototype: Gp
Help: cotan(x): cotangent of x.
Doc: cotangent of $x$.
Function: default
Class: basic
Section: programming/specific
C-Name: default0
Prototype: DrDs
Help: default({key},{val}): returns the current value of the
default key. If val is present, set opt to val first. If no argument is
given, print a list of all defaults as well as their values.
Description:
("realprecision"):small:prec getrealprecision()
("realprecision",small):small:prec setrealprecision($2, &prec)
("seriesprecision"):small precdl
("seriesprecision",small):small:parens precdl = $2
("debug"):small DEBUGLEVEL
("debug",small):small:parens DEBUGLEVEL = $2
("debugmem"):small DEBUGMEM
("debugmem",small):small:parens DEBUGMEM = $2
("debugfiles"):small DEBUGFILES
("debugfiles",small):small:parens DEBUGFILES = $2
("factor_add_primes"):small factor_add_primes
("factor_add_primes",small):small factor_add_primes = $2
("factor_proven"):small factor_proven
("factor_proven",small):small factor_proven = $2
("new_galois_format"):small new_galois_format
("new_galois_format",small):small new_galois_format = $2
Doc: returns the default corresponding to keyword \var{key}. If \var{val} is
present, sets the default to \var{val} first (which is subject to string
expansion first). Typing \kbd{default()} (or \b{d}) yields the complete
default list as well as their current values. See \secref{se:defaults} for an
introduction to GP defaults, \secref{se:gp_defaults} for a
list of available defaults, and \secref{se:meta} for some shortcut
alternatives. Note that the shortcuts are meant for interactive use and
usually display more information than \kbd{default}.
Function: denominator
Class: basic
Section: conversions
C-Name: denom
Prototype: G
Help: denominator(x): denominator of x (or lowest common denominator in case
of an array).
Doc:
denominator of $x$. The meaning of this
is clear when $x$ is a rational number or function. If $x$ is an integer
or a polynomial, it is treated as a rational number or function,
respectively, and the result is equal to $1$. For polynomials, you
probably want to use
\bprog
denominator( content(x) )
@eprog\noindent
instead. As for modular objects, \typ{INTMOD} and \typ{PADIC} have
denominator $1$, and the denominator of a \typ{POLMOD} is the denominator
of its (minimal degree) polynomial representative.
If $x$ is a recursive structure, for instance a vector or matrix, the lcm
of the denominators of its components (a common denominator) is computed.
This also applies for \typ{COMPLEX}s and \typ{QUAD}s.
\misctitle{Warning} Multivariate objects are created according to variable
priorities, with possibly surprising side effects ($x/y$ is a polynomial, but
$y/x$ is a rational function). See \secref{se:priority}.
Function: deriv
Class: basic
Section: polynomials
C-Name: deriv
Prototype: GDn
Help: deriv(x,{v}): derivative of x with respect to v, or to the main
variable of x if v is omitted.
Doc:
derivative of $x$ with respect to the main
variable if $v$ is omitted, and with respect to $v$ otherwise. The derivative
of a scalar type is zero, and the derivative of a vector or matrix is done
componentwise. One can use $x'$ as a shortcut if the derivative is with
respect to the main variable of $x$.
By definition, the main variable of a \typ{POLMOD} is the main variable among
the coefficients from its two polynomial components (representative and
modulus); in other words, assuming a polmod represents an element of
$R[X]/(T(X))$, the variable $X$ is a mute variable and the derivative is
taken with respect to the main variable used in the base ring $R$.
Function: derivnum
Class: basic
Section: sums
C-Name: derivnum0
Prototype: V=GEp
Help: derivnum(X=a,expr): numerical derivation of expr with respect to
X at X = a.
Wrapper: (,G)
Description:
(gen,gen):gen:prec derivnum(${2 cookie}, ${2 wrapper}, $1, prec)
Doc: numerical derivation of \var{expr} with respect to $X$ at $X=a$.
\bprog
? derivnum(x=0,sin(exp(x))) - cos(1)
%1 = -1.262177448 E-29
@eprog
A clumsier approach, which would not work in library mode, is
\bprog
? f(x) = sin(exp(x))
? f'(0) - cos(1)
%1 = -1.262177448 E-29
@eprog
When $a$ is a power series, compute \kbd{derivnum(t=a,f)} as $f'(a) =
(f(a))'/a'$.
\synt{derivnum}{void *E, GEN (*eval)(void*,GEN), GEN a, long prec}. Also
available is \fun{GEN}{derivfun}{void *E, GEN (*eval)(void *, GEN), GEN a,
long prec}, which also allows power series for $a$.
Function: diffop
Class: basic
Section: polynomials
C-Name: diffop0
Prototype: GGGD1,L,
Help: diffop(x,v,d,{n=1}): apply the differential operator D to x, where D is defined
by D(v[i])=d[i], where v is a vector of variable names. D is 0 for variables
outside of v unless they appear as modulus of a POLMOD. If the optional parameter n
is given, return D^n(x) instead.
Description:
(gen,gen,gen,?1):gen diffop($1, $2, $3)
(gen,gen,gen,small):gen diffop0($1, $2, $3, $4)
Doc:
Let $v$ be a vector of variables, and $d$ a vector of the same length,
return the image of $x$ by the $n$-power ($1$ if n is not given) of the differential
operator $D$ that assumes the value \kbd{d[i]} on the variable \kbd{v[i]}.
The value of $D$ on a scalar type is zero, and $D$ applies componentwise to a vector
or matrix. When applied to a \typ{POLMOD}, if no value is provided for the variable
of the modulus, such value is derived using the implicit function theorem.
Some examples:
This function can be used to differentiate formal expressions:
If $E=\exp(X^2)$ then we have $E'=2*X*E$. We can derivate $X*exp(X^2)$ as follow:
\bprog
? diffop(E*X,[X,E],[1,2*X*E])
%1 = (2*X^2 + 1)*E
@eprog
Let \kbd{Sin} and \kbd{Cos} be two function such that $\kbd{Sin}^2+\kbd{Cos}^2=1$
and $\kbd{Cos}'=-\kbd{Sin}$. We can differentiate $\kbd{Sin}/\kbd{Cos}$ as follow,
PARI inferring the value of $\kbd{Sin}'$ from the equation:
\bprog
? diffop(Mod('Sin/'Cos,'Sin^2+'Cos^2-1),['Cos],[-'Sin])
%1 = Mod(1/Cos^2, Sin^2 + (Cos^2 - 1))
@eprog
Compute the Bell polynomials (both complete and partial) via the Faa di Bruno formula:
\bprog
Bell(k,n=-1)=
{
my(var(i)=eval(Str("X",i)));
my(x,v,dv);
v=vector(k,i,if(i==1,'E,var(i-1)));
dv=vector(k,i,if(i==1,'X*var(1)*'E,var(i)));
x=diffop('E,v,dv,k)/'E;
if(n<0,subst(x,'X,1),polcoeff(x,n,'X))
}
@eprog
Variant:
For $n=1$, the function \fun{GEN}{diffop}{GEN x, GEN v, GEN d} is also available.
Function: dilog
Class: basic
Section: transcendental
C-Name: dilog
Prototype: Gp
Help: dilog(x): dilogarithm of x.
Doc: principal branch of the dilogarithm of $x$,
i.e.~analytic continuation of the power series $\log_2(x)=\sum_{n\ge1}x^n/n^2$.
Function: dirdiv
Class: basic
Section: number_theoretical
C-Name: dirdiv
Prototype: GG
Help: dirdiv(x,y): division of the Dirichlet series x by the Dirichlet
series y.
Doc: $x$ and $y$ being vectors of perhaps different
lengths but with $y[1]\neq 0$ considered as \idx{Dirichlet series}, computes
the quotient of $x$ by $y$, again as a vector.
Function: direuler
Class: basic
Section: number_theoretical
C-Name: direuler0
Prototype: V=GGEDG
Help: direuler(p=a,b,expr,{c}): Dirichlet Euler product of expression expr
from p=a to p=b, limited to b terms. Expr should be a polynomial or rational
function in p and X, and X is understood to mean p^(-s). If c is present,
output only the first c terms.
Wrapper: (,,G)
Description:
(gen,gen,gen,?gen):gen direuler(${3 cookie}, ${3 wrapper}, $1, $2, $4)
Doc: computes the \idx{Dirichlet series} associated to the \idx{Euler
product} of expression \var{expr} as $p$ ranges through the primes from $a$
to $b$. \var{expr} must be a polynomial or rational function in another
variable than $p$ (say $X$) and $\var{expr}(X)$ is understood as the local
factor $\var{expr}(p^{-s})$.
The series is output as a vector of coefficients. If $c$ is present, output
only the first $c$ coefficients in the series. The following command computes
the \teb{sigma} function, associated to $\zeta(s)\zeta(s-1)$:
\bprog
? direuler(p=2, 10, 1/((1-X)*(1-p*X)))
%1 = [1, 3, 4, 7, 6, 12, 8, 15, 13, 18]
@eprog
\synt{direuler}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b}
Function: dirmul
Class: basic
Section: number_theoretical
C-Name: dirmul
Prototype: GG
Help: dirmul(x,y): multiplication of the Dirichlet series x by the Dirichlet
series y.
Doc: $x$ and $y$ being vectors of perhaps different lengths representing
the \idx{Dirichlet series} $\sum_n x_n n^{-s}$ and $\sum_n y_n n^{-s}$,
computes the product of $x$ by $y$, again as a vector.
\bprog
? dirmul(vector(10,n,1), vector(10,n,moebius(n)))
%1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
@eprog\noindent
The product
length is the minimum of $\kbd{\#}x\kbd{*}v(y)$ and $\kbd{\#}y\kbd{*}v(x)$,
where $v(x)$ is the index of the first non-zero coefficient.
\bprog
? dirmul([0,1], [0,1]);
%2 = [0, 0, 0, 1]
@eprog
Function: dirzetak
Class: basic
Section: number_fields
C-Name: dirzetak
Prototype: GG
Help: dirzetak(nf,b): Dirichlet series of the Dedekind zeta function of the
number field nf up to the bound b-1.
Doc: gives as a vector the first $b$
coefficients of the \idx{Dedekind} zeta function of the number field $\var{nf}$
considered as a \idx{Dirichlet series}.
Function: divisors
Class: basic
Section: number_theoretical
C-Name: divisors
Prototype: G
Help: divisors(x): gives a vector formed by the divisors of x in increasing
order.
Description:
(gen):vec divisors($1)
Doc: creates a row vector whose components are the
divisors of $x$. The factorization of $x$ (as output by \tet{factor}) can
be used instead.
By definition, these divisors are the products of the irreducible
factors of $n$, as produced by \kbd{factor(n)}, raised to appropriate
powers (no negative exponent may occur in the factorization). If $n$ is
an integer, they are the positive divisors, in increasing order.
Function: divrem
Class: basic
Section: operators
C-Name: divrem
Prototype: GGDn
Help: divrem(x,y,{v}): euclidean division of x by y giving as a
2-dimensional column vector the quotient and the remainder, with respect to
v (to main variable if v is omitted)
Doc: creates a column vector with two components, the first being the Euclidean
quotient (\kbd{$x$ \bs\ $y$}), the second the Euclidean remainder
(\kbd{$x$ - ($x$\bs$y$)*$y$}), of the division of $x$ by $y$. This avoids the
need to do two divisions if one needs both the quotient and the remainder.
If $v$ is present, and $x$, $y$ are multivariate
polynomials, divide with respect to the variable $v$.
Beware that \kbd{divrem($x$,$y$)[2]} is in general not the same as
\kbd{$x$ \% $y$}; no GP operator corresponds to it:
\bprog
? divrem(1/2, 3)[2]
%1 = 1/2
? (1/2) % 3
%2 = 2
? divrem(Mod(2,9), 3)[2]
*** at top-level: divrem(Mod(2,9),3)[2
*** ^--------------------
*** forbidden division t_INTMOD \ t_INT.
? Mod(2,9) % 6
%3 = Mod(2,3)
@eprog
Variant: Also available is \fun{GEN}{gdiventres}{GEN x, GEN y} when $v$ is
not needed.
Function: eint1
Class: basic
Section: transcendental
C-Name: veceint1
Prototype: GDGp
Help: eint1(x,{n}): exponential integral E1(x). If n is present, computes
the vector of the first n values of the exponential integral E1(n.x) (x > 0).
Doc: exponential integral $\int_x^\infty \dfrac{e^{-t}}{t}\,dt$ ($x\in\R$)
If $n$ is present, outputs the $n$-dimensional vector
$[\kbd{eint1}(x),\dots,\kbd{eint1}(nx)]$ ($x \geq 0$). This is faster than
repeatedly calling \kbd{eint1($i$ * x)}.
Variant: Also available is \fun{GEN}{eint1}{GEN x, long prec}.
Function: ellL1
Class: basic
Section: elliptic_curves
C-Name: ellL1
Prototype: GLp
Help: ellL1(e, r): returns the value at s=1 of the derivative of order r of the L-function of the elliptic curve e assuming that r is at most the order of vanishing of the function at s=1.
Doc: returns the value at $s=1$ of the derivative of order $r$ of the
$L$-function of the elliptic curve $e$ assuming that $r$ is at most the order
of vanishing of the $L$-function at $s=1$. (The result is wrong if $r$ is
strictly larger than the order of vanishing at 1.)
\bprog
? e = ellinit("11a1"); \\ order of vanishing is 0
? ellL1(e, 0)
%2 = 0.2538418608559106843377589233
? e = ellinit("389a1"); \\ order of vanishing is 2
? ellL1(e, 0)
%4 = -5.384067311837218089235032414 E-29
? ellL1(e, 1)
%5 = 0
? ellL1(e, 2)
%6 = 1.518633000576853540460385214
@eprog\noindent
The main use of this function, after computing at \emph{low} accuracy the
order of vanishing using \tet{ellanalyticrank}, is to compute the
leading term at \emph{high} accuracy to check (or use) the Birch and
Swinnerton-Dyer conjecture:
\bprog
? \p18
realprecision = 18 significant digits
? ellanalyticrank(ellinit([0, 0, 1, -7, 6]))
time = 32 ms.
%1 = [3, 10.3910994007158041]
? \p200
realprecision = 202 significant digits (200 digits displayed)
? ellL1(e, 3)
time = 23,113 ms.
%3 = 10.3910994007158041387518505103609170697263563756570092797@com$[\dots]$
@eprog
Function: elladd
Class: basic
Section: elliptic_curves
C-Name: addell
Prototype: GGG
Help: elladd(E,z1,z2): sum of the points z1 and z2 on elliptic curve E.
Doc:
sum of the points $z1$ and $z2$ on the
elliptic curve corresponding to $E$.
Function: ellak
Class: basic
Section: elliptic_curves
C-Name: akell
Prototype: GG
Help: ellak(E,n): computes the n-th Fourier coefficient of the L-function of
the elliptic curve E (assumed E is a minimal model).
Doc:
computes the coefficient $a_n$ of the
$L$-function of the elliptic curve $E$, i.e.~in principle coefficients of a
newform of weight 2 assuming \idx{Taniyama-Weil conjecture} (which is now
known to hold in full generality thanks to the work of \idx{Breuil},
\idx{Conrad}, \idx{Diamond}, \idx{Taylor} and \idx{Wiles}). $E$ must be a
\var{smallell} as output by \kbd{ellinit}. For this function
to work for every $n$ and not just those prime to the conductor, $E$ must
be a minimal Weierstrass equation. If this is not the case, use the
function \kbd{ellminimalmodel} before using \kbd{ellak}.
Function: ellan
Class: basic
Section: elliptic_curves
C-Name: anell
Prototype: GL
Help: ellan(E,n): computes the first n Fourier coefficients of the
L-function of the elliptic curve E (n<2^24 on a 32-bit machine).
Doc:
computes the vector of the first $n$ $a_k$
corresponding to the elliptic curve $E$. All comments in \kbd{ellak}
description remain valid.
Function: ellanalyticrank
Class: basic
Section: elliptic_curves
C-Name: ellanalyticrank
Prototype: GDGp
Help: ellanalyticrank(e, {eps}): returns the order of vanishing at s=1
of the L-function of the elliptic curve e and the value of the first
non-zero derivative. To determine this order, it is assumed that any
value less than eps is zero. If no value of eps is given, a value of
half the current precision is used.
Doc: returns the order of vanishing at $s=1$ of the $L$-function of the
elliptic curve $e$ and the value of the first non-zero derivative. To
determine this order, it is assumed that any value less than \kbd{eps} is
zero. If no value of \kbd{eps} is given, a value of half the current
precision is used.
\bprog
? e = ellinit("11a1"); \\ rank 0
? ellanalyticrank(e)
%2 = [0, 0.2538418608559106843377589233]
? e = ellinit("37a1"); \\ rank 1
? ellanalyticrank(e)
%4 = [1, 0.3059997738340523018204836835]
? e = ellinit("389a1"); \\ rank 2
? ellanalyticrank(e)
%6 = [2, 1.518633000576853540460385214]
? e = ellinit("5077a1"); \\ rank 3
? ellanalyticrank(e)
%8 = [3, 10.39109940071580413875185035]
@eprog
Function: ellap
Class: basic
Section: elliptic_curves
C-Name: ellap
Prototype: GDG
Help: ellap(E,{p}): computes a_p for the elliptic curve E using
Shanks-Mestre's method, or SEA algorithm if the package seadata is installed.
Assume the equation is minimal at p.
Doc: computes the trace of Frobenius $a_p$ for the elliptic curve $E$ and the
prime number $p$. This is defined by the equation $\#E(\F_p) = p+1 - a_p$,
where $\#E(\F_p)$ stands for the number of points of the curve $E$ over the
finite field $\F_p$.
No checking is done that $p$ is indeed prime. $E$ must be a \var{smallell} as
output by \kbd{ellinit}, defined over $\Q$, $\Q_p$, or $\F_p$. The prime $p$
may be omitted if the curve was defined over $\F_p$ (\typ{INTMOD}
coefficients) or $\Q_p$ (\typ{PADIC} coefficients). Otherwise the curve must
be defined over $\Q$, and $p$ must be explicitly given. Over $\Q$ or
$\Q_p$, the equation is assumed to be minimal at $p$.
\bprog
? E = ellinit([0,0,0,0,1]); \\ defined over Q
? ellap(E, 3) \\ 3 necessary here
%2 = 0 \\ #E(F_3) = 3+1 - 0 = 4
? ellap(E, 7)
%3 = -4 \\ #E(F_7) = 12
? E = ellinit([0,0,0,0,1] * Mod(1,11)); \\ defined over F_11
? ellap(E) \\ no need to repeat 11
%5 = 0
? ellap(E, 11) \\ ... but it also works
%6 = 0
? ellgroup(E, 13) \\ ouch, inconsistent input !
*** at top-level: ellap(E,13)
*** ^-----------
*** ellap: inconsistent moduli in Rg_to_Fp: 11, 13.
@eprog
\misctitle{Algorithms used} If $E/\F_p$ has CM by a principal imaginary
quadratic order we use an explicit formula (involving essentially Kronecker
symbols and Cornacchia's algorithm, hence very fast: $O(\log p)^2$).
Otherwise, we use Shanks-Mestre's baby-step/giant-step method, which runs in
time $O(p^{1/4})$ using $O(p^{1/4})$ storage, hence becomes unreasonable when
$p$ has about 30~digits. If the \tet{seadata} package is installed, the
\tet{SEA} algorithm becomes available and primes of the order of 200~digits
become feasible.
Function: ellbil
Class: basic
Section: elliptic_curves
C-Name: bilhell
Prototype: GGGp
Help: ellbil(E,z1,z2): canonical bilinear form for the points z1,z2 on the
elliptic curve E (assumed to be minimal). Either z1 or z2 can also be a
vector/matrix of points.
Doc:
if $z1$ and $z2$ are points on the elliptic
curve $E$, assumed to be integral given by a minimal model, this function
computes the value of the canonical bilinear form on $z1$, $z2$:
$$ ( h(E,z1\kbd{+}z2) - h(E,z1) - h(E,z2) ) / 2 $$
where \kbd{+} denotes of course addition on $E$. In addition, $z1$ or $z2$
(but not both) can be vectors or matrices.
Function: ellchangecurve
Class: basic
Section: elliptic_curves
C-Name: ellchangecurve
Prototype: GG
Help: ellchangecurve(E,v): change data on elliptic curve according to
v=[u,r,s,t].
Description:
(gen, gen):ell ellchangecurve($1, $2)
Doc:
changes the data for the elliptic curve $E$
by changing the coordinates using the vector \kbd{v=[u,r,s,t]}, i.e.~if $x'$
and $y'$ are the new coordinates, then $x=u^2x'+r$, $y=u^3y'+su^2x'+t$.
$E$ must be a \var{smallell} as output by \kbd{ellinit}.
Function: ellchangepoint
Class: basic
Section: elliptic_curves
C-Name: ellchangepoint
Prototype: GG
Help: ellchangepoint(x,v): change data on point or vector of points x on an
elliptic curve according to v=[u,r,s,t].
Doc:
changes the coordinates of the point or
vector of points $x$ using the vector \kbd{v=[u,r,s,t]}, i.e.~if $x'$ and
$y'$ are the new coordinates, then $x=u^2x'+r$, $y=u^3y'+su^2x'+t$ (see also
\kbd{ellchangecurve}).
Variant: The reciprocal function \fun{GEN}{ellchangepointinv}{GEN x, GEN ch}
inverts the coordinate change.
Function: ellconvertname
Class: basic
Section: elliptic_curves
C-Name: ellconvertname
Prototype: G
Help: ellconvertname(name): convert an elliptic curve name (as found in
the elldata database) from a string to a triplet [conductor, isogeny class,
index]. It will also convert a triplet back to a curve name.
Doc:
converts an elliptic curve name, as found in the \tet{elldata} database,
from a string to a triplet $[\var{conductor}, \var{isogeny class},
\var{index}]$. It will also convert a triplet back to a curve name.
Examples:
\bprog
? ellconvertname("123b1")
%1 = [123, 1, 1]
? ellconvertname(%)
%2 = "123b1"
@eprog
Function: elldivpol
Class: basic
Section: elliptic_curves
C-Name: elldivpol
Prototype: GLDn
Help: elldivpol(E,n,{v='x}): n-division polynomial for the curve E in the
variable v.
Doc: $n$-division polynomial for the curve \kbd{E} in the
variable $v$.
Function: elleisnum
Class: basic
Section: elliptic_curves
C-Name: elleisnum
Prototype: GLD0,L,p
Help: elleisnum(E,k,{flag=0}): E being an elliptic curve (or, alternatively,
given by a 2-component vector representing its periods)
and k an even positive integer, computes the
numerical value of the Eisenstein series of weight k. When flag is non-zero
and k=4 or 6, this gives g2 or g3 with the correct normalization.
Doc:
$E$ being an elliptic curve as
output by \kbd{ellinit} (or, alternatively, given by a 2-component vector
$[\omega_1,\omega_2]$ representing its periods), and $k$ being an even
positive integer, computes the numerical value of the Eisenstein series of
weight $k$ at $E$, namely
$$
(2i \pi/\omega_2)^k
\Big(1 + 2/\zeta(1-k) \sum_{n\geq 0} n^{k-1}q^n / (1-q^n)\Big),
$$
where $q = \exp(2i\pi \tau)$ and $\tau:=\omega_1/\omega_2$ belongs to the
complex upper half-plane.
When \fl\ is non-zero and $k=4$ or 6, returns the elliptic invariants $g_2$
or $g_3$, such that
$$y^2 = 4x^3 - g_2 x - g_3$$
is a Weierstrass equation for $E$.
Function: elleta
Class: basic
Section: elliptic_curves
C-Name: elleta
Prototype: Gp
Help: elleta(om): om=[om1,om2], returns the two-component row vector
[eta1,eta2] of quasi-periods associated to [om1,om2].
Doc:
returns the quasi-periods $[\eta_1,\eta_2]$
associated to the lattice basis $\var{om} = [\omega_1, \omega_2]$.
Alternatively, \var{om} can be an elliptic curve $E$ as output by
\kbd{ellinit}, in which case, the quasi periods associated to the period
lattice basis \kbd{$E$.omega} (namely, \kbd{$E$.eta}) are returned.
\bprog
? elleta([1, I])
%1 = [3.141592653589793238462643383, 9.424777960769379715387930149*I]
@eprog
Function: ellgenerators
Class: basic
Section: elliptic_curves
C-Name: ellgenerators
Prototype: G
Help: ellgenerators(E): if E is an elliptic curve as output by ellinit(),
return the generators of the Mordell-Weil group associated to the curve.
This function depends on the curve being referenced in the elldata database.
Doc:
returns a $\Z$-basis of the free part of the
\idx{Mordell-Weil group} associated to $E$. This function depends on the
\tet{elldata} database being installed and referencing the curve, and so
is only available for curves over $\Z$ of small conductors.
Function: ellglobalred
Class: basic
Section: elliptic_curves
C-Name: ellglobalred
Prototype: G
Help: ellglobalred(E): E being an elliptic curve, returns [N,[u,r,s,t],c],
where N is the conductor of E, [u,r,s,t] leads to the standard model for E,
and c is the product of the local Tamagawa numbers c_p.
Description:
(gen):gen ellglobalred($1)
Doc:
calculates the arithmetic conductor, the global
minimal model of $E$ and the global \idx{Tamagawa number} $c$.
$E$ must be a \var{smallell} as output by \kbd{ellinit}, \emph{and is supposed
to have all its coefficients $a_i$ in} $\Q$. The result is a 3 component
vector $[N,v,c]$. $N$ is the arithmetic conductor of the curve. $v$ gives the
coordinate change for $E$ over $\Q$ to the minimal integral model (see
\tet{ellminimalmodel}). Finally $c$ is the product of the local Tamagawa
numbers $c_p$, a quantity which enters in the \idx{Birch and Swinnerton-Dyer
conjecture}.\sidx{minimal model}
Function: ellgroup
Class: basic
Section: elliptic_curves
C-Name: ellgroup
Prototype: GDG
Help: ellgroup(E,{p}): computes the structure of the group E(Fp)
Assume the equation is minimal at p.
Doc: computes the structure of the group $E(\F_p) \sim \Z/d_1\Z \times
\Z/d_2\Z$, with $d_2\mid d_1$. The prime $p$ may be omitted if the curve
was defined over $\F_p$ (\typ{INTMOD} coefficients) or $\Q_p$ (\typ{PADIC}
coefficients). Otherwise the curve must be defined over $\Q$, and $p$ must
be explicitly given. Over $\Q$ or $\Q_p$, the equation is assumed to be
minimal at $p$.
\bprog
? E = ellinit([0,0,0,0,1]); \\ defined over Q
? ellgroup(E, 3) \\ 3 necessary here
%2 = [4] \\ cyclic
? ellgroup(E, 7)
%3 = [6, 2] \\ non-cyclic
? E = ellinit([0,0,0,0,1] * Mod(1,11)); \\ defined over F_11
? ellgroup(E) \\ no need to repeat 11
%5 = [12]
? ellgroup(E, 11) \\ ... but it also works
%6 = [12]
? ellgroup(E, 13) \\ ouch, inconsistent input !
*** at top-level: ellgroup(E,13)
*** ^--------------
*** ellgroup: inconsistent moduli in Rg_to_Fp: 11, 13.
@eprog
Function: ellheight
Class: basic
Section: elliptic_curves
C-Name: ellheight0
Prototype: GGD2,L,p
Help: ellheight(E,x,{flag=2}): canonical height of point x on elliptic curve
E (assumed to be a minimal model). flag is optional and selects the algorithm
used to compute the Archimedean local height. Its meaning is 0: use
theta-functions, 1: use Tate's method, 2: use Mestre's AGM.
Doc: global \idx{N\'eron-Tate height} of the point $z$ on the elliptic curve
$E$ (defined over $\Q$), given by a standard minimal integral model. $E$
must be an \kbd{ell} as output by \kbd{ellinit}. \fl selects the algorithm
used to compute the Archimedean local height. If $\fl=0$, this computation
is done using sigma and theta-functions and a trick due to J.~Silverman. If
$\fl=1$, use Tate's $4^n$ algorithm. If $\fl=2$, use Mestre's AGM algorithm.
The latter is much faster than the other two, both in theory (converges
quadratically) and in practice.
Variant: Also available is \fun{GEN}{ghell}{GEN E, GEN x, long prec}
($\fl=2$).
Function: ellheightmatrix
Class: basic
Section: elliptic_curves
C-Name: mathell
Prototype: GGp
Help: ellheightmatrix(E,x): gives the height matrix for vector of points x
on elliptic curve E, assume to be a minimal model.
Doc:
$x$ being a vector of points, this
function outputs the Gram matrix of $x$ with respect to the N\'eron-Tate
height, in other words, the $(i,j)$ component of the matrix is equal to
\kbd{ellbil($E$,x[$i$],x[$j$])}. The rank of this matrix, at least in some
approximate sense, gives the rank of the set of points, and if $x$ is a
basis of the \idx{Mordell-Weil group} of $E$, its determinant is equal to
the regulator of $E$. Note that this matrix should be divided by 2 to be in
accordance with certain normalizations. $E$ is assumed to be integral,
given by a minimal model.
Function: ellidentify
Class: basic
Section: elliptic_curves
C-Name: ellidentify
Prototype: G
Help: ellidentify(E): look up the elliptic curve E in the elldata database and
return [[N, M, ...], C] where N is the name of the curve in J. E. Cremona
database, M the minimal model and C the coordinates change (see
ellchangecurve).
Doc:
look up the elliptic curve $E$ (over $\Z$)
in the \tet{elldata} database and return \kbd{[[N, M, G], C]} where $N$
is the name of the curve in the J.~E.~Cremona database, $M$ the minimal
model, $G$ a $\Z$-basis of the free part of the \idx{Mordell-Weil group}
of $E$ and $C$ the coordinates change (see \kbd{ellchangecurve}).
Function: ellinit
Class: basic
Section: elliptic_curves
C-Name: ellinit0
Prototype: GD0,L,p
Help: ellinit(x,{flag=0}): x being the vector [a1,a2,a3,a4,a6] defining the
curve Y^2 + a1.XY + a3.Y = X^3 + a2.X^2 + a4.X + a6, gives the vector:
[a1,a2,a3,a4,a6,b2,b4,b6,b8,c4,c6,disc,j,[e1,e2,e3],w1,w2,eta1,eta2,area].
If the curve is defined over a p-adic field, the last six components are
replaced by root,u^2,u,q,w,0. If optional flag is 1, omit them altogether.
x can also be a string, in this case the coefficients of the curve with
matching name are looked in the elldata database if available.
Description:
(gen, ?0):bell:prec ellinit($1, prec)
(gen, 1):ell smallellinit($1)
(gen, small):ell:prec ellinit0($1, $2, prec)
Doc:
initialize an \tet{ell} structure,
associated to the elliptic curve $E$. $E$ is either a $5$-component
vector $[a_1,a_2,a_3,a_4,a_6]$ defining the elliptic curve with Weierstrass
equation
$$ Y^2 + a_1 XY + a_3 Y = X^3 + a_2 X^2 + a_4 X + a_6 $$
or a string, in this case the coefficients of the curve with matching name
are looked in the \tet{elldata} database if available.
\bprog
? E = ellinit([0,0,0,0,1]); \\ y^2 = x^3 + 1
? E = ellinit("36a1"); \\ the same curve, using Cremona's notations
@eprog\noindent
For the time being, only curves over a prime field $\F_p$ and over the
$p$-adic or real numbers (including rational numbers) are fully supported.
Other domains are only supported for very basic operations such as point
addition.
The result of \tet{ellinit} is an \tev{ell} structure by default, and
a shorter \tev{sell} if $\fl=1$. Both contain the following information in
their components:
%
$$ a_1,a_2,a_3,a_4,a_6,b_2,b_4,b_6,b_8,c_4,c_6,\Delta,j.$$
%
All are accessible via member functions. In particular, the discriminant is
\kbd{$E$.disc}, and the $j$-invariant is \kbd{$E$.j}.
The other six components are only present if $\fl$ is $0$ or omitted, in
which case the computation will be 10 ($p$-adic) to 200 (complex) times
slower. Their content depends on whether the curve is defined over $\R$ or
not:
\smallskip
\item When $E$ is defined over $\R$, \kbd{$E$.roots} is a vector whose
three components contain the roots of the right hand side of the associated
Weierstrass equation.
$$ (y + a_1x/2 + a_3/2)^2 = g(x) $$
If the roots are all real, they are ordered by decreasing value. If only
one is real, it is the first component.
Then $\omega_1 = $\kbd{$E$.omega[1]} is the real period of $E$ (integral of
$dx/(2y+a_1x+a_3)$ over the connected component of the identity element of
the real points of the curve), and $\omega_2 = $\kbd{$E$.omega[2]} is a
complex period. \kbd{$E$.omega} forms a basis of the
complex lattice defining $E$, such that
$\tau=\dfrac{\omega_1}{\omega_2}$ has positive imaginary part.
\kbd{$E$.eta} is a row vector containing the quasi-periods $\eta_1$ and
$\eta_2$ such that $\eta_i = 2\zeta(\omega_i/2)$, where $\zeta$ is the
Weierstrass zeta function associated to the period lattice (see
\tet{ellzeta}). In particular, the Legendre relation holds:
$\eta_2\omega_1 - \eta_1\omega_2 = 2i\pi$.
Finally, \kbd{$E$.area} is the volume of the complex lattice defining
$E$.\smallskip
\item When $E$ is defined over $\Q_p$, the $p$-adic valuation of $j$
must be negative. Then \kbd{$E$.roots} is the vector with a single component
equal to the $p$-adic root of the associated Weierstrass equation
corresponding to $-1$ under the Tate parametrization.
\kbd{$E$.tate} yields the three-component vector $[u^2,u,q]$, in the
notations of Tate. If the $u$-component does not belong to $\Q_p$, it is set
to zero.
\kbd{$E$.w} is Mestre's $w$ (this is technical).
\smallskip For all other base fields or rings, the last six components are
arbitrarily set to zero. See also the description of member functions
related to elliptic curves at the beginning of this section.
Variant: Also available are \fun{GEN}{ellinit}{GEN E, long prec} ($\fl=0$) and
\fun{GEN}{smallellinit}{GEN E, long prec} ($\fl=1$).
Function: ellisoncurve
Class: basic
Section: elliptic_curves
C-Name: ellisoncurve
Prototype: GG
Help: ellisoncurve(E,z): true(1) if z is on elliptic curve E, false(0) if not.
Doc: gives 1 (i.e.~true) if the point $z$ is on the elliptic curve $E$, 0
otherwise. If $E$ or $z$ have imprecise coefficients, an attempt is made to
take this into account, i.e.~an imprecise equality is checked, not a precise
one. It is allowed for $z$ to be a vector of points in which case a vector
(of the same type) is returned.
Variant: Also available is \fun{int}{oncurve}{GEN E, GEN z} which does not
accept vectors of points.
Function: ellj
Class: basic
Section: elliptic_curves
C-Name: jell
Prototype: Gp
Help: ellj(x): elliptic j invariant of x.
Doc:
elliptic $j$-invariant. $x$ must be a complex number
with positive imaginary part, or convertible into a power series or a
$p$-adic number with positive valuation.
Function: elllocalred
Class: basic
Section: elliptic_curves
C-Name: elllocalred
Prototype: GG
Help: elllocalred(E,p): E being an elliptic curve, returns
[f,kod,[u,r,s,t],c], where f is the conductor's exponent, kod is the Kodaira
type for E at p, [u,r,s,t] is the change of variable needed to make E
minimal at p, and c is the local Tamagawa number c_p.
Doc:
calculates the \idx{Kodaira} type of the
local fiber of the elliptic curve $E$ at the prime $p$.
$E$ must be a \var{smallell} as output by \kbd{ellinit}, and is assumed to have
all its coefficients $a_i$ in $\Z$. The result is a 4-component vector
$[f,kod,v,c]$. Here $f$ is the exponent of $p$ in the arithmetic conductor of
$E$, and $kod$ is the Kodaira type which is coded as follows:
1 means good reduction (type I$_0$), 2, 3 and 4 mean types II, III and IV
respectively, $4+\nu$ with $\nu>0$ means type I$_\nu$;
finally the opposite values $-1$, $-2$, etc.~refer to the starred types
I$_0^*$, II$^*$, etc. The third component $v$ is itself a vector $[u,r,s,t]$
giving the coordinate changes done during the local reduction. Normally, this
has no use if $u$ is 1, that is, if the given equation was already minimal.
Finally, the last component $c$ is the local \idx{Tamagawa number} $c_p$.
Function: elllog
Class: basic
Section: elliptic_curves
C-Name: elllog
Prototype: GGGDG
Help: elllog(E,P,G,{o}): return the discrete logarithm of the point P of
the elliptic curve E in base G. If present, o represents the order of G.
If not present, assume that G generates the curve.
Doc: discrete logarithm of the point $P$ of the elliptic curve $E$ in base $G$.
See \tet{znlog} for the limitations of the underlying discrete log algorithms.
If present, $o$ represents the order of $G$, see \secref{se:DLfun};
the preferred format for this parameter is \kbd{[N, factor(N)]}, where $N$
is the order of $G$.
If no $o$ is given, assume that $G$ generates the curve.
The function also assumes that $P$ is a multiple of $G$.
\bprog
? a = ffgen(ffinit(2,8),'a);
? E = ellinit([a,1,0,0,1]); \\ over F_{2^8}
? x = a^3; y = ellordinate(E,x)[1];
? P = [x,y]; G = ellpow(E, P, 113);
? ord = [242, factor(242)]; \\ P generates a group of order 242. Initialize.
? ellorder(E, G, ord)
%4 = 242
? e = elllog(E, P, G, ord)
%5 = 15
? ellpow(E,G,e) == P
%6 = 1
@eprog
Function: elllseries
Class: basic
Section: elliptic_curves
C-Name: elllseries
Prototype: GGDGp
Help: elllseries(E,s,{A=1}): L-series at s of the elliptic curve E, where A
a cut-off point close to 1.
Doc:
$E$ being an \var{sell} as output by
\kbd{ellinit}, this computes the value of the L-series of $E$ at $s$. It is
assumed that $E$ is defined over $\Q$, not necessarily minimal. The optional
parameter $A$ is a cutoff point for the integral, which must be chosen close
to 1 for best speed. The result must be independent of $A$, so this allows
some internal checking of the function.
Note that if the conductor of the curve is large, say greater than $10^{12}$,
this function will take an unreasonable amount of time since it uses an
$O(N^{1/2})$ algorithm.
Function: ellminimalmodel
Class: basic
Section: elliptic_curves
C-Name: ellminimalmodel
Prototype: GD&
Help: ellminimalmodel(E,{&v}): return the standard minimal integral model of
the rational elliptic curve E. Sets v to the corresponding change of
variables.
Doc: return the standard minimal integral model of the rational elliptic
curve $E$. If present, sets $v$ to the corresponding change of variables,
which is a vector $[u,r,s,t]$ with rational components. The return value is
identical to that of \kbd{ellchangecurve(E, v)}.
The resulting model has integral coefficients, is everywhere minimal, $a_1$
is 0 or 1, $a_2$ is 0, 1 or $-1$ and $a_3$ is 0 or 1. Such a model is
unique, and the vector $v$ is unique if we specify that $u$ is positive,
which we do. \sidx{minimal model}
Function: ellmodulareqn
Class: basic
Section: elliptic_curves
C-Name: ellmodulareqn
Prototype: LDnDn
Help: ellmodulareqn(l,{x},{y}): return a vector [eqn, t] where eqn is a modular
equation of level l, for l<500, l prime. This requires the package seadata to
be installed. The equation is either of canonical type (t=0) or of Atkin type
(t=1)
Doc: return a vector [\kbd{eqn},$t$] where \kbd{eqn} is a modular equation of
level $l$, for $l<500$, $l$ prime. This requires the package seadata to be
installed. The equation is either of canonical type ($t=0$) or of Atkin type
($t=1$).
Function: ellorder
Class: basic
Section: elliptic_curves
C-Name: ellorder
Prototype: GGDG
Help: ellorder(E,z,{o}): order of the point z on the elliptic curve E over Q
or a finite field, 0 if non-torsion. The parameter o, if present,
represents a non-zero multiple of the order of z
(mandatory over non-prime finite fields).
Doc:
gives the order of the point $z$ on the elliptic
curve $E$. If the curve is defined over $\Q$, return zero if the point has
infinite order. The parameter $o$, if present, represents a non-zero
multiple of the order of $z$, see \secref{se:DLfun}; the preferred format for
this parameter is \kbd{[ord, factor(ord)]}, where \kbd{ord} is the
cardinality of the curve.
For a curve defined over $\F_p$, it is very important to supply $o$ since
its computation is very expensive and should only be done once, using
\bprog
? N = p+1-ellap(E,p); o = [N, factor(N)];
@eprog\noindent possibly using the \tet{seadata} package; for a curve defined
over a non-prime finite field,
giving the order is \emph{mandatory} since no function is available yet to
compute the cardinality or trace of Frobenius in that case.
Variant: The obsolete form \fun{GEN}{orderell}{GEN e, GEN z} should no longer be
used.
Function: ellordinate
Class: basic
Section: elliptic_curves
C-Name: ellordinate
Prototype: GGp
Help: ellordinate(E,x): y-coordinates corresponding to x-ordinate x on
elliptic curve E.
Doc:
gives a 0, 1 or 2-component vector containing
the $y$-coordinates of the points of the curve $E$ having $x$ as
$x$-coordinate.
Function: ellpointtoz
Class: basic
Section: elliptic_curves
C-Name: zell
Prototype: GGp
Help: ellpointtoz(E,P): lattice point z corresponding to the point P on the
elliptic curve E.
Doc:
if $E$ is an elliptic curve with coefficients
in $\R$, this computes a complex number $t$ (modulo the lattice defining
$E$) corresponding to the point $z$, i.e.~such that, in the standard
Weierstrass model, $\wp(t)=z[1],\wp'(t)=z[2]$. In other words, this is the
inverse function of \kbd{ellztopoint}. More precisely, if $(w1,w2)$ are the
real and complex periods of $E$, $t$ is such that $0 \leq \Re(t) < w1$
and $0 \leq \Im(t) < \Im(w2)$.
If $E$ has coefficients in $\Q_p$, then either Tate's $u$ is in $\Q_p$, in
which case the output is a $p$-adic number $t$ corresponding to the point $z$
under the Tate parametrization, or only its square is, in which case the
output is $t+1/t$. $E$ must be an \var{ell} as output by \kbd{ellinit}.
Function: ellpow
Class: basic
Section: elliptic_curves
C-Name: powell
Prototype: GGG
Help: ellpow(E,z,n): n times the point z on elliptic curve E (n in Z).
Doc:
computes $[n]z$, where $z$ is a point on the elliptic curve $E$. The
exponent $n$ is in $\Z$, or may be a complex quadratic integer if the curve $E$
has complex multiplication by $n$ (if not, an error message is issued).
\bprog
? Ei = ellinit([0,0,0,1,0]); z = [0,0];
? ellpow(Ei, z, 10)
%2 = [0] \\ unsurprising: z has order 2
? ellpow(Ei, z, I)
%3 = [0, 0] \\ Ei has complex multiplication by Z[i]
? ellpow(Ei, z, quadgen(-4))
%4 = [0, 0] \\ an alternative syntax for the same query
? Ej = ellinit([0,0,0,0,1]); z = [-1,0];
? ellpow(Ej, z, I)
*** at top-level: ellpow(Ej,z,I)
*** ^--------------
*** ellpow: not a complex multiplication in powell.
? ellpow(Ej, z, 1+quadgen(-3))
%6 = [1 - w, 0]
@eprog
The simple-minded algorithm for the CM case assumes that we are in
characteristic $0$, and that the quadratic order to which $n$ belongs has
small discriminant.
Function: ellrootno
Class: basic
Section: elliptic_curves
C-Name: ellrootno
Prototype: lGDG
Help: ellrootno(E,{p=1}): root number for the L-function of the elliptic
curve E. p can be 1 (default), global root number, or a prime p (including
0) for the local root number at p.
Doc:
$E$ being a \var{smallell} as output by
\kbd{ellinit}, this computes the local (if $p\neq 1$) or global (if $p=1$)
root number of the L-series of the elliptic curve $E$. Note that the global
root number is the sign of the functional equation and conjecturally is the
parity of the rank of the \idx{Mordell-Weil group}. The equation for $E$ must
have coefficients in $\Q$ but need \emph{not} be minimal.
Function: ellsearch
Class: basic
Section: elliptic_curves
C-Name: ellsearch
Prototype: G
Help: ellsearch(N): if N is an integer, it is taken as a conductor else if N is
a string, it can be a curve name ("11a1"), a isogeny class ("11a") or a
conductor ("11"). Return all curves in the elldata database that match the
property.
Doc: if $N$ is an integer, it is taken as a conductor else if $N$ is a
string, it can be a curve name ("11a1"), an isogeny class ("11a") or a
conductor "11". This function finds all curves in the \tet{elldata} database
with the given property.
If $N$ is a full curve name, the output format is $[N, [a_1,a_2,a_3,a_4,a_6],
G]$ where $[a_1,a_2,a_3,a_4,a_6]$ are the coefficients of the Weierstrass
equation of the curve and $G$ is a $\Z$-basis of the free part of the
\idx{Mordell-Weil group} associated to the curve.
If $N$ is not a full-curve name, the output is a vector of all matching
curves in the above format.
Variant: Also available is \fun{GEN}{ellsearchcurve}{GEN N} that only
accepts complete curve names.
Function: ellsigma
Class: basic
Section: elliptic_curves
C-Name: ellsigma
Prototype: GGD0,L,p
Help: ellsigma(E,z,{flag=0}): E being given by ellinit, returns the value of
the Weierstrass sigma
function of the lattice generated by om at z if flag = 0 (default). If flag
= 1, arbitrary determination of the logarithm of sigma. If flag = 2 or 3,
same but using the product expansion instead of theta series.
Doc:
$E$ being given by \kbd{ellinit},
returns the value at $z$ of the Weierstrass $\sigma$ function of the period
lattice $L$ of $E$:
$$ \sigma(z, L) = z \prod_{\omega\in L^*} \left(1 -
\dfrac{z}{\omega}\right)e^{\dfrac{z}{\omega} + \dfrac{z^2}{2\omega^2}}$$
Alternatively, one can input a lattice basis $[\omega_1,\omega_2]$ directly
instead of $E$.
If $\fl=1$, computes an (arbitrary) determination of $\log(\sigma(z))$.
If $\fl=2,3$, same using the product expansion instead of theta series.
Function: ellsub
Class: basic
Section: elliptic_curves
C-Name: subell
Prototype: GGG
Help: ellsub(E,z1,z2): difference of the points z1 and z2 on elliptic curve E.
Doc:
difference of the points $z1$ and $z2$ on the
elliptic curve corresponding to $E$.
Function: elltaniyama
Class: basic
Section: elliptic_curves
C-Name: elltaniyama
Prototype: GDP
Help: elltaniyama(E, {d = seriesprecision}): modular parametrization of elliptic curve E (minimal
model).
Doc:
computes the modular parametrization of the
elliptic curve $E$, where $E$ is a \var{smallell} as output by \kbd{ellinit},
in the form of a two-component vector $[u,v]$ of power series, given to $d$
significant terms (\tet{seriesprecision} by default). This vector is
characterized by the
following two properties. First the point $(x,y)=(u,v)$ satisfies the
equation of the elliptic curve. Second, the differential $du/(2v+a_1u+a_3)$
is equal to $f(z)dz$, a differential form on $H/\Gamma_0(N)$ where $N$ is the
conductor of the curve. The variable used in the power series for $u$ and $v$
is $x$, which is implicitly understood to be equal to $\exp(2i\pi z)$. It is
assumed that the curve is a \emph{strong} \idx{Weil curve}, and that the
Manin constant is equal to 1. The equation of the curve $E$ must be minimal
(use \kbd{ellminimalmodel} to get a minimal equation).
Function: elltatepairing
Class: basic
Section: elliptic_curves
C-Name: elltatepairing
Prototype: GGGG
Help: elltatepairing(E, P, Q, m): Computes the Tate pairing of the two points
P and Q on the elliptic curve E. The point P must be of m-torsion.
Doc: Computes the Tate pairing of the two points $P$ and $Q$ on the elliptic
curve $E$. The point $P$ must be of $m$-torsion.
Function: elltors
Class: basic
Section: elliptic_curves
C-Name: elltors0
Prototype: GD0,L,
Help: elltors(E,{flag=0}): torsion subgroup of elliptic curve E: order,
structure, generators. If flag = 0, use Doud's algorithm; if flag = 1, use
Lutz-Nagell.
Doc:
if $E$ is an elliptic curve \emph{defined
over $\Q$}, outputs the torsion subgroup of $E$ as a 3-component vector
\kbd{[t,v1,v2]}, where \kbd{t} is the order of the torsion group, \kbd{v1}
gives the structure of the torsion group as a product of cyclic groups
(sorted by decreasing order), and \kbd{v2} gives generators for these cyclic
groups. $E$ must be an \var{ell} as output by \kbd{ellinit}.
\bprog
? E = ellinit([0,0,0,-1,0]);
? elltors(E)
%1 = [4, [2, 2], [[0, 0], [1, 0]]]
@eprog
Here, the torsion subgroup is isomorphic to $\Z/2\Z \times \Z/2\Z$, with
generators $[0,0]$ and $[1,0]$.
If $\fl = 0$, use Doud's algorithm: bound torsion by computing $\#E(\F_p)$
for small primes of good reduction, then look for torsion points using
Weierstrass parametrization (and Mazur's classification).
If $\fl = 1$, use Lutz-Nagell (\emph{much} slower), $E$ is allowed to be a
\var{smallell}.
Variant: Also available is \fun{GEN}{elltors}{GEN E} for \kbd{elltors(E, 0)}.
Function: ellweilpairing
Class: basic
Section: elliptic_curves
C-Name: ellweilpairing
Prototype: GGGG
Help: ellweilpairing(E, P, Q, m): Computes the Weil pairing of the two points
of m-torsion P and Q on the elliptic curve E.
Doc: Computes the Weil pairing of the two points of $m$-torsion $P$ and $Q$
on the elliptic curve $E$.
Function: ellwp
Class: basic
Section: elliptic_curves
C-Name: ellwp0
Prototype: GDGD0,L,DPp
Help: ellwp(E,{z=x},{flag=0},{d=seriesprecision}):
computes the value at z of the Weierstrass P function attached to the
elliptic curve E as given by ellinit (alternatively, E can be
given as a lattice [om1,om2]). Optional flag means 0 (default), compute only
P(z), 1 compute [P(z),P'(z)], 2 consider om as an elliptic curve and compute
P(z) for that curve (identical to ellztopoint in that case). If z is omitted
or is a simple variable, return formal expansion in z with d significant
terms.
Doc: Computes the value at $z$ of the Weierstrass $\wp$ function attached to
the elliptic curve $E$ as given by \kbd{ellinit} (alternatively, $E$ can be
given as a lattice $[\omega_1,\omega_2]$).
If $z$ is omitted or is a simple variable, computes the \emph{power series}
expansion in $z$ (starting $z^{-2}+O(z^2)$). The series is given to $d$
significant terms (\tet{seriesprecision} by default).
Optional \fl\ is (for now) only taken into account when $z$ is numeric, and
means 0: compute only $\wp(z)$, 1: compute $[\wp(z),\wp'(z)]$.
Variant: Also available is \fun{GEN}{weipell}{GEN E, long precdl} for the power
series.
Function: ellzeta
Class: basic
Section: elliptic_curves
C-Name: ellzeta
Prototype: GGp
Help: ellzeta(E,z): E being given by ellinit, returns the value at z of the
Weierstrass zeta function of the period lattice of E.
Doc:
$E$ being given by \kbd{ellinit}, returns the
value at $z$ of the Weierstrass $\zeta$ function of the period lattice $L$
of $E$:
$$ \zeta(z, L) = \dfrac{1}{z} + z^2\sum_{\omega\in L^*}
\dfrac{1}{\omega^2(z-\omega)}.$$
Alternatively, one can input a lattice basis $[\omega_1,\omega_2]$ directly
instead of $E$.
\bprog
? e = ellinit([0,0,0,1,0]);
? ellzeta(e, e.omega[1]/2)
%2 = 0.8472130847939790866064991234 + 4.417621070 E-29*I
? 2*ellzeta([1,I], 1/2)
%3 = 3.141592653589793238462643384 + 0.E-37*I
@eprog\noindent
The quasi-periods of $\zeta$, such that
$$\zeta(z + a\omega_1 + b\omega_2) = \zeta(z) + a\eta_1 + b\eta_2 $$
for integers $a$ and $b$ are obtained directly as $\eta_i =
2\zeta(\omega_i/2)$ or using \tet{elleta}.
Function: ellztopoint
Class: basic
Section: elliptic_curves
C-Name: pointell
Prototype: GGp
Help: ellztopoint(E,z): coordinates of point P on the curve E corresponding
to the complex number z.
Doc:
$E$ being an \var{ell} as output by
\kbd{ellinit}, computes the coordinates $[x,y]$ on the curve $E$
corresponding to the complex number $z$. Hence this is the inverse function
of \kbd{ellpointtoz}. In other words, if the curve is put in Weierstrass
form, $[x,y]$ represents the \idx{Weierstrass $\wp$-function} and its
derivative. If $z$ is in the lattice defining $E$ over $\C$, the result is
the point at infinity $[0]$.
Function: erfc
Class: basic
Section: transcendental
C-Name: gerfc
Prototype: Gp
Help: erfc(x): complementary error function.
Doc: complementary error function, analytic continuation of
$(2/\sqrt\pi)\int_x^\infty e^{-t^2}\,dt$ ($x\in\R$).
Function: error
Class: basic
Section: programming/specific
C-Name: error0
Prototype: vs*
Help: error({str}*): abort script with error message str.
Description:
(?gen,...):void pari_err(talker, "${2 format_string}"${2 format_args})
Doc: outputs its argument list (each of
them interpreted as a string), then interrupts the running \kbd{gp} program,
returning to the input prompt. For instance
\bprog
error("n = ", n, " is not squarefree !")
@eprog\noindent
% \syn{NO}
Function: eta
Class: basic
Section: transcendental
C-Name: eta0
Prototype: GD0,L,p
Help: eta(z,{flag=0}): if flag=0, returns prod(n=1,oo, 1-q^n), where
q = exp(2 i Pi z) if z is a complex scalar (belonging to the upper half plane);
q = z if z is a p-adic number or can be converted to a power series.
If flag is non-zero, the function only applies to complex scalars and returns
the true eta function, with the factor q^(1/24) included.
Doc: Variants of \idx{Dedekind}'s $\eta$ function.
If $\fl = 0$, return $\prod_{n=1}^\infty(1-q^n)$, where $q$ depends on $x$
in the following way:
\item $q = e^{2i\pi x}$ if $x$ is a \emph{complex number} (which must then
have positive imaginary part); notice that the factor $q^{1/24}$ is
missing!
\item $q = x$ if $x$ is a \typ{PADIC}, or can be converted to a
\emph{power series} (which must then have positive valuation).
If $\fl$ is non-zero, $x$ is converted to a complex number and we return the
true $\eta$ function, $q^{1/24}\prod_{n=1}^\infty(1-q^n)$,
where $q = e^{2i\pi x}$.
Variant:
Also available is \fun{GEN}{trueeta}{GEN x, long prec} ($\fl=1$).
Function: eulerphi
Class: basic
Section: number_theoretical
C-Name: geulerphi
Prototype: G
Help: eulerphi(x): Euler's totient function of x.
Description:
(int):int eulerphi($1)
(gen):gen geulerphi($1)
Doc: Euler's $\phi$ (totient)\sidx{Euler totient function} function of $|x|$,
in other words $|(\Z/x\Z)^*|$. Normally, $x$ must be of type integer, but
the function accepts vector/matrices arguments, and is then applied
componentwise.
Variant: For a \typ{INT} $x$, the variant
\fun{GEN}{eulerphi}{GEN n} is also available.
Function: eval
Class: basic
Section: polynomials
C-Name: geval_gp
Prototype: GC
Help: eval(x): evaluation of x, replacing variables by their value.
Description:
(gen):gen geval($1)
Doc: replaces in $x$ the formal variables by the values that
have been assigned to them after the creation of $x$. This is mainly useful
in GP, and not in library mode. Do not confuse this with substitution (see
\kbd{subst}).
If $x$ is a character string, \kbd{eval($x$)} executes $x$ as a GP
command, as if directly input from the keyboard, and returns its
output. For convenience, $x$ is evaluated as if
\kbd{strictmatch} was off. In particular, unused characters at the end of
$x$ do not prevent its evaluation:
\bprog
? eval("1a")
*** eval: Warning: unused characters: a.
% 1 = 1
@eprog
\synt{geval}{GEN x}.
Function: exp
Class: basic
Section: transcendental
C-Name: gexp
Prototype: Gp
Help: exp(x): exponential of x.
Description:
(real):real mpexp($1)
(mp):mp:prec gexp($1, prec)
(gen):gen:prec gexp($1, prec)
Doc: exponential of $x$.
$p$-adic arguments with positive valuation are accepted.
Variant: For a \typ{PADIC} $x$, the function
\fun{GEN}{Qp_exp}{GEN x} is also available.
Function: extern
Class: gp
Section: programming/specific
C-Name: extern0
Prototype: s
Help: extern(str): execute shell command str, and feeds the result to GP (as
if loading from file).
Doc: the string \var{str} is the name of an external command (i.e.~one you
would type from your UNIX shell prompt). This command is immediately run and
its output fed into \kbd{gp}, just as if read from a file.
Function: externstr
Class: gp
Section: programming/specific
C-Name: externstr
Prototype: s
Help: externstr(str): execute shell command str, and returns the result as a
vector of GP strings, one component per output line.
Doc: the string \var{str} is the name of an external command (i.e.~one you
would type from your UNIX shell prompt). This command is immediately run and
its output is returned as a vector of GP strings, one component per output
line.
Function: factor
Class: basic
Section: number_theoretical
C-Name: gp_factor0
Prototype: GDG
Help: factor(x,{lim}): factorization of x. lim is optional and can be set
whenever x is of (possibly recursive) rational type. If lim is set return
partial factorization, using primes < lim (up to primelimit if lim=0).
Description:
(int, ?-1):vec Z_factor($1)
(gen, ?-1):vec factor($1)
(gen, small):vec factor0($1, $2)
Doc: general factorization function, where $x$ is a
rational (including integers), a complex number with rational
real and imaginary parts, or a rational function (including polynomials).
The result is a two-column matrix: the first contains the irreducibles
dividing $x$ (rational or Gaussian primes, irreducible polynomials),
and the second the exponents. By convention, $0$ is factored as $0^1$.
\misctitle{$\Q$ and $\Q(i)$}
See \tet{factorint} for more information about the algorithms used.
The rational or Gaussian primes are in fact \var{pseudoprimes}
(see \kbd{ispseudoprime}), a priori not rigorously proven primes. In fact,
any factor which is $\leq 10^{15}$ (whose norm is $\leq 10^{15}$ for an
irrational Gaussian prime) is a genuine prime. Use
\kbd{isprime} to prove primality of other factors, as in
\bprog
? fa = factor(2^2^7 + 1)
%1 =
[59649589127497217 1]
[5704689200685129054721 1]
? isprime( fa[,1] )
%2 = [1, 1]~ \\ both entries are proven primes
@eprog\noindent
Another possibility is to set the global default \tet{factor_proven}, which
will perform a rigorous primality proof for each pseudoprime factor.
A \typ{INT} argument \var{lim} can be added, meaning that we look only for
prime factors $p < \var{lim}$. The limit \var{lim} must be non-negative and
satisfy
$\var{lim} \leq \kbd{primelimit} + 1$; setting $\var{lim}=0$ is the same
as setting it to $\kbd{primelimit} + 1$. In this case, all but the last
factor
are proven primes, but the remaining factor may actually be a proven composite!
If the remaining factor is less than $\var{lim}^2$, then it is prime.
\bprog
? factor(2^2^7 +1, 10^5)
%3 =
[340282366920938463463374607431768211457 1]
@eprog\noindent
This routine uses trial division and perfect power tests, and should not be
used for huge values
of \var{lim} (at most $10^9$, say): \kbd{factorint(, 1 + 8)} will in general
be faster. The latter does not guarantee that all small prime factors are
found, but it also finds larger factors, and in a much more efficient way.
\bprog
? F = (2^2^7 + 1) * 1009 * 100003; factor(F, 10^5) \\ fast, incomplete
time = 0 ms.
%4 =
[1009 1]
[34029257539194609161727850866999116450334371 1]
? default(primelimit,10^9)
time = 4,360 ms.
%5 = 1000000000
? factor(F, 10^9) \\ very slow
time = 6,120 ms.
%6 =
[1009 1]
[100003 1]
[340282366920938463463374607431768211457 1]
? factorint(F, 1+8) \\ much faster, all small primes were found
time = 40 ms.
%7 =
[1009 1]
[100003 1]
[340282366920938463463374607431768211457 1]
? factorint(F) \\ complete factorisation
time = 260 ms.
%8 =
[1009 1]
[100003 1]
[59649589127497217 1]
[5704689200685129054721 1]
@eprog
\misctitle{Rational functions}
The polynomials or rational functions to be factored must have scalar
coefficients. In particular PARI does not know how to factor
\emph{multivariate} polynomials. See \tet{factormod} and \tet{factorff} for
the algorithms used over finite fields, \tet{factornf} for the algorithms
over number fields. Over $\Q$, \idx{van Hoeij}'s method is used, which is
able to cope with hundreds of modular factors.
The routine guesses a sensible ring over which you want to factor: the
smallest ring containing all coefficients, taking into account quotient
structures induced by \typ{INTMOD}s and \typ{POLMOD}s (e.g.~if a coefficient
in $\Z/n\Z$ is known, all rational numbers encountered are first mapped to
$\Z/n\Z$; different moduli will produce an error).
Note that factorization of polynomials is done up to
multiplication by a constant. In particular, the factors of rational
polynomials will have integer coefficients, and the content of a polynomial
or rational function is discarded and not included in the factorization. If
needed, you can always ask for the content explicitly:
\bprog
? factor(t^2 + 5/2*t + 1)
%1 =
[2*t + 1 1]
[t + 2 1]
? content(t^2 + 5/2*t + 1)
%2 = 1/2
@eprog\noindent
See also \tet{nffactor}.
Variant: This function should only be used by the \kbd{gp} interface. Use
directly \fun{GEN}{factor}{GEN x} or \fun{GEN}{boundfact}{GEN x, long lim}.
The obsolete function \fun{GEN}{factor0}{GEN x, long lim} is kept for
backward compatibility.
Function: factorback
Class: basic
Section: number_theoretical
C-Name: factorback2
Prototype: GDG
Help: factorback(f,{e}): given a factorisation f, gives the factored
object back. If this is a prime ideal factorisation you must supply the
corresponding number field as last argument. If e is present, f has to be a
vector of the same length, and we return the product of the f[i]^e[i].
Description:
(gen):gen factorback($1)
(gen,):gen factorback($1)
(gen,gen):gen factorback2($1, $2)
Doc: gives back the factored object
corresponding to a factorization. The integer $1$ corresponds to the empty
factorization.
If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
integral), and the corresponding factorization is the product of the
$f[i]^{e[i]}$.
If not, and $f$ is vector, it is understood as in the preceding case with $e$
a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
regular factorization, as produced with any \kbd{factor} command. A few
examples:
\bprog
? factor(12)
%1 =
[2 2]
[3 1]
? factorback(%)
%2 = 12
? factorback([2,3], [2,1]) \\ 2^3 * 3^1
%3 = 12
? factorback([5,2,3])
%4 = 30
@eprog
Variant: Also available is \fun{GEN}{factorback}{GEN f} (case $e = \kbd{NULL}$).
Function: factorcantor
Class: basic
Section: number_theoretical
C-Name: factcantor
Prototype: GG
Help: factorcantor(x,p): factorization mod p of the polynomial x using
Cantor-Zassenhaus.
Doc: factors the polynomial $x$ modulo the
prime $p$, using distinct degree plus
\idx{Cantor-Zassenhaus}\sidx{Zassenhaus}. The coefficients of $x$ must be
operation-compatible with $\Z/p\Z$. The result is a two-column matrix, the
first column being the irreducible polynomials dividing $x$, and the second
the exponents. If you want only the \emph{degrees} of the irreducible
polynomials (for example for computing an $L$-function), use
$\kbd{factormod}(x,p,1)$. Note that the \kbd{factormod} algorithm is
usually faster than \kbd{factorcantor}.
Function: factorff
Class: basic
Section: number_theoretical
C-Name: factorff
Prototype: GDGDG
Help: factorff(x,{p},{a}): factorization of the polynomial x in the finite field
F_p[X]/a(X)F_p[X].
Doc: factors the polynomial $x$ in the field
$\F_q$ defined by the irreducible polynomial $a$ over $\F_p$. The
coefficients of $x$ must be operation-compatible with $\Z/p\Z$. The result
is a two-column matrix: the first column contains the irreducible factors of
$x$, and the second their exponents. If all the coefficients of $x$ are in
$\F_p$, a much faster algorithm is applied, using the computation of
isomorphisms between finite fields.
Either $a$ or $p$ can omitted (in which case both are ignored) if x has
\typ{FFELT} coefficients; the function then becomes identical to \kbd{factor}:
\bprog
? factorff(x^2 + 1, 5, y^2+3) \\ over F_5[y]/(y^2+3) ~ F_25
%1 =
[Mod(Mod(1, 5), Mod(1, 5)*y^2 + Mod(3, 5))*x
+ Mod(Mod(2, 5), Mod(1, 5)*y^2 + Mod(3, 5)) 1]
[Mod(Mod(1, 5), Mod(1, 5)*y^2 + Mod(3, 5))*x
+ Mod(Mod(3, 5), Mod(1, 5)*y^2 + Mod(3, 5)) 1]
? t = ffgen(y^2 + Mod(3,5), 't); \\ a generator for F_25 as a t_FFELT
? factorff(x^2 + 1) \\ not enough information to determine the base field
*** at top-level: factorff(x^2+1)
*** ^---------------
*** factorff: incorrect type in factorff.
? factorff(x^2 + t^0) \\ make sure a coeff. is a t_FFELT
%3 =
[x + 2 1]
[x + 3 1]
? factorff(x^2 + t + 1)
%11 =
[x + (2*t + 1) 1]
[x + (3*t + 4) 1]
@eprog\noindent
Notice that the second syntax is easier to use and much more readable.
Function: factorial
Class: basic
Section: number_theoretical
C-Name: mpfactr
Prototype: Lp
Help: factorial(x): factorial of x, the result being given as a real number.
Doc: factorial of $x$. The expression $x!$ gives a result which is an integer,
while $\kbd{factorial}(x)$ gives a real number.
Variant: \fun{GEN}{mpfact}{long x} returns $x!$ as a \typ{INT}.
Function: factorint
Class: basic
Section: number_theoretical
C-Name: factorint
Prototype: GD0,L,
Help: factorint(x,{flag=0}): factor the integer x. flag is optional, whose
binary digits mean 1: avoid MPQS, 2: avoid first-stage ECM (may fall back on
it later), 4: avoid Pollard-Brent Rho and Shanks SQUFOF, 8: skip final ECM
(huge composites will be declared prime).
Doc: factors the integer $n$ into a product of
pseudoprimes (see \kbd{ispseudoprime}), using a combination of the
\idx{Shanks SQUFOF} and \idx{Pollard Rho} method (with modifications due to
Brent), \idx{Lenstra}'s \idx{ECM} (with modifications by Montgomery), and
\idx{MPQS} (the latter adapted from the \idx{LiDIA} code with the kind
permission of the LiDIA maintainers), as well as a search for pure powers.
The output is a two-column matrix as for \kbd{factor}: the first column
contains the ``prime'' divisors of $n$, the second one contains the
(positive) exponents.
By convention $0$ is factored as $0^1$, and $1$ as the empty factorization;
also the divisors are by default not proven primes is they are larger than
$2^64$, they only failed the BPSW compositeness test (see
\tet{ispseudoprime}). Use \kbd{isprime} on the result if you want to
guarantee primality or set the \tet{factor_proven} default to $1$.
Entries of the private prime tables (see \tet{addprimes}) are also included
as is.
This gives direct access to the integer factoring engine called by most
arithmetical functions. \fl\ is optional; its binary digits mean 1: avoid
MPQS, 2: skip first stage ECM (we may still fall back to it later), 4: avoid
Rho and SQUFOF, 8: don't run final ECM (as a result, a huge composite may be
declared to be prime). Note that a (strong) probabilistic primality test is
used; thus composites might not be detected, although no example is known.
You are invited to play with the flag settings and watch the internals at
work by using \kbd{gp}'s \tet{debug} default parameter (level 3 shows
just the outline, 4 turns on time keeping, 5 and above show an increasing
amount of internal details).
Function: factormod
Class: basic
Section: number_theoretical
C-Name: factormod0
Prototype: GGD0,L,
Help: factormod(x,p,{flag=0}): factors the polynomial x modulo the prime p, using Berlekamp. flag is optional, and can be 0: default or 1:
only the degrees of the irreducible factors are given.
Doc: factors the polynomial $x$ modulo the prime integer $p$, using
\idx{Berlekamp}. The coefficients of $x$ must be operation-compatible with
$\Z/p\Z$. The result is a two-column matrix, the first column being the
irreducible polynomials dividing $x$, and the second the exponents. If $\fl$
is non-zero, outputs only the \emph{degrees} of the irreducible polynomials
(for example, for computing an $L$-function). A different algorithm for
computing the mod $p$ factorization is \kbd{factorcantor} which is sometimes
faster.
Function: factornf
Class: basic
Section: number_fields
C-Name: polfnf
Prototype: GG
Help: factornf(x,t): factorization of the polynomial x over the number field
defined by the polynomial t.
Doc: factorization of the univariate polynomial $x$
over the number field defined by the (univariate) polynomial $t$. $x$ may
have coefficients in $\Q$ or in the number field. The algorithm reduces to
factorization over $\Q$ (\idx{Trager}'s trick). The direct approach of
\tet{nffactor}, which uses \idx{van Hoeij}'s method in a relative setting, is
in general faster.
The main variable of $t$ must be of \emph{lower} priority than that of $x$
(see \secref{se:priority}). However if non-rational number field elements
occur (as polmods or polynomials) as coefficients of $x$, the variable of
these polmods \emph{must} be the same as the main variable of $t$. For
example
\bprog
? factornf(x^2 + Mod(y, y^2+1), y^2+1);
? factornf(x^2 + y, y^2+1); \\@com these two are OK
? factornf(x^2 + Mod(z,z^2+1), y^2+1)
*** at top-level: factornf(x^2+Mod(z,z
*** ^--------------------
*** factornf: inconsistent data in rnf function.
? factornf(x^2 + z, y^2+1)
*** at top-level: factornf(x^2+z,y^2+1
*** ^--------------------
*** factornf: incorrect variable in rnf function.
@eprog
Function: factorpadic
Class: basic
Section: polynomials
C-Name: factorpadic0
Prototype: GGLD0,L,
Help: factorpadic(pol,p,r,{flag=0}): p-adic factorization of the polynomial pol
to precision r. flag is optional and may be set to 0 (use round 4) or 1 (use
Buchmann-Lenstra).
Doc: $p$-adic factorization
of the polynomial \var{pol} to precision $r$, the result being a
two-column matrix as in \kbd{factor}. The factors are normalized so that
their leading coefficient is a power of $p$. $r$ must be strictly larger than
the $p$-adic valuation of the discriminant of \var{pol} for the result to
make any sense. The method used is a modified version of the \idx{round 4}
algorithm of \idx{Zassenhaus}.
If $\fl=1$, use an algorithm due to \idx{Buchmann} and \idx{Lenstra}, which is
much less efficient.
Variant:
\fun{GEN}{factorpadic}{GEN f,GEN p, long r} corresponds to the default
$\fl=0$.
Function: ffgen
Class: basic
Section: number_theoretical
C-Name: ffgen
Prototype: GDn
Help: ffgen(P,{v}): return the generator g=X mod P(X) of the finite field
defined by the polynomial P(X). If v is given, the variable name is used to
display g, else the variable of the polynomial P is used.
Doc: return the generator $g=X \pmod{P(X)}$ of the
finite field defined by the polynomial $P$ (which must have \typ{INTMOD}
coefficients). If \kbd{v} is given, the variable name is used to display $g$,
else the variable of the polynomial $P$ is used.
Function: ffinit
Class: basic
Section: number_theoretical
C-Name: ffinit
Prototype: GLDn
Help: ffinit(p,n,{v=x}): monic irreducible polynomial of degree n over F_p[v].
Description:
(int, small, ?var):pol ffinit($1, $2, $3)
Doc: computes a monic polynomial of degree $n$ which is irreducible over
$\F_p$, where $p$ is assumed to be prime. This function uses a fast variant
of Adleman-Lenstra's algorithm.
It is useful in conjunction with \tet{ffgen}; for instance if \kbd{P =
ffinit(3,2)}, you can represent elements in $\F_{3^2}$ in term of \kbd{g =
ffgen(P,g)}.
Function: fflog
Class: basic
Section: number_theoretical
C-Name: fflog
Prototype: GGDG
Help: fflog(x,g,{o}): return the discrete logarithm of the finite field
element x in base g. If present, o must represents the multiplicative
order of g. If no o is given, assume that g is a primitive root.
Doc: discrete logarithm of the finite field element $x$ in base $g$. If
present, $o$ represents the multiplicative order of $g$, see
\secref{se:DLfun}; the preferred format for
this parameter is \kbd{[ord, factor(ord)]}, where \kbd{ord} is the
order of $g$. It may be set as a side effect of calling \tet{ffprimroot}.
If no $o$ is given, assume that $g$ is a primitive root.
See \tet{znlog} for the limitations of the underlying discrete log algorithms.
\bprog
? t = ffgen(ffinit(7,5));
? o = fforder(t)
%2 = 5602 \\@com \emph{not} a primitive root.
? fflog(t^10,t)
%3 = 11214 \\@com Actually correct modulo o. We are lucky !
? fflog(t^10,t, o)
%4 = 10
? g = ffprimroot(t, &o);
? o \\ order is 16806, bundled with its factorization matrix
%6 = [16806, [2, 1; 3, 1; 2801, 1]]
? fforder(g, o)
%7 = 16806 \\ no surprise there !
? fforder(g^10000, g, o)
? fflog(g^10000, g, o)
%9 = 10000
@eprog
Function: fforder
Class: basic
Section: number_theoretical
C-Name: fforder
Prototype: GDG
Help: fforder(x,{o}): multiplicative order of the finite field element x.
Optional o represents a multiple of the order of the element.
Doc: multiplicative order of the finite field element $x$. If $o$ is
present, it represents a multiple of the order of the element,
see \secref{se:DLfun}; the preferred format for
this parameter is \kbd{[N, factor(N)]}, where \kbd{N} is the cardinality
of the multiplicative group of the underlying finite field.
\bprog
? t = ffgen(ffinit(nextprime(10^8), 5));
? g = ffprimroot(t, &o); \\@com o will be useful !
? fforder(g^1000000, o)
time = 0 ms.
%5 = 5000001750000245000017150000600250008403
? fforder(g^1000000)
time = 16 ms. \\@com noticeably slower, same result of course
%6 = 5000001750000245000017150000600250008403
@eprog
Function: ffprimroot
Class: basic
Section: number_theoretical
C-Name: ffprimroot
Prototype: GD&
Help: ffprimroot(x, {&o}): return a primitive root of the multiplicative group
of the definition field of the finite field element x (not necessarily the
same as the field generated by x). If present, o is set to [ord, fa], where
ord is the order of the group, and fa its factorization
(useful in fflog and fforder).
Doc: return a primitive root of the multiplicative
group of the definition field of the finite field element $x$ (not necessarily
the same as the field generated by $x$). If present, $o$ is set to
a vector \kbd{[ord, fa]}, where \kbd{ord} is the order of the group
and \kbd{fa} its factorisation \kbd{factor(ord)}. This last parameter is
useful in \tet{fflog} and \tet{fforder}, see \secref{se:DLfun}.
\bprog
? t = ffgen(ffinit(nextprime(10^7), 5));
? g = ffprimroot(t, &o);
? o[1]
%3 = 100000950003610006859006516052476098
? o[2]
%4 =
[2 1]
[7 2]
[31 1]
[41 1]
[67 1]
[1523 1]
[10498781 1]
[15992881 1]
[46858913131 1]
? fflog(g^1000000, g, o)
time = 1,312 ms.
%5 = 1000000
@eprog
Function: fibonacci
Class: basic
Section: number_theoretical
C-Name: fibo
Prototype: L
Help: fibonacci(x): fibonacci number of index x (x C-integer).
Doc: $x^{\text{th}}$ Fibonacci number.
Function: floor
Class: basic
Section: conversions
C-Name: gfloor
Prototype: G
Help: floor(x): floor of x = largest integer <= x.
Description:
(small):small:parens $1
(int):int:copy:parens $1
(real):int floorr($1)
(mp):int mpfloor($1)
(gen):gen gfloor($1)
Doc:
floor of $x$. When $x$ is in $\R$, the result is the
largest integer smaller than or equal to $x$. Applied to a rational function,
$\kbd{floor}(x)$ returns the Euclidean quotient of the numerator by the
denominator.
Function: for
Class: basic
Section: programming/control
C-Name: forpari
Prototype: vV=GGI
Help: for(X=a,b,seq): the sequence is evaluated, X going from a up to b.
Doc: evaluates \var{seq}, where
the formal variable $X$ goes from $a$ to $b$. Nothing is done if $a>b$.
$a$ and $b$ must be in $\R$.
Function: fordiv
Class: basic
Section: programming/control
C-Name: fordiv
Prototype: vGVI
Help: fordiv(n,X,seq): the sequence is evaluated, X running over the
divisors of n.
Doc: evaluates \var{seq}, where
the formal variable $X$ ranges through the divisors of $n$
(see \tet{divisors}, which is used as a subroutine). It is assumed that
\kbd{factor} can handle $n$, without negative exponents. Instead of $n$,
it is possible to input a factorization matrix, i.e. the output of
\kbd{factor(n)}.
This routine uses \kbd{divisors} as a subroutine, then loops over the
divisors. In particular, if $n$ is an integer, divisors are sorted by
increasing size.
To avoid storing all divisors, possibly using a lot of memory, the following
(much slower) routine loops over the divisors using essentially constant
space:
\bprog
FORDIV(N)=
{ my(P, E);
P = factor(N); E = P[,2]; P = P[,1];
forvec( v = vector(#E, i, [0,E[i]]),
X = factorback(P, v)
\\ ...
);
}
? for(i=1,10^5, FORDIV(i))
time = 3,445 ms.
? for(i=1,10^5, fordiv(i, d, ))
time = 490 ms.
@eprog
Function: forell
Class: basic
Section: programming/control
C-Name: forell0
Prototype: vVLLI
Help: forell(E,a,b,seq): execute seq for each elliptic curves E of conductor
between a and b in the elldata database.
Wrapper: (,,,vG)
Description:
(,small,small,closure):void forell(${4 cookie}, ${4 wrapper}, $2, $3)
Doc: evaluates \var{seq}, where the formal variable $E$ ranges through all
elliptic curves of conductors from $a$ to $b$. Th \tet{elldata} database must
be installed and contain data for the specified conductors.
\synt{forell}{void *data, long (*call)(void*,GEN), GEN a, GEN b}.
Function: forprime
Class: basic
Section: programming/control
C-Name: forprime
Prototype: vV=GGI
Help: forprime(X=a,b,seq): the sequence is evaluated, X running over the
primes between a and b.
Doc: evaluates \var{seq},
where the formal variable $X$ ranges over the prime numbers between $a$ to
$b$ (including $a$ and $b$ if they are prime). More precisely, the value of
$X$ is incremented to the smallest prime strictly larger than $X$ at the end
of each iteration. Nothing is done if $a>b$. Note that $a$ and $b$ must be in
$\R$.
\bprog
f(N) =
{
forprime(p = 2, N,
print(p);
if (p == 3, p = 6);
)
}
? f(12)
2
3
7
11
@eprog
Function: forstep
Class: basic
Section: programming/control
C-Name: forstep
Prototype: vV=GGGI
Help: forstep(X=a,b,s,seq): the sequence is evaluated, X going from a to b
in steps of s (can be a vector of steps).
Doc: evaluates \var{seq},
where the formal variable $X$ goes from $a$ to $b$, in increments of $s$.
Nothing is done if $s>0$ and $a>b$ or if $s<0$ and $a<b$. $s$ must be in
$\R^*$ or a vector of steps $[s_1,\dots,s_n]$. In the latter case, the
successive steps are used in the order they appear in $s$.
\bprog
? forstep(x=5, 20, [2,4], print(x))
5
7
11
13
17
19
@eprog
Function: forsubgroup
Class: basic
Section: programming/control
C-Name: forsubgroup0
Prototype: vV=GDGI
Help: forsubgroup(H=G,{bound},seq): execute seq for each subgroup H of the
abelian group G (in SNF form), whose index is bounded by bound. H is given
as a left divisor of G in HNF form.
Wrapper: (,,vG)
Description:
(gen,?gen,closure):void forsubgroup(${3 cookie}, ${3 wrapper}, $1, $2)
Doc: evaluates \var{seq} for
each subgroup $H$ of the \emph{abelian} group $G$ (given in
SNF\sidx{Smith normal form} form or as a vector of elementary divisors),
whose index is bounded by $B$. The subgroups are not ordered in any
obvious way, unless $G$ is a $p$-group in which case Birkhoff's algorithm
produces them by decreasing index. A \idx{subgroup} is given as a matrix
whose columns give its generators on the implicit generators of $G$. For
example, the following prints all subgroups of index less than 2 in $G =
\Z/2\Z g_1 \times \Z/2\Z g_2$:
\bprog
? G = [2,2]; forsubgroup(H=G, 2, print(H))
[1; 1]
[1; 2]
[2; 1]
[1, 0; 1, 1]
@eprog\noindent
The last one, for instance is generated by $(g_1, g_1 + g_2)$. This
routine is intended to treat huge groups, when \tet{subgrouplist} is not an
option due to the sheer size of the output.
For maximal speed the subgroups have been left as produced by the algorithm.
To print them in canonical form (as left divisors of $G$ in HNF form), one
can for instance use
\bprog
? G = matdiagonal([2,2]); forsubgroup(H=G, 2, print(mathnf(concat(G,H))))
[2, 1; 0, 1]
[1, 0; 0, 2]
[2, 0; 0, 1]
[1, 0; 0, 1]
@eprog\noindent
Note that in this last representation, the index $[G:H]$ is given by the
determinant. See \tet{galoissubcyclo} and \tet{galoisfixedfield} for
applications to \idx{Galois} theory.
\synt{forsubgroup}{void *data, long (*call)(void*,GEN), GEN G, GEN bound}.
Function: forvec
Class: basic
Section: programming/control
C-Name: forvec
Prototype: vV=GID0,L,
Help: forvec(X=v,seq,{flag=0}): v being a vector of two-component vectors of
length n, the sequence is evaluated with X[i] going from v[i][1] to v[i][2]
for i=n,..,1 if flag is zero or omitted. If flag = 1 (resp. flag = 2),
restrict to increasing (resp. strictly increasing) sequences.
Doc: Let $v$ be an $n$-component
vector (where $n$ is arbitrary) of two-component vectors $[a_i,b_i]$
for $1\le i\le n$. This routine evaluates \var{seq}, where the formal
variables $X[1],\dots, X[n]$ go from $a_1$ to $b_1$,\dots, from $a_n$ to
$b_n$, i.e.~$X$ goes from $[a_1,\dots,a_n]$ to $[b_1,\dots,b_n]$ with respect
to the lexicographic ordering. (The formal variable with the highest index
moves the fastest.) If $\fl=1$, generate only nondecreasing vectors $X$, and
if $\fl=2$, generate only strictly increasing vectors $X$.
The type of $X$ is the same as the type of $v$: \typ{VEC} or \typ{COL}.
Function: frac
Class: basic
Section: conversions
C-Name: gfrac
Prototype: G
Help: frac(x): fractional part of x = x-floor(x).
Doc:
fractional part of $x$. Identical to
$x-\text{floor}(x)$. If $x$ is real, the result is in $[0,1[$.
Function: galoisexport
Class: basic
Section: number_fields
C-Name: galoisexport
Prototype: GD0,L,
Help: galoisexport(gal,{flag}): gal being a Galois group as output by
galoisinit, output a string representing the underlying permutation group in
GAP notation (default) or Magma notation (flag = 1).
Doc: \var{gal} being be a Galois group as output by \tet{galoisinit},
export the underlying permutation group as a string suitable
for (no flags or $\fl=0$) GAP or ($\fl=1$) Magma. The following example
compute the index of the underlying abstract group in the GAP library:
\bprog
? G = galoisinit(x^6+108);
? s = galoisexport(G)
%2 = "Group((1, 2, 3)(4, 5, 6), (1, 4)(2, 6)(3, 5))"
? extern("echo \"IdGroup("s");\" | gap -q")
%3 = [6, 1]
? galoisidentify(G)
%4 = [6, 1]
@eprog\noindent
This command also accepts subgroups returned by \kbd{galoissubgroups}.
To \emph{import} a GAP permutation into gp (for \tet{galoissubfields} for
instance), the following GAP function may be useful :
\bprog
PermToGP := function(p, n)
return Permuted([1..n],p);
end;
gap> p:= (1,26)(2,5)(3,17)(4,32)(6,9)(7,11)(8,24)(10,13)(12,15)(14,27)
(16,22)(18,28)(19,20)(21,29)(23,31)(25,30)
gap> PermToGP(p,32);
[ 26, 5, 17, 32, 2, 9, 11, 24, 6, 13, 7, 15, 10, 27, 12, 22, 3, 28, 20, 19,
29, 16, 31, 8, 30, 1, 14, 18, 21, 25, 23, 4 ]
@eprog
Function: galoisfixedfield
Class: basic
Section: number_fields
C-Name: galoisfixedfield
Prototype: GGD0,L,Dn
Help: galoisfixedfield(gal,perm,{flag},{v=y}): gal being a Galois group as
output by galoisinit and perm a subgroup, an element of gal.group or a vector
of such elements, return [P,x] such that P is a polynomial defining the fixed
field of gal[1] by the subgroup generated by perm, and x is a root of P in gal
expressed as a polmod in gal.pol. If flag is 1 return only P. If flag is 2
return [P,x,F] where F is the factorization of gal.pol over the field
defined by P, where the variable v stands for a root of P.
Description:
(gen, gen, ?small, ?var):vec galoisfixedfield($1, $2, $3, $4)
Doc: \var{gal} being be a Galois group as output by \tet{galoisinit} and
\var{perm} an element of $\var{gal}.group$, a vector of such elements
or a subgroup of \var{gal} as returned by galoissubgroups,
computes the fixed field of \var{gal} by the automorphism defined by the
permutations \var{perm} of the roots $\var{gal}.roots$. $P$ is guaranteed to
be squarefree modulo $\var{gal}.p$.
If no flags or $\fl=0$, output format is the same as for \tet{nfsubfield},
returning $[P,x]$ such that $P$ is a polynomial defining the fixed field, and
$x$ is a root of $P$ expressed as a polmod in $\var{gal}.pol$.
If $\fl=1$ return only the polynomial $P$.
If $\fl=2$ return $[P,x,F]$ where $P$ and $x$ are as above and $F$ is the
factorization of $\var{gal}.pol$ over the field defined by $P$, where
variable $v$ ($y$ by default) stands for a root of $P$. The priority of $v$
must be less than the priority of the variable of $\var{gal}.pol$ (see
\secref{se:priority}). Example:
\bprog
? G = galoisinit(x^4+1);
? galoisfixedfield(G,G.group[2],2)
%2 = [x^2 + 2, Mod(x^3 + x, x^4 + 1), [x^2 - y*x - 1, x^2 + y*x - 1]]
@eprog\noindent
computes the factorization $x^4+1=(x^2-\sqrt{-2}x-1)(x^2+\sqrt{-2}x-1)$
Function: galoisgetpol
Class: basic
Section: number_fields
C-Name: galoisgetpol
Prototype: LD0,L,D1,L,
Help: galoisgetpol(a,{b},{s}): Query the galpol package for a polynomial with
Galois group isomorphic to GAP4(a,b), totally real if s=1 (default) and
totally complex if s=2. The output is a vector [pol, den] where pol is the
polynomial and den is the common denominator of the conjugates expressed
as a polynomial in a root of pol. If b and s are omitted, return the number of
isomorphism classes of groups of order a.
Description:
(small):int galoisnbpol($1)
(small,):int galoisnbpol($1)
(small,,):int galoisnbpol($1)
(small,small,small):vec galoisgetpol($1, $2 ,$3)
Doc: Query the galpol package for a polynomial with Galois group isomorphic to
GAP4(a,b), totally real if $s=1$ (default) and totally complex if $s=2$. The
output is a vector [\kbd{pol}, \kbd{den}] where \kbd{pol} is the polynomial and
\kbd{den} is the common denominator of the conjugates expressed as a
polynomial in a root of \kbd{pol}, which can be passed as an optional argument
to \tet{galoisinit} and \tet{nfgaloisconj} as follows:
\bprog
V=galoisgetpol(8,4,1);
G=galoisinit(V[1], V[2]) \\ passing V[2] speeds up the computation
@eprog
If $b$ and $s$ are omitted, return the number of isomorphic class of groups
of order $a$.
Variant: Also available is \fun{GEN}{galoisnbpol}{long a} when $b$ and $s$
are omitted.
Function: galoisidentify
Class: basic
Section: number_fields
C-Name: galoisidentify
Prototype: G
Help: galoisidentify(gal): gal being a Galois group as output by galoisinit,
output the isomorphism class of the underlying abstract group as a
two-components vector [o,i], where o is the group order, and i is the group
index in the GAP4 small group library.
Doc: \var{gal} being be a Galois group as output by \tet{galoisinit},
output the isomorphism class of the underlying abstract group as a
two-components vector $[o,i]$, where $o$ is the group order, and $i$ is the
group index in the GAP4 Small Group library, by Hans Ulrich Besche, Bettina
Eick and Eamonn O'Brien.
This command also accepts subgroups returned by \kbd{galoissubgroups}.
The current implementation is limited to degree less or equal to $127$.
Some larger ``easy'' orders are also supported.
The output is similar to the output of the function \kbd{IdGroup} in GAP4.
Note that GAP4 \kbd{IdGroup} handles all groups of order less than $2000$
except $1024$, so you can use \tet{galoisexport} and GAP4 to identify large
Galois groups.
Function: galoisinit
Class: basic
Section: number_fields
C-Name: galoisinit
Prototype: GDG
Help: galoisinit(pol,{den}): pol being a polynomial or a number field as
output by nfinit defining a Galois extension of Q, compute the Galois group
and all neccessary informations for computing fixed fields. den is optional
and has the same meaning as in nfgaloisconj(,4)(see manual).
Description:
(gen, ?int):gal galoisinit($1, $2)
Doc: computes the Galois group
and all necessary information for computing the fixed fields of the
Galois extension $K/\Q$ where $K$ is the number field defined by
$\var{pol}$ (monic irreducible polynomial in $\Z[X]$ or
a number field as output by \tet{nfinit}). The extension $K/\Q$ must be
Galois with Galois group ``weakly'' super-solvable, see below;
returns 0 otherwise. Hence this permits to quickly check whether a polynomial
of order strictly less than $36$ is Galois or not.
The algorithm used is an improved version of the paper
``An efficient algorithm for the computation of Galois automorphisms'',
Bill Allombert, Math.~Comp, vol.~73, 245, 2001, pp.~359--375.
A group $G$ is said to be ``weakly'' super-solvable if there exists a
normal series
$\{1\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_{n-1}
\triangleleft H_n$
such that each $H_i$ is normal in $G$ and for $i<n$, each quotient group
$H_{i+1}/H_i$ is cyclic, and either $H_n=G$ (then $G$ is super-solvable) or
$G/H_n$ is isomorphic to either $A_4$ or $S_4$.
In practice, almost all small groups are WKSS, the exceptions having order
36(1 exception), 48(2), 56(1), 60(1), 72(5), 75(1), 80(1), 96(10) and $\geq
108$.
This function is a prerequisite for most of the \kbd{galois}$xxx$ routines.
For instance:
\bprog
P = x^6 + 108;
G = galoisinit(P);
L = galoissubgroups(G);
vector(#L, i, galoisisabelian(L[i],1))
vector(#L, i, galoisidentify(L[i]))
@eprog
The output is an 8-component vector \var{gal}.
$\var{gal}[1]$ contains the polynomial \var{pol}
(\kbd{\var{gal}.pol}).
$\var{gal}[2]$ is a three-components vector $[p,e,q]$ where $p$ is a
prime number (\kbd{\var{gal}.p}) such that \var{pol} totally split
modulo $p$ , $e$ is an integer and $q=p^e$ (\kbd{\var{gal}.mod}) is the
modulus of the roots in \kbd{\var{gal}.roots}.
$\var{gal}[3]$ is a vector $L$ containing the $p$-adic roots of
\var{pol} as integers implicitly modulo \kbd{\var{gal}.mod}.
(\kbd{\var{gal}.roots}).
$\var{gal}[4]$ is the inverse of the Vandermonde matrix of the
$p$-adic roots of \var{pol}, multiplied by $\var{gal}[5]$.
$\var{gal}[5]$ is a multiple of the least common denominator of the
automorphisms expressed as polynomial in a root of \var{pol}.
$\var{gal}[6]$ is the Galois group $G$ expressed as a vector of
permutations of $L$ (\kbd{\var{gal}.group}).
$\var{gal}[7]$ is a generating subset $S=[s_1,\ldots,s_g]$ of $G$
expressed as a vector of permutations of $L$ (\kbd{\var{gal}.gen}).
$\var{gal}[8]$ contains the relative orders $[o_1,\ldots,o_g]$ of
the generators of $S$ (\kbd{\var{gal}.orders}).
Let $H_n$ be as above, we have the following properties:
\quad\item if $G/H_n\simeq A_4$ then $[o_1,\ldots,o_g]$ ends by
$[2,2,3]$.
\quad\item if $G/H_n\simeq S_4$ then $[o_1,\ldots,o_g]$ ends by
$[2,2,3,2]$.
\quad\item for $1\leq i \leq g$ the subgroup of $G$ generated by
$[s_1,\ldots,s_g]$ is normal, with the exception of $i=g-2$ in the
$A_4$ case and of $i=g-3$ in the $S_A$ case.
\quad\item the relative order $o_i$ of $s_i$ is its order in the
quotient group $G/\langle s_1,\ldots,s_{i-1}\rangle$, with the same
exceptions.
\quad\item for any $x\in G$ there exists a unique family
$[e_1,\ldots,e_g]$ such that (no exceptions):
-- for $1\leq i \leq g$ we have $0\leq e_i<o_i$
-- $x=g_1^{e_1}g_2^{e_2}\ldots g_n^{e_n}$
If present $den$ must be a suitable value for $\var{gal}[5]$.
Function: galoisisabelian
Class: basic
Section: number_fields
C-Name: galoisisabelian
Prototype: GD0,L,
Help: galoisisabelian(gal,{flag=0}): gal being as output by galoisinit,
return 0 if gal is not abelian, the HNF matrix of gal over gal.gen if
flag=0, 1 if flag is 1, and the SNF of gal is flag=2.
Doc: \var{gal} being as output by \kbd{galoisinit}, return $0$ if
\var{gal} is not an abelian group, and the HNF matrix of \var{gal} over
\kbd{gal.gen} if $fl=0$, $1$ if $fl=1$.
This command also accepts subgroups returned by \kbd{galoissubgroups}.
Function: galoisisnormal
Class: basic
Section: number_fields
C-Name: galoisisnormal
Prototype: lGG
Help: galoisisnormal(gal,subgrp): gal being as output by galoisinit,
and subgrp a subgroup of gal as output by galoissubgroups,
return 1 if subgrp is a normal subgroup of gal, else return 0.
Doc: \var{gal} being as output by \kbd{galoisinit}, and \var{subgrp} a subgroup
of \var{gal} as output by \kbd{galoissubgroups},return $1$ if \var{subgrp} is a
normal subgroup of \var{gal}, else return 0.
This command also accepts subgroups returned by \kbd{galoissubgroups}.
Function: galoispermtopol
Class: basic
Section: number_fields
C-Name: galoispermtopol
Prototype: GG
Help: galoispermtopol(gal,perm): gal being a Galois group as output by
galoisinit and perm a element of gal.group, return the polynomial defining
the corresponding Galois automorphism.
Doc: \var{gal} being a
Galois group as output by \kbd{galoisinit} and \var{perm} a element of
$\var{gal}.group$, return the polynomial defining the Galois
automorphism, as output by \kbd{nfgaloisconj}, associated with the
permutation \var{perm} of the roots $\var{gal}.roots$. \var{perm} can
also be a vector or matrix, in this case, \kbd{galoispermtopol} is
applied to all components recursively.
\noindent Note that
\bprog
G = galoisinit(pol);
galoispermtopol(G, G[6])~
@eprog\noindent
is equivalent to \kbd{nfgaloisconj(pol)}, if degree of \var{pol} is greater
or equal to $2$.
Function: galoissubcyclo
Class: basic
Section: number_fields
C-Name: galoissubcyclo
Prototype: GDGD0,L,Dn
Help: galoissubcyclo(N,H,{fl=0},{v}):Compute a polynomial (in variable v)
defining the subfield of Q(zeta_n) fixed by the subgroup H of (Z/nZ)*. N can
be an integer n, znstar(n) or bnrinit(bnfinit(y),[n,[1]],1). H can be given
by a generator, a set of generator given by a vector or a HNF matrix (see
manual). If flag is 1, output only the conductor of the abelian extension.
If flag is 2 output [pol,f] where pol is the polynomial and f the conductor.
Doc: computes the subextension
of $\Q(\zeta_n)$ fixed by the subgroup $H \subset (\Z/n\Z)^*$. By the
Kronecker-Weber theorem, all abelian number fields can be generated in this
way (uniquely if $n$ is taken to be minimal).
\noindent The pair $(n, H)$ is deduced from the parameters $(N, H)$ as follows
\item $N$ an integer: then $n = N$; $H$ is a generator, i.e. an
integer or an integer modulo $n$; or a vector of generators.
\item $N$ the output of \kbd{znstar($n$)}. $H$ as in the first case
above, or a matrix, taken to be a HNF left divisor of the SNF for $(\Z/n\Z)^*$
(of type \kbd{$N$.cyc}), giving the generators of $H$ in terms of \kbd{$N$.gen}.
\item $N$ the output of \kbd{bnrinit(bnfinit(y), $m$, 1)} where $m$ is a
module. $H$ as in the first case, or a matrix taken to be a HNF left
divisor of the SNF for the ray class group modulo $m$
(of type \kbd{$N$.cyc}), giving the generators of $H$ in terms of \kbd{$N$.gen}.
In this last case, beware that $H$ is understood relatively to $N$; in
particular, if the infinite place does not divide the module, e.g if $m$ is
an integer, then it is not a subgroup of $(\Z/n\Z)^*$, but of its quotient by
$\{\pm 1\}$.
If $fl=0$, compute a polynomial (in the variable \var{v}) defining the
the subfield of $\Q(\zeta_n)$ fixed by the subgroup \var{H} of $(\Z/n\Z)^*$.
If $fl=1$, compute only the conductor of the abelian extension, as a module.
If $fl=2$, output $[pol, N]$, where $pol$ is the polynomial as output when
$fl=0$ and $N$ the conductor as output when $fl=1$.
The following function can be used to compute all subfields of
$\Q(\zeta_n)$ (of exact degree \kbd{d}, if \kbd{d} is set):
\bprog
polsubcyclo(n, d = -1)=
{ my(bnr,L,IndexBound);
IndexBound = if (d < 0, n, [d]);
bnr = bnrinit(bnfinit(y), [n,[1]], 1);
L = subgrouplist(bnr, IndexBound, 1);
vector(#L,i, galoissubcyclo(bnr,L[i]));
}
@eprog\noindent
Setting \kbd{L = subgrouplist(bnr, IndexBound)} would produce subfields of exact
conductor $n\infty$.
Function: galoissubfields
Class: basic
Section: number_fields
C-Name: galoissubfields
Prototype: GD0,L,Dn
Help: galoissubfields(G,{flags=0},{v}):Output all the subfields of G. flags
have the same meaning as for galoisfixedfield.
Doc: outputs all the subfields of the Galois group \var{G}, as a vector.
This works by applying \kbd{galoisfixedfield} to all subgroups. The meaning of
the flag \var{fl} is the same as for \kbd{galoisfixedfield}.
Function: galoissubgroups
Class: basic
Section: number_fields
C-Name: galoissubgroups
Prototype: G
Help: galoissubgroups(G):Output all the subgroups of G.
Doc: outputs all the subgroups of the Galois group \kbd{gal}. A subgroup is a
vector [\var{gen}, \var{orders}], with the same meaning
as for $\var{gal}.gen$ and $\var{gal}.orders$. Hence \var{gen} is a vector of
permutations generating the subgroup, and \var{orders} is the relatives
orders of the generators. The cardinal of a subgroup is the product of the
relative orders. Such subgroup can be used instead of a Galois group in the
following command: \kbd{galoisisabelian}, \kbd{galoissubgroups},
\kbd{galoisexport} and \kbd{galoisidentify}.
To get the subfield fixed by a subgroup \var{sub} of \var{gal}, use
\bprog
galoisfixedfield(gal,sub[1])
@eprog
Function: gamma
Class: basic
Section: transcendental
C-Name: ggamma
Prototype: Gp
Help: gamma(s): gamma function at x, s a complex or p-adic number.
Doc: For $s$ a complex number, evaluates Euler's gamma
function \sidx{gamma-function}
$$\Gamma(s)=\int_0^\infty t^{s-1}\exp(-t)\,dt.$$
Error if $s$ is a non-positive integer, where $\Gamma$ has a pole.
For $s$ a $p$-adic number, evaluates the Morita gamma function at $s$, that
is the unique continuous $p$-adic function on the $p$-adic integers
extending $\Gamma_p(k)=(-1)^k \prod_{j<k}'j$, where the prime means that $p$
does not divide $j$.
\bprog
? gamma(1/4 + O(5^10))
%1= 1 + 4*5 + 3*5^4 + 5^6 + 5^7 + 4*5^9 + O(5^10)
? algdep(%,4)
%2 = x^4 + 4*x^2 + 5
@eprog
Variant: For a \typ{PADIC} $x$, the function
\fun{GEN}{Qp_gamma}{GEN x} is also available.
Function: gammah
Class: basic
Section: transcendental
C-Name: ggamd
Prototype: Gp
Help: gammah(x): gamma of x+1/2 (x integer).
Doc: gamma function evaluated at the argument $x+1/2$.
Function: gcd
Class: basic
Section: number_theoretical
C-Name: ggcd0
Prototype: GDG
Help: gcd(x,{y}): greatest common divisor of x and y.
Description:
(small, small):small cgcd($1, $2)
(int, int):int gcdii($1, $2)
(gen):gen content($1)
(gen, gen):gen ggcd($1, $2)
Doc: creates the greatest common divisor of $x$ and $y$.
If you also need the $u$ and $v$ such that $x*u + y*v = \gcd(x,y)$,
use the \tet{bezout} function. $x$ and $y$ can have rather quite general
types, for instance both rational numbers. If $y$ is omitted and $x$ is a
vector, returns the $\text{gcd}$ of all components of $x$, i.e.~this is
equivalent to \kbd{content(x)}.
When $x$ and $y$ are both given and one of them is a vector/matrix type,
the GCD is again taken recursively on each component, but in a different way.
If $y$ is a vector, resp.~matrix, then the result has the same type as $y$,
and components equal to \kbd{gcd(x, y[i])}, resp.~\kbd{gcd(x, y[,i])}. Else
if $x$ is a vector/matrix the result has the same type as $x$ and an
analogous definition. Note that for these types, \kbd{gcd} is not
commutative.
The algorithm used is a naive \idx{Euclid} except for the following inputs:
\item integers: use modified right-shift binary (``plus-minus''
variant).
\item univariate polynomials with coefficients in the same number
field (in particular rational): use modular gcd algorithm.
\item general polynomials: use the \idx{subresultant algorithm} if
coefficient explosion is likely (non modular coefficients).
If $u$ and $v$ are polynomials in the same variable with \emph{inexact}
coefficients, their gcd is defined to be scalar, so that
\bprog
? a = x + 0.0; gcd(a,a)
%1 = 1
? b = y*x + O(y); gcd(b,b)
%2 = y
? c = 4*x + O(2^3); gcd(c,c)
%2 = 4
@eprog\noindent A good quantitative check to decide whether such a
gcd ``should be'' non-trivial, is to use \tet{polresultant}: a value
close to $0$ means that a small deformation of the inputs has non-trivial gcd.
You may also use \tet{bezout}, which does try to compute an approximate gcd
$d$ and provides $u$, $v$ to check whether $u x + v y$ is close to $d$.
Variant: Also available are \fun{GEN}{ggcd}{GEN x, GEN y}, if \kbd{y} is not
\kbd{NULL}, and \fun{GEN}{content}{GEN x}, if $\kbd{y} = \kbd{NULL}$.
Function: getheap
Class: basic
Section: programming/specific
C-Name: getheap
Prototype:
Help: getheap(): 2-component vector giving the current number of objects in
the heap and the space they occupy.
Doc: returns a two-component row vector giving the
number of objects on the heap and the amount of memory they occupy in long
words. Useful mainly for debugging purposes.
Function: getrand
Class: basic
Section: programming/specific
C-Name: getrand
Prototype:
Help: getrand(): current value of random number seed.
Doc: returns the current value of the seed used by the
pseudo-random number generator \tet{random}. Useful mainly for debugging
purposes, to reproduce a specific chain of computations. The returned value
is technical (reproduces an internal state array), and can only be used as an
argument to \tet{setrand}.
Function: getstack
Class: basic
Section: programming/specific
C-Name: getstack
Prototype: l
Help: getstack(): current value of stack pointer avma.
Doc: returns the current value of $\kbd{top}-\kbd{avma}$, i.e.~the number of
bytes used up to now on the stack. Useful mainly for debugging purposes.
Function: gettime
Class: basic
Section: programming/specific
C-Name: gettime
Prototype: l
Help: gettime(): time (in milliseconds) since last call to gettime.
Doc: returns the time (in milliseconds) elapsed since either the last call to
\kbd{gettime}, or to the beginning of the containing GP instruction (if
inside \kbd{gp}), whichever came last.
Function: global
Class: basic
Section: programming/specific
Help: global(list of variables): obsolete. Scheduled for deletion.
Doc: obsolete. Scheduled for deletion.
% \syn{NO}
Function: hilbert
Class: basic
Section: number_theoretical
C-Name: hilbert
Prototype: lGGDG
Help: hilbert(x,y,{p}): Hilbert symbol at p of x,y.
Doc: \idx{Hilbert symbol} of $x$ and $y$ modulo the prime $p$, $p=0$ meaning
the place at infinity (the result is undefined if $p\neq 0$ is not prime).
It is possible to omit $p$, in which case we take $p = 0$ if both $x$
and $y$ are rational, or one of them is a real number. And take $p = q$
if one of $x$, $y$ is a \typ{INTMOD} modulo $q$ or a $q$-adic. (Incompatible
types will raise an error.)
Function: hyperu
Class: basic
Section: transcendental
C-Name: hyperu
Prototype: GGGp
Help: hyperu(a,b,x): U-confluent hypergeometric function.
Doc: $U$-confluent hypergeometric function with
parameters $a$ and $b$. The parameters $a$ and $b$ can be complex but
the present implementation requires $x$ to be positive.
Function: idealadd
Class: basic
Section: number_fields
C-Name: idealadd
Prototype: GGG
Help: idealadd(nf,x,y): sum of two ideals x and y in the number field
defined by nf.
Doc: sum of the two ideals $x$ and $y$ in the number field $\var{nf}$. The
result is given in HNF.
\bprog
? K = nfinit(x^2 + 1);
? a = idealadd(K, 2, x + 1) \\ ideal generated by 2 and 1+I
%2 =
[2 1]
[0 1]
? pr = idealprimedec(K, 5)[1]; \\ a prime ideal above 5
? idealadd(K, a, pr) \\ coprime, as expected
%4 =
[1 0]
[0 1]
@eprog\noindent
This function cannot be used to add arbitrary $\Z$-modules, since it assumes
that its arguments are ideals:
\bprog
? b = Mat([1,0]~);
? idealadd(K, b, b) \\ only square t_MATs represent ideals
*** idealadd: non-square t_MAT in idealtyp.
? c = [2, 0; 2, 0]; idealadd(K, c, c) \\ non-sense
%6 =
[2 0]
[0 2]
? d = [1, 0; 0, 2]; idealadd(K, d, d) \\ non-sense
%7 =
[1 0]
[0 1]
@eprog\noindent In the last two examples, we get wrong results since the
matrices $c$ and $d$ do not correspond to an ideal : the $\Z$-span of their
columns (as usual interpreted as coordinates with respect to the integer basis
\kbd{K.zk}) is not an $O_K$-module. To add arbitrary $\Z$-modules generated
by the columns of matrices $A$ and $B$, use \kbd{mathnf(concat(A,B))}.
Function: idealaddtoone
Class: basic
Section: number_fields
C-Name: idealaddtoone0
Prototype: GGDG
Help: idealaddtoone(nf,x,{y}): if y is omitted, when the sum of the ideals
in the number field K defined by nf and given in the vector x is equal to
Z_K, gives a vector of elements of the corresponding ideals who sum to 1.
Otherwise, x and y are ideals, and if they sum up to 1, find one element in
each of them such that the sum is 1.
Doc: $x$ and $y$ being two co-prime
integral ideals (given in any form), this gives a two-component row vector
$[a,b]$ such that $a\in x$, $b\in y$ and $a+b=1$.
The alternative syntax $\kbd{idealaddtoone}(\var{nf},v)$, is supported, where
$v$ is a $k$-component vector of ideals (given in any form) which sum to
$\Z_K$. This outputs a $k$-component vector $e$ such that $e[i]\in x[i]$ for
$1\le i\le k$ and $\sum_{1\le i\le k}e[i]=1$.
Function: idealappr
Class: basic
Section: number_fields
C-Name: idealappr0
Prototype: GGD0,L,
Help: idealappr(nf,x,{flag=0}): x being a fractional ideal, gives an element
b such that v_p(b)=v_p(x) for all prime ideals p dividing x, and v_p(b)>=0
for all other p. If (optional) flag is non-null x must be a prime ideal
factorization with possibly zero exponents.
Doc: if $x$ is a fractional ideal
(given in any form), gives an element $\alpha$ in $\var{nf}$ such that for
all prime ideals $\goth{p}$ such that the valuation of $x$ at $\goth{p}$ is
non-zero, we have $v_{\goth{p}}(\alpha)=v_{\goth{p}}(x)$, and
$v_{\goth{p}}(\alpha)\ge0$ for all other $\goth{p}$.
If $\fl$ is non-zero, $x$ must be given as a prime ideal factorization, as
output by \kbd{idealfactor}, but possibly with zero or negative exponents.
This yields an element $\alpha$ such that for all prime ideals $\goth{p}$
occurring in $x$, $v_{\goth{p}}(\alpha)$ is equal to the exponent of
$\goth{p}$ in $x$, and for all other prime ideals,
$v_{\goth{p}}(\alpha)\ge0$. This generalizes $\kbd{idealappr}(\var{nf},x,0)$
since zero exponents are allowed. Note that the algorithm used is slightly
different, so that
\bprog
idealappr(nf, idealfactor(nf,x))
@eprog\noindent
may not be the same as \kbd{idealappr(nf,x,1)}.
Function: idealchinese
Class: basic
Section: number_fields
C-Name: idealchinese
Prototype: GGG
Help: idealchinese(nf,x,y): x being a prime ideal factorization and y a
vector of elements, gives an element b such that v_p(b-y_p)>=v_p(x) for all
prime ideals p dividing x, and v_p(b)>=0 for all other p.
Doc: $x$ being a prime ideal factorization
(i.e.~a 2 by 2 matrix whose first column contains prime ideals, and the second
column integral exponents), $y$ a vector of elements in $\var{nf}$ indexed by
the ideals in $x$, computes an element $b$ such that
$v_{\goth{p}}(b - y_{\goth{p}}) \geq v_{\goth{p}}(x)$ for all prime ideals
in $x$ and $v_{\goth{p}}(b)\geq 0$ for all other $\goth{p}$.
Function: idealcoprime
Class: basic
Section: number_fields
C-Name: idealcoprime
Prototype: GGG
Help: idealcoprime(nf,x,y): gives an element b in nf such that b. x is an
integral ideal coprime to the integral ideal y.
Doc: given two integral ideals $x$ and $y$
in the number field $\var{nf}$, returns a $\beta$ in the field,
such that $\beta\cdot x$ is an integral ideal coprime to $y$.
Function: idealdiv
Class: basic
Section: number_fields
C-Name: idealdiv0
Prototype: GGGD0,L,
Help: idealdiv(nf,x,y,{flag=0}): quotient x/y of two ideals x and y in HNF
in the number field nf. If (optional) flag is non-null, the quotient is
supposed to be an integral ideal (slightly faster).
Description:
(gen, gen, gen, ?0):gen idealdiv($1, $2, $3)
(gen, gen, gen, 1):gen idealdivexact($1, $2, $3)
(gen, gen, gen, #small):gen $"invalid flag in idealdiv"
(gen, gen, gen, small):gen idealdiv0($1, $2, $3, $4)
Doc: quotient $x\cdot y^{-1}$ of the two ideals $x$ and $y$ in the number
field $\var{nf}$. The result is given in HNF.
If $\fl$ is non-zero, the quotient $x \cdot y^{-1}$ is assumed to be an
integral ideal. This can be much faster when the norm of the quotient is
small even though the norms of $x$ and $y$ are large.
Variant: Also available are \fun{GEN}{idealdiv}{GEN nf, GEN x, GEN y}
($\fl=0$) and \fun{GEN}{idealdivexact}{GEN nf, GEN x, GEN y} ($\fl=1$).
Function: idealfactor
Class: basic
Section: number_fields
C-Name: idealfactor
Prototype: GG
Help: idealfactor(nf,x): factorization of the ideal x given in HNF into
prime ideals in the number field nf.
Doc: factors into prime ideal powers the
ideal $x$ in the number field $\var{nf}$. The output format is similar to the
\kbd{factor} function, and the prime ideals are represented in the form
output by the \kbd{idealprimedec} function, i.e.~as 5-element vectors.
Function: idealfactorback
Class: basic
Section: number_fields
C-Name: idealfactorback
Prototype: GGDGD0,L,
Help: idealfactorback(nf,f,{e},{flag = 0}): given a factorisation f, gives the
ideal product back. If e is present, f has to be a
vector of the same length, and we return the product of the f[i]^e[i]. If
flag is non-zero, perform idealred along the way.
Doc: gives back the ideal corresponding to a factorization. The integer $1$
corresponds to the empty factorization.
If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
integral), and the corresponding factorization is the product of the
$f[i]^{e[i]}$.
If not, and $f$ is vector, it is understood as in the preceding case with $e$
a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
regular factorization, as produced by \kbd{idealfactor}.
\bprog
? nf = nfinit(y^2+1); idealfactor(nf, 4 + 2*y)
%1 =
[[2, [1, 1]~, 2, 1, [1, 1]~] 2]
[[5, [2, 1]~, 1, 1, [-2, 1]~] 1]
? idealfactorback(nf, %)
%2 =
[10 4]
[0 2]
? f = %1[,1]; e = %1[,2]; idealfactorback(nf, f, e)
%3 =
[10 4]
[0 2]
? % == idealhnf(nf, 4 + 2*y)
%4 = 1
@eprog
If \kbd{flag} is non-zero, perform ideal reductions (\tet{idealred}) along the
way. This is most useful if the ideals involved are all \emph{extended}
ideals (for instance with trivial principal part), so that the principal parts
extracted by \kbd{idealred} are not lost. Here is an example:
\bprog
? f = vector(#f, i, [f[i], [;]]); \\ transform to extended ideals
? idealfactorback(nf, f, e, 1)
%6 = [[1, 0; 0, 1], [2, 1; [2, 1]~, 1]]
? nffactorback(nf, %[2])
%7 = [4, 2]~
@eprog
The extended ideal returned in \kbd{\%6} is the trivial ideal $1$, extended
with a principal generator given in factored form. We use \tet{nffactorback}
to recover it in standard form.
Function: idealfrobenius
Class: basic
Section: number_fields
C-Name: idealfrobenius
Prototype: GGG
Help: idealfrobenius(nf,gal,pr): Returns the Frobenius element (pr|nf/Q)
associated with the unramified prime ideal pr in prid format, in the Galois
group gal of the number field nf.
Doc: Let $K$ be the number field defined by $nf$ and assume $K/\Q$ be a
Galois extension with Galois group given \kbd{gal=galoisinit(nf)},
and that $pr$ is the prime ideal $\goth{P}$ in prid format, and that
$\goth{P}$ is unramified.
This function returns a permutation of \kbd{gal.group} which defines the
automorphism $\sigma=\left(\goth{P}\over K/\Q \right)$, i.e the Frobenius
element associated to $\goth{P}$. If $p$ is the unique prime number
in $\goth{P}$, then $\sigma(x)\equiv x^p\mod\P$ for all $x\in\Z_K$.
\bprog
? nf = nfinit(polcyclo(31));
? gal = galoisinit(nf);
? pr = idealprimedec(nf,101)[1];
? g = idealfrobenius(nf,gal,pr);
? galoispermtopol(gal,g)
%5 = x^8
@eprog\noindent This is correct since $101\equiv 8\mod{31}$.
Function: idealhnf
Class: basic
Section: number_fields
C-Name: idealhnf0
Prototype: GGDG
Help: idealhnf(nf,a,{b}): hermite normal form of the ideal a in the number
field nf. If called as idealhnf(nf,a,b), the ideal
is given as aZ_K+bZ_K in the number field K defined by nf.
Doc: gives the \idx{Hermite normal form} of the ideal $a\Z_K+b\Z_K$, where $a$
and $b$ are elements of the number field $K$ defined by \kbd{nf}.
\bprog
? nf = nfinit(y^3 - 2);
? idealhnf(nf, 2, y+1)
%2 =
[1 0 0]
[0 1 0]
[0 0 1]
? idealhnf(nf, y/2, [0,0,1/3]~)
%3 =
[1/3 0 0]
[0 1/6 0]
[0 0 1/6]
@eprog
If $b$ is omitted, returns the HNF of the ideal defined by $a$: $a$ may be an
algebraic number (defining a principal ideal), a maximal ideal (as given by
\kbd{idealprimedec} or \kbd{idealfactor}), or a matrix whose columns give
generators for the ideal. This last format is a little complicated, but
useful to reduce general modules to the canonical form once in a while:
\item if strictly less than $N = [K:\Q]$ generators are given, $a$
is the $\Z_K$-module they generate,
\item if $N$ or more are given, it is \emph{assumed} that they form a
$\Z$-basis (that the matrix has maximal rank $N$). This acts
as \kbd{mathnf} since the $\Z_K$-module structure is (taken for
granted hence) not taken into account in this case.
\bprog
? idealhnf(nf, idealprimedec(nf,2)[1])
%4 =
[2 0 0]
[0 1 0]
[0 0 1]
? idealhnf(nf, [1,2;2,3;3,4])
%5 =
[1 0 0]
[0 1 0]
[0 0 1]
@eprog
Variant: Also available is \fun{GEN}{idealhnf}{GEN nf, GEN a}.
Function: idealintersect
Class: basic
Section: number_fields
C-Name: idealintersect
Prototype: GGG
Help: idealintersect(nf,A,B): intersection of two ideals A and B in the
number field defined by nf.
Doc: intersection of the two ideals
$A$ and $B$ in the number field $\var{nf}$. The result is given in HNF.
\bprog
? nf = nfinit(x^2+1);
? idealintersect(nf, 2, x+1)
%2 =
[2 0]
[0 2]
@eprog
This function does not apply to general $\Z$-modules, e.g.~orders, since its
arguments are replaced by the ideals they generate. The following script
intersects $\Z$-modules $A$ and $B$ given by matrices of compatible
dimensions with integer coefficients:
\bprog
ZM_intersect(A,B) =
{ my(Ker = matkerint(concat(A,B));
mathnf( A * vecextract(Ker, Str("..", #A), "..") )
}
@eprog
Function: idealinv
Class: basic
Section: number_fields
C-Name: idealinv
Prototype: GG
Help: idealinv(nf,x): inverse of the ideal x in the number field nf.
Description:
(gen, gen):gen idealinv($1, $2)
Doc: inverse of the ideal $x$ in the
number field $\var{nf}$, given in HNF. If $x$ is an extended
ideal\sidx{ideal (extended)}, its principal part is suitably
updated: i.e. inverting $[I,t]$, yields $[I^{-1}, 1/t]$.
Function: ideallist
Class: basic
Section: number_fields
C-Name: ideallist0
Prototype: GLD4,L,
Help: ideallist(nf,bound,{flag=4}): vector of vectors L of all idealstar of
all ideals of norm<=bound. If (optional) flag is present, its binary digits
are toggles meaning 1: give generators; 2: add units; 4: give only the
ideals and not the bid.
Doc: computes the list
of all ideals of norm less or equal to \var{bound} in the number field
\var{nf}. The result is a row vector with exactly \var{bound} components.
Each component is itself a row vector containing the information about
ideals of a given norm, in no specific order, depending on the value of
$\fl$:
The possible values of $\fl$ are:
\quad 0: give the \var{bid} associated to the ideals, without generators.
\quad 1: as 0, but include the generators in the \var{bid}.
\quad 2: in this case, \var{nf} must be a \var{bnf} with units. Each
component is of the form $[\var{bid},U]$, where \var{bid} is as case 0
and $U$ is a vector of discrete logarithms of the units. More precisely, it
gives the \kbd{ideallog}s with respect to \var{bid} of \kbd{bnf.tufu}.
This structure is technical, and only meant to be used in conjunction with
\tet{bnrclassnolist} or \tet{bnrdisclist}.
\quad 3: as 2, but include the generators in the \var{bid}.
\quad 4: give only the HNF of the ideal.
\bprog
? nf = nfinit(x^2+1);
? L = ideallist(nf, 100);
? L[1]
%3 = [[1, 0; 0, 1]] \\@com A single ideal of norm 1
? #L[65]
%4 = 4 \\@com There are 4 ideals of norm 4 in $\Z[i]$
@eprog
If one wants more information, one could do instead:
\bprog
? nf = nfinit(x^2+1);
? L = ideallist(nf, 100, 0);
? l = L[25]; vector(#l, i, l[i].clgp)
%3 = [[20, [20]], [16, [4, 4]], [20, [20]]]
? l[1].mod
%4 = [[25, 18; 0, 1], []]
? l[2].mod
%5 = [[5, 0; 0, 5], []]
? l[3].mod
%6 = [[25, 7; 0, 1], []]
@eprog\noindent where we ask for the structures of the $(\Z[i]/I)^*$ for all
three ideals of norm $25$. In fact, for all moduli with finite part of norm
$25$ and trivial Archimedean part, as the last 3 commands show. See
\tet{ideallistarch} to treat general moduli.
Function: ideallistarch
Class: basic
Section: number_fields
C-Name: ideallistarch
Prototype: GGG
Help: ideallistarch(nf,list,arch): list is a vector of vectors of of bid's as
output by ideallist. Return a vector of vectors with the same number of
components as the original list. The leaves give information about
moduli whose finite part is as in original list, in the same order, and
Archimedean part is now arch. The information contained is of the same kind
as was present in the input.
Doc:
\var{list} is a vector of vectors of bid's, as output by \tet{ideallist} with
flag $0$ to $3$. Return a vector of vectors with the same number of
components as the original \var{list}. The leaves give information about
moduli whose finite part is as in original list, in the same order, and
Archimedean part is now \var{arch} (it was originally trivial). The
information contained is of the same kind as was present in the input; see
\tet{ideallist}, in particular the meaning of \fl.
\bprog
? bnf = bnfinit(x^2-2);
? bnf.sign
%2 = [2, 0] \\@com two places at infinity
? L = ideallist(bnf, 100, 0);
? l = L[98]; vector(#l, i, l[i].clgp)
%4 = [[42, [42]], [36, [6, 6]], [42, [42]]]
? La = ideallistarch(bnf, L, [1,1]); \\@com add them to the modulus
? l = La[98]; vector(#l, i, l[i].clgp)
%6 = [[168, [42, 2, 2]], [144, [6, 6, 2, 2]], [168, [42, 2, 2]]]
@eprog
Of course, the results above are obvious: adding $t$ places at infinity will
add $t$ copies of $\Z/2\Z$ to the ray class group. The following application
is more typical:
\bprog
? L = ideallist(bnf, 100, 2); \\@com units are required now
? La = ideallistarch(bnf, L, [1,1]);
? H = bnrclassnolist(bnf, La);
? H[98];
%6 = [2, 12, 2]
@eprog
Function: ideallog
Class: basic
Section: number_fields
C-Name: ideallog
Prototype: GGG
Help: ideallog(nf,x,bid): if bid is a big ideal, as given by
idealstar(nf,I,1) or idealstar(nf,I,2), gives the vector of exponents on the
generators bid[2][3] (even if these generators have not been computed).
Doc: $\var{nf}$ is a number field,
\var{bid} is as output by \kbd{idealstar(nf, D, \dots)} and $x$ a
non-necessarily integral element of \var{nf} which must have valuation
equal to 0 at all prime ideals in the support of $\kbd{D}$. This function
computes the discrete logarithm of $x$ on the generators given in
\kbd{\var{bid}.gen}. In other words, if $g_i$ are these generators, of orders
$d_i$ respectively, the result is a column vector of integers $(x_i)$ such
that $0\le x_i<d_i$ and
$$x \equiv \prod_i g_i^{x_i} \pmod{\ ^*D}\enspace.$$
Note that when the support of \kbd{D} contains places at infinity, this
congruence implies also sign conditions on the associated real embeddings.
See \tet{znlog} for the limitations of the underlying discrete log algorithms.
Function: idealmin
Class: basic
Section: number_fields
C-Name: idealmin
Prototype: GGDG
Help: idealmin(nf,ix,{vdir}): pseudo-minimum of the ideal ix in the direction
vdir in the number field nf.
Doc: \emph{This function is useless and kept for backward compatibility only,
use \kbd{idealred}}. Computes a pseudo-minimum of the ideal $x$ in the
direction \var{vdir} in the number field \var{nf}.
Function: idealmul
Class: basic
Section: number_fields
C-Name: idealmul0
Prototype: GGGD0,L,
Help: idealmul(nf,x,y,{flag=0}): product of the two ideals x and y in the
number field nf. If (optional) flag is non-nul, reduce the result.
Description:
(gen, gen, gen, ?0):gen idealmul($1, $2, $3)
(gen, gen, gen, 1):gen idealmulred($1, $2, $3)
(gen, gen, gen, #small):gen $"invalid flag in idealmul"
(gen, gen, gen, small):gen idealmul0($1, $2, $3, $4)
Doc: ideal multiplication of the ideals $x$ and $y$ in the number field
\var{nf}; the result is the ideal product in HNF. If either $x$ or $y$
are extended ideals\sidx{ideal (extended)}, their principal part is suitably
updated: i.e. multiplying $[I,t]$, $[J,u]$ yields $[IJ, tu]$; multiplying
$I$ and $[J, u]$ yields $[IJ, u]$.
\bprog
? nf = nfinit(x^2 + 1);
? idealmul(nf, 2, x+1)
%2 =
[4 2]
[0 2]
? idealmul(nf, [2, x], x+1) \\ extended ideal * ideal
%4 = [[4, 2; 0, 2], x]
? idealmul(nf, [2, x], [x+1, x]) \\ two extended ideals
%5 = [[4, 2; 0, 2], [-1, 0]~]
@eprog\noindent
If $\fl$ is non-zero, reduce the result using \kbd{idealred}.
Variant:
\noindent See also \fun{GEN}{idealmul}{GEN
nf, GEN x, GEN y} ($\fl=0$) and \fun{GEN}{idealmulred}{GEN nf, GEN x, GEN y}
($\fl\neq0$).
Function: idealnorm
Class: basic
Section: number_fields
C-Name: idealnorm
Prototype: GG
Help: idealnorm(nf,x): norm of the ideal x in the number field nf.
Doc: computes the norm of the ideal~$x$ in the number field~$\var{nf}$.
Function: idealpow
Class: basic
Section: number_fields
C-Name: idealpow0
Prototype: GGGD0,L,
Help: idealpow(nf,x,k,{flag=0}): k-th power of the ideal x in HNF in the
number field nf. If (optional) flag is non-null, reduce the result.
Doc: computes the $k$-th power of
the ideal $x$ in the number field $\var{nf}$; $k\in\Z$.
If $x$ is an extended
ideal\sidx{ideal (extended)}, its principal part is suitably
updated: i.e. raising $[I,t]$ to the $k$-th power, yields $[I^k, t^k]$.
If $\fl$ is non-zero, reduce the result using \kbd{idealred}, \emph{throughout
the (binary) powering process}; in particular, this is \emph{not} the same as
as $\kbd{idealpow}(\var{nf},x,k)$ followed by reduction.
Variant:
\noindent See also
\fun{GEN}{idealpow}{GEN nf, GEN x, GEN k} and
\fun{GEN}{idealpows}{GEN nf, GEN x, long k} ($\fl = 0$).
Corresponding to $\fl=1$ is \fun{GEN}{idealpowred}{GEN nf, GEN vp, GEN k}.
Function: idealprimedec
Class: basic
Section: number_fields
C-Name: idealprimedec
Prototype: GG
Help: idealprimedec(nf,p): prime ideal decomposition of the prime number p
in the number field nf as a vector of 5 component vectors [p,a,e,f,b]
representing the prime ideals pZ_K+a. Z_K, e,f as usual, a as vector of
components on the integral basis, b Lenstra's constant.
Doc: computes the prime ideal
decomposition of the (positive) prime number $p$ in the number field $K$
represented by \var{nf}. If a non-prime $p$ is given the result is undefined.
The result is a vector of \tev{prid} structures, each representing one of the
prime ideals above $p$ in the number field $\var{nf}$. The representation
$\kbd{pr}=[p,a,e,f,b]$ of a prime ideal means the following: $a$ and $b$ are
algebraic integers in the maximal order $\Z_K$; the prime ideal is
equal to $\goth{p} = p\Z_K + a\Z_K$;
$e$ is the ramification index; $f$ is the residual index;
and $b$ is such that $\goth{p}^{-1}=\Z_K+ b/ p\Z_K$, which is used internally
to compute valuations. The algebraic number $a$ is guaranteed to have a
valuation equal to 1 at the prime ideal (this is automatic if $e>1$).
The components of \kbd{pr} should be accessed by member functions: \kbd{pr.p},
\kbd{pr.e}, \kbd{pr.f}, and \kbd{pr.gen} (returns the vector $[p,a]$):
\bprog
? K = nfinit(x^3-2);
? L = idealprimedec(K, 5);
? #L \\ 2 primes above 5 in Q(2^(1/3))
%3 = 2
? p1 = L[1]; p2 = L[2];
? [p1.e, p1.f] \\ the first is unramified of degree 1
%4 = [1, 1]
? [p2.e, p2.f] \\ the second is unramified of degree 2
%5 = [1, 2]
? p1.gen
%6 = [5, [2, 1, 0]~]
? nfbasistoalg(K, %[2]) \\ a uniformizer for p1
%7 = Mod(x + 2, x^3 - 2)
@eprog
Function: idealramgroups
Class: basic
Section: number_fields
C-Name: idealramgroups
Prototype: GGG
Help: idealramgroups(nf,gal,pr): let pr be a prime ideal pr in prid format, in
the Galois group gal of the number field nf, return a vector g such that g[1]
is the decomposition group of pr, g[2] is the inertia group, g[i] is the
(i-2)th ramification group of pr, all trivial subgroups being omitted.
Doc: Let $K$ be the number field defined by $nf$ and assume $K/\Q$ be a
Galois extension with Galois group $G$ given \kbd{gal=galoisinit(nf)},
and that $pr$ is the prime ideal $\goth{P}$ in prid format.
This function returns a vector $g$ of subgroups of \kbd{gal}
as follow:
\item \kbd{g[1]} is the decomposition group of $\goth{P}$,
\item \kbd{g[2]} is $G_0(\goth{P})$, the inertia group of $\goth{P}$,
and for $i\geq 2$,
\item \kbd{g[i]} is $G_{i-2}(\goth{P})$, the $i-2$-th ramification group of
$\goth{P}$.
The length of $g$ is the number of non-trivial groups in the sequence, thus
is $0$ if $e=1$ and $f=1$, and $1$ if $f>1$ and $e=1$.
\bprog
? nf=nfinit(x^6+108);
? gal=galoisinit(nf);
? pr=idealprimedec(nf,2)[1];
? iso=idealramgroups(nf,gal,pr)[2]
%4 = [[Vecsmall([2, 3, 1, 5, 6, 4])], Vecsmall([3])]
? nfdisc(galoisfixedfield(gal,iso,1))
%5 = -3
@eprog\noindent The field fixed by the inertia group of $2$ is not ramified at
$2$.
Function: idealred
Class: basic
Section: number_fields
C-Name: idealred0
Prototype: GGDG
Help: idealred(nf,I,{v=0}): LLL reduction of the ideal I in the number
field nf along direction v, in HNF.
Doc: \idx{LLL} reduction of
the ideal $I$ in the number field \var{nf}, along the direction $v$.
The $v$ parameter is best left omitted, but if it is present, it must
be an $\kbd{nf.r1} + \kbd{nf.r2}$-component vector of \emph{non-negative}
integers. (What counts is the relative magnitude of the entries: if all
entries are equal, the effect is the same as if the vector had been omitted.)
This function finds a ``small'' $a$ in $I$ (see the end for technical details).
The result is the Hermite normal form of
the ``reduced'' ideal $J = r I/a$, where $r$ is the unique rational number such
that $J$ is integral and primitive. (This is usually not a reduced ideal in
the sense of \idx{Buchmann}.)
\bprog
? K = nfinit(y^2+1);
? P = idealprimedec(K,5)[1];
? idealred(K, P)
%3 =
[1 0]
[0 1]
@eprog\noindent More often than not, a \idx{principal ideal} yields the unit
ideal as above. This is a quick and dirty way to check if ideals are principal,
but it is not a necessary condition: a non-trivial result does not prove that
the ideal is non-principal. For guaranteed results, see \kbd{bnfisprincipal},
which requires the computation of a full \kbd{bnf} structure.
If the input is an extended ideal $[I,s]$, the output is $[J,sa/r]$; this way,
one can keep track of the principal ideal part:
\bprog
? idealred(K, [P, 1])
%5 = [[1, 0; 0, 1], [-2, 1]~]
@eprog\noindent
meaning that $P$ is generated by $[-2, 1]~$. The number field element in the
extended part is an algebraic number in any form \emph{or} a factorization
matrix (in terms of number field elements, not ideals!). In the latter case,
elements stay in factored form, which is a convenient way to avoid
coefficient explosion; see also \tet{idealpow}.
\misctitle{Technical note} The routine computes an LLL-reduced
basis for the lattice $I$ equipped with the quadratic form
$$|| x ||_v^2 = \sum_{i=1}^{r_1+r_2} 2^{v_i}\varepsilon_i|\sigma_i(x)|^2,$$
where as usual the $\sigma_i$ are the (real and) complex embeddings and
$\varepsilon_i = 1$, resp.~$2$, for a real, resp.~complex place. The element
$a$ is simply the first vector in the LLL basis. The only reason you may want
to try to change some directions and set some $v_i\neq 0$ is to randomize
the elements found for a fixed ideal, which is heuristically useful in index
calculus algorithms like \tet{bnfinit} and \tet{bnfisprincipal}.
\misctitle{Even more technical note} In fact, the above is a white lie.
We do not use $||\cdot||_v$ exactly but a rescaled rounded variant which
gets us faster and simpler LLLs. There's no harm since we are not using any
theoretical property of $a$ after all, except that it belongs to $I$ and is
``expected to be small''.
Function: idealstar
Class: basic
Section: number_fields
C-Name: idealstar0
Prototype: GGD1,L,
Help: idealstar(nf,I,{flag=1}): gives the structure of (Z_K/I)^*. flag is
optional, and can be 0: simply gives the structure as a 3-component vector v
such that v[1] is the order (i.e. eulerphi(I)), v[2] is a vector of cyclic
components, and v[3] is a vector giving the corresponding generators. If
flag=1 (default), gives idealstarinit, i.e. a 6-component vector
[I,v,fa,f2,U,V] where v is as above without the generators, fa is the prime
ideal factorisation of I and f2, U and V are technical but essential to work
in (Z_K/I)^*. Finally if flag=2, same as with flag=1 except that the
generators are also given.
Doc: outputs a \var{bid} structure,
necessary for computing in the finite abelian group $G = (\Z_K/I)^*$. Here,
\var{nf} is a number field and $I$ is a \var{modulus}: either an ideal in any
form, or a row vector whose first component is an ideal and whose second
component is a row vector of $r_1$ 0 or 1.
This \var{bid} is used in \tet{ideallog} to compute discrete logarithms. It
also contains useful information which can be conveniently retrieved as
\kbd{\var{bid}.mod} (the modulus),
\kbd{\var{bid}.clgp} ($G$ as a finite abelian group),
\kbd{\var{bid}.no} (the cardinality of $G$),
\kbd{\var{bid}.cyc} (elementary divisors) and
\kbd{\var{bid}.gen} (generators).
If $\fl=1$ (default), the result is a \var{bid} structure without
generators.
If $\fl=2$, as $\fl=1$, but including generators, which wastes some time.
If $\fl=0$, only outputs $(\Z_K/I)^*$ as an abelian group,
i.e as a 3-component vector $[h,d,g]$: $h$ is the order, $d$ is the vector of
SNF\sidx{Smith normal form} cyclic components and $g$ the corresponding
generators.
Variant: Instead the above hardcoded numerical flags, one should rather use
\fun{GEN}{Idealstar}{GEN nf, GEN ideal, long flag}, where \kbd{flag} is
an or-ed combination of \tet{nf_GEN} (include generators) and \tet{nf_INIT}
(return a full \kbd{bid}, not a group), possibly $0$. This offers
one more combination: gen, but no init.
Function: idealtwoelt
Class: basic
Section: number_fields
C-Name: idealtwoelt0
Prototype: GGDG
Help: idealtwoelt(nf,x,{a}): two-element representation of an ideal x in the
number field nf. If (optional) a is non-zero, first element will be equal to a.
Doc: computes a two-element
representation of the ideal $x$ in the number field $\var{nf}$, combining a
random search and an explicit approximation theorem. $x$ is an ideal
in any form (possibly an extended ideal, whose principal part is ignored)
and the
result is a row vector $[a,\alpha]$ with two components such that
$x=a\Z_K+\alpha\Z_K$ and $a\in\Z$, where $a$ is the one passed as argument if
any. Unless $x$ was given as a principal ideal, $a$ is chosen to be the
positive generator of $x\cap\Z$.
Note that when an explicit $a$ is given, we must factor it and this may
be costly. When $a$ is omitted, we use a fast lazy factorization of $x\cap
\Z$, yielding an algorithm in randomized polynomial time (and generally
much faster in practice).
Variant: Also available are
\fun{GEN}{idealtwoelt}{GEN nf, GEN x} and
\fun{GEN}{idealtwoelt2}{GEN nf, GEN x, GEN a}.
Function: idealval
Class: basic
Section: number_fields
C-Name: idealval
Prototype: lGGG
Help: idealval(nf,x,pr): valuation at pr given in idealprimedec format of the
ideal x in the number field nf.
Doc: gives the valuation of the ideal $x$ at the prime ideal \var{pr} in the
number field $\var{nf}$, where \var{pr} is in \kbd{idealprimedec} format.
Function: if
Class: basic
Section: programming/control
C-Name: ifpari
Prototype: GDEDE
Help: if(a,{seq1},{seq2}): if a is nonzero, seq1 is evaluated, otherwise seq2.
seq1 and seq2 are optional, and if seq2 is omitted, the preceding comma can
be omitted also.
Doc: evaluates the expression sequence \var{seq1} if $a$ is non-zero, otherwise
the expression \var{seq2}. Of course, \var{seq1} or \var{seq2} may be empty:
\kbd{if ($a$,\var{seq})} evaluates \var{seq} if $a$ is not equal to zero
(you don't have to write the second comma), and does nothing otherwise,
\kbd{if ($a$,,\var{seq})} evaluates \var{seq} if $a$ is equal to zero, and
does nothing otherwise. You could get the same result using the \kbd{!}
(\kbd{not}) operator: \kbd{if (!$a$,\var{seq})}.
Note that the boolean operators \kbd{\&\&} and \kbd{||} are evaluated
according to operator precedence as explained in \secref{se:operators}, but
that, contrary to other operators, the evaluation of the arguments is stopped
as soon as the final truth value has been determined. For instance
\bprog
if (reallydoit && longcomplicatedfunction(), ...)
@eprog
\noindent is a perfectly safe statement.
Recall that functions such as \kbd{break} and \kbd{next} operate on
\emph{loops} (such as \kbd{for$xxx$}, \kbd{while}, \kbd{until}). The \kbd{if}
statement is \emph{not} a loop (obviously!).
Function: imag
Class: basic
Section: conversions
C-Name: gimag
Prototype: G
Help: imag(x): imaginary part of x.
Doc: imaginary part of $x$. When $x$ is a quadratic number, this is the
coefficient of $\omega$ in the ``canonical'' integral basis $(1,\omega)$.
Function: incgam
Class: basic
Section: transcendental
C-Name: incgam0
Prototype: GGDGp
Help: incgam(s,x,{y}): incomplete gamma function. y is optional and is the
precomputed value of gamma(s).
Doc: incomplete gamma function. The argument $x$
and $s$ are complex numbers ($x$ must be a positive real number if $s = 0$).
The result returned is $\int_x^\infty e^{-t}t^{s-1}\,dt$. When $y$ is given,
assume (of course without checking!) that $y=\Gamma(s)$. For small $x$, this
will speed up the computation.
Variant: Also available is \fun{GEN}{incgam}{GEN s, GEN x, long prec}.
Function: incgamc
Class: basic
Section: transcendental
C-Name: incgamc
Prototype: GGp
Help: incgamc(s,x): complementary incomplete gamma function.
Doc: complementary incomplete gamma function.
The arguments $x$ and $s$ are complex numbers such that $s$ is not a pole of
$\Gamma$ and $|x|/(|s|+1)$ is not much larger than 1 (otherwise the
convergence is very slow). The result returned is $\int_0^x
e^{-t}t^{s-1}\,dt$.
Function: input
Class: gp
Section: programming/specific
C-Name: input0
Prototype:
Help: input(): read an expression from the input file or standard input.
Doc: reads a string, interpreted as a GP expression,
from the input file, usually standard input (i.e.~the keyboard). If a
sequence of expressions is given, the result is the result of the last
expression of the sequence. When using this instruction, it is useful to
prompt for the string by using the \kbd{print1} function. Note that in the
present version 2.19 of \kbd{pari.el}, when using \kbd{gp} under GNU Emacs (see
\secref{se:emacs}) one \emph{must} prompt for the string, with a string
which ends with the same prompt as any of the previous ones (a \kbd{"? "}
will do for instance).
Function: install
Class: highlevel
Section: programming/specific
C-Name: gpinstall
Prototype: vrrD"",r,D"",s,
Help: install(name,code,{gpname},{lib}): load from dynamic library 'lib' the
function 'name'. Assign to it the name 'gpname' in this GP session, with
argument code 'code'. If 'lib' is omitted use 'libpari.so'. If 'gpname' is
omitted, use 'name'.
Doc: loads from dynamic library \var{lib} the function \var{name}. Assigns to it
the name \var{gpname} in this \kbd{gp} session, with argument code \var{code}
(see the Libpari Manual for an explanation of those). If \var{lib} is
omitted, uses \kbd{libpari.so}. If \var{gpname} is omitted, uses
\var{name}.
This function is useful for adding custom functions to the \kbd{gp} interpreter,
or picking useful functions from unrelated libraries. For instance, it
makes the function \tet{system} obsolete:
\bprog
? install(system, vs, sys, "libc.so")
? sys("ls gp*")
gp.c gp.h gp_rl.c
@eprog
But it also gives you access to all (non static) functions defined in the
PARI library. For instance, the function \kbd{GEN addii(GEN x, GEN y)} adds
two PARI integers, and is not directly accessible under \kbd{gp} (it is
eventually called by the \kbd{+} operator of course):
\bprog
? install("addii", "GG")
? addii(1, 2)
%1 = 3
@eprog\noindent
Re-installing a function will print a warning and update the prototype code
if needed. However, it will not reload a symbol from the library, even it the
latter has been recompiled.
\misctitle{Caution} This function may not work on all systems, especially
when \kbd{gp} has been compiled statically. In that case, the first use of an
installed function will provoke a Segmentation Fault, i.e.~a major internal
blunder (this should never happen with a dynamically linked executable).
Hence, if you intend to use this function, please check first on some
harmless example such as the ones above that it works properly on your
machine.
Function: intcirc
Class: basic
Section: sums
C-Name: intcirc0
Prototype: V=GGEDGp
Help: intcirc(X=a,R,expr,{tab}): numerical integration of expr on the circle
|z-a|=R, divided by 2*I*Pi. tab is as in intnum.
Wrapper: (,,G)
Description:
(gen,gen,gen,?gen):gen:prec intcirc(${3 cookie}, ${3 wrapper}, $1, $2, $4, prec)
Doc: numerical
integration of $(2i\pi)^{-1}\var{expr}$ with respect to $X$ on the circle
$|X-a| = R$.
In other words, when \var{expr} is a meromorphic
function, sum of the residues in the corresponding disk. \var{tab} is as in
\kbd{intnum}, except that if computed with \kbd{intnuminit} it should be with
the endpoints \kbd{[-1, 1]}.
\bprog
? \p105
? intcirc(s=1, 0.5, zeta(s)) - 1
%1 = -2.398082982 E-104 - 7.94487211 E-107*I
@eprog
\synt{intcirc}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN R,GEN tab, long prec}.
Function: intformal
Class: basic
Section: polynomials
C-Name: integ
Prototype: GDn
Help: intformal(x,{v}): formal integration of x with respect to v, or to the
main variable of x if v is omitted.
Doc: \idx{formal integration} of $x$ with respect to the main variable if $v$
is omitted, with respect to the variable $v$ otherwise. Since PARI does not
know about ``abstract'' logarithms (they are immediately evaluated, if only
to a power series), logarithmic terms in the result will yield an error. $x$
can be of any type. When $x$ is a rational function, it is assumed that the
base ring is an integral domain of characteristic zero.
Function: intfouriercos
Class: basic
Section: sums
C-Name: intfourcos0
Prototype: V=GGGEDGp
Help: intfouriercos(X=a,b,z,expr,{tab}): numerical integration from a to b
of cos(2*Pi*z*X)*expr(X) from a to b, where a, b, and tab are as in intnum.
This is the cosine-Fourier transform if a=-infty and b=+infty.
Wrapper: (,,,G)
Description:
(gen,gen,gen,gen,?gen):gen:prec intfouriercos(${4 cookie}, ${4 wrapper}, $1, $2, $3, $5, prec)
Doc: numerical
integration of $\var{expr}(X)\cos(2\pi zX)$ from $a$ to $b$, in other words
Fourier cosine transform (from $a$ to $b$) of the function represented by
\var{expr}. Endpoints $a$ and $b$ are coded as in \kbd{intnum}, and are not
necessarily at infinity, but if they are, oscillations (i.e. $[[\pm1],\alpha
I]$) are forbidden.
\synt{intfouriercos}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b, GEN z, GEN tab, long prec}.
Function: intfourierexp
Class: basic
Section: sums
C-Name: intfourexp0
Prototype: V=GGGEDGp
Help: intfourierexp(X=a,b,z,expr,{tab}): numerical integration from a to b
of exp(-2*I*Pi*z*X)*expr(X) from a to b, where a, b, and tab are as in intnum.
This is the ordinary Fourier transform if a=-infty and b=+infty. Note the
minus sign.
Wrapper: (,,,G)
Description:
(gen,gen,gen,gen,?gen):gen:prec intfourierexp(${4 cookie}, ${4 wrapper}, $1, $2, $3, $5, prec)
Doc: numerical
integration of $\var{expr}(X)\exp(-2i\pi zX)$ from $a$ to $b$, in other words
Fourier transform (from $a$ to $b$) of the function represented by
\var{expr}. Note the minus sign. Endpoints $a$ and $b$ are coded as in
\kbd{intnum}, and are not necessarily at infinity but if they are,
oscillations (i.e. $[[\pm1],\alpha I]$) are forbidden.
\synt{intfourierexp}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b, GEN z, GEN tab, long prec}.
Function: intfouriersin
Class: basic
Section: sums
C-Name: intfoursin0
Prototype: V=GGGEDGp
Help: intfouriersin(X=a,b,z,expr,{tab}): numerical integration from a to b
of sin(2*Pi*z*X)*expr(X) from a to b, where a, b, and tab are as in intnum.
This is the sine-Fourier transform if a=-infty and b=+infty.
Wrapper: (,,,G)
Description:
(gen,gen,gen,gen,?gen):gen:prec intfouriercos(${4 cookie}, ${4 wrapper}, $1, $2, $3, $5, prec)
Doc: numerical
integration of $\var{expr}(X)\sin(2\pi zX)$ from $a$ to $b$, in other words
Fourier sine transform (from $a$ to $b$) of the function represented by
\var{expr}. Endpoints $a$ and $b$ are coded as in \kbd{intnum}, and are not
necessarily at infinity but if they are, oscillations (i.e. $[[\pm1],\alpha
I]$) are forbidden.
\synt{intfouriersin}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b, GEN z, GEN tab, long prec}.
Function: intfuncinit
Class: basic
Section: sums
C-Name: intfuncinit0
Prototype: V=GGED0,L,D0,L,p
Help: intfuncinit(X=a,b,expr,{flag=0},{m=0}): initialize tables for integrations
from a to b using a weight expr(X). Essential for integral transforms such
as intmellininv, intlaplaceinv and intfourier, since it avoids recomputing
all the time the same quantities. Must then be used with intmellininvshort
(for intmellininv) and directly with intnum and not with the corresponding
integral transforms for the others. See help for intnum for coding of a
and b, and m is as in intnuminit. If flag is nonzero, assumes that
expr(-X)=conj(expr(X)), which is twice faster.
Wrapper: (,,G)
Description:
(gen,gen,gen,?small,?small):gen:prec intfuncinit(${3 cookie}, ${3 wrapper}, $1, $2, $4, $5, prec)
Doc: initialize tables for use with integral transforms such as \kbd{intmellininv},
etc., where $a$ and $b$ are coded as in \kbd{intnum}, $\var{expr}$ is the
function $s(X)$ to which the integral transform is to be applied (which will
multiply the weights of integration) and $m$ is as in \kbd{intnuminit}. If
$\fl$ is nonzero, assumes that $s(-X)=\overline{s(X)}$, which makes the
computation twice as fast. See \kbd{intmellininvshort} for examples of the
use of this function, which is particularly useful when the function $s(X)$
is lengthy to compute, such as a gamma product.
\synt{intfuncinit}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b,long m, long
flag, long prec}. Note that the order of $m$ and $\fl$ are reversed compared
to the \kbd{GP} syntax.
Function: intlaplaceinv
Class: basic
Section: sums
C-Name: intlaplaceinv0
Prototype: V=GGEDGp
Help: intlaplaceinv(X=sig,z,expr,{tab}): numerical integration on the line
real(X) = sig of expr(X)exp(zX)dz/(2*I*Pi), i.e. inverse Laplace transform of
expr at z. tab is as in intnum.
Wrapper: (,,G)
Description:
(gen,gen,gen,?gen):gen:prec intlaplaceinv(${3 cookie}, ${3 wrapper}, $1, $2, $4, prec)
Doc: numerical integration of $(2i\pi)^{-1}\var{expr}(X)e^{Xz}$ with respect
to $X$ on the line $\Re(X)=sig$. In other words, inverse Laplace transform
of the function corresponding to \var{expr} at the value $z$.
$sig$ is coded as follows. Either it is a real number $\sigma$, equal to the
abscissa of integration, and then the integrand is assumed to
be slowly decreasing when the imaginary part of the variable tends to
$\pm\infty$. Or it is a two component vector $[\sigma,\alpha]$, where
$\sigma$ is as before, and either $\alpha=0$ for slowly decreasing functions,
or $\alpha>0$ for functions decreasing like $\exp(-\alpha t)$. Note that it
is not necessary to choose the exact value of $\alpha$. \var{tab} is as in
\kbd{intnum}.
It is often a good idea to use this function with a value of $m$ one or two
higher than the one chosen by default (which can be viewed thanks to the
function \kbd{intnumstep}), or to increase the abscissa of integration
$\sigma$. For example:
\bprog
? \p 105
? intlaplaceinv(x=2, 1, 1/x) - 1
time = 350 ms.
%1 = 7.37... E-55 + 1.72... E-54*I \\@com not so good
? m = intnumstep()
%2 = 7
? intlaplaceinv(x=2, 1, 1/x, m+1) - 1
time = 700 ms.
%3 = 3.95... E-97 + 4.76... E-98*I \\@com better
? intlaplaceinv(x=2, 1, 1/x, m+2) - 1
time = 1400 ms.
%4 = 0.E-105 + 0.E-106*I \\@com perfect but slow.
? intlaplaceinv(x=5, 1, 1/x) - 1
time = 340 ms.
%5 = -5.98... E-85 + 8.08... E-85*I \\@com better than \%1
? intlaplaceinv(x=5, 1, 1/x, m+1) - 1
time = 680 ms.
%6 = -1.09... E-106 + 0.E-104*I \\@com perfect, fast.
? intlaplaceinv(x=10, 1, 1/x) - 1
time = 340 ms.
%7 = -4.36... E-106 + 0.E-102*I \\@com perfect, fastest, but why $sig=10$?
? intlaplaceinv(x=100, 1, 1/x) - 1
time = 330 ms.
%7 = 1.07... E-72 + 3.2... E-72*I \\@com too far now...
@eprog
\synt{intlaplaceinv}{void *E, GEN (*eval)(void*,GEN), GEN sig,GEN z, GEN tab, long prec}.
Function: intmellininv
Class: basic
Section: sums
C-Name: intmellininv0
Prototype: V=GGEDGp
Help: intmellininv(X=sig,z,expr,{tab}): numerical integration on the
line real(X) = sig (or sig[1]) of expr(X)z^(-X)dX/(2*I*Pi), i.e. inverse Mellin
transform of s at x. sig is coded as follows: either it is real, and then
by default assume s(z) decreases like exp(-z). Or sig = [sigR, al], sigR is
the abscissa of integration, and al = 0 for slowly decreasing functions, or
al > 0 if s(z) decreases like exp(-al*z). tab is as in intnum. Use
intmellininvshort if several values must be computed.
Wrapper: (,,G)
Description:
(gen,gen,gen,?gen):gen:prec intmellininv(${3 cookie}, ${3 wrapper}, $1, $2, $4, prec)
Doc: numerical
integration of $(2i\pi)^{-1}\var{expr}(X)z^{-X}$ with respect to $X$ on the
line $\Re(X)=sig$, in other words, inverse Mellin transform of
the function corresponding to \var{expr} at the value $z$.
$sig$ is coded as follows. Either it is a real number $\sigma$, equal to the
abscissa of integration, and then the integrated is assumed to decrease
exponentially fast, of the order of $\exp(-t)$ when the imaginary part of the
variable tends to $\pm\infty$. Or it is a two component vector
$[\sigma,\alpha]$, where $\sigma$ is as before, and either $\alpha=0$ for
slowly decreasing functions, or $\alpha>0$ for functions decreasing like
$\exp(-\alpha t)$, such as gamma products. Note that it is not necessary to
choose the exact value of $\alpha$, and that $\alpha=1$ (equivalent to $sig$
alone) is usually sufficient. \var{tab} is as in \kbd{intnum}.
As all similar functions, this function is provided for the convenience of
the user, who could use \kbd{intnum} directly. However it is in general
better to use \kbd{intmellininvshort}.
\bprog
? \p 105
? intmellininv(s=2,4, gamma(s)^3);
time = 1,190 ms. \\@com reasonable.
? \p 308
? intmellininv(s=2,4, gamma(s)^3);
time = 51,300 ms. \\@com slow because of $\Gamma(s)^3$.
@eprog\noindent
\synt{intmellininv}{void *E, GEN (*eval)(void*,GEN), GEN sig, GEN z, GEN tab, long prec}.
Function: intmellininvshort
Class: basic
Section: sums
C-Name: intmellininvshort
Prototype: GGGp
Help: intmellininvshort(sig,z,tab): numerical integration on the
line real(X) = sig (or sig[1]) of s(X)z^(-X)dX/(2*I*Pi), i.e. inverse Mellin
transform of s at z. sig is coded as follows: either it is real, and then
by default assume s(X) decreases like exp(-X). Or sig = [sigR, al], sigR is
the abscissa of integration, and al = 0 for slowly decreasing functions, or
al > 0 if s(X) decreases like exp(-al*X). Compulsory table tab has been
precomputed using the command intfuncinit(t=[[-1],sig[2]],[[1],sig[2]],s)
(with possibly its two optional additional parameters), where sig[2] = 1
if not given. Orders of magnitude faster than intmellininv.
Doc: numerical integration
of $(2i\pi)^{-1}s(X)z^{-X}$ with respect to $X$ on the line $\Re(X)=sig$.
In other words, inverse Mellin transform of $s(X)$ at the value $z$.
Here $s(X)$ is implicitly contained in \var{tab} in \kbd{intfuncinit} format,
typically
\bprog
tab = intfuncinit(T = [-1], [1], s(sig + I*T))
@eprog\noindent
or similar commands. Take the example of the inverse Mellin transform of
$\Gamma(s)^3$ given in \kbd{intmellininv}:
\bprog
? \p 105
? oo = [1]; \\@com for clarity
? A = intmellininv(s=2,4, gamma(s)^3);
time = 2,500 ms. \\@com not too fast because of $\Gamma(s)^3$.
\\ @com function of real type, decreasing as $\exp(-3\pi/2\cdot |t|)$
? tab = intfuncinit(t=[-oo, 3*Pi/2],[oo, 3*Pi/2], gamma(2+I*t)^3, 1);
time = 1,370 ms.
? intmellininvshort(2,4, tab) - A
time = 50 ms.
%4 = -1.26... - 3.25...E-109*I \\@com 50 times faster than \kbd{A} and perfect.
? tab2 = intfuncinit(t=-oo, oo, gamma(2+I*t)^3, 1);
? intmellininvshort(2,4, tab2)
%6 = -1.2...E-42 - 3.2...E-109*I \\@com 63 digits lost
@eprog\noindent
In the computation of \var{tab}, it was not essential to include the
\emph{exact} exponential decrease of $\Gamma(2+it)^3$. But as the last
example shows, a rough indication \emph{must} be given, otherwise slow
decrease is assumed, resulting in catastrophic loss of accuracy.
Function: intnum
Class: basic
Section: sums
C-Name: intnum0
Prototype: V=GGEDGp
Help: intnum(X=a,b,expr,{tab}): numerical integration of expr from a to b with
respect to X. Plus/minus infinity is coded as [+1]/ [-1]. Finally tab is
either omitted (let the program choose the integration step), a positive
integer m (choose integration step 1/2^m), or data precomputed with intnuminit.
Wrapper: (,,G)
Description:
(gen,gen,gen,?gen):gen:prec intnum(${3 cookie}, ${3 wrapper}, $1, $2, $4, prec)
Doc: numerical integration
of \var{expr} on $]a,b[$ with respect to $X$. The integrand may have values
belonging to a vector space over the real numbers; in particular, it can be
complex-valued or vector-valued. But it is assumed that the function is regular
on $]a,b[$. If the endpoints $a$ and $b$ are finite and the function is regular
there, the situation is simple:
\bprog
? intnum(x = 0,1, x^2)
%1 = 0.3333333333333333333333333333
? intnum(x = 0,Pi/2, [cos(x), sin(x)])
%2 = [1.000000000000000000000000000, 1.000000000000000000000000000]
@eprog\noindent
An endpoint equal to $\pm\infty$ is coded as the single-component vector
$[\pm1]$. You are welcome to set, e.g \kbd{oo = [1]} or \kbd{INFINITY = [1]},
then using \kbd{+oo}, \kbd{-oo}, \kbd{-INFINITY}, etc. will have the expected
behavior.
\bprog
? oo = [1]; \\@com for clarity
? intnum(x = 1,+oo, 1/x^2)
%2 = 1.000000000000000000000000000
@eprog\noindent
In basic usage, it is assumed that the function does not decrease
exponentially fast at infinity:
\bprog
? intnum(x=0,+oo, exp(-x))
*** at top-level: intnum(x=0,+oo,exp(-
*** ^--------------------
*** exp: exponent (expo) overflow
@eprog\noindent
We shall see in a moment how to avoid the last problem, after describing
the last argument \var{tab}, which is both optional and technical. The
routine uses weights, which are mostly independent of the function being
integrated, evaluated at many sampling points. If \var{tab} is
\item a positive integer $m$, we use $2^m$ sampling points, hopefully
increasing accuracy. But note that the running time is roughly proportional
to $2^m$. One may try consecutive values of $m$ until they give the same
value up to an accepted error. If \var{tab} is omitted, the algorithm guesses
a reasonable value for $m$ depending on the current precision only, which
should be sufficient for regular functions. That value may be obtained from
\tet{intnumstep}, and increased in case of difficulties.
\item a set of integration tables as output by \tet{intnuminit},
they are used directly. This is useful if several integrations of the same
type are performed (on the same kind of interval and functions, for a given
accuracy), in particular for multivariate integrals, since we then skip
expensive precomputations.
\misctitle{Specifying the behavior at endpoints}
This is done as follows. An endpoint $a$ is either given as such (a scalar,
real or complex, or $[\pm1]$ for $\pm\infty$), or as a two component vector
$[a,\alpha]$, to indicate the behavior of the integrand in a neighborhood
of $a$.
If $a$ is finite, the code $[a,\alpha]$ means the function has a
singularity of the form $(x-a)^{\alpha}$, up to logarithms. (If $\alpha \ge
0$, we only assume the function is regular, which is the default assumption.)
If a wrong singularity exponent is used, the result will lose a catastrophic
number of decimals:
\bprog
? intnum(x=0, 1, x^(-1/2)) \\@com assume $x^{-1/2}$ is regular at 0
%1 = 1.999999999999999999990291881
? intnum(x=[0,-1/2], 1, x^(-1/2)) \\@com no, it's not
%2 = 2.000000000000000000000000000
? intnum(x=[0,-1/10], 1, x^(-1/2))
%3 = 1.999999999999999999999946438 \\@com using a wrong exponent is bad
@eprog
If $a$ is $\pm\infty$, which is coded as $[\pm 1]$, the situation is more
complicated, and $[[\pm1],\alpha]$ means:
\item $\alpha=0$ (or no $\alpha$ at all, i.e. simply $[\pm1]$) assumes that the
integrand tends to zero, but not exponentially fast, and not
oscillating such as $\sin(x)/x$.
\item $\alpha>0$ assumes that the function tends to zero exponentially fast
approximately as $\exp(-\alpha x)$. This includes oscillating but quickly
decreasing functions such as $\exp(-x)\sin(x)$.
\bprog
? oo = [1];
? intnum(x=0, +oo, exp(-2*x))
*** at top-level: intnum(x=0,+oo,exp(-
*** ^--------------------
*** exp: exponent (expo) overflow
? intnum(x=0, [+oo, 2], exp(-2*x))
%1 = 0.5000000000000000000000000000 \\@com OK!
? intnum(x=0, [+oo, 4], exp(-2*x))
%2 = 0.4999999999999999999961990984 \\@com wrong exponent $\Rightarrow$ imprecise result
? intnum(x=0, [+oo, 20], exp(-2*x))
%2 = 0.4999524997739071283804510227 \\@com disaster
@eprog
\item $\alpha<-1$ assumes that the function tends to $0$ slowly, like
$x^{\alpha}$. Here it is essential to give the correct $\alpha$, if possible,
but on the other hand $\alpha\le -2$ is equivalent to $\alpha=0$, in other
words to no $\alpha$ at all.
\smallskip The last two codes are reserved for oscillating functions.
Let $k > 0$ real, and $g(x)$ a non-oscillating function tending slowly to $0$
(e.g. like a negative power of $x$), then
\item $\alpha=k * I$ assumes that the function behaves like $\cos(kx)g(x)$.
\item $\alpha=-k* I$ assumes that the function behaves like $\sin(kx)g(x)$.
\noindent Here it is critical to give the exact value of $k$. If the
oscillating part is not a pure sine or cosine, one must expand it into a
Fourier series, use the above codings, and sum the resulting contributions.
Otherwise you will get nonsense. Note that $\cos(kx)$, and similarly
$\sin(kx)$, means that very function, and not a translated version such as
$\cos(kx+a)$.
\misctitle{Note} If $f(x)=\cos(kx)g(x)$ where $g(x)$ tends to zero
exponentially fast as $\exp(-\alpha x)$, it is up to the user to choose
between $[[\pm1],\alpha]$ and $[[\pm1],k* I]$, but a good rule of thumb is that
if the oscillations are much weaker than the exponential decrease, choose
$[[\pm1],\alpha]$, otherwise choose $[[\pm1],k* I]$, although the latter can
reasonably be used in all cases, while the former cannot. To take a specific
example, in the inverse Mellin transform, the integrand is almost always a
product of an exponentially decreasing and an oscillating factor. If we
choose the oscillating type of integral we perhaps obtain the best results,
at the expense of having to recompute our functions for a different value of
the variable $z$ giving the transform, preventing us to use a function such
as \kbd{intmellininvshort}. On the other hand using the exponential type of
integral, we obtain less accurate results, but we skip expensive
recomputations. See \kbd{intmellininvshort} and \kbd{intfuncinit} for more
explanations.
\smallskip
We shall now see many examples to get a feeling for what the various
parameters achieve. All examples below assume precision is set to $105$
decimal digits. We first type
\bprog
? \p 105
? oo = [1] \\@com for clarity
@eprog
\misctitle{Apparent singularities} Even if the function $f(x)$ represented
by \var{expr} has no singularities, it may be important to define the
function differently near special points. For instance, if $f(x) = 1
/(\exp(x)-1) - \exp(-x)/x$, then $\int_0^\infty f(x)\,dx=\gamma$, Euler's
constant \kbd{Euler}. But
\bprog
? f(x) = 1/(exp(x)-1) - exp(-x)/x
? intnum(x = 0, [oo,1], f(x)) - Euler
%1 = 6.00... E-67
@eprog\noindent
thus only correct to $67$ decimal digits. This is because close to $0$ the
function $f$ is computed with an enormous loss of accuracy.
A better solution is
\bprog
? f(x) = 1/(exp(x)-1)-exp(-x)/x
? F = truncate( f(t + O(t^7)) ); \\@com expansion around t = 0
? g(x) = if (x > 1e-18, f(x), subst(F,t,x)) \\@com note that $6 \cdot 18 > 105$
? intnum(x = 0, [oo,1], g(x)) - Euler
%2 = 0.E-106 \\@com perfect
@eprog\noindent
It is up to the user to determine constants such as the $10^{-18}$ and $7$
used above.
\misctitle{True singularities} With true singularities the result is worse.
For instance
\bprog
? intnum(x = 0, 1, 1/sqrt(x)) - 2
%1 = -1.92... E-59 \\@com only $59$ correct decimals
? intnum(x = [0,-1/2], 1, 1/sqrt(x)) - 2
%2 = 0.E-105 \\@com better
@eprog
\misctitle{Oscillating functions}
\bprog
? intnum(x = 0, oo, sin(x) / x) - Pi/2
%1 = 20.78.. \\@com nonsense
? intnum(x = 0, [oo,1], sin(x)/x) - Pi/2
%2 = 0.004.. \\@com bad
? intnum(x = 0, [oo,-I], sin(x)/x) - Pi/2
%3 = 0.E-105 \\@com perfect
? intnum(x = 0, [oo,-I], sin(2*x)/x) - Pi/2 \\@com oops, wrong $k$
%4 = 0.07...
? intnum(x = 0, [oo,-2*I], sin(2*x)/x) - Pi/2
%5 = 0.E-105 \\@com perfect
? intnum(x = 0, [oo,-I], sin(x)^3/x) - Pi/4
%6 = 0.0092... \\@com bad
? sin(x)^3 - (3*sin(x)-sin(3*x))/4
%7 = O(x^17)
@eprog\noindent
We may use the above linearization and compute two oscillating integrals with
``infinite endpoints'' \kbd{[oo, -I]} and \kbd{[oo, -3*I]} respectively, or
notice the obvious change of variable, and reduce to the single integral
${1\over 2}\int_0^\infty \sin(x)/x\,dx$. We finish with some more complicated
examples:
\bprog
? intnum(x = 0, [oo,-I], (1-cos(x))/x^2) - Pi/2
%1 = -0.0004... \\@com bad
? intnum(x = 0, 1, (1-cos(x))/x^2) \
+ intnum(x = 1, oo, 1/x^2) - intnum(x = 1, [oo,I], cos(x)/x^2) - Pi/2
%2 = -2.18... E-106 \\@com OK
? intnum(x = 0, [oo, 1], sin(x)^3*exp(-x)) - 0.3
%3 = 5.45... E-107 \\@com OK
? intnum(x = 0, [oo,-I], sin(x)^3*exp(-x)) - 0.3
%4 = -1.33... E-89 \\@com lost 16 decimals. Try higher $m$:
? m = intnumstep()
%5 = 7 \\@com the value of $m$ actually used above.
? tab = intnuminit(0,[oo,-I], m+1); \\@com try $m$ one higher.
? intnum(x = 0, oo, sin(x)^3*exp(-x), tab) - 0.3
%6 = 5.45... E-107 \\@com OK this time.
@eprog
\misctitle{Warning} Like \tet{sumalt}, \kbd{intnum} often assigns a
reasonable value to diverging integrals. Use these values at your own risk!
For example:
\bprog
? intnum(x = 0, [oo, -I], x^2*sin(x))
%1 = -2.0000000000...
@eprog\noindent
Note the formula
$$ \int_0^\infty \sin(x)/x^s\,dx = \cos(\pi s/2) \Gamma(1-s)\;, $$
a priori valid only for $0 < \Re(s) < 2$, but the right hand side provides an
analytic continuation which may be evaluated at $s = -2$\dots
\misctitle{Multivariate integration}
Using successive univariate integration with respect to different formal
parameters, it is immediate to do naive multivariate integration. But it is
important to use a suitable \kbd{intnuminit} to precompute data for the
\emph{internal} integrations at least!
For example, to compute the double integral on the unit disc $x^2+y^2\le1$
of the function $x^2+y^2$, we can write
\bprog
? tab = intnuminit(-1,1);
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab), tab)
@eprog\noindent
The first \var{tab} is essential, the second optional. Compare:
\bprog
? tab = intnuminit(-1,1);
time = 30 ms.
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2));
time = 54,410 ms. \\@com slow
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab), tab);
time = 7,210 ms. \\@com faster
@eprog\noindent
However, the \kbd{intnuminit} program is usually pessimistic when it comes to
choosing the integration step $2^{-m}$. It is often possible to improve the
speed by trial and error. Continuing the above example:
\bprog
? test(M) =
{
tab = intnuminit(-1,1, M);
intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2,tab), tab) - Pi/2
}
? m = intnumstep() \\@com what value of $m$ did it take ?
%1 = 7
? test(m - 1)
time = 1,790 ms.
%2 = -2.05... E-104 \\@com $4 = 2^2$ times faster and still OK.
? test(m - 2)
time = 430 ms.
%3 = -1.11... E-104 \\@com $16 = 2^4$ times faster and still OK.
? test(m - 3)
time = 120 ms.
%3 = -7.23... E-60 \\@com $64 = 2^6$ times faster, lost $45$ decimals.
@eprog
\synt{intnum}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b,GEN tab, long prec},
where an omitted \var{tab} is coded as \kbd{NULL}.
Function: intnuminit
Class: basic
Section: sums
C-Name: intnuminit
Prototype: GGD0,L,p
Help: intnuminit(a,b,{m=0}): initialize tables for integrations from a to b.
See help for intnum for coding of a and b. Possible types: compact interval,
semi-compact (one extremity at + or - infinity) or R, and very slowly, slowly
or exponentially decreasing, or sine or cosine oscillating at infinities.
Doc: initialize tables for integration from
$a$ to $b$, where $a$ and $b$ are coded as in \kbd{intnum}. Only the
compactness, the possible existence of singularities, the speed of decrease
or the oscillations at infinity are taken into account, and not the values.
For instance {\tt intnuminit(-1,1)} is equivalent to {\tt intnuminit(0,Pi)},
and {\tt intnuminit([0,-1/2],[1])} is equivalent to {\tt
intnuminit([-1],[-1,-1/2])}. If $m$ is not given, it is computed according to
the current precision. Otherwise the integration step is $1/2^m$. Reasonable
values of $m$ are $m=6$ or $m=7$ for $100$ decimal digits, and $m=9$ for
$1000$ decimal digits.
The result is technical, but in some cases it is useful to know the output.
Let $x=\phi(t)$ be the change of variable which is used. \var{tab}[1] contains
the integer $m$ as above, either given by the user or computed from the default
precision, and can be recomputed directly using the function \kbd{intnumstep}.
\var{tab}[2] and \var{tab}[3] contain respectively the abscissa and weight
corresponding to $t=0$ ($\phi(0)$ and $\phi'(0)$). \var{tab}[4] and
\var{tab}[5] contain the abscissas and weights corresponding to positive
$t=nh$ for $1\le n\le N$ and $h=1/2^m$ ($\phi(nh)$ and $\phi'(nh)$). Finally
\var{tab}[6] and \var{tab}[7] contain either the abscissas and weights
corresponding to negative $t=nh$ for $-N\le n\le -1$, or may be empty (but
not always) if $\phi(t)$ is an odd function (implicitly we would have
$\var{tab}[6]=-\var{tab}[4]$ and $\var{tab}[7]=\var{tab}[5]$).
Function: intnuminitgen
Class: basic
Section: sums
C-Name: intnuminitgen0
Prototype: VGGED0,L,D0,L,p
Help: intnuminitgen(t,a,b,ph,{m=0},{flag=0}): initialize tables for
integrations from a to b using abscissas ph(t) and weights ph'(t). Note that
there is no equal sign after the variable name t since t always goes from
-infty to +infty, but it is ph(t) which goes from a to b, and this is not
checked. If flag = 1 or 2, multiply the reserved table length by 4^flag, to
avoid corresponding error.
Doc: initialize tables for integrations from $a$ to $b$ using abscissas
$ph(t)$ and weights $ph'(t)$. Note that there is no equal sign after the
variable name $t$ since $t$ always goes from $-\infty$ to $+infty$, but it
is $ph(t)$ which goes from $a$ to $b$, and this is not checked. If \fl = 1
or 2, multiply the reserved table length by $4^{\fl}$, to avoid corresponding
error.
\synt{intnuminitgen}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b, long m, long flag, long prec}
Function: intnumromb
Class: basic
Section: sums
C-Name: intnumromb0
Prototype: V=GGED0,L,p
Help: intnumromb(X=a,b,expr,{flag=0}): numerical integration of expr (smooth in
]a,b[) from a to b with respect to X. flag is optional and mean 0: default.
expr can be evaluated exactly on [a,b]; 1: general function; 2: a or b can be
plus or minus infinity (chosen suitably), but of same sign; 3: expr has only
limits at a or b.
Wrapper: (,,G)
Description:
(gen,gen,gen,?small):gen:prec intnumromb(${3 cookie}, ${3 wrapper}, $1, $2, $4, prec)
Doc: numerical integration of
\var{expr} (smooth in $]a,b[$), with respect to $X$. This function is
deprecated, use \tet{intnum} instead.
Set $\fl=0$ (or omit it altogether) when $a$ and $b$ are not too large, the
function is smooth, and can be evaluated exactly everywhere on the interval
$[a,b]$.
If $\fl=1$, uses a general driver routine for doing numerical integration,
making no particular assumption (slow).
$\fl=2$ is tailored for being used when $a$ or $b$ are infinite. One
\emph{must} have $ab>0$, and in fact if for example $b=+\infty$, then it is
preferable to have $a$ as large as possible, at least $a\ge1$.
If $\fl=3$, the function is allowed to be undefined (but continuous) at $a$
or $b$, for example the function $\sin(x)/x$ at $x=0$.
The user should not require too much accuracy: 18 or 28 decimal digits is OK,
but not much more. In addition, analytical cleanup of the integral must have
been done: there must be no singularities in the interval or at the
boundaries. In practice this can be accomplished with a simple change of
variable. Furthermore, for improper integrals, where one or both of the
limits of integration are plus or minus infinity, the function must decrease
sufficiently rapidly at infinity. This can often be accomplished through
integration by parts. Finally, the function to be integrated should not be
very small (compared to the current precision) on the entire interval. This
can of course be accomplished by just multiplying by an appropriate constant.
Note that \idx{infinity} can be represented with essentially no loss of
accuracy by 1e1000. However beware of real underflow when dealing with
rapidly decreasing functions. For example, if one wants to compute the
$\int_0^\infty e^{-x^2}\,dx$ to 28 decimal digits, then one should set
infinity equal to 10 for example, and certainly not to 1e1000.
\synt{intnumromb}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b, long flag, long prec},
where $\kbd{eval}(x, E)$ returns the value of the function at $x$.
You may store any additional information required by \kbd{eval} in $E$, or set
it to \kbd{NULL}.
Function: intnumstep
Class: basic
Section: sums
C-Name: intnumstep
Prototype: lp
Help: intnumstep(): gives the default value of m used by all intnum and sumnum
routines, such that the integration step is 1/2^m.
Doc: give the value of $m$ used in all the
\kbd{intnum} and \kbd{sumnum} programs, hence such that the integration
step is equal to $1/2^m$.
Function: isfundamental
Class: basic
Section: number_theoretical
C-Name: gisfundamental
Prototype: G
Help: isfundamental(x): true(1) if x is a fundamental discriminant
(including 1), false(0) if not.
Description:
(int):bool Z_isfundamental($1)
(gen):gen gisfundamental($1)
Doc: true (1) if $x$ is equal to 1 or to the discriminant of a quadratic
field, false (0) otherwise.
The function accepts vector/matrices arguments, and is then applied
componentwise.
Function: ispower
Class: basic
Section: number_theoretical
C-Name: ispower
Prototype: lGDGD&
Help: ispower(x,{k},{&n}): if k > 0 is given, return true (1) if x is a k-th
power, false (0) if not. If k is omitted, return the maximal k >= 2 such
that x = n^k is a perfect power, or 0 if no such k exist.
If n is present, and the function returns a non-zero result, set n to the
k-th root of x.
Description:
(int):small Z_isanypower($1, NULL)
(int, &int):small Z_isanypower($1, &$2)
Doc: if $k$ is given, returns true (1) if $x$ is a $k$-th power, false
(0) if not.
If $k$ is omitted, only integers and fractions are allowed for $x$ and the
function returns the maximal $k \geq 2$ such that $x = n^k$ is a perfect
power, or 0 if no such $k$ exist; in particular \kbd{ispower(-1)},
\kbd{ispower(0)}, and \kbd{ispower(1)} all return $0$.
If a third argument $\&n$ is given and $x$ is indeed a $k$-th power, sets
$n$ to a $k$-th root of $x$.
\noindent For a \typ{FFELT} \kbd{x}, instead of omitting \kbd{k} (which is
not allowed for this type), it may be natural to set
\bprog
k = (x.p ^ poldegree(x.pol) - 1) / fforder(x)
@eprog
Variant: Also available is
\fun{long}{gisanypower}{GEN x, GEN *pty} ($k$ omitted).
Function: isprime
Class: basic
Section: number_theoretical
C-Name: gisprime
Prototype: GD0,L,
Help: isprime(x,{flag=0}): true(1) if x is a (proven) prime number, false(0)
if not. If flag is 0 or omitted, use a combination of algorithms. If flag is
1, the primality is certified by the Pocklington-Lehmer Test. If flag is 2,
the primality is certified using the APRCL test.
Description:
(int, ?0):bool isprime($1)
(int, 1):bool plisprime($1, 0)
(int, 2):gen plisprime($1, 1)
(gen, ?small):gen gisprime($1, $2)
Doc: true (1) if $x$ is a prime
number, false (0) otherwise. A prime number is a positive integer having
exactly two distinct divisors among the natural numbers, namely 1 and
itself.
This routine proves or disproves rigorously that a number is prime, which can
be very slow when $x$ is indeed prime and has more than $1000$ digits, say.
Use \tet{ispseudoprime} to quickly check for compositeness. See also
\kbd{factor}. It accepts vector/matrices arguments, and is then applied
componentwise.
If $\fl=0$, use a combination of Baillie-PSW pseudo primality test (see
\tet{ispseudoprime}), Selfridge ``$p-1$'' test if $x-1$ is smooth enough, and
Adleman-Pomerance-Rumely-Cohen-Lenstra (APRCL) for general $x$.
If $\fl=1$, use Selfridge-Pocklington-Lehmer ``$p-1$'' test and output a
primality certificate as follows: return
\item 0 if $x$ is composite,
\item 1 if $x$ is small enough that passing Baillie-PSW test guarantees
its primality (currently $x < 2^{64}$, as checked by Jan Feitsma),
\item $2$ if $x$ is a large prime whose primality could only sensibly be
proven (given the algorithms implemented in PARI) using the APRCL test.
\item Otherwise ($x$ is large and $x-1$ is smooth) output a three column
matrix as a primality certificate. The first column contains prime
divisors $p$ of $x-1$ (such that $\prod p^{v_p(x-1)} > x^{1/3}$), the second
the corresponding elements $a_p$ as in Proposition~8.3.1 in GTM~138 , and the
third the output of isprime(p,1).
The algorithm fails if one of the pseudo-prime factors is not prime, which is
exceedingly unlikely and well worth a bug report. Note that if you monitor
\kbd{isprime} at a high enough debug level, you may see warnings about
untested integers being declared primes. This is normal: we ask for partial
factorisations (sufficient to prove primality if the unfactored part is not
too large), and \kbd{factor} warns us that the cofactor hasn't been tested.
It may or may not be tested later, and may or may not be prime. This does
not affect the validity of the whole \kbd{isprime} procedure.
If $\fl=2$, use APRCL.
Function: ispseudoprime
Class: basic
Section: number_theoretical
C-Name: gispseudoprime
Prototype: GD0,L,
Help: ispseudoprime(x,{flag}): true(1) if x is a strong pseudoprime, false(0)
if not. If flag is 0 or omitted, use BPSW test, otherwise use strong
Rabin-Miller test for flag randomly chosen bases.
Description:
(int,?0):bool BPSW_psp($1)
(int,#small):bool millerrabin($1,$2)
(int,small):bool ispseudoprime($1, $2)
(gen,?small):bool gispseudoprime($1, $2)
Doc: true (1) if $x$ is a strong pseudo
prime (see below), false (0) otherwise. If this function returns false, $x$
is not prime; if, on the other hand it returns true, it is only highly likely
that $x$ is a prime number. Use \tet{isprime} (which is of course much
slower) to prove that $x$ is indeed prime.
The function accepts vector/matrices arguments, and is then applied
componentwise.
If $\fl = 0$, checks whether $x$ is a Baillie-Pomerance-Selfridge-Wagstaff
pseudo prime (strong Rabin-Miller pseudo prime for base $2$, followed by
strong Lucas test for the sequence $(P,-1)$, $P$ smallest positive integer
such that $P^2 - 4$ is not a square mod $x$).
There are no known composite numbers passing this test, although it is
expected that infinitely many such numbers exist. In particular, all
composites $\leq 2^{64}$ are correctly detected (checked using
\kbd{http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html}).
If $\fl > 0$, checks whether $x$ is a strong Miller-Rabin pseudo prime for
$\fl$ randomly chosen bases (with end-matching to catch square roots of $-1$).
Function: issquare
Class: basic
Section: number_theoretical
C-Name: gissquareall
Prototype: GD&
Help: issquare(x,{&n}): true(1) if x is a square, false(0) if not. If n is
given puts the exact square root there if it was computed.
Description:
(int):bool Z_issquare($1)
(mp):int gissquare($1)
(gen):gen gissquare($1)
(int, &int):bool Z_issquarerem($1, &$2)
(gen, &gen):gen gissquareall($1, &$2)
Doc: true (1) if $x$ is a square, false (0)
if not. What ``being a square'' means depends on the type of $x$: all
\typ{COMPLEX} are squares, as well as all non-negative \typ{REAL}; for
exact types such as \typ{INT}, \typ{FRAC} and \typ{INTMOD}, squares are
numbers of the form $s^2$ with $s$ in $\Z$, $\Q$ and $\Z/N\Z$ respectively.
\bprog
? issquare(3) \\ as an integer
%1 = 0
? issquare(3.) \\ as a real number
%2 = 1
? issquare(Mod(7, 8)) \\ in Z/8Z
%3 = 0
? issquare( 5 + O(13^4) ) \\ in Q_13
%4 = 0
@eprog
If $n$ is given, a square root of $x$ is put into $n$.
\bprog
? issquare(4, &n)
%1 = 1
? n
%2 = 2
? issquare([4, x^2], &n)
%3 = [1, 1] \\ both are squares
? n
%4 = [2, x] \\ the square roots
@eprog
For polynomials, either we detect that the characteristic is 2 (and check
directly odd and even-power monomials) or we assume that $2$ is invertible
and check whether squaring the truncated power series for the square root
yields the original input.
The function accepts vector/matrices arguments, and is then applied
componentwise.
Variant: Also available is \fun{GEN}{gissquare}{GEN x}.
Function: issquarefree
Class: basic
Section: number_theoretical
C-Name: gissquarefree
Prototype: G
Help: issquarefree(x): true(1) if x is squarefree, false(0) if not.
Description:
(int):bool issquarefree($1)
(gen):gen gissquarefree($1)
Doc: true (1) if $x$ is squarefree, false (0) if not. Here $x$ can be an
integer or a polynomial.
The function accepts vector/matrices arguments, and is then applied
componentwise.
Variant: For scalar arguments $x$ (\typ{INT} or \typ{POL}), the function
\fun{long}{issquarefree}{GEN x} is easier to use.
Function: kill
Class: basic
Section: programming/specific
C-Name: kill0
Prototype: vr
Help: kill(sym): restores the symbol sym to its ``undefined'' status and kill
associated help messages.
Doc: restores the symbol \kbd{sym} to its ``undefined'' status, and deletes any
help messages associated to \kbd{sym} using \kbd{addhelp}. Variable names
remain known to the interpreter and keep their former priority: you cannot
make a variable ``less important" by killing it!
\bprog
? z = y = 1; y
%1 = 1
? kill(y)
? y \\ restored to ``undefined'' status
%2 = y
? variable()
%3 = [x, y, z] \\ but the variable name y is still known, with y > z !
@eprog\noindent
For the same reason, killing a user function (which is an ordinary
variable holding a \typ{CLOSURE}) does not remove its name from the list of
variable names.
If the symbol is associated to a variable --- user functions being an
important special case ---, one may use the \idx{quote} operator
\kbd{a = 'a} to reset variables to their starting values. However, this
will not delete a help message associated to \kbd{a}, and is also slightly
slower than \kbd{kill(a)}.
\bprog
? x = 1; addhelp(x, "foo"); x
%1 = 1
? x = 'x; x \\ same as 'kill', except we don't delete help.
%2 = x
? ?x
foo
@eprog\noindent
On the other hand, \kbd{kill} is the only way to remove aliases and installed
functions.
\bprog
? alias(fun, sin);
? kill(fun);
? install(addii, GG);
? kill(addii);
@eprog
Function: kronecker
Class: basic
Section: number_theoretical
C-Name: gkronecker
Prototype: GG
Help: kronecker(x,y): kronecker symbol (x/y).
Description:
(small, small):small kross($1, $2)
(int, small):small krois($1, $2)
(small, int):small krosi($1, $2)
(int, int):small kronecker($1, $2)
(gen, gen):gen gkronecker($1, $2)
Doc:
\idx{Kronecker symbol} $(x|y)$, where $x$ and $y$ must be of type integer. By
definition, this is the extension of \idx{Legendre symbol} to $\Z \times \Z$
by total multiplicativity in both arguments with the following special rules
for $y = 0, -1$ or $2$:
\item $(x|0) = 1$ if $|x| = 1$ and $0$ otherwise.
\item $(x|-1) = 1$ if $x \geq 0$ and $-1$ otherwise.
\item $(x|2) = 0$ if $x$ is even and $1$ if $x = 1,-1 \mod 8$ and $-1$
if $x=3,-3 \mod 8$.
Function: lcm
Class: basic
Section: number_theoretical
C-Name: glcm0
Prototype: GDG
Help: lcm(x,{y}): least common multiple of x and y, i.e. x*y / gcd(x,y).
Description:
(int, int):int lcmii($1, $2)
(gen):gen glcm0($1, NULL)
(gen, gen):gen glcm($1, $2)
Doc: least common multiple of $x$ and $y$, i.e.~such
that $\lcm(x,y)*\gcd(x,y) = \text{abs}(x*y)$. If $y$ is omitted and $x$
is a vector, returns the $\text{lcm}$ of all components of $x$.
When $x$ and $y$ are both given and one of them is a vector/matrix type,
the LCM is again taken recursively on each component, but in a different way.
If $y$ is a vector, resp.~matrix, then the result has the same type as $y$,
and components equal to \kbd{lcm(x, y[i])}, resp.~\kbd{lcm(x, y[,i])}. Else
if $x$ is a vector/matrix the result has the same type as $x$ and an
analogous definition. Note that for these types, \kbd{lcm} is not
commutative.
Note that \kbd{lcm(v)} is quite different from
\bprog
l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))
@eprog\noindent
Indeed, \kbd{lcm(v)} is a scalar, but \kbd{l} may not be (if one of
the \kbd{v[i]} is a vector/matrix). The computation uses a divide-conquer tree
and should be much more efficient, especially when using the GMP
multiprecision kernel (and more subquadratic algorithms become available):
\bprog
? v = vector(10^4, i, random);
? lcm(v);
time = 323 ms.
? l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))
time = 833 ms.
@eprog
Function: length
Class: basic
Section: conversions
C-Name: glength
Prototype: lG
Help: length(x): number of non code words in x, number of characters for a
string.
Description:
(vecsmall):lg lg($1)
(vec):lg lg($1)
(pol):small lgpol($1)
(gen):small glength($1)
Doc: length of $x$; \kbd{\#}$x$ is a shortcut for \kbd{length}$(x)$.
This is mostly useful for
\item vectors: dimension (0 for empty vectors),
\item lists: number of entries (0 for empty lists),
\item matrices: number of columns,
\item character strings: number of actual characters (without
trailing \kbd{\bs 0}, should you expect it from $C$ \kbd{char*}).
\bprog
? #"a string"
%1 = 8
? #[3,2,1]
%2 = 3
? #[]
%3 = 0
? #matrix(2,5)
%4 = 5
? L = List([1,2,3,4]); #L
%5 = 4
@eprog
The routine is in fact defined for arbitrary GP types, but is awkward and
useless in other cases: it returns the number of non-code words in $x$, e.g.
the effective length minus 2 for integers since the \typ{INT} type has two code
words.
Function: lex
Class: basic
Section: operators
C-Name: lexcmp
Prototype: iGG
Help: lex(x,y): compare x and y lexicographically (1 if x>y, 0 if x=y, -1 if
x<y)
Doc: gives the result of a lexicographic comparison
between $x$ and $y$ (as $-1$, $0$ or $1$). This is to be interpreted in quite
a wide sense: It is admissible to compare objects of different types
(scalars, vectors, matrices), provided the scalars can be compared, as well
as vectors/matrices of different lengths. The comparison is recursive.
In case all components are equal up to the smallest length of the operands,
the more complex is considered to be larger. More precisely, the longest is
the largest; when lengths are equal, we have matrix $>$ vector $>$ scalar.
For example:
\bprog
? lex([1,3], [1,2,5])
%1 = 1
? lex([1,3], [1,3,-1])
%2 = -1
? lex([1], [[1]])
%3 = -1
? lex([1], [1]~)
%4 = 0
@eprog
Function: lift
Class: basic
Section: conversions
C-Name: lift0
Prototype: GDn
Help: lift(x,{v}): lifts every element of Z/nZ to Z or T[x]/PT[x] to T[x]
for a type T if v is omitted, otherwise lift only polmods with main
variable v. If v does not occur in x, lift only intmods.
Description:
(pol):pol lift($1)
(vec):vec lift($1)
(gen):gen lift($1)
(pol, var):pol lift0($1, $2)
(vec, var):vec lift0($1, $2)
(gen, var):gen lift0($1, $2)
Doc: lifts an element $x=a \bmod n$ of $\Z/n\Z$ to
$a$ in $\Z$, and similarly lifts a polmod to a polynomial if $v$ is omitted.
Otherwise, lifts only polmods whose modulus has main variable $v$ (if $v$
does not occur in $x$, lifts only intmods). If $x$ is of recursive (non
modular) type, the lift is done coefficientwise. For $p$-adics, this routine
acts as \tet{truncate}. It is not allowed to have $x$ of type \typ{REAL}.
\bprog
? lift(Mod(5,3))
%1 = 2
? lift(3 + O(3^9))
%2 = 3
? lift(Mod(x,x^2+1))
%3 = x
? lift(x * Mod(1,3) + Mod(2,3))
%4 = x + 2
? lift(x * Mod(y,y^2+1) + Mod(2,3))
%5 = y*x + Mod(2, 3) \\@com do you understand this one ?
? lift(x * Mod(y,y^2+1) + Mod(2,3), x)
%6 = Mod(y, y^2+1) * x + Mod(2, y^2+1)
@eprog
Variant: Also available is \fun{GEN}{lift}{GEN x} corresponding to
\kbd{lift0(x,-1)}.
Function: lindep
Class: basic
Section: linear_algebra
C-Name: lindep0
Prototype: GD0,L,
Help: lindep(x,{flag=0}): Z-linear dependencies between components of x.
flag is optional, and can be 0: default, uses a standard LLL; -1: uses
Hastad et al; -2: returns a non-trivial kernel vector (not integral in
general); -3: uses PSLQ; or positive, using LLL with 'flag' many digits of
accuracy, which should be less than the input accuracy.
Doc: \sidx{linear dependence}$x$ being a
vector with $p$-adic or real/complex coefficients, finds a small integral
linear combination among these coefficients.
If $x$ is $p$-adic, $\fl$ is meaningless and the algorithm LLL-reduces a
suitable (dual) lattice.
Otherwise, the value of $\fl$ determines the algorithm used; in the current
version of PARI, we suggest to use \emph{non-negative} values, since it is by
far the fastest and most robust implementation. See the detailed example in
\secref{se:algdep} (\kbd{algdep}).
If $\fl\geq 0$, uses a floating point (variable precision) LLL algorithm.
This is in general much faster than the other variants.
If $\fl = 0$ the accuracy is chosen internally using a crude heuristic.
If $\fl > 0$ the computation is done with an accuracy of $\fl$ decimal digits.
To get meaningful results in the latter case, the parameter $\fl$ should be
smaller than the number of correct decimal digits in the input.
If $\fl=-1$, uses a variant of the \idx{LLL} algorithm due to Hastad,
Lagarias and Schnorr (STACS 1986). If the precision is too low, the routine
may enter an infinite loop. Faster than the alternatives if it converges,
especially when the accuracy is much larger than what is really necessary;
usually diverges, though.
If $\fl=-2$, $x$ is allowed to be (and in any case interpreted as) a matrix.
Returns a non trivial element of the kernel of $x$, or $0$ if $x$ has trivial
kernel. The element is defined over the field of coefficients of $x$, and is
in general not integral.
If $\fl=-3$, uses the PSLQ algorithm. This may return a real number $B$,
indicating that the input accuracy was exhausted and that no relation exist
whose sup norm is less than $B$.
If $\fl=-4$, uses an experimental 2-level PSLQ, which does not work at all.
Don't use it!
Variant: Also available are \fun{GEN}{lindep}{GEN x} ($\fl=0$)
\fun{GEN}{lindep2}{GEN x, long bit} ($\fl\geq 0$, bypasses the check for
$p$-adic inputs) and \fun{GEN}{deplin}{GEN x} ($\fl=-2$).
Function: listcreate
Class: basic
Section: linear_algebra
C-Name: listcreate
Prototype: D0,L,
Help: listcreate(): creates an empty list.
Description:
(?gen):list listcreate()
Doc: creates an empty list. This routine used to have a mandatory argument,
which is now ignored (for backward compatibility). In fact, this function
has become redundant and obsolete; it will disappear in future versions of
PARI: just use \kbd{List()}
% \syn{NO}
Function: listinsert
Class: basic
Section: linear_algebra
C-Name: listinsert
Prototype: WGL
Help: listinsert(L,x,n): insert x at index n in list L, shifting the
remaining elements to the right.
Description:
(list, gen, small):gen listinsert($1, $2, $3)
Doc: inserts the object $x$ at
position $n$ in $L$ (which must be of type \typ{LIST}). This has
complexity $O(\#L - n + 1)$: all the
remaining elements of \var{list} (from position $n+1$ onwards) are shifted
to the right.
Function: listkill
Class: basic
Section: linear_algebra
C-Name: listkill
Prototype: vG
Help: listkill(L): obsolete, retained for backward compatibility.
Doc: obsolete, retained for backward compatibility. Just use \kbd{L = List()}
instead of \kbd{listkill(L)}. In most cases, you won't even need that, e.g.
local variables are automatically cleared when a user function returns.
Function: listpop
Class: basic
Section: linear_algebra
C-Name: listpop
Prototype: vWD0,L,
Help: listpop(list,{n}): removes n-th element from list. If n is
omitted or greater than the current list length, removes last element.
Description:
(list, small):void listpop($1, $2)
Doc:
removes the $n$-th element of the list
\var{list} (which must be of type \typ{LIST}). If $n$ is omitted,
or greater than the list current length, removes the last element.
This runs in time $O(\#L - n + 1)$.
Function: listput
Class: basic
Section: linear_algebra
C-Name: listput
Prototype: WGD0,L,
Help: listput(list,x,{n}): sets n-th element of list equal to x. If n is
omitted or greater than the current list length, appends x.
Description:
(list, gen, small):gen listput($1, $2, $3)
Doc:
sets the $n$-th element of the list
\var{list} (which must be of type \typ{LIST}) equal to $x$. If $n$ is omitted,
or greater than the list length, appends $x$.
You may put an element into an occupied cell (not changing the
list length), but it is easier to use the standard \kbd{list[n] = x}
construct. This runs in time $O(\#L)$ in the worst case (when the list must
be reallocated), but in time $O(1)$ on average: any number of successive
\kbd{listput}s run in time $O(\#L)$, where $\#L$ denotes the list
\emph{final} length.
Function: listsort
Class: basic
Section: linear_algebra
C-Name: listsort
Prototype: vWD0,L,
Help: listsort(L,{flag=0}): sort the list L in place. If flag is non-zero,
suppress all but one occurence of each element in list.
Doc: sorts the \typ{LIST} \var{list} in place. If $\fl$ is non-zero,
suppresses all repeated coefficients. This is faster than the \kbd{vecsort}
command since no copy has to be made. No value returned.
Function: lngamma
Class: basic
Section: transcendental
C-Name: glngamma
Prototype: Gp
Help: lngamma(x): logarithm of the gamma function of x.
Doc: principal branch of the logarithm of the gamma
function of $x$. This function is analytic on the complex plane with
non-positive integers removed. Can have much larger arguments than \kbd{gamma}
itself. The $p$-adic \kbd{lngamma} function is not implemented.
Function: local
Class: basic
Section: programming/specific
Help: local(x,...,z): declare x,...,z as (dynamically scoped) local variables.
Function: log
Class: basic
Section: transcendental
C-Name: glog
Prototype: Gp
Help: log(x): natural logarithm of x.
Description:
(gen):gen:prec glog($1, prec)
Doc: principal branch of the natural logarithm of
$x \in \C^*$, i.e.~such that $\text{Im(log}(x))\in{} ]-\pi,\pi]$.
The branch cut lies
along the negative real axis, continuous with quadrant 2, i.e.~such that
$\lim_{b\to 0^+} \log (a+bi) = \log a$ for $a \in\R^*$. The result is complex
(with imaginary part equal to $\pi$) if $x\in \R$ and $x < 0$. In general,
the algorithm uses the formula
$$\log(x) \approx {\pi\over 2\text{agm}(1, 4/s)} - m \log 2, $$
if $s = x 2^m$ is large enough. (The result is exact to $B$ bits provided
$s > 2^{B/2}$.) At low accuracies, the series expansion near $1$ is used.
$p$-adic arguments are also accepted for $x$, with the convention that
$\log(p)=0$. Hence in particular $\exp(\log(x))/x$ is not in general equal to
1 but to a $(p-1)$-th root of unity (or $\pm1$ if $p=2$) times a power of $p$.
Variant: For a \typ{PADIC} $x$, the function
\fun{GEN}{Qp_log}{GEN x} is also available.
Function: matadjoint
Class: basic
Section: linear_algebra
C-Name: matadjoint0
Prototype: GD0,L,
Help: matadjoint(x,{flag=0}): adjoint matrix of x. If flag is 0 or omitted,
n! must be invertible, where n is the dimension of the matrix. If flag is 1,
uses a slower division-free algorithm.
Doc:
\idx{adjoint matrix} of $x$, i.e.~the matrix $y$
of cofactors of $x$, satisfying $x*y=\det(x)*\Id$. $x$ must be a
(non-necessarily invertible) square matrix of dimension $n$.
If $\fl$ is 0 or omitted, use a fast algorithm which assumes that $n!$ is
invertible. If $\fl$ is 1, use a slower division-free algorithm.
\bprog
? a = [1,2,3;3,4,5;6,7,8] * Mod(1,2);
? matadjoint(a)
*** at top-level: matadjoint([1,2,3;3,
*** ^--------------------
*** matadjoint: impossible inverse modulo: Mod(0, 2).
? matadjoint(a, 1) \\ use safe algorithm
%2 =
[Mod(1, 2) Mod(1, 2) Mod(0, 2)]
[Mod(0, 2) Mod(0, 2) Mod(0, 2)]
[Mod(1, 2) Mod(1, 2) Mod(0, 2)]
@eprog\noindent
Both algorithms use $O(n^4)$ operations in the base ring.
Variant: Also available are
\fun{GEN}{adj}{GEN x} (\fl=0) and
\fun{GEN}{adjsafe}{GEN x} (\fl=1).
Function: matalgtobasis
Class: basic
Section: number_fields
C-Name: matalgtobasis
Prototype: GG
Help: matalgtobasis(nf,x): nfalgtobasis applied to every element of the
vector or matrix x.
Doc: $\var{nf}$ being a number field in \kbd{nfinit} format, and $x$ a
(row or column) vector or matrix, apply \tet{nfalgtobasis} to each entry
of $x$.
Function: matbasistoalg
Class: basic
Section: number_fields
C-Name: matbasistoalg
Prototype: GG
Help: matbasistoalg(nf,x): nfbasistoalg applied to every element of the
matrix or vector x.
Doc: $\var{nf}$ being a number field in \kbd{nfinit} format, and $x$ a
(row or column) vector or matrix, apply \tet{nfbasistoalg} to each entry
of $x$.
Function: matcompanion
Class: basic
Section: linear_algebra
C-Name: matcompanion
Prototype: G
Help: matcompanion(x): companion matrix to polynomial x.
Doc:
the left companion matrix to the polynomial $x$.
Function: matdet
Class: basic
Section: linear_algebra
C-Name: det0
Prototype: GD0,L,
Help: matdet(x,{flag=0}): determinant of the matrix x using Gauss-Bareiss.
If (optional) flag is set to 1, use classical Gaussian elimination (slightly
better for integer entries).
Description:
(gen, ?0):gen det($1)
(gen, 1):gen det2($1)
(gen, #small):gen $"incorrect flag in matdet"
(gen, small):gen det0($1, $2)
Doc: determinant of $x$. $x$ must be a square matrix.
If $\fl=0$, uses Gauss-Bareiss.
If $\fl=1$, uses classical Gaussian elimination, which is better when the
entries of the matrix are reals or integers for example, but usually much
worse for more complicated entries like multivariate polynomials.
Variant: Also available are \fun{GEN}{det}{GEN x} ($\fl=0$) and
\fun{GEN}{det2}{GEN x} ($\fl=1$).
Function: matdetint
Class: basic
Section: linear_algebra
C-Name: detint
Prototype: G
Help: matdetint(x): some multiple of the determinant of the lattice
generated by the columns of x (0 if not of maximal rank). Useful with
mathnfmod.
Doc:
$x$ being an $m\times n$ matrix with integer
coefficients, this function computes a non-zero \emph{multiple} of the
determinant of
the lattice generated by the columns of $x$ if it has maximal rank $m$, and
returns zero otherwise, using the Gauss-Bareiss algorithm. When $x$ is square,
the exact determinant is obtained.
This function is useful in conjunction with \kbd{mathnfmod}, which needs to
know such a multiple. If the rank is maximal and the matrix non-square,
you can obtain the exact determinant using
\bprog
matdet( mathnfmod(x, matdetint(x)) )
@eprog\noindent
Note that as soon as one of the dimensions gets large ($m$ or $n$ is larger
than 20, say), it will often be much faster to use \kbd{mathnf(x, 1)} or
\kbd{mathnf(x, 4)} directly.
Function: matdiagonal
Class: basic
Section: linear_algebra
C-Name: diagonal
Prototype: G
Help: matdiagonal(x): creates the diagonal matrix whose diagonal entries are
the entries of the vector x.
Doc: $x$ being a vector, creates the diagonal matrix
whose diagonal entries are those of $x$.
Function: mateigen
Class: basic
Section: linear_algebra
C-Name: eigen
Prototype: Gp
Help: mateigen(x): eigenvectors of the matrix x given as columns of a matrix.
Doc: gives the eigenvectors of $x$ as columns of a matrix.
Function: matfrobenius
Class: basic
Section: linear_algebra
C-Name: matfrobenius
Prototype: GD0,L,Dn
Help: matfrobenius(M,{flag},{v=x}): Return the Frobenius form of the square
matrix M. If flag is 1, return only the elementary divisors as a vector of
polynomials in the variable v. If flag is 2, return a two-components vector
[F,B] where F is the Frobenius form and B is the basis change so that
M=B^-1*F*B.
Doc: returns the Frobenius form of
the square matrix \kbd{M}. If $\fl=1$, returns only the elementary divisors as
a vector of polynomials in the variable \kbd{v}. If $\fl=2$, returns a
two-components vector [F,B] where \kbd{F} is the Frobenius form and \kbd{B} is
the basis change so that $M=B^{-1}FB$.
Function: mathess
Class: basic
Section: linear_algebra
C-Name: hess
Prototype: G
Help: mathess(x): Hessenberg form of x.
Doc: returns a matrix similar to the square matrix $x$, which is in upper Hessenberg
form (zero entries below the first subdiagonal).
Function: mathilbert
Class: basic
Section: linear_algebra
C-Name: mathilbert
Prototype: L
Help: mathilbert(n): Hilbert matrix of order n.
Doc: $x$ being a \kbd{long}, creates the
\idx{Hilbert matrix}of order $x$, i.e.~the matrix whose coefficient
($i$,$j$) is $1/ (i+j-1)$.
Function: mathnf
Class: basic
Section: linear_algebra
C-Name: mathnf0
Prototype: GD0,L,
Help: mathnf(x,{flag=0}): (upper triangular) Hermite normal form of x, basis
for the lattice formed by the columns of x. flag is optional whose value
range from 0 to 4 (0 if omitted), meaning : 0: naive algorithm. 1: as 0, but
output 2-component vector [H,U] such that H is the HNF of
x, and U is a unimodular matrix such that XU=H. 3: Batut's algorithm:
output [H,U,P] where P is a permutation matrix such that P x U = H. 4:
as 1, using a heuristic variant of LLL reduction along the way.
Doc: if $x$ is a (not necessarily square)
matrix with integer entries, finds the \emph{upper triangular}
\idx{Hermite normal form} of $x$. If the rank of $x$ is equal to its number
of rows, the result is a square matrix. In general, the columns of the result
form a basis of the lattice spanned by the columns of $x$.
If $\fl=0$, uses the naive algorithm. This is in general fastest but may
require too much memory as the dimension gets large (bigger than 100, say),
in which case you may try \kbd{mathnfmod(x, matdetint(x))} when $x$ has
maximal rank, and \kbd{mathnf(x, 4)} otherwise.
If $\fl=1$, outputs a two-component row vector $[H,U]$, where $H$ is the
Hermite normal form of $x$ defined as above, and $U$ is the
unimodular transformation matrix such that $xU=[0|H]$. When the kernel is
large, $U$ has in general huge coefficients. In the worst case, the
running time is exponential with respect to the dimension, but the
routine behaves well in small dimension (less than 50 or 100, say).
If $\fl=3$, uses Batut's algorithm and output $[H,U,P]$, such that $H$ and
$U$ are as before and $P$ is a permutation of the rows such that $P$ applied
to $xU$ gives $H$. This is in general slower than $\fl=1$ but the matrix $U$
is smaller; it may still be large.
If $\fl=4$, as in case 1 above, but uses a variant of \idx{LLL}
reduction along the way. The matrix $U$ is in general close to optimal (in
terms of smallest $L_2$ norm), but the reduction is in general slow,
although provably polynomial-time.
Variant: Also available are \fun{GEN}{hnf}{GEN x} ($\fl=0$) and
\fun{GEN}{hnfall}{GEN x} ($\fl=1$). To reduce \emph{huge} (say $400 \times
400$ and more) relation matrices (sparse with small entries), you can use
the pair \kbd{hnfspec} / \kbd{hnfadd}. Since this is quite technical and
the calling interface may change, they are not documented yet. Look at the
code in \kbd{basemath/alglin1.c}.
Function: mathnfmod
Class: basic
Section: linear_algebra
C-Name: hnfmod
Prototype: GG
Help: mathnfmod(x,d): (upper triangular) Hermite normal form of x, basis for
the lattice formed by the columns of x, where d is a multiple of the
non-zero determinant of this lattice.
Doc: if $x$ is a (not necessarily square) matrix of
maximal rank with integer entries, and $d$ is a multiple of the (non-zero)
determinant of the lattice spanned by the columns of $x$, finds the
\emph{upper triangular} \idx{Hermite normal form} of $x$.
If the rank of $x$ is equal to its number of rows, the result is a square
matrix. In general, the columns of the result form a basis of the lattice
spanned by the columns of $x$. Even when $d$ is known, this is in general
slower than \kbd{mathnf} but uses much less memory.
Function: mathnfmodid
Class: basic
Section: linear_algebra
C-Name: hnfmodid
Prototype: GG
Help: mathnfmodid(x,d): (upper triangular) Hermite normal form of x
concatenated with d times the identity matrix.
Doc: outputs the (upper triangular)
\idx{Hermite normal form} of $x$ concatenated with $d$ times
the identity matrix. Assumes that $x$ has integer entries.
Function: matid
Class: basic
Section: linear_algebra
C-Name: matid
Prototype: L
Help: matid(n): identity matrix of order n.
Description:
(small):vec matid($1)
Doc: creates the $n\times n$ identity matrix.
Function: matimage
Class: basic
Section: linear_algebra
C-Name: matimage0
Prototype: GD0,L,
Help: matimage(x,{flag=0}): basis of the image of the matrix x. flag is
optional and can be set to 0 or 1, corresponding to two different algorithms.
Doc: gives a basis for the image of the
matrix $x$ as columns of a matrix. A priori the matrix can have entries of
any type. If $\fl=0$, use standard Gauss pivot. If $\fl=1$, use
\kbd{matsupplement} (much slower: keep the default flag!).
Variant: Also available is \fun{GEN}{image}{GEN x} ($\fl=0$).
Function: matimagecompl
Class: basic
Section: linear_algebra
C-Name: imagecompl
Prototype: G
Help: matimagecompl(x): vector of column indices not corresponding to the
indices given by the function matimage.
Doc: gives the vector of the column indices which
are not extracted by the function \kbd{matimage}. Hence the number of
components of \kbd{matimagecompl(x)} plus the number of columns of
\kbd{matimage(x)} is equal to the number of columns of the matrix $x$.
Function: matindexrank
Class: basic
Section: linear_algebra
C-Name: indexrank
Prototype: G
Help: matindexrank(x): gives two extraction vectors (rows and columns) for
the matrix x such that the extracted matrix is square of maximal rank.
Doc: $x$ being a matrix of rank $r$, returns a vector with two
\typ{VECSMALL} components $y$ and $z$ of length $r$ giving a list of rows
and columns respectively (starting from 1) such that the extracted matrix
obtained from these two vectors using $\tet{vecextract}(x,y,z)$ is
invertible.
Function: matintersect
Class: basic
Section: linear_algebra
C-Name: intersect
Prototype: GG
Help: matintersect(x,y): intersection of the vector spaces whose bases are
the columns of x and y.
Doc: $x$ and $y$ being two matrices with the same
number of rows each of whose columns are independent, finds a basis of the
$\Q$-vector space equal to the intersection of the spaces spanned by the
columns of $x$ and $y$ respectively. The faster function
\tet{idealintersect} can be used to intersect fractional ideals (projective
$\Z_K$ modules of rank $1$); the slower but much more general function
\tet{nfhnf} can be used to intersect general $\Z_K$-modules.
Function: matinverseimage
Class: basic
Section: linear_algebra
C-Name: inverseimage
Prototype: GG
Help: matinverseimage(x,y): an element of the inverse image of the vector y
by the matrix x if one exists, the empty vector otherwise.
Doc: given a matrix $x$ and
a column vector or matrix $y$, returns a preimage $z$ of $y$ by $x$ if one
exists (i.e such that $x z = y$), an empty vector or matrix otherwise. The
complete inverse image is $z + \text{Ker} x$, where a basis of the kernel of
$x$ may be obtained by \kbd{matker}.
\bprog
? M = [1,2;2,4];
? matinverseimage(M, [1,2]~)
%2 = [1, 0]~
? matinverseimage(M, [3,4]~)
%3 = []~ \\@com no solution
? matinverseimage(M, [1,3,6;2,6,12])
%4 =
[1 3 6]
[0 0 0]
? matinverseimage(M, [1,2;3,4])
%5 = [;] \\@com no solution
? K = matker(M)
%6 =
[-2]
[1]
@eprog
Function: matisdiagonal
Class: basic
Section: linear_algebra
C-Name: isdiagonal
Prototype: iG
Help: matisdiagonal(x): true(1) if x is a diagonal matrix, false(0)
otherwise.
Doc: returns true (1) if $x$ is a diagonal matrix, false (0) if not.
Function: matker
Class: basic
Section: linear_algebra
C-Name: matker0
Prototype: GD0,L,
Help: matker(x,{flag=0}): basis of the kernel of the matrix x. flag is
optional, and may be set to 0: default; non-zero: x is known to have
integral entries.
Doc: gives a basis for the kernel of the matrix $x$ as columns of a matrix.
The matrix can have entries of any type, provided they are compatible with
the generic arithmetic operations ($+$, $\times$ and $/$).
If $x$ is known to have integral entries, set $\fl=1$.
Variant: Also available are \fun{GEN}{ker}{GEN x} ($\fl=0$),
\fun{GEN}{keri}{GEN x} ($\fl=1$).
Function: matkerint
Class: basic
Section: linear_algebra
C-Name: matkerint0
Prototype: GD0,L,
Help: matkerint(x,{flag=0}): LLL-reduced Z-basis of the kernel of the matrix
x with integral entries. flag is optional, and may be set to 0: default,
uses LLL, 1: uses matrixqz (much slower).
Doc: gives an \idx{LLL}-reduced $\Z$-basis
for the lattice equal to the kernel of the matrix $x$ as columns of the
matrix $x$ with integer entries (rational entries are not permitted).
If $\fl=0$, uses an integer LLL algorithm.
If $\fl=1$, uses $\kbd{matrixqz}(x,-2)$. Many orders of magnitude slower
than the default: never use this.
Variant: See also \fun{GEN}{kerint}{GEN x} ($\fl=0$), which is a trivial
wrapper around
\bprog
ZM_lll(ZM_lll(x, 0.99, LLL_KER), 0.99, LLL_INPLACE);
@eprog\noindent Remove the outermost \kbd{ZM\_lll} if LLL-reduction is not
desired (saves time).
Function: matmuldiagonal
Class: basic
Section: linear_algebra
C-Name: matmuldiagonal
Prototype: GG
Help: matmuldiagonal(x,d): product of matrix x by diagonal matrix whose
diagonal coefficients are those of the vector d, equivalent but faster than
x*matdiagonal(d).
Doc: product of the matrix $x$ by the diagonal
matrix whose diagonal entries are those of the vector $d$. Equivalent to,
but much faster than $x*\kbd{matdiagonal}(d)$.
Function: matmultodiagonal
Class: basic
Section: linear_algebra
C-Name: matmultodiagonal
Prototype: GG
Help: matmultodiagonal(x,y): product of matrices x and y, knowing that the
result will be a diagonal matrix. Much faster than general multiplication in
that case.
Doc: product of the matrices $x$ and $y$ assuming that the result is a
diagonal matrix. Much faster than $x*y$ in that case. The result is
undefined if $x*y$ is not diagonal.
Function: matpascal
Class: basic
Section: linear_algebra
C-Name: matqpascal
Prototype: LDG
Help: matpascal(n,{q}): Pascal triangle of order n if q is omited. q-Pascal
triangle otherwise.
Doc: creates as a matrix the lower triangular
\idx{Pascal triangle} of order $x+1$ (i.e.~with binomial coefficients
up to $x$). If $q$ is given, compute the $q$-Pascal triangle (i.e.~using
$q$-binomial coefficients).
Variant: Also available is \fun{GEN}{matpascal}{GEN x}.
Function: matrank
Class: basic
Section: linear_algebra
C-Name: rank
Prototype: lG
Help: matrank(x): rank of the matrix x.
Doc: rank of the matrix $x$.
Function: matrix
Class: basic
Section: linear_algebra
C-Name: matrice
Prototype: GGDVDVDE
Help: matrix(m,n,{X},{Y},{expr=0}): mXn matrix of expression expr, the row
variable X going from 1 to m and the column variable Y going from 1 to n. By
default, fill with 0s.
Doc: creation of the
$m\times n$ matrix whose coefficients are given by the expression
\var{expr}. There are two formal parameters in \var{expr}, the first one
($X$) corresponding to the rows, the second ($Y$) to the columns, and $X$
goes from 1 to $m$, $Y$ goes from 1 to $n$. If one of the last 3 parameters
is omitted, fill the matrix with zeroes.
%\syn{NO}
Function: matrixqz
Class: basic
Section: linear_algebra
C-Name: matrixqz0
Prototype: GDG
Help: matrixqz(A,{p=0}): if p>=0, transforms the rational or integral mxn (m>=n)
matrix A into an integral matrix with gcd of maximal determinants coprime to
p. If p=-1, finds a basis of the intersection with Z^n of the lattice spanned
by the columns of A. If p=-2, finds a basis of the intersection with Z^n of
the Q-vector space spanned by the columns of A.
Doc: $A$ being an $m\times n$ matrix in $M_{m,n}(\Q)$, let
$\text{Im}_\Q A$ (resp.~$\text{Im}_\Z A$) the $\Q$-vector space
(resp.~the $\Z$-module) spanned by the columns of $A$. This function has
varying behavior depending on the sign of $p$:
If $p \geq 0$, $A$ is assumed to have maximal rank $n\leq m$. The function
returns a matrix $B\in M_{m,n}(\Z)$, with $\text{Im}_\Q B = \text{Im}_\Q A$,
such that the GCD of all its $n\times n$ minors is coprime to
$p$; in particular, if $p = 0$ (default), this GCD is $1$.
\bprog
? minors(x) = vector(#x[,1], i, matdet( vecextract(x, Str("^",i), "..") ));
? A = [3,1/7; 5,3/7; 7,5/7]; minors(A)
%1 = [4/7, 8/7, 4/7] \\ determinants of all 2x2 minors
? B = matrixqz(A)
%2 =
[3 1]
[5 2]
[7 3]
? minors(%)
%3 = [1, 2, 1] \\ B integral with coprime minors
@eprog
If $p=-1$, returns the HNF basis of the lattice $\Z^n \cap \text{Im}_\Z A$.
If $p=-2$, returns the HNF basis of the lattice $\Z^n \cap \text{Im}_\Q A$.
\bprog
? matrixqz(A,-1)
%4 =
[8 5]
[4 3]
[0 1]
? matrixqz(A,-2)
%5 =
[2 -1]
[1 0]
[0 1]
@eprog
Function: matsize
Class: basic
Section: linear_algebra
C-Name: matsize
Prototype: G
Help: matsize(x): number of rows and columns of the vector/matrix x as a
2-vector.
Doc: $x$ being a vector or matrix, returns a row vector
with two components, the first being the number of rows (1 for a row vector),
the second the number of columns (1 for a column vector).
Function: matsnf
Class: basic
Section: linear_algebra
C-Name: matsnf0
Prototype: GD0,L,
Help: matsnf(X,{flag=0}): Smith normal form (i.e. elementary divisors) of
the matrix X, expressed as a vector d. Binary digits of flag mean 1: returns
[u,v,d] where d=u*X*v, otherwise only the diagonal d is returned, 2: allow
polynomial entries, otherwise assume X is integral, 4: removes all
information corresponding to entries equal to 1 in d.
Doc: if $X$ is a (singular or non-singular) matrix outputs the vector of
\idx{elementary divisors} of $X$, i.e.~the diagonal of the
\idx{Smith normal form} of $X$, normalized so that $d_n \mid d_{n-1} \mid
\ldots \mid d_1$.
The binary digits of \fl\ mean:
1 (complete output): if set, outputs $[U,V,D]$, where $U$ and $V$ are two
unimodular matrices such that $UXV$ is the diagonal matrix $D$. Otherwise
output only the diagonal of $D$. If $X$ is not a square matrix, then $D$
will be a square diagonal matrix padded with zeros on the left or the top.
2 (generic input): if set, allows polynomial entries, in which case the
input matrix must be square. Otherwise, assume that $X$ has integer
coefficients with arbitrary shape.
4 (cleanup): if set, cleans up the output. This means that elementary
divisors equal to $1$ will be deleted, i.e.~outputs a shortened vector $D'$
instead of $D$. If complete output was required, returns $[U',V',D']$ so
that $U'XV' = D'$ holds. If this flag is set, $X$ is allowed to be of the
form `vector of elementary divisors' or $[U,V,D]$ as would normally be output with the cleanup flag
unset.
Function: matsolve
Class: basic
Section: linear_algebra
C-Name: gauss
Prototype: GG
Help: matsolve(M,B): Gaussian solution of MX=B (M matrix, B column vector).
Doc: $M$ being an invertible matrix and $B$ a column
vector, finds the solution $X$ of $MX=B$, using Gaussian elimination. This
has the same effect as, but is a bit faster, than $M^{-1}*B$.
Function: matsolvemod
Class: basic
Section: linear_algebra
C-Name: matsolvemod0
Prototype: GGGD0,L,
Help: matsolvemod(M,D,B,{flag=0}): one solution of system of congruences
MX=B mod D (M matrix, B and D column vectors). If (optional) flag is
non-null return all solutions.
Doc: $M$ being any integral matrix,
$D$ a column vector of non-negative integer moduli, and $B$ an integral
column vector, gives a small integer solution to the system of congruences
$\sum_i m_{i,j}x_j\equiv b_i\pmod{d_i}$ if one exists, otherwise returns
zero. Shorthand notation: $B$ (resp.~$D$) can be given as a single integer,
in which case all the $b_i$ (resp.~$d_i$) above are taken to be equal to $B$
(resp.~$D$).
\bprog
? M = [1,2;3,4];
? matsolvemod(M, [3,4]~, [1,2]~)
%2 = [-2, 0]~
? matsolvemod(M, 3, 1) \\ M X = [1,1]~ over F_3
%3 = [-1, 1]~
? matsolvemod(M, [3,0]~, [1,2]~) \\ x + 2y = 1 (mod 3), 3x + 4y = 2 (in Z)
%4 = [6, -4]~
@eprog
If $\fl=1$, all solutions are returned in the form of a two-component row
vector $[x,u]$, where $x$ is a small integer solution to the system of
congruences and $u$ is a matrix whose columns give a basis of the homogeneous
system (so that all solutions can be obtained by adding $x$ to any linear
combination of columns of $u$). If no solution exists, returns zero.
Variant: Also available are \fun{GEN}{gaussmodulo}{GEN M, GEN D, GEN B}
($\fl=0$) and \fun{GEN}{gaussmodulo2}{GEN M, GEN D, GEN B} ($\fl=1$).
Function: matsupplement
Class: basic
Section: linear_algebra
C-Name: suppl
Prototype: G
Help: matsupplement(x): supplement the columns of the matrix x to an
invertible matrix.
Doc: assuming that the columns of the matrix $x$
are linearly independent (if they are not, an error message is issued), finds
a square invertible matrix whose first columns are the columns of $x$,
i.e.~supplement the columns of $x$ to a basis of the whole space.
Function: mattranspose
Class: basic
Section: linear_algebra
C-Name: gtrans
Prototype: G
Help: mattranspose(x): x~ = transpose of x.
Doc: transpose of $x$ (also $x\til$).
This has an effect only on vectors and matrices.
Function: max
Class: basic
Section: operators
C-Name: gmax
Prototype: GG
Help: max(x,y): maximum of x and y
Description:
(small, small):small maxss($1, $2)
(small, int):int gmaxsg($1, $2)
(int, small):int gmaxgs($1, $2)
(int, int):int gmax($1, $2)
(small, mp):mp gmaxsg($1, $2)
(mp, small):mp gmaxgs($1, $2)
(mp, mp):mp gmax($1, $2)
(small, gen):gen gmaxsg($1, $2)
(gen, small):gen gmaxgs($1, $2)
(gen, gen):gen gmax($1, $2)
Doc: creates the maximum of $x$ and $y$ when they can be compared.
Function: min
Class: basic
Section: operators
C-Name: gmin
Prototype: GG
Help: min(x,y): minimum of x and y
Description:
(small, small):small minss($1, $2)
(small, int):int gminsg($1, $2)
(int, small):int gmings($1, $2)
(int, int):int gmin($1, $2)
(small, mp):mp gminsg($1, $2)
(mp, small):mp gmings($1, $2)
(mp, mp):mp gmin($1, $2)
(small, gen):gen gminsg($1, $2)
(gen, small):gen gmings($1, $2)
(gen, gen):gen gmin($1, $2)
Doc: creates the minimum of $x$ and $y$ when they can be compared.
Function: minpoly
Class: basic
Section: linear_algebra
C-Name: minpoly
Prototype: GDn
Help: minpoly(A,{v=x}): minimal polynomial of the matrix or polmod A.
Doc: \idx{minimal polynomial}
of $A$ with respect to the variable $v$., i.e. the monic polynomial $P$
of minimal degree (in the variable $v$) such that $P(A) = 0$.
Function: modreverse
Class: basic
Section: number_fields
C-Name: modreverse
Prototype: G
Help: modreverse(z): reverse polmod of the polmod z, if it exists.
Doc: let $z = \kbd{Mod(A, T)}$ be a polmod, and $Q$ be its minimal
polynomial, which must satisfy $\text{deg}(Q) = \text{deg}(T)$.
Returns a ``reverse polmod'' \kbd{Mod(B, Q)}, which is a root of $T$.
This is quite useful when one changes the generating element in algebraic
extensions:
\bprog
? u = Mod(x, x^3 - x -1); v = u^5;
? w = modreverse(v)
%2 = Mod(x^2 - 4*x + 1, x^3 - 5*x^2 + 4*x - 1)
@eprog\noindent
which means that $x^3 - 5x^2 + 4x -1$ is another defining polynomial for the
cubic field
$$\Q(u) = \Q[x]/(x^3 - x - 1) = \Q[x]/(x^3 - 5x^2 + 4x - 1) = \Q(v),$$
and that $u \to v^2 - 4v + 1$ gives an explicit isomorphism. From this, it is
easy to convert elements between the $A(u)\in \Q(u)$ and $B(v)\in \Q(v)$
representations:
\bprog
? A = u^2 + 2*u + 3; subst(lift(A), 'x, w)
%3 = Mod(x^2 - 3*x + 3, x^3 - 5*x^2 + 4*x - 1)
? B = v^2 + v + 1; subst(lift(B), 'x, v)
%4 = Mod(26*x^2 + 31*x + 26, x^3 - x - 1)
@eprog
If the minimal polynomial of $z$ has lower degree than expected, the routine
fails
\bprog
? u = Mod(-x^3 + 9*x, x^4 - 10*x^2 + 1)
? modreverse(u)
*** at top-level: modreverse(u)
*** ^-------------
*** modreverse: reverse polmod does not exist: Mod(-x^3+9*x, x^4-10*x^2+1).
? minpoly(u)
%6 = x^2 - 8
@eprog
Function: moebius
Class: basic
Section: number_theoretical
C-Name: gmoebius
Prototype: G
Help: moebius(x): Moebius function of x.
Description:
(int):small moebius($1)
(gen):gen gmoebius($1)
Doc: \idx{Moebius} $\mu$-function of $|x|$. $x$ must be of type integer.
The function accepts vector/matrices arguments, and is then applied
componentwise.
Variant: For a \typ{INT} $x$, the variant
\fun{long}{moebius}{GEN n} is generally easier to use.
Function: my
Class: basic
Section: programming/specific
Help: my(x,...,z): declare x,...,z as lexically-scoped local variables.
Function: newtonpoly
Class: basic
Section: number_fields
C-Name: newtonpoly
Prototype: GG
Help: newtonpoly(x,p): Newton polygon of polynomial x with respect to the
prime p.
Doc: gives the vector of the slopes of the Newton
polygon of the polynomial $x$ with respect to the prime number $p$. The $n$
components of the vector are in decreasing order, where $n$ is equal to the
degree of $x$. Vertical slopes occur iff the constant coefficient of $x$ is
zero and are denoted by \tet{LONG_MAX}, the biggest single precision
integer representable on the machine ($2^{31}-1$ (resp.~$2^{63}-1$) on 32-bit
(resp.~64-bit) machines), see \secref{se:valuation}.
Function: next
Class: basic
Section: programming/control
C-Name: next0
Prototype: D1,L,
Help: next({n=1}): interrupt execution of current instruction sequence, and
start another iteration from the n-th innermost enclosing loops.
Doc: interrupts execution of current $seq$,
resume the next iteration of the innermost enclosing loop, within the
current function call (or top level loop). If $n$ is specified, resume at
the $n$-th enclosing loop. If $n$ is bigger than the number of enclosing
loops, all enclosing loops are exited.
Function: nextprime
Class: basic
Section: number_theoretical
C-Name: gnextprime
Prototype: G
Help: nextprime(x): smallest pseudoprime >= x.
Description:
(int):int nextprime($1)
(gen):gen gnextprime($1)
Doc: finds the smallest pseudoprime (see
\tet{ispseudoprime}) greater than or equal to $x$. $x$ can be of any real
type. Note that if $x$ is a pseudoprime, this function returns $x$ and not
the smallest pseudoprime strictly larger than $x$. To rigorously prove that
the result is prime, use \kbd{isprime}.
The function accepts vector/matrices arguments, and is then applied
componentwise.
Variant: For a scalar $x$,
\fun{long}{nextprime}{GEN n} is also available.
Function: nfalgtobasis
Class: basic
Section: number_fields
C-Name: algtobasis
Prototype: GG
Help: nfalgtobasis(nf,x): transforms the algebraic number x into a column
vector on the integral basis nf.zk.
Doc: Given an algebraic number $x$ in the number field $\var{nf}$,
transforms it to a column vector on the integral basis \kbd{\var{nf}.zk}.
\bprog
? nf = nfinit(y^2 + 4);
? nf.zk
%2 = [1, 1/2*y]
? nfalgtobasis(nf, [1,1]~)
%3 = [1, 1]~
? nfalgtobasis(nf, y)
%4 = [0, 2]~
? nfalgtobasis(nf, Mod(y, y^2+4))
%4 = [0, 2]~
@eprog
This is the inverse function of \kbd{nfbasistoalg}.
Function: nfbasis
Class: basic
Section: number_fields
C-Name: nfbasis0
Prototype: GD0,L,DG
Help: nfbasis(x,{flag=0},{fa}): integral basis of the field Q[a], where a is
a root of the polynomial x, using the round 4 algorithm. Second and third
args are optional. Binary digits of flag mean 1: assume that no square of a
prime>primelimit divides the discriminant of x, 2: use round 2 algorithm
instead. If present, fa provides the matrix of a partial factorization of the
discriminant of x, useful if one wants only an order maximal at certain
primes only.
Doc: \idx{integral basis} of the number
field defined by the irreducible, preferably monic, polynomial $x$, using a
modified version of the \idx{round 4} algorithm by default, due to David
\idx{Ford}, Sebastian \idx{Pauli} and Xavier \idx{Roblot}. The binary digits
of $\fl$ have the following meaning:
1: assume that no square of a prime greater than the default \kbd{primelimit}
divides the discriminant of $x$, i.e.~that the index of $x$ has only small
prime divisors.
2: use \idx{round 2} algorithm. For small degrees and coefficient size, this
is sometimes a little faster. (This program is the translation into C of a
program written by David \idx{Ford} in Algeb.)
Thus for instance, if $\fl=3$, this uses the round 2 algorithm and outputs
an order which will be maximal at all the small primes.
If \var{fa} is present, we assume (without checking!) that it is the two-column
matrix of the factorization of the discriminant of the polynomial $x$. Note
that it does \emph{not} have to be a complete factorization. This is
especially useful if only a local integral basis for some small set of places
is desired: only factors with exponents greater or equal to 2 will be
considered.
Variant: An extended version is
\fun{GEN}{nfbasis}{GEN x, GEN *d, long flag, GEN fa = NULL}, where \kbd{*d}
receives the discriminant of the number field
(\emph{not} of the polynomial $x$).
Function: nfbasistoalg
Class: basic
Section: number_fields
C-Name: basistoalg
Prototype: GG
Help: nfbasistoalg(nf,x): transforms the column vector x on the integral
basis into an algebraic number.
Doc: Given an algebraic number $x$ in the number field \kbd{nf}, transforms it
into \typ{POLMOD} form.
\bprog
? nf = nfinit(y^2 + 4);
? nf.zk
%2 = [1, 1/2*y]
? nfbasistoalg(nf, [1,1]~)
%3 = Mod(1/2*y + 1, y^2 + 4)
? nfbasistoalg(nf, y)
%4 = Mod(y, y^2 + 4)
? nfbasistoalg(nf, Mod(y, y^2+4))
%4 = Mod(y, y^2 + 4)
@eprog
This is the inverse function of \kbd{nfalgtobasis}.
Function: nfdetint
Class: basic
Section: number_fields
C-Name: nfdetint
Prototype: GG
Help: nfdetint(nf,x): multiple of the ideal determinant of the pseudo
generating set x.
Doc: given a pseudo-matrix $x$, computes a
non-zero ideal contained in (i.e.~multiple of) the determinant of $x$. This
is particularly useful in conjunction with \kbd{nfhnfmod}.
Function: nfdisc
Class: basic
Section: number_fields
C-Name: nfdisc0
Prototype: GD0,L,DG
Help: nfdisc(x,{flag=0},{fa}): discriminant of the number field defined by
the polynomial x using round 4. Optional args flag and fa are as in nfbasis.
Doc: \idx{field discriminant} of the number field defined by the integral,
preferably monic, irreducible polynomial $x$. $\fl$ and $fa$ are exactly as
in \kbd{nfbasis}. That is, $fa$ provides the matrix of a partial
factorization of the discriminant of $x$, and binary digits of $\fl$ are as
follows:
1: assume that no square of a prime greater than \kbd{primelimit}
divides the discriminant.
2: use the round 2 algorithm, instead of the default \idx{round 4}. This
should be slower except maybe for polynomials of small degree and
coefficients.
Variant: Also available is \fun{GEN}{nfdisc}{GEN x} ($\fl=0$).
Function: nfeltadd
Class: basic
Section: number_fields
C-Name: nfadd
Prototype: GGG
Help: nfadd(nf,x,y): element x+y in nf.
Doc:
given two elements $x$ and $y$ in
\var{nf}, computes their sum $x+y$ in the number field $\var{nf}$.
Function: nfeltdiv
Class: basic
Section: number_fields
C-Name: nfdiv
Prototype: GGG
Help: nfdiv(nf,x,y): element x/y in nf.
Doc: given two elements $x$ and $y$ in
\var{nf}, computes their quotient $x/y$ in the number field $\var{nf}$.
Function: nfeltdiveuc
Class: basic
Section: number_fields
C-Name: nfdiveuc
Prototype: GGG
Help: nfdiveuc(nf,x,y): gives algebraic integer q such that x-by is small.
Doc: given two elements $x$ and $y$ in
\var{nf}, computes an algebraic integer $q$ in the number field $\var{nf}$
such that the components of $x-qy$ are reasonably small. In fact, this is
functionally identical to \kbd{round(nfdiv(\var{nf},x,y))}.
Function: nfeltdivmodpr
Class: basic
Section: number_fields
C-Name: nfdivmodpr
Prototype: GGGG
Help: nfeltdivmodpr(nf,x,y,pr): element x/y modulo pr in nf, where pr is in
modpr format (see nfmodprinit).
Doc: given two elements $x$
and $y$ in \var{nf} and \var{pr} a prime ideal in \kbd{modpr} format (see
\tet{nfmodprinit}), computes their quotient $x / y$ modulo the prime ideal
\var{pr}.
Variant: This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.
Function: nfeltdivrem
Class: basic
Section: number_fields
C-Name: nfdivrem
Prototype: GGG
Help: nfeltdivrem(nf,x,y): gives [q,r] such that r=x-by is small.
Doc: given two elements $x$ and $y$ in
\var{nf}, gives a two-element row vector $[q,r]$ such that $x=qy+r$, $q$ is
an algebraic integer in $\var{nf}$, and the components of $r$ are
reasonably small.
Function: nfeltmod
Class: basic
Section: number_fields
C-Name: nfmod
Prototype: GGG
Help: nfeltmod(nf,x,y): gives r such that r=x-by is small with q algebraic
integer.
Doc:
given two elements $x$ and $y$ in
\var{nf}, computes an element $r$ of $\var{nf}$ of the form $r=x-qy$ with
$q$ and algebraic integer, and such that $r$ is small. This is functionally
identical to
$$\kbd{x - nfmul(\var{nf},round(nfdiv(\var{nf},x,y)),y)}.$$
Function: nfeltmul
Class: basic
Section: number_fields
C-Name: nfmul
Prototype: GGG
Help: nfmul(nf,x,y): element x.y in nf.
Doc:
given two elements $x$ and $y$ in
\var{nf}, computes their product $x*y$ in the number field $\var{nf}$.
Function: nfeltmulmodpr
Class: basic
Section: number_fields
C-Name: nfmulmodpr
Prototype: GGGG
Help: nfeltmulmodpr(nf,x,y,pr): element x.y modulo pr in nf, where pr is in
modpr format (see nfmodprinit).
Doc: given two elements $x$ and
$y$ in \var{nf} and \var{pr} a prime ideal in \kbd{modpr} format (see
\tet{nfmodprinit}), computes their product $x*y$ modulo the prime ideal
\var{pr}.
Variant: This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.
Function: nfeltnorm
Class: basic
Section: number_fields
C-Name: nfnorm
Prototype: GG
Help: nfeltnorm(nf,x): norm of x.
Doc: returns the absolute norm of $x$.
Function: nfeltpow
Class: basic
Section: number_fields
C-Name: nfpow
Prototype: GGG
Help: nfeltpow(nf,x,k): element x^k in nf.
Doc: given an element $x$ in \var{nf}, and a positive or negative integer $k$,
computes $x^k$ in the number field $\var{nf}$.
Variant: \fun{GEN}{nfinv}{GEN nf, GEN x} correspond to $k = -1$, and
\fun{GEN}{nfsqr}{GEN nf,GEN x} to $k = 2$.
Function: nfeltpowmodpr
Class: basic
Section: number_fields
C-Name: nfpowmodpr
Prototype: GGGG
Help: nfeltpowmodpr(nf,x,k,pr): element x^k modulo pr in nf, where pr is in
modpr format (see nfmodprinit).
Doc: given an element $x$ in \var{nf}, an integer $k$ and a prime ideal
\var{pr} in \kbd{modpr} format
(see \tet{nfmodprinit}), computes $x^k$ modulo the prime ideal \var{pr}.
Variant: This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.
Function: nfeltreduce
Class: basic
Section: number_fields
C-Name: nfreduce
Prototype: GGG
Help: nfeltreduce(nf,a,id): gives r such that a-r is in the ideal id and r
is small.
Doc: given an ideal \var{id} in
Hermite normal form and an element $a$ of the number field $\var{nf}$,
finds an element $r$ in $\var{nf}$ such that $a-r$ belongs to the ideal
and $r$ is small.
Function: nfeltreducemodpr
Class: basic
Section: number_fields
C-Name: nfreducemodpr
Prototype: GGG
Help: nfeltreducemodpr(nf,x,pr): element x modulo pr in nf, where pr is in
modpr format (see nfmodprinit).
Doc: given an element $x$ of the number field $\var{nf}$ and a prime ideal
\var{pr} in \kbd{modpr} format compute a canonical representative for the
class of $x$ modulo \var{pr}.
Variant: This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.
Function: nfelttrace
Class: basic
Section: number_fields
C-Name: nftrace
Prototype: GG
Help: nfelttrace(nf,x): trace of x.
Doc: returns the absolute trace of $x$.
Function: nfeltval
Class: basic
Section: number_fields
C-Name: nfval
Prototype: lGGG
Help: nfeltval(nf,x,pr): valuation of element x at the prime pr as output by
idealprimedec.
Doc: given an element $x$ in
\var{nf} and a prime ideal \var{pr} in the format output by
\kbd{idealprimedec}, computes their the valuation at \var{pr} of the
element $x$. The same result could be obtained using
\kbd{idealval(\var{nf},x,\var{pr})} (since $x$ would then be converted to a
principal ideal), but it would be less efficient.
Function: nffactor
Class: basic
Section: number_fields
C-Name: nffactor
Prototype: GG
Help: nffactor(nf,x): factor polynomial x in number field nf.
Doc: factorization of the univariate
polynomial $x$ over the number field $\var{nf}$ given by \kbd{nfinit}. $x$
has coefficients in $\var{nf}$ (i.e.~either scalar, polmod, polynomial or
column vector). The main variable of $\var{nf}$ must be of \emph{lower}
priority than that of $x$ (see \secref{se:priority}). However if
the polynomial defining the number field occurs explicitly in the
coefficients of $x$ (as modulus of a \typ{POLMOD}), its main variable must be
\emph{the same} as the main variable of $x$. For example,
\bprog
? nf = nfinit(y^2 + 1);
? nffactor(nf, x^2 + y); \\@com OK
? nffactor(nf, x^2 + Mod(y, y^2+1)); \\ @com OK
? nffactor(nf, x^2 + Mod(z, z^2+1)); \\ @com WRONG
@eprog\noindent It is possible to input a defining polynomial for \var{nf}
instead, but this is in general less efficient since parts of an \kbd{nf}
structure will be computed internally. This is useful in two situations: when
you don't need the \kbd{nf}, or when you can't compute its discriminant due
to integer factorization difficulties. In the latter case, \tet{addprimes} is
a possibility but a dangerous one: factors will probably be missed if the
(true) field discriminant and an \kbd{addprimes} entry are strictly divisible
by some prime. If you have such an unsafe \var{nf}, it is safer to input
\kbd{nf.pol}.
Function: nffactorback
Class: basic
Section: number_fields
C-Name: nffactorback
Prototype: GGDG
Help: nffactorback(nf,f,{e}): given a factorisation f, returns
the factored object back as an nf element.
Doc: gives back the \kbd{nf} element corresponding to a factorization.
The integer $1$ corresponds to the empty factorization.
If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
integral), and the corresponding factorization is the product of the
$f[i]^{e[i]}$.
If not, and $f$ is vector, it is understood as in the preceding case with $e$
a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
regular factorization matrix.
\bprog
? nf = nfinit(y^2+1);
? nffactorback(nf, [3, y+1, [1,2]~], [1, 2, 3])
%2 = [12, -66]~
? 3 * (I+1)^2 * (1+2*I)^3
%3 = 12 - 66*I
@eprog
Function: nffactormod
Class: basic
Section: number_fields
C-Name: nffactormod
Prototype: GGG
Help: nffactormod(nf,pol,pr): factorize polynomial pol modulo prime ideal pr
in number field nf.
Doc: factorization of the
univariate polynomial $x$ modulo the prime ideal \var{pr} in the number
field $\var{nf}$. $x$ can have coefficients in the number field (scalar,
polmod, polynomial, column vector) or modulo the prime ideal (intmod
modulo the rational prime under \var{pr}, polmod or polynomial with
intmod coefficients, column vector of intmod). The prime ideal
\var{pr} \emph{must} be in the format output by \kbd{idealprimedec}. The
main variable of $\var{nf}$ must be of lower priority than that of $x$
(see \secref{se:priority}). However if the coefficients of the number
field occur explicitly (as polmods) as coefficients of $x$, the variable of
these polmods \emph{must} be the same as the main variable of $t$ (see
\kbd{nffactor}).
Function: nfgaloisapply
Class: basic
Section: number_fields
C-Name: galoisapply
Prototype: GGG
Help: nfgaloisapply(nf,aut,x): Apply the Galois automorphism aut to the object
x (element or ideal) in the number field nf.
Doc: let $\var{nf}$ be a
number field as output by \kbd{nfinit}, and let \var{aut} be a \idx{Galois}
automorphism of $\var{nf}$ expressed by its image on the field generator
(such automorphisms can be found using \kbd{nfgaloisconj}). The function
computes the action of the automorphism \var{aut} on the object $x$ in the
number field; $x$ can be a number field element, or an ideal (possibly
extended). Because of possible confusion with elements and ideals, other
vector or matrix arguments are forbidden.
\bprog
? nf = nfinit(x^2+1);
? L = nfgaloisconj(nf)
%2 = [-x, x]~
? aut = L[1]; /* the non-trivial automorphism */
? nfgaloisapply(nf, aut, x)
%4 = Mod(-x, x^2 + 1)
? P = idealprimedec(nf,5); /* prime ideals above 5 */
? nfgaloisapply(nf, aut, P[2]) == P[1]
%7 = 0 \\ !!!!
? idealval(nf, nfgaloisapply(nf, aut, P[2]), P[1])
%8 = 1
@eprog\noindent The surprising failure of the equality test (\kbd{\%7}) is
due to the fact that although the corresponding prime ideals are equal, their
representations are not. (A prime ideal is specificed by a uniformizer, and
there is no guarantee that applying automorphisms yields the same elements
as a direct \kbd{idealprimedec} call.)
The automorphism can also be given as a column vector, representing the
image of \kbd{Mod(x, nf.pol)} as an algebraic number. This last
representation is more efficient and should be preferred if a given
automorphism must be used in many such calls.
\bprog
? nf = nfinit(x^3 - 37*x^2 + 74*x - 37);
? l = nfgaloisconj(nf); aut = l[2] \\ @com automorphisms in basistoalg form
%2 = -31/11*x^2 + 1109/11*x - 925/11
? L = matalgtobasis(nf, l); AUT = L[2] \\ @com same in algtobasis form
%3 = [16, -6, 5]~
? v = [1, 2, 3]~; nfgaloisapply(nf, aut, v) == nfgaloisapply(nf, AUT, v)
%4 = 1 \\ @com same result...
? for (i=1,10^5, nfgaloisapply(nf, aut, v))
time = 1,451 ms.
? for (i=1,10^5, nfgaloisapply(nf, AUT, v))
time = 1,045 ms. \\ @com but the latter is faster
@eprog
Function: nfgaloisconj
Class: basic
Section: number_fields
C-Name: galoisconj0
Prototype: GD0,L,DGp
Help: nfgaloisconj(nf,{flag=0},{d}): list of conjugates of a root of the
polynomial x=nf.pol in the same number field. flag is optional (set to 0 by
default), meaning 0: use combination of flag 4 and 1, always complete; 1:
use nfroots; 2 : use complex numbers, LLL on integral basis (not always
complete); 4: use Allombert's algorithm, complete if the field is Galois of
degree <= 35 (see manual for details). nf can be simply a polynomial.
Doc: $\var{nf}$ being a number field as output by \kbd{nfinit}, computes the
conjugates of a root $r$ of the non-constant polynomial $x=\var{nf}[1]$
expressed as polynomials in $r$. This also makes sense when the number field
is not \idx{Galois} since some conjugates may lie in the field.
$\var{nf}$ can simply be a polynomial.
If no flags or $\fl=0$, use a combination of flag $4$ and $1$ and the result
is always complete. There is no point whatsoever in using the other flags.
If $\fl=1$, use \kbd{nfroots}: a little slow, but guaranteed to work in
polynomial time.
If $\fl=2$ (OBSOLETE), use complex approximations to the roots and an integral
\idx{LLL}. The result is not guaranteed to be complete: some
conjugates may be missing (a warning is issued if the result is not proved
complete), especially so if the corresponding polynomial has a huge index,
and increasing the default precision may help. This variant is slow and
unreliable: don't use it.
If $\fl=4$, use \kbd{galoisinit}: very fast, but only applies to (most) Galois
fields. If the field is Galois with weakly
super-solvable Galois group (see \tet{galoisinit}), return the complete list
of automorphisms, else only the identity element. If present, $d$ is assumed to
be a multiple of the least common denominator of the conjugates expressed as
polynomial in a root of \var{pol}.
This routine can only compute $\Q$-automorphisms, but it may be used to get
$K$-automorphism for any base field $K$ as follows:
\bprog
rnfgaloisconj(nfK, R) = \\ K-automorphisms of L = K[X] / (R)
{ my(polabs, N);
R *= Mod(1, nfK.pol); \\ convert coeffs to polmod elts of K
polabs = rnfequation(nfK, R);
N = nfgaloisconj(polabs) % R; \\ Q-automorphisms of L
\\ select the ones that fix K
select(s->subst(R, variable(R), Mod(s,R)) == 0, N);
}
K = nfinit(y^2 + 7);
rnfgaloisconj(K, x^4 - y*x^3 - 3*x^2 + y*x + 1) \\ K-automorphisms of L
@eprog
Variant: Use directly
\fun{GEN}{galoisconj}{GEN nf, GEN d}, corresponding to $\fl = 0$, the others
only have historical interest.
Function: nfhilbert
Class: basic
Section: number_fields
C-Name: nfhilbert0
Prototype: lGGGDG
Help: nfhilbert(nf,a,b,{pr}): if pr is omitted, global Hilbert symbol (a,b) in
nf, that is 1 if X^2-aY^2-bZ^2 has a non-trivial solution (X,Y,Z) in nf, -1
otherwise. Otherwise compute the local symbol modulo the prime ideal pr.
Doc: if \var{pr} is omitted,
compute the global quadratic \idx{Hilbert symbol} $(a,b)$ in $\var{nf}$, that
is $1$ if $x^2 - a y^2 - b z^2$ has a non trivial solution $(x,y,z)$ in
$\var{nf}$, and $-1$ otherwise. Otherwise compute the local symbol modulo
the prime ideal \var{pr}, as output by \kbd{idealprimedec}.
Variant:
Also available is \fun{long}{nfhilbert}{GEN bnf,GEN a,GEN b} (global
quadratic Hilbert symbol).
Function: nfhnf
Class: basic
Section: number_fields
C-Name: nfhnf
Prototype: GG
Help: nfhnf(nf,x): if x=[A,I], gives a pseudo-basis of the module sum A_jI_j
Doc: given a pseudo-matrix $(A,I)$, finds a
pseudo-basis in \idx{Hermite normal form} of the module it generates.
Variant: Also available:
\fun{GEN}{rnfsimplifybasis}{GEN bnf, GEN x} simplifies the pseudo-basis
given by $x = (A,I)$. The ideals in the list $I$ are integral, primitive and
either trivial (equal to the full ring of integer) or non-principal.
Function: nfhnfmod
Class: basic
Section: number_fields
C-Name: nfhnfmod
Prototype: GGG
Help: nfhnfmod(nf,x,detx): if x=[A,I], and detx is a multiple of the ideal
determinant of x, gives a pseudo-basis of the module sum A_jI_j.
Doc: given a pseudo-matrix $(A,I)$
and an ideal \var{detx} which is contained in (read integral multiple of) the
determinant of $(A,I)$, finds a pseudo-basis in \idx{Hermite normal form}
of the module generated by $(A,I)$. This avoids coefficient explosion.
\var{detx} can be computed using the function \kbd{nfdetint}.
Function: nfinit
Class: basic
Section: number_fields
C-Name: nfinit0
Prototype: GD0,L,p
Help: nfinit(pol,{flag=0}): pol being a nonconstant irreducible polynomial,
gives the vector: [pol,[r1,r2],discf,index,[M,MC,T2,T,different] (see
manual),r1+r2 first roots, integral basis, matrix of power basis in terms of
integral basis, multiplication table of basis]. flag is optional and can be
set to 0: default; 1: do not compute different; 2: first use polred to find
a simpler polynomial; 3: outputs a two-element vector [nf,Mod(a,P)], where
nf is as in 2 and Mod(a,P) is a polmod equal to Mod(x,pol) and P=nf.pol.
Description:
(gen, ?0):nf:prec nfinit0($1, 0, prec)
(gen, 1):nf:prec nfinit0($1, 1, prec)
(gen, 2):nf:prec nfinit0($1, 2, prec)
(gen, 3):gen:prec nfinit0($1, 3, prec)
(gen, 4):nf:prec nfinit0($1, 4, prec)
(gen, 5):gen:prec nfinit0($1, 5, prec)
(gen, #small):void $"incorrect flag in nfinit"
(gen, small):gen:prec nfinit0($1, $2, prec)
Doc: \var{pol} being a non-constant,
preferably monic, irreducible polynomial in $\Z[X]$, initializes a
\emph{number field} structure (\kbd{nf}) associated to the field $K$ defined
by \var{pol}. As such, it's a technical object passed as the first argument
to most \kbd{nf}\var{xxx} functions, but it contains some information which
may be directly useful. Access to this information via \emph{member
functions} is preferred since the specific data organization specified below
may change in the future. Currently, \kbd{nf} is a row vector with 9
components:
$\var{nf}[1]$ contains the polynomial \var{pol} (\kbd{\var{nf}.pol}).
$\var{nf}[2]$ contains $[r1,r2]$ (\kbd{\var{nf}.sign}, \kbd{\var{nf}.r1},
\kbd{\var{nf}.r2}), the number of real and complex places of $K$.
$\var{nf}[3]$ contains the discriminant $d(K)$ (\kbd{\var{nf}.disc}) of $K$.
$\var{nf}[4]$ contains the index of $\var{nf}[1]$ (\kbd{\var{nf}.index}),
i.e.~$[\Z_K : \Z[\theta]]$, where $\theta$ is any root of $\var{nf}[1]$.
$\var{nf}[5]$ is a vector containing 7 matrices $M$, $G$, \var{roundG}, $T$,
$MD$, $TI$, $MDI$ useful for certain computations in the number field $K$.
\quad\item $M$ is the $(r1+r2)\times n$ matrix whose columns represent
the numerical values of the conjugates of the elements of the integral
basis.
\quad\item $G$ is an $n\times n$ matrix such that $T2 = {}^t G G$,
where $T2$ is the quadratic form $T_2(x) = \sum |\sigma(x)|^2$, $\sigma$
running over the embeddings of $K$ into $\C$.
\quad\item \var{roundG} is a rescaled copy of $G$, rounded to nearest
integers.
\quad\item $T$ is the $n\times n$ matrix whose coefficients are
$\text{Tr}(\omega_i\omega_j)$ where the $\omega_i$ are the elements of the
integral basis. Note also that $\det(T)$ is equal to the discriminant of the
field $K$. Also, when understood as an ideal, the matrix $T^{-1}$
generates the codifferent ideal.
\quad\item The columns of $MD$ (\kbd{\var{nf}.diff}) express a $\Z$-basis
of the different of $K$ on the integral basis.
\quad\item $TI$ is equal to the primitive part of $T^{-1}$, which has integral
coefficients.
\quad\item Finally, $MDI$ is a two-element representation (for faster
ideal product) of $d(K)$ times the codifferent ideal
(\kbd{\var{nf}.disc$*$\var{nf}.codiff}, which is an integral ideal). $MDI$
is only used in \tet{idealinv}.
$\var{nf}[6]$ is the vector containing the $r1+r2$ roots
(\kbd{\var{nf}.roots}) of $\var{nf}[1]$ corresponding to the $r1+r2$
embeddings of the number field into $\C$ (the first $r1$ components are real,
the next $r2$ have positive imaginary part).
$\var{nf}[7]$ is an integral basis for $\Z_K$ (\kbd{\var{nf}.zk}) expressed
on the powers of~$\theta$. Its first element is guaranteed to be $1$. This
basis is LLL-reduced with respect to $T_2$ (strictly speaking, it is a
permutation of such a basis, due to the condition that the first element be
$1$).
$\var{nf}[8]$ is the $n\times n$ integral matrix expressing the power
basis in terms of the integral basis, and finally
$\var{nf}[9]$ is the $n\times n^2$ matrix giving the multiplication table
of the integral basis.
If a non monic polynomial is input, \kbd{nfinit} will transform it into a
monic one, then reduce it (see $\fl=3$). It is allowed, though not very
useful given the existence of \tet{nfnewprec}, to input a \kbd{nf} or a
\kbd{bnf} instead of a polynomial.
\bprog
? nf = nfinit(x^3 - 12); \\ initialize number field Q[X] / (X^3 - 12)
? nf.pol \\ defining polynomial
%2 = x^3 - 12
? nf.disc \\ field discriminant
%3 = -972
? nf.index \\ index of power basis order in maximal order
%4 = 2
? nf.zk \\ integer basis, lifted to Q[X]
%5 = [1, x, 1/2*x^2]
? nf.sign \\ signature
%6 = [1, 1]
? factor(abs(nf.disc )) \\ determines ramified primes
%7 =
[2 2]
[3 5]
? idealfactor(nf, 2)
%8 =
[[2, [0, 0, -1]~, 3, 1, [0, 1, 0]~] 3] \\ @com $\goth{p}_2^3$
@eprog
In case \var{pol} has a huge discriminant which is difficult to factor,
the special input format $[\var{pol},B]$ is also accepted where \var{pol} is a
polynomial as above and $B$ is the integer basis, as would be computed by
\tet{nfbasis}. This is useful if the integer basis is known in advance,
or was computed conditionally.
\bprog
? pol = polcompositum(x^5 - 101, polcyclo(7))[1];
? B = nfbasis(pol, 1); \\ faster than nfbasis(pol), but conditional
? nf = nfinit( [pol, B] );
? factor( abs(nf.disc) )
[5 18]
[7 25]
[101 24]
@eprog
\kbd{B} is conditional when its discriminant, which is \kbd{nf.disc}, can't be
factored. In this example, the above factorization proves the correctness of
the computation.
\medskip
If $\fl=2$: \var{pol} is changed into another polynomial $P$ defining the same
number field, which is as simple as can easily be found using the \kbd{polred}
algorithm, and all the subsequent computations are done using this new
polynomial. In particular, the first component of the result is the modified
polynomial.
If $\fl=3$, does a \kbd{polred} as in case 2, but outputs
$[\var{nf},\kbd{Mod}(a,P)]$, where $\var{nf}$ is as before and
$\kbd{Mod}(a,P)=\kbd{Mod}(x,\var{pol})$ gives the change of
variables. This is implicit when \var{pol} is not monic: first a linear change
of variables is performed, to get a monic polynomial, then a \kbd{polred}
reduction.
Variant: Also available are
\fun{GEN}{nfinit}{GEN x, long prec} ($\fl = 0$),
\fun{GEN}{nfinitred}{GEN x, long prec} ($\fl = 2$),
\fun{GEN}{nfinitred2}{GEN x, long prec} ($\fl = 3$).
Instead of the above hardcoded numerical flags in \kbd{nfinit0}, one should
rather use
\fun{GEN}{nfinitall}{GEN x, long flag, long prec}, where \fl\ is an
or-ed combination of
\item \tet{nf_RED}: find a simpler defining polynomial,
\item \tet{nf_ORIG}: if \tet{nf_RED} set, also return the change of variable,
\item \tet{nf_ROUND2}: slow down the routine by using an obsolete
normalization algorithm (do not use this one!),
\item \tet{nf_PARTIALFACT}: lazy factorization of the polynomial discriminant.
Result is conditional unless the \emph{field} discriminant obtained
is fully factored by
\bprog
Z_factor_limit(disc, 0)
@eprog\noindent Namely the ``maximal order'' may not be maximal at any prime
bigger than \kbd{primelimit} dividing the field discriminant.
Function: nfisideal
Class: basic
Section: number_fields
C-Name: isideal
Prototype: lGG
Help: nfisideal(nf,x): true(1) if x is an ideal in the number field nf,
false(0) if not.
Doc: returns 1 if $x$ is an ideal in the number field $\var{nf}$, 0 otherwise.
Function: nfisincl
Class: basic
Section: number_fields
C-Name: nfisincl
Prototype: GG
Help: nfisincl(x,y): tests whether the number field x is isomorphic to a
subfield of y (where x and y are either polynomials or number fields as
output by nfinit). Return 0 if not, and otherwise all the isomorphisms. If y
is a number field, a faster algorithm is used.
Doc: tests whether the number field $K$ defined
by the polynomial $x$ is conjugate to a subfield of the field $L$ defined
by $y$ (where $x$ and $y$ must be in $\Q[X]$). If they are not, the output
is the number 0. If they are, the output is a vector of polynomials, each
polynomial $a$ representing an embedding of $K$ into $L$, i.e.~being such
that $y\mid x\circ a$.
If $y$ is a number field (\var{nf}), a much faster algorithm is used
(factoring $x$ over $y$ using \tet{nffactor}). Before version 2.0.14, this
wasn't guaranteed to return all the embeddings, hence was triggered by a
special flag. This is no more the case.
Function: nfisisom
Class: basic
Section: number_fields
C-Name: nfisisom
Prototype: GG
Help: nfisisom(x,y): as nfisincl but tests whether x is isomorphic to y.
Doc: as \tet{nfisincl}, but tests for isomorphism. If either $x$ or $y$ is a
number field, a much faster algorithm will be used.
Function: nfkermodpr
Class: basic
Section: number_fields
C-Name: nfkermodpr
Prototype: GGG
Help: nfkermodpr(nf,x,pr): kernel of the matrix x in Z_K/pr, where pr is in
modpr format (see nfmodprinit).
Doc: kernel of the matrix $a$ in $\Z_K/\var{pr}$, where \var{pr} is in
\key{modpr} format (see \kbd{nfmodprinit}).
Variant: This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nfM\_to\_FqM}, then work there.
Function: nfmodprinit
Class: basic
Section: number_fields
C-Name: nfmodprinit
Prototype: GG
Help: nfmodprinit(nf,pr): transform the 5 element row vector pr representing
a prime ideal into modpr format necessary for all operations mod pr in the
number field nf (see manual for details about the format).
Doc: transforms the prime ideal \var{pr} into \tet{modpr} format necessary
for all operations modulo \var{pr} in the number field \var{nf}.
Function: nfnewprec
Class: basic
Section: number_fields
C-Name: nfnewprec
Prototype: Gp
Help: nfnewprec(nf): transform the number field data nf into new data using
the current (usually larger) precision.
Doc: transforms the number field $\var{nf}$
into the corresponding data using current (usually larger) precision. This
function works as expected if $\var{nf}$ is in fact a $\var{bnf}$ (update
$\var{bnf}$ to current precision) but may be quite slow (many generators of
principal ideals have to be computed).
Variant: See also \fun{GEN}{bnfnewprec}{GEN bnf, long prec}
and \fun{GEN}{bnrnewprec}{GEN bnr, long prec}.
Function: nfroots
Class: basic
Section: number_fields
C-Name: nfroots
Prototype: DGG
Help: nfroots({nf},x): roots of polynomial x belonging to nf (Q if
omitted) without multiplicity.
Doc: roots of the polynomial $x$ in the
number field $\var{nf}$ given by \kbd{nfinit} without multiplicity (in $\Q$
if $\var{nf}$ is omitted). $x$ has coefficients in the number field (scalar,
polmod, polynomial, column vector). The main variable of $\var{nf}$ must be
of lower priority than that of $x$ (see \secref{se:priority}). However if the
coefficients of the number field occur explicitly (as polmods) as
coefficients of $x$, the variable of these polmods \emph{must} be the same as
the main variable of $t$ (see \kbd{nffactor}).
It is possible to input a defining polynomial for \var{nf}
instead, but this is in general less efficient since parts of an \kbd{nf}
structure will be computed internally. This is useful in two situations: when
you don't need the \kbd{nf}, or when you can't compute its discriminant due
to integer factorization difficulties. In the latter case, \tet{addprimes} is
a possibility but a dangerous one: roots will probably be missed if the
(true) field discriminant and an \kbd{addprimes} entry are strictly divisible
by some prime. If you have such an unsafe \var{nf}, it is safer to input
\kbd{nf.pol}.
Variant: See also \fun{GEN}{nfrootsQ}{GEN x},
corresponding to $\kbd{nf} = \kbd{NULL}$.
Function: nfrootsof1
Class: basic
Section: number_fields
C-Name: rootsof1
Prototype: G
Help: nfrootsof1(nf): number of roots of unity and primitive root of unity
in the number field nf.
Doc: Returns a two-component vector $[w,z]$ where $w$ is the number of roots of
unity in the number field \var{nf}, and $z$ is a primitive $w$-th root
of unity.
\bprog
? K = nfinit(polcyclo(11));
? nfrootsof1(K)
%2 = [22, [0, 0, 0, 0, 0, -1, 0, 0, 0, 0]~]
? z = nfbasistoalg(K, %[2]) \\ in algebraic form
%3 = Mod(-x^5, x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
? [lift(z^11), lift(z^2)] \\ proves that the order of z is 22
%4 = [-1, -x^9 - x^8 - x^7 - x^6 - x^5 - x^4 - x^3 - x^2 - x - 1]
@eprog
This function guesses the number $w$ as the gcd of the $\#k(v)^*$ for
unramified $v$ above odd primes, then computes the roots in \var{nf}
of the $w$-th cyclotomic polynomial: the algorithm is polynomial time with
respect to the field degree and the bitsize of the multiplication table in
\var{nf} (both of them polynomially bounded in terms of the size of the
discriminant). Fields of degree up to $100$ or so should require less than
one minute.
Variant: Also available is \fun{GEN}{rootsof1_kannan}{GEN nf}, that computes
all algebraic integers of $T_2$ norm equal to the field degree
(all roots of $1$, by Kronecker's theorem). This is in general a little
faster than the default when there \emph{are} roots of $1$ in the field
(say twice faster), but can be much slower (say, \emph{days} slower), since
the algorithm is a priori exponential in the field degree.
Function: nfsnf
Class: basic
Section: number_fields
C-Name: nfsnf
Prototype: GG
Help: nfsnf(nf,x): if x=[A,I,J], outputs [c_1,...c_n] Smith normal form of x.
Doc: given a $\Z_K$-module $x$ associated to the integral pseudo-matrix
$(A,I,J)$, returns an ideal list $d_1,\dots,d_n$ which is the \idx{Smith
normal form} of $x$. In other words, $x$ is isomorphic to
$\Z_K/d_1\oplus\cdots\oplus\Z_K/d_n$ and $d_i$ divides $d_{i-1}$ for $i\ge2$.
See \secref{se:ZKmodules} for the definition of integral pseudo-matrix;
briefly, it is input as a 3-component row vector $[A,I,J]$ where
$I = [b_1,\dots,b_n]$ and $J = [a_1,\dots,a_n]$ are two ideal lists,
and $A$ is a square $n\times n$ matrix with columns $(A_1,\dots,A_n)$,
seen as elements in $K^n$ (with canonical basis $(e_1,\dots,e_n)$).
This data defines the $\Z_K$ module $x$ given by
$$ (b_1e_1\oplus\cdots\oplus b_ne_n) / (a_1A_1\oplus\cdots\oplus a_nA_n)
\enspace, $$
The integrality condition is $a_{i,j} \in b_i a_j^{-1}$ for all $i,j$. If it
is not satisfied, then the $d_i$ will not be integral. Note that every
finitely generated torsion module is isomorphic to a module of this form and
even with $b_i=Z_K$ for all $i$.
Function: nfsolvemodpr
Class: basic
Section: number_fields
C-Name: nfsolvemodpr
Prototype: GGGG
Help: nfsolvemodpr(nf,a,b,pr): solution of a*x=b in Z_K/pr, where a is a
matrix and b a column vector, and where pr is in modpr format (see
nfmodprinit).
Doc: solution of $a\cdot x = b$
in $\Z_K/\var{pr}$, where $a$ is a matrix and $b$ a column vector, and where
\var{pr} is in \key{modpr} format (see \kbd{nfmodprinit}).
Variant: This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nfM\_to\_FqM}, then work there.
Function: nfsubfields
Class: basic
Section: number_fields
C-Name: nfsubfields
Prototype: GD0,L,
Help: nfsubfields(pol,{d=0}): find all subfields of degree d of number field
defined by pol (all subfields if d is null or omitted). Result is a vector of
subfields, each being given by [g,h], where g is an absolute equation and h
expresses one of the roots of g in terms of the root x of the polynomial
defining nf.
Doc: finds all subfields of degree
$d$ of the number field defined by the (monic, integral) polynomial
\var{pol} (all subfields if $d$ is null or omitted). The result is a vector
of subfields, each being given by $[g,h]$, where $g$ is an absolute equation
and $h$ expresses one of the roots of $g$ in terms of the root $x$ of the
polynomial defining $\var{nf}$. This routine uses J.~Kl\"uners's algorithm
in the general case, and B.~Allombert's \tet{galoissubfields} when \var{nf}
is Galois (with weakly supersolvable Galois group).\sidx{Galois}\sidx{subfield}
Function: norm
Class: basic
Section: conversions
C-Name: gnorm
Prototype: G
Help: norm(x): norm of x.
Doc:
algebraic norm of $x$, i.e.~the product of $x$ with
its conjugate (no square roots are taken), or conjugates for polmods. For
vectors and matrices, the norm is taken componentwise and hence is not the
$L^2$-norm (see \kbd{norml2}). Note that the norm of an element of
$\R$ is its square, so as to be compatible with the complex norm.
Function: norml2
Class: basic
Section: conversions
C-Name: gnorml2
Prototype: G
Help: norml2(x): square of the L2-norm of the vector x.
Doc:
square of the $L^2$-norm of $x$. More precisely,
if $x$ is a scalar, $\kbd{norml2}(x)$ is defined to be \kbd{$x$ * conj($x$)}.
If $x$ is a polynomial, a (row or column) vector or a matrix, \kbd{norml2($x$)} is
defined recursively as $\sum_i \kbd{norml2}(x_i)$, where $(x_i)$ run through
the components of $x$. In particular, this yields the usual $\sum |x_i|^2$
(resp.~$\sum |x_{i,j}|^2$) if $x$ is a polynomial or vector (resp.~matrix) with
complex components.
\bprog
? norml2( [ 1, 2, 3 ] ) \\ vector
%1 = 14
? norml2( [ 1, 2; 3, 4] ) \\ matrix
%2 = 30
? norml2( 2*I + x )
%3 = 5
? norml2( [ [1,2], [3,4], 5, 6 ] ) \\ recursively defined
%4 = 91
@eprog
Function: numbpart
Class: basic
Section: number_theoretical
C-Name: numbpart
Prototype: G
Help: numbpart(n): number of partitions of n.
Doc: gives the number of unrestricted partitions of
$n$, usually called $p(n)$ in the literature; in other words the number of
nonnegative integer solutions to $a+2b+3c+\cdots=n$. $n$ must be of type
integer and $n<10^{15}$ (with trivial values $p(n) = 0$ for $n < 0$ and
$p(0) = 1$). The algorithm uses the Hardy-Ramanujan-Rademacher formula.
To explicitly enumerate them, see \tet{partitions}.
Function: numdiv
Class: basic
Section: number_theoretical
C-Name: gnumbdiv
Prototype: G
Help: numdiv(x): number of divisors of x.
Description:
(int):int numbdiv($1)
(gen):gen gnumbdiv($1)
Doc: number of divisors of $|x|$. $x$ must be of type integer.
The function accepts vector/matrices arguments, and is then applied
componentwise.
Variant: If $x$ is a \typ{INT}, one may use \fun{GEN}{numbdiv}{GEN n} directly.
Function: numerator
Class: basic
Section: conversions
C-Name: numer
Prototype: G
Help: numerator(x): numerator of x.
Doc:
numerator of $x$. The meaning of this
is clear when $x$ is a rational number or function. If $x$ is an integer
or a polynomial, it is treated as a rational number or function,
respectively, and the result is $x$ itself. For polynomials, you
probably want to use
\bprog
numerator( content(x) )
@eprog\noindent
instead.
In other cases, \kbd{numerator(x)} is defined to be
\kbd{denominator(x)*x}. This is the case when $x$ is a vector or a
matrix, but also for \typ{COMPLEX} or \typ{QUAD}. In particular since a
\typ{PADIC} or \typ{INTMOD} has denominator $1$, its numerator is
itself.
\misctitle{Warning} Multivariate objects are created according to variable
priorities, with possibly surprising side effects ($x/y$ is a polynomial, but
$y/x$ is a rational function). See \secref{se:priority}.
Function: numtoperm
Class: basic
Section: conversions
C-Name: numtoperm
Prototype: LG
Help: numtoperm(n,k): permutation number k (mod n!) of n letters (n
C-integer).
Doc: generates the $k$-th permutation (as a row vector of length $n$) of the
numbers $1$ to $n$. The number $k$ is taken modulo $n!\,$, i.e.~inverse
function of \tet{permtonum}.
Function: omega
Class: basic
Section: number_theoretical
C-Name: gomega
Prototype: G
Help: omega(x): number of distinct prime divisors of x.
Description:
(int):small omega($1)
(gen):gen gomega($1)
Doc: number of distinct prime divisors of $|x|$. $x$ must be of type integer.
\bprog
? factor(392)
%1 =
[2 3]
[7 2]
? omega(392)
%2 = 2; \\ without multiplicity
? bigomega(392)
%3 = 5; \\ = 3+2, with multiplicity
@eprog
The function accepts vector/matrices arguments, and is then applied
componentwise.
Variant: For a \typ{INT} $x$, the variant
\fun{long}{omega}{GEN n} is generally easier to use.
Function: padicappr
Class: basic
Section: polynomials
C-Name: padicappr
Prototype: GG
Help: padicappr(pol,a): p-adic roots of the polynomial pol congruent to a mod p.
Doc: vector of $p$-adic roots of the
polynomial $pol$ congruent to the $p$-adic number $a$ modulo $p$, and with
the same $p$-adic precision as $a$. The number $a$ can be an ordinary
$p$-adic number (type \typ{PADIC}, i.e.~an element of $\Z_p$) or can be an
integral element of a finite extension of $\Q_p$, given as a \typ{POLMOD}
at least one of whose coefficients is a \typ{PADIC}. In this case, the result
is the vector of roots belonging to the same extension of $\Q_p$ as $a$.
Function: padicfields
Class: basic
Section: polynomials
C-Name: padicfields0
Prototype: GGD0,L,
Help: padicfields(p, N, {flag=0}): returns polynomials generating all
the extensions of degree N of the field of p-adic rational numbers; N is
allowed to be a 2-component vector [n,d], in which case, returns the
extensions of degree n and discriminant p^d. flag is optional,
and can be 0: default, 1: return also the ramification index, the residual
degree, the valuation of the discriminant and the number of conjugate fields,
or 2: return only the number of extensions in a fixed algebraic closure.
Doc: returns a vector of polynomials generating all the extensions of degree
$N$ of the field $\Q_p$ of $p$-adic rational numbers; $N$ is
allowed to be a 2-component vector $[n,d]$, in which case we return the
extensions of degree $n$ and discriminant $p^d$.
The list is minimal in the sense that two different polynomials generate
non-isomorphic extensions; in particular, the number of polynomials is the
number of classes of isomorphic extensions. If $P$ is a polynomial in this
list, $\alpha$ is any root of $P$ and $K = \Q_p(\alpha)$, then $\alpha$
is the sum of a uniformizer and a (lift of a) generator of the residue field
of $K$; in particular, the powers of $\alpha$ generate the ring of $p$-adic
integers of $K$.
If $\fl = 1$, replace each polynomial $P$ by a vector $[P, e, f, d, c]$
where $e$ is the ramification index, $f$ the residual degree, $d$ the
valuation of the discriminant, and $c$ the number of conjugate fields.
If $\fl = 2$, only return the \emph{number} of extensions in a fixed
algebraic closure (Krasner's formula), which is much faster.
Variant: Also available is \fun{GEN}{padicfields}{GEN p, long n,
long d, long flag}, which computes extensions of $\Q_p$ of degree $n$ and
discriminant $p^d$.
Function: padicprec
Class: basic
Section: conversions
C-Name: padicprec
Prototype: lGG
Help: padicprec(x,p): absolute p-adic precision of object x.
Doc: absolute $p$-adic precision of the object $x$. This is the minimum
precision of the components of $x$. The result is \tet{LONG_MAX}
($2^{31}-1$ for 32-bit machines or $2^{63}-1$ for 64-bit machines) if $x$ is
an exact object.
Function: partitions
Class: basic
Section: number_theoretical
C-Name: partitions
Prototype: LD0,L,
Help: partitions(n,{restr=0}): return vector of partitions of n, a positive
integer. The second optional argument may be set to a number smaller than n
to restrict the value of each element in the partitions to that value. The
default of 0 means that this maximum is n itself.
Doc: returns vector of partitions of the integer $n$ (negative values return
\kbd{[]}, $n = 0$ returns the trivial partition of the empty set).
The second optional argument may be set to a non-negative number smaller than
$n$ to restrict the value of each element in the partitions to that value.
The default of 0 means that this maximum is $n$ itself.
A partition is given by a \typ{VECSMALL}:
\bprog
? partitions(4, 2)
%1 = [Vecsmall([2, 2]), Vecsmall([1, 1, 2]), Vecsmall([1, 1, 1, 1])]
@eprog\noindent
correspond to $2+2$, $1+1+2$, $1+1+1+1$.
Function: permtonum
Class: basic
Section: conversions
C-Name: permtonum
Prototype: G
Help: permtonum(x): ordinal (between 1 and n!) of permutation x.
Doc: given a permutation $x$ on $n$ elements, gives the number $k$ such that
$x=\kbd{numtoperm(n,k)}$, i.e.~inverse function of \tet{numtoperm}.
Function: plot
Class: highlevel
Section: graphic
C-Name: plot
Prototype: vV=GGEDGDGp
Help: plot(X=a,b,expr,{Ymin},{Ymax}): crude plot of expression expr, X goes
from a to b, with Y ranging from Ymin to Ymax. If Ymin (resp. Ymax) is not
given, the minima (resp. the maxima) of the expression is used instead.
Doc: crude ASCII plot of the function represented by expression \var{expr}
from $a$ to $b$, with \var{Y} ranging from \var{Ymin} to \var{Ymax}. If
\var{Ymin} (resp. \var{Ymax}) is not given, the minima (resp. the maxima) of
the computed values of the expression is used instead.
Function: plotbox
Class: highlevel
Section: graphic
C-Name: rectbox
Prototype: vLGG
Help: plotbox(w,x2,y2): if the cursor is at position (x1,y1), draw a box
with diagonal (x1,y1) and (x2,y2) in rectwindow w (cursor does not move).
Doc: let $(x1,y1)$ be the current position of the virtual cursor. Draw in the
rectwindow $w$ the outline of the rectangle which is such that the points
$(x1,y1)$ and $(x2,y2)$ are opposite corners. Only the part of the rectangle
which is in $w$ is drawn. The virtual cursor does \emph{not} move.
Function: plotclip
Class: highlevel
Section: graphic
C-Name: rectclip
Prototype: vL
Help: plotclip(w): clip the contents of the rectwindow to the bounding box
(except strings).
Doc: `clips' the content of rectwindow $w$, i.e remove all parts of the
drawing that would not be visible on the screen. Together with
\tet{plotcopy} this function enables you to draw on a scratchpad before
committing the part you're interested in to the final picture.
Function: plotcolor
Class: highlevel
Section: graphic
C-Name: rectcolor
Prototype: vLL
Help: plotcolor(w,c): in rectwindow w, set default color to c. Possible
values for c are given by the graphcolormap default: factory settings
are 1=black, 2=blue, 3=sienna, 4=red, 5=green, 6=grey, 7=gainsborough.
Doc: set default color to $c$ in rectwindow $w$.
This is only implemented for the X-windows, fltk and Qt graphing engines.
Possible values for $c$ are given by the \tet{graphcolormap} default,
factory setting are
1=black, 2=blue, 3=violetred, 4=red, 5=green, 6=grey, 7=gainsborough.
but this can be considerably extended.
Function: plotcopy
Class: highlevel
Section: graphic
C-Name: rectcopy_gen
Prototype: vLLGGD0,L,
Help: plotcopy(sourcew,destw,dx,dy,{flag=0}): copy the contents of
rectwindow sourcew to rectwindow destw with offset (dx,dy). If flag's bit 1
is set, dx and dy express fractions of the size of the current output
device, otherwise dx and dy are in pixels. dx and dy are relative positions
of northwest corners if other bits of flag vanish, otherwise of: 2:
southwest, 4: southeast, 6: northeast corners.
Doc: copy the contents of rectwindow \var{sourcew} to rectwindow \var{destw}
with offset (dx,dy). If flag's bit 1 is set, dx and dy express fractions of
the size of the current output device, otherwise dx and dy are in pixels. dx
and dy are relative positions of northwest corners if other bits of flag
vanish, otherwise of: 2: southwest, 4: southeast, 6: northeast corners
Function: plotcursor
Class: highlevel
Section: graphic
C-Name: rectcursor
Prototype: L
Help: plotcursor(w): current position of cursor in rectwindow w.
Doc: give as a 2-component vector the current
(scaled) position of the virtual cursor corresponding to the rectwindow $w$.
Function: plotdraw
Class: highlevel
Section: graphic
C-Name: rectdraw_flag
Prototype: vGD0,L,
Help: plotdraw(list, {flag=0}): draw vector of rectwindows list at indicated
x,y positions; list is a vector w1,x1,y1,w2,x2,y2,etc. If flag!=0, x1, y1
etc. express fractions of the size of the current output device.
Doc: physically draw the rectwindows given in $list$
which must be a vector whose number of components is divisible by 3. If
$list=[w1,x1,y1,w2,x2,y2,\dots]$, the windows $w1$, $w2$, etc.~are
physically placed with their upper left corner at physical position
$(x1,y1)$, $(x2,y2)$,\dots\ respectively, and are then drawn together.
Overlapping regions will thus be drawn twice, and the windows are considered
transparent. Then display the whole drawing in a special window on your
screen. If $\fl \neq 0$, x1, y1 etc. express fractions of the size of the
current output device
Function: ploth
Class: highlevel
Section: graphic
C-Name: ploth
Prototype: V=GGEpD0,M,D0,L,\nParametric|1; Recursive|2; no_Rescale|4; no_X_axis|8; no_Y_axis|16; no_Frame|32; no_Lines|64; Points_too|128; Splines|256; no_X_ticks|512; no_Y_ticks|1024; Same_ticks|2048; Complex|4096
Help: ploth(X=a,b,expr,{flags=0},{n=0}): plot of expression expr, X goes
from a to b in high resolution. Both flags and n are optional. Binary digits
of flags mean: 1=Parametric, 2=Recursive, 4=no_Rescale, 8=no_X_axis,
16=no_Y_axis, 32=no_Frame, 64=no_Lines (do not join points), 128=Points_too
(plot both lines and points), 256=Splines (use cubic splines),
512=no_X_ticks, 1024= no_Y_ticks, 2048=Same_ticks (plot all ticks with the
same length), 4096=Complex (the two coordinates of each points are encoded
as a complex number). n specifies number of reference points on the graph
(0=use default value). Returns a vector for the bounding box.
Doc: high precision plot of the function $y=f(x)$ represented by the expression
\var{expr}, $x$ going from $a$ to $b$. This opens a specific window (which is
killed whenever you click on it), and returns a four-component vector giving
the coordinates of the bounding box in the form
$[\var{xmin},\var{xmax},\var{ymin},\var{ymax}]$.
\misctitle{Important note}: \kbd{ploth} may evaluate \kbd{expr} thousands of
times; given the relatively low resolution of plotting devices, few
significant digits of the result will be meaningful. Hence you should keep
the current precision to a minimum (e.g.~9) before calling this function.
$n$ specifies the number of reference point on the graph, where a value of 0
means we use the hardwired default values (1000 for general plot, 1500 for
parametric plot, and 15 for recursive plot).
If no $\fl$ is given, \var{expr} is either a scalar expression $f(X)$, in which
case the plane curve $y=f(X)$ will be drawn, or a vector
$[f_1(X),\dots,f_k(X)]$, and then all the curves $y=f_i(X)$ will be drawn in
the same window.
\noindent The binary digits of $\fl$ mean:
\item $1 = \kbd{Parametric}$: \tev{parametric plot}. Here \var{expr} must
be a vector with an even number of components. Successive pairs are then
understood as the parametric coordinates of a plane curve. Each of these are
then drawn.
For instance:
\bprog
ploth(X=0,2*Pi,[sin(X),cos(X)], "Parametric")
ploth(X=0,2*Pi,[sin(X),cos(X)])
ploth(X=0,2*Pi,[X,X,sin(X),cos(X)], "Parametric")
@eprog\noindent draw successively a circle, two entwined sinusoidal curves
and a circle cut by the line $y=x$.
\item $2 = \kbd{Recursive}$: \tev{recursive plot}. If this flag is set,
only \emph{one} curve can be drawn at a time, i.e.~\var{expr} must be either a
two-component vector (for a single parametric curve, and the parametric flag
\emph{has} to be set), or a scalar function. The idea is to choose pairs of
successive reference points, and if their middle point is not too far away
from the segment joining them, draw this as a local approximation to the
curve. Otherwise, add the middle point to the reference points. This is
fast, and usually more precise than usual plot. Compare the results of
\bprog
ploth(X=-1,1, sin(1/X), "Recursive")
ploth(X=-1,1, sin(1/X))
@eprog\noindent
for instance. But beware that if you are extremely unlucky, or choose too few
reference points, you may draw some nice polygon bearing little resemblance
to the original curve. For instance you should \emph{never} plot recursively
an odd function in a symmetric interval around 0. Try
\bprog
ploth(x = -20, 20, sin(x), "Recursive")
@eprog\noindent
to see why. Hence, it's usually a good idea to try and plot the same curve
with slightly different parameters.
The other values toggle various display options:
\item $4 = \kbd{no\_Rescale}$: do not rescale plot according to the
computed extrema. This is used in conjunction with \tet{plotscale} when
graphing multiple functions on a rectwindow (as a \tet{plotrecth} call):
\bprog
s = plothsizes();
plotinit(0, s[2]-1, s[2]-1);
plotscale(0, -1,1, -1,1);
plotrecth(0, t=0,2*Pi, [cos(t),sin(t)], "Parametric|no_Rescale")
plotdraw([0, -1,1]);
@eprog\noindent
This way we get a proper circle instead of the distorted ellipse produced by
\bprog
ploth(t=0,2*Pi, [cos(t),sin(t)], "Parametric")
@eprog
\item $8 = \kbd{no\_X\_axis}$: do not print the $x$-axis.
\item $16 = \kbd{no\_Y\_axis}$: do not print the $y$-axis.
\item $32 = \kbd{no\_Frame}$: do not print frame.
\item $64 = \kbd{no\_Lines}$: only plot reference points, do not join them.
\item $128 = \kbd{Points\_too}$: plot both lines and points.
\item $256 = \kbd{Splines}$: use splines to interpolate the points.
\item $512 = \kbd{no\_X\_ticks}$: plot no $x$-ticks.
\item $1024 = \kbd{no\_Y\_ticks}$: plot no $y$-ticks.
\item $2048 = \kbd{Same\_ticks}$: plot all ticks with the same length.
\item $4096 = \kbd{Complex}$: is a parametric plot but where each member of
\kbd{expr} is considered a complex number encoding the two coordinates of a
point. For instance:
\bprog
ploth(X=0,2*Pi,exp(I*X), "Complex")
ploth(X=0,2*Pi,[(1+I)*X,exp(I*X)], "Complex")
@eprog\noindent will draw respectively a circle and a circle cut by the line
$y=x$.
Function: plothraw
Class: highlevel
Section: graphic
C-Name: plothraw
Prototype: GGD0,L,
Help: plothraw(listx,listy,{flag=0}): plot in high resolution points whose x
(resp. y) coordinates are in listx (resp. listy). If flag is 1, join points,
other non-0 flags should be combinations of bits 8,16,32,64,128,256 meaning
the same as for ploth().
Doc: given \var{listx} and \var{listy} two vectors of equal length, plots (in
high precision) the points whose $(x,y)$-coordinates are given in
\var{listx} and \var{listy}. Automatic positioning and scaling is done, but
with the same scaling factor on $x$ and $y$. If $\fl$ is 1, join points,
other non-0 flags toggle display options and should be combinations of bits
$2^k$, $k \geq 3$ as in \kbd{ploth}.
Function: plothsizes
Class: highlevel
Section: graphic
C-Name: plothsizes_flag
Prototype: D0,L,
Help: plothsizes({flag=0}): returns array of 6 elements: terminal width and
height, sizes for ticks in horizontal and vertical directions, width and
height of characters. If flag=0, sizes of ticks and characters are in
pixels, otherwise are fractions of the screen size.
Doc: return data corresponding to the output window
in the form of a 6-component vector: window width and height, sizes for ticks
in horizontal and vertical directions (this is intended for the \kbd{gnuplot}
interface and is currently not significant), width and height of characters.
If $\fl = 0$, sizes of ticks and characters are in
pixels, otherwise are fractions of the screen size
Function: plotinit
Class: highlevel
Section: graphic
C-Name: initrect_gen
Prototype: vLDGDGD0,L,
Help: plotinit(w,{x},{y},{flag=0}): initialize rectwindow w to size x,y.
If flag!=0, x and y express fractions of the size of the current output
device. Omitting x or y means use the full size of the device.
Doc: initialize the rectwindow $w$,
destroying any rect objects you may have already drawn in $w$. The virtual
cursor is set to $(0,0)$. The rectwindow size is set to width $x$ and height
$y$; omitting either $x$ or $y$ means we use the full size of the device
in that direction.
If $\fl=0$, $x$ and $y$ represent pixel units. Otherwise, $x$ and $y$
are understood as fractions of the size of the current output device (hence
must be between $0$ and $1$) and internally converted to pixels.
The plotting device imposes an upper bound for $x$ and $y$, for instance the
number of pixels for screen output. These bounds are available through the
\tet{plothsizes} function. The following sequence initializes in a portable
way (i.e independent of the output device) a window of maximal size, accessed
through coordinates in the $[0,1000] \times [0,1000]$ range:
\bprog
s = plothsizes();
plotinit(0, s[1]-1, s[2]-1);
plotscale(0, 0,1000, 0,1000);
@eprog
Function: plotkill
Class: highlevel
Section: graphic
C-Name: killrect
Prototype: vL
Help: plotkill(w): erase the rectwindow w.
Doc: erase rectwindow $w$ and free the corresponding memory. Note that if you
want to use the rectwindow $w$ again, you have to use \kbd{plotinit} first
to specify the new size. So it's better in this case to use \kbd{plotinit}
directly as this throws away any previous work in the given rectwindow.
Function: plotlines
Class: highlevel
Section: graphic
C-Name: rectlines
Prototype: vLGGD0,L,
Help: plotlines(w,X,Y,{flag=0}): draws an open polygon in rectwindow
w where X and Y contain the x (resp. y) coordinates of the vertices.
If X and Y are both single values (i.e not vectors), draw the
corresponding line (and move cursor). If (optional) flag is non-zero, close
the polygon.
Doc: draw on the rectwindow $w$
the polygon such that the (x,y)-coordinates of the vertices are in the
vectors of equal length $X$ and $Y$. For simplicity, the whole
polygon is drawn, not only the part of the polygon which is inside the
rectwindow. If $\fl$ is non-zero, close the polygon. In any case, the
virtual cursor does not move.
$X$ and $Y$ are allowed to be scalars (in this case, both have to).
There, a single segment will be drawn, between the virtual cursor current
position and the point $(X,Y)$. And only the part thereof which
actually lies within the boundary of $w$. Then \emph{move} the virtual cursor
to $(X,Y)$, even if it is outside the window. If you want to draw a
line from $(x1,y1)$ to $(x2,y2)$ where $(x1,y1)$ is not necessarily the
position of the virtual cursor, use \kbd{plotmove(w,x1,y1)} before using this
function.
Function: plotlinetype
Class: highlevel
Section: graphic
C-Name: rectlinetype
Prototype: vLL
Help: plotlinetype(w,type): change the type of following lines in rectwindow
w. type -2 corresponds to frames, -1 to axes, larger values may correspond
to something else. w=-1 changes highlevel plotting.
Doc: change the type of lines subsequently plotted in rectwindow $w$.
\var{type} $-2$ corresponds to frames, $-1$ to axes, larger values may
correspond to something else. $w = -1$ changes highlevel plotting. This is
only taken into account by the \kbd{gnuplot} interface.
Function: plotmove
Class: highlevel
Section: graphic
C-Name: rectmove
Prototype: vLGG
Help: plotmove(w,x,y): move cursor to position x,y in rectwindow w.
Doc: move the virtual cursor of the rectwindow $w$ to position $(x,y)$.
Function: plotpoints
Class: highlevel
Section: graphic
C-Name: rectpoints
Prototype: vLGG
Help: plotpoints(w,X,Y): draws in rectwindow w the points whose x
(resp y) coordinates are in X (resp Y). If X and Y are both
single values (i.e not vectors), draw the corresponding point (and move
cursor).
Doc: draw on the rectwindow $w$ the
points whose $(x,y)$-coordinates are in the vectors of equal length $X$ and
$Y$ and which are inside $w$. The virtual cursor does \emph{not} move. This
is basically the same function as \kbd{plothraw}, but either with no scaling
factor or with a scale chosen using the function \kbd{plotscale}.
As was the case with the \kbd{plotlines} function, $X$ and $Y$ are allowed to
be (simultaneously) scalar. In this case, draw the single point $(X,Y)$ on
the rectwindow $w$ (if it is actually inside $w$), and in any case
\emph{move} the virtual cursor to position $(x,y)$.
Function: plotpointsize
Class: highlevel
Section: graphic
C-Name: rectpointsize
Prototype: vLG
Help: plotpointsize(w,size): change the "size" of following points in
rectwindow w. w=-1 changes global value.
Doc: changes the ``size'' of following points in rectwindow $w$. If $w = -1$,
change it in all rectwindows. This only works in the \kbd{gnuplot} interface.
Function: plotpointtype
Class: highlevel
Section: graphic
C-Name: rectpointtype
Prototype: vLL
Help: plotpointtype(w,type): change the type of following points in
rectwindow w. type -1 corresponds to a dot, larger values may correspond to
something else. w=-1 changes highlevel plotting.
Doc: change the type of points subsequently plotted in rectwindow $w$.
$\var{type} = -1$ corresponds to a dot, larger values may correspond to
something else. $w = -1$ changes highlevel plotting. This is only taken into
account by the \kbd{gnuplot} interface.
Function: plotrbox
Class: highlevel
Section: graphic
C-Name: rectrbox
Prototype: vLGG
Help: plotrbox(w,dx,dy): if the cursor is at (x1,y1), draw a box with
diagonal (x1,y1)-(x1+dx,y1+dy) in rectwindow w (cursor does not move).
Doc: draw in the rectwindow $w$ the outline of the rectangle which is such
that the points $(x1,y1)$ and $(x1+dx,y1+dy)$ are opposite corners, where
$(x1,y1)$ is the current position of the cursor. Only the part of the
rectangle which is in $w$ is drawn. The virtual cursor does \emph{not} move.
Function: plotrecth
Class: highlevel
Section: graphic
C-Name: rectploth
Prototype: LV=GGEpD0,M,D0,L,\nParametric|1; Recursive|2; no_Rescale|4; no_X_axis|8; no_Y_axis|16; no_Frame|32; no_Lines|64; Points_too|128; Splines|256; no_X_ticks|512; no_Y_ticks|1024; Same_ticks|2048; Complex|4096
Help: plotrecth(w,X=a,b,expr,{flag=0},{n=0}):
writes to rectwindow w the curve output of
ploth(w,X=a,b,expr,flag,n). Returns a vector for the bounding box.
Doc: writes to rectwindow $w$ the curve output of
\kbd{ploth}$(w,X=a,b,\var{expr},\fl,n)$. Returns a vector for the bounding box.
Function: plotrecthraw
Class: highlevel
Section: graphic
C-Name: rectplothraw
Prototype: LGD0,L,
Help: plotrecthraw(w,data,{flags=0}): plot graph(s) for data in rectwindow
w, where data is a vector of vectors. If plot is parametric, length of data
should be even, and pairs of entries give curves to plot. If not, first
entry gives x-coordinate, and the other ones y-coordinates. Admits the same
optional flags as plotrecth, save that recursive plot is meaningless.
Doc: plot graph(s) for
\var{data} in rectwindow $w$. $\fl$ has the same significance here as in
\kbd{ploth}, though recursive plot is no more significant.
\var{data} is a vector of vectors, each corresponding to a list a coordinates.
If parametric plot is set, there must be an even number of vectors, each
successive pair corresponding to a curve. Otherwise, the first one contains
the $x$ coordinates, and the other ones contain the $y$-coordinates
of curves to plot.
Function: plotrline
Class: highlevel
Section: graphic
C-Name: rectrline
Prototype: vLGG
Help: plotrline(w,dx,dy): if the cursor is at (x1,y1), draw a line from
(x1,y1) to (x1+dx,y1+dy) (and move the cursor) in the rectwindow w.
Doc: draw in the rectwindow $w$ the part of the segment
$(x1,y1)-(x1+dx,y1+dy)$ which is inside $w$, where $(x1,y1)$ is the current
position of the virtual cursor, and move the virtual cursor to
$(x1+dx,y1+dy)$ (even if it is outside the window).
Function: plotrmove
Class: highlevel
Section: graphic
C-Name: rectrmove
Prototype: vLGG
Help: plotrmove(w,dx,dy): move cursor to position (dx,dy) relative to the
present position in the rectwindow w.
Doc: move the virtual cursor of the rectwindow $w$ to position
$(x1+dx,y1+dy)$, where $(x1,y1)$ is the initial position of the cursor
(i.e.~to position $(dx,dy)$ relative to the initial cursor).
Function: plotrpoint
Class: highlevel
Section: graphic
C-Name: rectrpoint
Prototype: vLGG
Help: plotrpoint(w,dx,dy): draw a point (and move cursor) at position dx,dy
relative to present position of the cursor in rectwindow w.
Doc: draw the point $(x1+dx,y1+dy)$ on the rectwindow $w$ (if it is inside
$w$), where $(x1,y1)$ is the current position of the cursor, and in any case
move the virtual cursor to position $(x1+dx,y1+dy)$.
Function: plotscale
Class: highlevel
Section: graphic
C-Name: rectscale
Prototype: vLGGGG
Help: plotscale(w,x1,x2,y1,y2): scale the coordinates in rectwindow w so
that x goes from x1 to x2 and y from y1 to y2 (y2<y1 is allowed).
Doc: scale the local coordinates of the rectwindow $w$ so that $x$ goes from
$x1$ to $x2$ and $y$ goes from $y1$ to $y2$ ($x2<x1$ and $y2<y1$ being
allowed). Initially, after the initialization of the rectwindow $w$ using
the function \kbd{plotinit}, the default scaling is the graphic pixel count,
and in particular the $y$ axis is oriented downwards since the origin is at
the upper left. The function \kbd{plotscale} allows to change all these
defaults and should be used whenever functions are graphed.
Function: plotstring
Class: highlevel
Section: graphic
C-Name: rectstring3
Prototype: vLsD0,L,
Help: plotstring(w,x,{flags=0}): draw in rectwindow w the string
corresponding to x. Bits 1 and 2 of flag regulate horizontal alignment: left
if 0, right if 2, center if 1. Bits 4 and 8 regulate vertical alignment:
bottom if 0, top if 8, v-center if 4. Can insert additional gap between
point and string: horizontal if bit 16 is set, vertical if bit 32 is set.
Doc: draw on the rectwindow $w$ the String $x$ (see \secref{se:strings}), at
the current position of the cursor.
\fl\ is used for justification: bits 1 and 2 regulate horizontal alignment:
left if 0, right if 2, center if 1. Bits 4 and 8 regulate vertical
alignment: bottom if 0, top if 8, v-center if 4. Can insert additional small
gap between point and string: horizontal if bit 16 is set, vertical if bit
32 is set (see the tutorial for an example).
Function: polchebyshev
Class: basic
Section: polynomials
C-Name: polchebyshev_eval
Prototype: LD1,L,DG
Help: polchebyshev(n,{flag=1},{a='x}): Chebychev polynomial of the first (flag
= 1) or second (flag = 2) kind, of degree n, evaluated at a.
Description:
(small,?1,?var):gen polchebyshev1($1,$3)
(small,2,?var):gen polchebyshev2($1,$3)
(small,small,?var):gen polchebyshev($1,$2,$3)
Doc: returns the $n^{\text{th}}$
\idx{Chebyshev} polynomial of the first kind $T_n$ ($\fl=1$) or the second
kind $U_n$ ($\fl=2$), evaluated at $a$ (\kbd{'x} by default). Both series of
polynomials satisfy the 3-term relation
$$ P_{n+1} = 2xP_n - P_{n-1}, $$
and are determined by the initial conditions $U_0 = T_0 = 1$, $T_1 = x$,
$U_1 = 2x$. In fact $T_n' = n U_{n-1}$ and, for all complex numbers $z$, we
have $T_n(\cos z) = \cos (nz)$ and $U_{n-1}(\cos z) = \sin(nz)/\sin z$.
If $n \geq 0$, then these polynomials have degree $n$. For $n < 0$,
$T_n$ is equal to $T_{-n}$ and $U_n$ is equal to $-U_{-2-n}$.
In particular, $U_{-1} = 0$.
Variant: Also available are \fun{GEN}{polchebyshev1}{long n, long v} and
\fun{GEN}{polchebyshev2}{long n, long v} for $T_n$ and $U_n$ respectively.
Function: polcoeff
Class: basic
Section: polynomials
C-Name: polcoeff0
Prototype: GLDn
Help: polcoeff(x,n,{v}): coefficient of degree n of x, or the n-th component
for vectors or matrices (for which it is simpler to use x[]). With respect
to the main variable if v is omitted, with respect to the variable v
otherwise.
Description:
(pol, 0):gen:copy constant_term($1)
(gen, small, ?var):gen polcoeff0($1, $2, $3)
Doc: coefficient of degree $n$ of the polynomial $x$, with respect to the
main variable if $v$ is omitted, with respect to $v$ otherwise. If $n$
is greater than the degree, the result is zero.
Naturally applies to scalars (polynomial of degree $0$), as well as to
rational functions whose denominator is a monomial.
It also applies to power series: if $n$ is less than the valuation, the result
is zero. If it is greater than the largest significant degree, then an error
message is issued.
For greater flexibility, vector or matrix types are also accepted for $x$,
and the meaning is then identical with that of \kbd{component(x,n)}.
Function: polcompositum
Class: basic
Section: number_fields
C-Name: polcompositum0
Prototype: GGD0,L,
Help: polcompositum(P,Q,{flag=0}): vector of all possible compositums
of the number fields defined by the polynomials P and Q. If (optional)
flag is set (i.e non-null), output for each compositum, not only the
compositum polynomial pol, but a vector [R,a,b,k] where a (resp. b) is a root
of P (resp. Q) expressed as a polynomial modulo R,
and a small integer k such that al2+k*al1 is the chosen root of R.
Doc: \sidx{compositum} $P$ and $Q$
being squarefree polynomials in $\Z[X]$ in the same variable, outputs
the simple factors of the \'etale $\Q$-algebra $A = \Q(X, Y) / (P(X), Q(Y))$.
The factors are given by a list of polynomials $R$ in $\Z[X]$, associated to
the number field $\Q(X)/ (R)$, and sorted by increasing degree (with respect
to lexicographic ordering for factors of equal degrees). Returns an error if
one of the polynomials is not squarefree.
Note that it is more efficient to reduce to the case where $P$ and $Q$ are
irreducible first. The routine will not perform this for you, since it may be
expensive, and the inputs are irreducible in most applications anyway.
Assuming $P$ is irreducible (of smaller degree than $Q$ for efficiency), it
is in general \emph{much} faster to proceed as follows
\bprog
nf = nfinit(P); L = nffactor(nf, Q)[,1];
vector(#L, i, rnfequation(nf, L[i]))
@eprog\noindent
to obtain the same result. If you are only interested in the degrees of the
simple factors, the \kbd{rnfequation} instruction can be replaced by a
trivial \kbd{poldegree(P) * poldegree(L[i])}.
If $\fl=1$, outputs a vector of 4-component vectors $[R,a,b,k]$, where $R$
ranges through the list of all possible compositums as above, and $a$
(resp. $b$) expresses the root of $P$ (resp. $Q$) as an element of
$\Q(X)/(R)$. Finally, $k$ is a small integer such that $b + ka = X$ modulo
$R$.
A compositum is quite often defined by a complicated polynomial, which it is
advisable to reduce before further work. Here is a simple example involving
the field $\Q(\zeta_5, 5^{1/5})$:
\bprog
? z = polcompositum(x^5 - 5, polcyclo(5), 1)[1];
? pol = z[1] \\@com \kbd{pol} defines the compositum
%2 = x^20 + 5*x^19 + 15*x^18 + 35*x^17 + 70*x^16 + 141*x^15 + 260*x^14 \
+ 355*x^13 + 95*x^12 - 1460*x^11 - 3279*x^10 - 3660*x^9 - 2005*x^8 \
+ 705*x^7 + 9210*x^6 + 13506*x^5 + 7145*x^4 - 2740*x^3 + 1040*x^2 \
- 320*x + 256
? a = z[2]; a^5 - 5 \\@com \kbd{a} is a fifth root of $5$
%3 = 0
? z = polredabs(pol, 1); \\@com look for a simpler polynomial
? pol = z[1]
%5 = x^20 + 25*x^10 + 5
? a = subst(a.pol, x, z[2]) \\@com \kbd{a} in the new coordinates
%6 = Mod(-5/22*x^19 + 1/22*x^14 - 123/22*x^9 + 9/11*x^4, x^20 + 25*x^10 + 5)
@eprog
Variant: Also available are
\fun{GEN}{compositum}{GEN P, GEN Q} ($\fl = 0$) and
\fun{GEN}{compositum2}{GEN P, GEN Q} ($\fl = 1$).
Function: polcyclo
Class: basic
Section: polynomials
C-Name: polcyclo_eval
Prototype: LDG
Help: polcyclo(n,{a = 'x}): n-th cyclotomic polynomial evaluated at a.
Description:
(small,?var):gen polcyclo($1,$2)
(small,gen):gen polcyclo_eval($1,$2)
Doc: $n$-th cyclotomic polynomial, evaluated at $a$ (\kbd{'x} by default). The
integer $n$ must be positive.
Algorithm used: reduce to the case where $n$ is squarefree; to compute the
cyclotomic polynomial, use $\Phi_{np}(x)=\Phi_n(x^p)/\Phi(x)$; to compute
it evaluated, use $\Phi_n(x) = \prod_{d\mid n} (x^d-1)^{\mu(n/d)}$. In the
evaluated case, the algorithm can deal with all rational values $a$;
otherwise it assumes that $a^d - 1$ is invertible for all $d\mid n$. If this
is not the case, use \kbd{subst(polcyclo(n),x,a)}.
Variant: The variant \fun{GEN}{polcyclo}{long n, long v} returns the $n$-th
cyclotomic polynomial in variable $v$.
Function: poldegree
Class: basic
Section: polynomials
C-Name: poldegree
Prototype: lGDn
Help: poldegree(x,{v}): degree of the polynomial or rational function x with
respect to main variable if v is omitted, with respect to v otherwise.
For scalar x, return 0 is x is non-zero and a negative number otherwise.
Description:
(pol):small degpol($1)
(gen):small degree($1)
(gen, var):small poldegree($1, $2)
Doc: degree of the polynomial $x$ in the main variable if $v$ is omitted, in
the variable $v$ otherwise.
The degree of $0$ is a fixed negative number, whose exact value should not
be used. The degree of a non-zero scalar is $0$. Finally, when $x$ is a
non-zero polynomial or rational function, returns the ordinary degree of
$x$. Raise an error otherwise.
Function: poldisc
Class: basic
Section: polynomials
C-Name: poldisc0
Prototype: GDn
Help: poldisc(pol,{v}): discriminant of the polynomial pol, with respect to main
variable if v is omitted, with respect to v otherwise.
Description:
(pol):gen discsr($1)
(gen):gen poldisc0($1, -1)
(gen, var):gen poldisc0($1, $2)
Doc: discriminant of the polynomial
\var{pol} in the main variable if $v$ is omitted, in $v$ otherwise. The
algorithm used is the \idx{subresultant algorithm}.
Function: poldiscreduced
Class: basic
Section: polynomials
C-Name: reduceddiscsmith
Prototype: G
Help: poldiscreduced(f): vector of elementary divisors of Z[a]/f'(a)Z[a],
where a is a root of the polynomial f.
Doc: reduced discriminant vector of the
(integral, monic) polynomial $f$. This is the vector of elementary divisors
of $\Z[\alpha]/f'(\alpha)\Z[\alpha]$, where $\alpha$ is a root of the
polynomial $f$. The components of the result are all positive, and their
product is equal to the absolute value of the discriminant of~$f$.
Function: polgalois
Class: basic
Section: number_fields
C-Name: polgalois
Prototype: Gp
Help: polgalois(x): Galois group of the polynomial x (see manual for group
coding). Return [n, s, k, name] where n is the order, s the signature, k the
index and name is the GAP4 name of the transitive group.
Doc: \idx{Galois} group of the non-constant
polynomial $x\in\Q[X]$. In the present version \vers, $x$ must be irreducible
and the degree of $x$ must be less than or equal to 7. On certain versions for
which the data file of Galois resolvents has been installed (available in the
Unix distribution as a separate package), degrees 8, 9, 10 and 11 are also
implemented.
The output is a 4-component vector $[n,s,k,name]$ with the
following meaning: $n$ is the cardinality of the group, $s$ is its signature
($s=1$ if the group is a subgroup of the alternating group $A_n$, $s=-1$
otherwise) and name is a character string containing name of the transitive
group according to the GAP 4 transitive groups library by Alexander Hulpke.
$k$ is more arbitrary and the choice made up to version~2.2.3 of PARI is rather
unfortunate: for $n > 7$, $k$ is the numbering of the group among all
transitive subgroups of $S_n$, as given in ``The transitive groups of degree up
to eleven'', G.~Butler and J.~McKay, \emph{Communications in Algebra}, vol.~11,
1983,
pp.~863--911 (group $k$ is denoted $T_k$ there). And for $n \leq 7$, it was ad
hoc, so as to ensure that a given triple would design a unique group.
Specifically, for polynomials of degree $\leq 7$, the groups are coded as
follows, using standard notations
\smallskip
In degree 1: $S_1=[1,1,1]$.
\smallskip
In degree 2: $S_2=[2,-1,1]$.
\smallskip
In degree 3: $A_3=C_3=[3,1,1]$, $S_3=[6,-1,1]$.
\smallskip
In degree 4: $C_4=[4,-1,1]$, $V_4=[4,1,1]$, $D_4=[8,-1,1]$, $A_4=[12,1,1]$,
$S_4=[24,-1,1]$.
\smallskip
In degree 5: $C_5=[5,1,1]$, $D_5=[10,1,1]$, $M_{20}=[20,-1,1]$,
$A_5=[60,1,1]$, $S_5=[120,-1,1]$.
\smallskip
In degree 6: $C_6=[6,-1,1]$, $S_3=[6,-1,2]$, $D_6=[12,-1,1]$, $A_4=[12,1,1]$,
$G_{18}=[18,-1,1]$, $S_4^-=[24,-1,1]$, $A_4\times C_2=[24,-1,2]$,
$S_4^+=[24,1,1]$, $G_{36}^-=[36,-1,1]$, $G_{36}^+=[36,1,1]$,
$S_4\times C_2=[48,-1,1]$, $A_5=PSL_2(5)=[60,1,1]$, $G_{72}=[72,-1,1]$,
$S_5=PGL_2(5)=[120,-1,1]$, $A_6=[360,1,1]$, $S_6=[720,-1,1]$.
\smallskip
In degree 7: $C_7=[7,1,1]$, $D_7=[14,-1,1]$, $M_{21}=[21,1,1]$,
$M_{42}=[42,-1,1]$, $PSL_2(7)=PSL_3(2)=[168,1,1]$, $A_7=[2520,1,1]$,
$S_7=[5040,-1,1]$.
\smallskip
This is deprecated and obsolete, but for reasons of backward compatibility,
we cannot change this behavior yet. So you can use the default
\tet{new_galois_format} to switch to a consistent naming scheme, namely $k$ is
always the standard numbering of the group among all transitive subgroups of
$S_n$. If this default is in effect, the above groups will be coded as:
\smallskip
In degree 1: $S_1=[1,1,1]$.
\smallskip
In degree 2: $S_2=[2,-1,1]$.
\smallskip
In degree 3: $A_3=C_3=[3,1,1]$, $S_3=[6,-1,2]$.
\smallskip
In degree 4: $C_4=[4,-1,1]$, $V_4=[4,1,2]$, $D_4=[8,-1,3]$, $A_4=[12,1,4]$,
$S_4=[24,-1,5]$.
\smallskip
In degree 5: $C_5=[5,1,1]$, $D_5=[10,1,2]$, $M_{20}=[20,-1,3]$,
$A_5=[60,1,4]$, $S_5=[120,-1,5]$.
\smallskip
In degree 6: $C_6=[6,-1,1]$, $S_3=[6,-1,2]$, $D_6=[12,-1,3]$, $A_4=[12,1,4]$,
$G_{18}=[18,-1,5]$, $A_4\times C_2=[24,-1,6]$, $S_4^+=[24,1,7]$,
$S_4^-=[24,-1,8]$, $G_{36}^-=[36,-1,9]$, $G_{36}^+=[36,1,10]$,
$S_4\times C_2=[48,-1,11]$, $A_5=PSL_2(5)=[60,1,12]$, $G_{72}=[72,-1,13]$,
$S_5=PGL_2(5)=[120,-1,14]$, $A_6=[360,1,15]$, $S_6=[720,-1,16]$.
\smallskip
In degree 7: $C_7=[7,1,1]$, $D_7=[14,-1,2]$, $M_{21}=[21,1,3]$,
$M_{42}=[42,-1,4]$, $PSL_2(7)=PSL_3(2)=[168,1,5]$, $A_7=[2520,1,6]$,
$S_7=[5040,-1,7]$.
\smallskip
\misctitle{Warning} The method used is that of resolvent polynomials and is
sensitive to the current precision. The precision is updated internally but,
in very rare cases, a wrong result may be returned if the initial precision
was not sufficient.
Variant: To enable the new format in library mode,
set the global variable \tet{new_galois_format} to $1$.
Function: polhensellift
Class: basic
Section: polynomials
C-Name: polhensellift
Prototype: GGGL
Help: polhensellift(A, B, p, e): lift the factorization B of A modulo p to a
factorization modulo p^e using Hensel lift. The factors in B must be
pairwise relatively prime modulo p.
Doc: given a prime $p$, an integral polynomial $A$ whose leading coefficient
is a $p$-unit, a vector $B$ of integral polynomials that are monic and
pairwise relatively prime modulo $p$, and whose product is congruent to
$A/\text{lc}(A)$ modulo $p$, lift the elements of $B$ to polynomials whose
product is congruent to $A$ modulo $p^e$.
More generally, if $T$ is an integral polynomial irreducible mod $p$, and
$B$ is a factorization of $A$ over the finite field $\F_p[t]/(T)$, you can
lift it to $\Z_p[t]/(T, p^e)$ by replacing the $p$ argument with $[p,T]$:
\bprog
? { T = t^3 - 2; p = 7; A = x^2 + t + 1;
B = [x + (3*t^2 + t + 1), x + (4*t^2 + 6*t + 6)];
r = polhensellift(A, B, [p, T], 6) }
%1 = [x + (20191*t^2 + 50604*t + 75783), x + (97458*t^2 + 67045*t + 41866)]
? lift(lift( r[1] * r[2] * Mod(Mod(1,p^6),T) ))
%2 = x^2 + (t + 1)
@eprog
Function: polhermite
Class: basic
Section: polynomials
C-Name: polhermite_eval
Prototype: LDG
Help: polhermite(n,{a='x}): Hermite polynomial H(n,v) of degree n, evaluated
at a.
Description:
(small,?var):gen polhermite($1,$2)
(small,gen):gen polhermite_eval($1,$2)
Doc: $n^{\text{th}}$ \idx{Hermite} polynomial $H_n$ evaluated at $a$
(\kbd{'x} by default), i.e.
$$ H_n(x) = (-1)^n\*e^{x^2} \dfrac{d^n}{dx^n}e^{-x^2}.$$
Variant: The variant \fun{GEN}{polhermite}{long n, long v} returns the $n$-th
Hermite polynomial in variable $v$.
Function: polinterpolate
Class: basic
Section: polynomials
C-Name: polint
Prototype: GDGDGD&
Help: polinterpolate(X,{Y},{x},{&e}): polynomial interpolation at x
according to data vectors X, Y (ie return P such that P(X[i]) = Y[i] for
all i). If Y is omitted, return P such that P(i) = X[i]. If present, e
will contain an error estimate on the returned value.
Doc: given the data vectors
$X$ and $Y$ of the same length $n$ ($X$ containing the $x$-coordinates,
and $Y$ the corresponding $y$-coordinates), this function finds the
\idx{interpolating polynomial} passing through these points and evaluates it
at~$x$. If $Y$ is omitted, return the polynomial interpolating the
$(i,X[i])$. If present, $e$ will contain an error estimate on the returned
value.
Function: polisirreducible
Class: basic
Section: polynomials
C-Name: gisirreducible
Prototype: G
Help: polisirreducible(pol): true(1) if pol is an irreducible non-constant
polynomial, false(0) if pol is reducible or constant.
Doc: \var{pol} being a polynomial (univariate in the present version \vers),
returns 1 if \var{pol} is non-constant and irreducible, 0 otherwise.
Irreducibility is checked over the smallest base field over which \var{pol}
seems to be defined.
Function: pollead
Class: basic
Section: polynomials
C-Name: pollead
Prototype: GDn
Help: pollead(x,{v}): leading coefficient of polynomial or series x, or x
itself if x is a scalar. Error otherwise. With respect to the main variable
of x if v is omitted, with respect to the variable v otherwise.
Description:
(pol):gen:copy leading_term($1)
(gen):gen pollead($1, -1)
(gen, var):gen pollead($1, $2)
Doc: leading coefficient of the polynomial or power series $x$. This is
computed with respect to the main variable of $x$ if $v$ is omitted, with
respect to the variable $v$ otherwise.
Function: pollegendre
Class: basic
Section: polynomials
C-Name: pollegendre_eval
Prototype: LDG
Help: pollegendre(n,{a='x}): legendre polynomial of degree n evaluated at a.
Description:
(small,?var):gen pollegendre($1,$2)
(small,gen):gen pollegendre_eval($1,$2)
Doc: $n^{\text{th}}$ \idx{Legendre polynomial} evaluated at $a$ (\kbd{'x} by
default).
Variant: To obtain the $n$-th Legendre polynomial in variable $v$,
use \fun{GEN}{pollegendre}{long n, long v}.
Function: polrecip
Class: basic
Section: polynomials
C-Name: polrecip
Prototype: G
Help: polrecip(pol): reciprocal polynomial of pol.
Doc: reciprocal polynomial of \var{pol}, i.e.~the coefficients are in
reverse order. \var{pol} must be a polynomial.
Function: polred
Class: basic
Section: number_fields
C-Name: polred0
Prototype: GD0,L,DG
Help: polred(x,{flag=0},{fa}): reduction of the polynomial x (gives minimal
polynomials only). Second and third args are optional. The following binary
digits of flag are significant 1: partial reduction, 2: gives also elements.
fa, if present, contains the factorization matrix of the discriminant.
Doc: finds polynomials with reasonably
small coefficients defining subfields of the number field defined by $x$.
One of the polynomials always defines $\Q$ (hence is equal to $x-1$),
and another always defines the same number field as $x$ if $x$ is irreducible.
All $x$ accepted by \tet{nfinit} are also allowed here (e.g. non-monic
polynomials, \kbd{nf}, \kbd{bnf}, \kbd{[x,Z\_K\_basis]}).
The following binary digits of $\fl$ are significant:
1: possibly use a suborder of the maximal order. The primes dividing the
index of the order chosen are larger than \tet{primelimit} or divide integers
stored in the \tet{addprimes} table.
2: gives also elements. The result is a two-column matrix, the first column
giving primitive elements defining these subfields, the second giving the
corresponding minimal polynomials.
\bprog
? M = polred(x^4 + 8, 2)
%1 =
[1 x - 1]
[1/2*x^2 x^2 + 2]
[1/4*x^3 x^4 + 2]
[x x^4 + 8]
? minpoly(Mod(M[2,1], x^4+8))
%2 = x^2 + 2
@eprog\noindent
If $fa$ is given, it is assumed that it is the two-column matrix of the
factorization of the discriminant of the polynomial $x$.
Variant: Also available is \fun{GEN}{polred}{GEN x} ($\fl = 0$). The function
\kbd{polred0} is provided for backward compatibility; instead of the above
hardcoded numerical flags (which happen to be inconsistent), one should use
\fun{GEN}{Polred}{GEN x, long flag, GEN fa} where flag is an or-ed
combination of \tet{nf_PARTIALFACT} (partial factorization of the
discriminant) and \tet{nf_ORIG} (give also elements).
Function: polredabs
Class: basic
Section: number_fields
C-Name: polredabs0
Prototype: GD0,L,
Help: polredabs(T,{flag=0}): a smallest generating polynomial of the number
field for the T2 norm on the roots, with smallest index for the minimal T2
norm. flag is optional, whose binary digit mean 1: give the element whose
characteristic polynomial is the given polynomial. 4: give all polynomials
of minimal T2 norm (give only one of P(x) and P(-x)). 16: partial reduction.
Doc: returns a canonical defining polynomial $P$ for the same number field
defined by $T$, such that the sum of the squares of the modulus of the
roots (i.e.~the $T_2$-norm) is minimal. Different $T$ defining isomorphic
number fields will yield the same $P$.
All $T$ accepted by \tet{nfinit} are also allowed here: non-monic
polynomials, \kbd{nf}, \kbd{bnf}, \kbd{[T, Z\_K\_basis]}.
\misctitle{Warning} This routine uses an exponential-time algorithm to
enumerate all potential generators, and may be exceedingly slow when the
number field has many subfields, hence a lot of elements of small $T_2$-norm.
E.g. do not try it on the compositum of many quadratic fields; in that case,
use \tet{polred} instead.
The binary digits of $\fl$ mean
1: outputs a two-component row vector $[P,a]$, where $P$ is the default
output and \kbd{Mod(a, P)} is a root of the original $T$.
4: gives \emph{all} polynomials of minimal $T_2$ norm; of the two polynomials
$P(x)$ and $\pm P(-x)$, only one is given.
16: possibly use a suborder of the maximal order. The primes dividing the
index of the order chosen are larger than \tet{primelimit} or divide integers
stored in the \tet{addprimes} table. In that case the polynomial $P$ is
no longer canonical, and it may happen that it does not have minimal
$T_2$ norm. You should always include this flag; without it, the routine
will often spend infinite time trying to factor the discriminant of $T$. As
long as the discriminant of the \emph{field} $\Q[X]/(T)$ is easy to factor
(has at most one large prime factor not in the \kbd{addprimes} table), the
result is the same.
Variant: Instead of the above hardcoded numerical flags, one should use an
or-ed combination of
\item \tet{nf_PARTIALFACT}: partial factorization of the discriminant,
possibly work in a non-maximal order. You should always include this.
\item \tet{nf_ORIG}: return $[P, a]$, where \kbd{Mod(a, P)} is a root of $T$.
\item \tet{nf_RAW}: return $[P, b]$, where \kbd{Mod(b, T)} is a root of $P$.
The algebraic integer $b$ is the raw result produced by the small vectors
enumeration in the maximal order; $P$ was computed as the characteristic
polynomial of \kbd{Mod(b, T)}. \kbd{Mod(a, P)} as in \tet{nf_ORIG}
is obtained with \tet{modreverse}.
\item \tet{nf_ADDZK}: if $r$ is the result produced with some of the above
flags (of the form $P$ or $[P,c]$), return \kbd{[r,zk]}, where \kbd{zk} is a
$\Z$-basis for the maximal order of $\Q[X]/(P)$.
\item \tet{nf_ALL}: return a vector of results of the above form, for all
polynomials of minimal $T_2$-norm.
Function: polredord
Class: basic
Section: number_fields
C-Name: ordred
Prototype: G
Help: polredord(x): reduction of the polynomial x, staying in the same order.
Doc: finds polynomials with reasonably small
coefficients and of the same degree as that of $x$ defining suborders of the
order defined by $x$. One of the polynomials always defines $\Q$ (hence
is equal to $(x-1)^n$, where $n$ is the degree), and another always defines
the same order as $x$ if $x$ is irreducible. Useless function: try
\kbd{polred(,1)} or \kbd{polredabs(,16)}.
Function: polresultant
Class: basic
Section: polynomials
C-Name: polresultant0
Prototype: GGDnD0,L,
Help: polresultant(x,y,{v},{flag=0}): resultant of the polynomials x and y,
with respect to the main variables of x and y if v is omitted, with respect
to the variable v otherwise. flag is optional, and can be 0: default,
uses either the subresultant algorithm, a modular algorithm or Sylvester's
matrix, depending on the inputs; 1 uses Sylvester's matrix (should always be
slower than the default).
Doc: resultant of the two
polynomials $x$ and $y$ with exact entries, with respect to the main
variables of $x$ and $y$ if $v$ is omitted, with respect to the variable $v$
otherwise. The algorithm assumes the base ring is a domain. If you also need
the $u$ and $v$ such that $x*u + y*v = res(x,y)$, use the \tet{bezoutres}
function.
If $\fl=0$ (default), uses the the algorithm best suited to the inputs,
either the \idx{subresultant algorithm} (Lazard/Ducos variant, generic case),
a modular algorithm (inputs in $\Q[X]$) or Sylvester's matrix (inexact
inputs).
If $\fl=1$, uses the determinant of Sylvester's matrix instead; this should
always be slower than the default.
Function: polroots
Class: basic
Section: polynomials
C-Name: roots0
Prototype: GD0,L,p
Help: polroots(x,{flag=0}): complex roots of the polynomial x. flag is
optional, and can be 0: default, uses Schonhage's method modified by
Gourdon, or 1: uses a modified Newton method.
Doc: complex roots of the polynomial
\var{pol}, given as a column vector where each root is repeated according to
its multiplicity. The precision is given as for transcendental functions: in
GP it is kept in the variable \kbd{realprecision} and is transparent to the
user, but it must be explicitly given as a second argument in library mode.
The algorithm used is a modification of A.~Sch\"onhage\sidx{Sch\"onage}'s
root-finding algorithm, due to and implemented by X.~Gourdon. Barring bugs, it
is guaranteed to converge and to give the roots to the required accuracy.
If $\fl=1$, use a variant of the Newton-Raphson method, which is \emph{not}
guaranteed to converge, nor to give accurate results, but is rather
fast when it does. If you get the messages ``too many iterations in roots''
or ``INTERNAL ERROR: incorrect result in roots'', use the default algorithm.
Variant: Also available is \fun{GEN}{roots}{GEN x, long prec}, as well as
\fun{GEN}{cleanroots}{GEN x, long prec} which ensures that real roots of
real polynomials are returned as \typ{REAL} (instead of \typ{COMPLEX}s with
0 imaginary part).
Function: polrootsff
Class: basic
Section: number_theoretical
C-Name: polrootsff
Prototype: GDGDG
Help: polrootsff(x,{p},{a}): returns the roots of the polynomial x in the finite
field F_p[X]/a(X)F_p[X]. a or p can be omitted if x has t_FFELT coefficients.
Doc: returns the vector of distinct roots of the polynomial $x$ in the field
$\F_q$ defined by the irreducible polynomial $a$ over $\F_p$. The
coefficients of $x$ must be operation-compatible with $\Z/p\Z$.
Either $a$ or $p$ can omitted (in which case both are ignored) if x has
\typ{FFELT} coefficients:
\bprog
? polrootsff(x^2 + 1, 5, y^2+3) \\ over F_5[y]/(y^2+3) ~ F_25
%1 = [Mod(Mod(3, 5), Mod(1, 5)*y^2 + Mod(3, 5)),
Mod(Mod(2, 5), Mod(1, 5)*y^2 + Mod(3, 5))]
? t = ffgen(y^2 + Mod(3,5), 't); \\ a generator for F_25 as a t_FFELT
? polrootsff(x^2 + 1) \\ not enough information to determine the base field
*** at top-level: polrootsff(x^2+1)
*** ^-----------------
*** polrootsff: incorrect type in factorff.
? polrootsff(x^2 + t^0) \\ make sure one coeff. is a t_FFELT
%3 = [3, 2]
? polrootsff(x^2 + t + 1)
%4 = [2*t + 1, 3*t + 4]
@eprog\noindent
Notice that the second syntax is easier to use and much more readable.
Function: polrootsmod
Class: basic
Section: polynomials
C-Name: rootmod0
Prototype: GGD0,L,
Help: polrootsmod(pol,p,{flag=0}): roots mod the prime p of the polynomial pol. flag is
optional, and can be 0: default, or 1: use a naive search, useful for small p.
Description:
(pol, int, ?0):vec rootmod($1, $2)
(pol, int, 1):vec rootmod2($1, $2)
(pol, int, #small):vec $"Bad flag in polrootsmod"
(pol, int, small):vec rootmod0($1, $2, $3)
Doc: row vector of roots modulo $p$ of the polynomial \var{pol}. The
particular non-prime value $p=4$ is accepted, mainly for $2$-adic
computations. Multiple roots are \emph{not} repeated.
\bprog
? polrootsmod(x^2-1,2)
%1 = [Mod(1, 2)]~
? polrootsmod(x^2-1,4)
%2 = [Mod(1, 4), Mod(3, 4)]~
@eprog\noindent
If $p$ is very small, you may set $\fl=1$, which uses a naive search.
Function: polrootspadic
Class: basic
Section: polynomials
C-Name: rootpadic
Prototype: GGL
Help: polrootspadic(x,p,r): p-adic roots of the polynomial x to precision r.
Doc: row vector of $p$-adic roots of
the polynomial \var{pol}, given to $p$-adic precision $r$. Multiple roots are
\emph{not} repeated. $p$ is assumed to be a prime, and \var{pol} to be
non-zero modulo $p$. Note that this is not the same as the roots in
$\Z/p^r\Z$, rather it gives approximations in $\Z/p^r\Z$ of the true
roots living in $\Q_p$.
If \var{pol} has inexact \typ{PADIC} coefficients, this is not always
well-defined; in this case, the equation is first made integral, then lifted
to $\Z$. Hence the roots given are approximations of the roots of a
polynomial which is $p$-adically close to the input.
Function: polsturm
Class: basic
Section: polynomials
C-Name: sturmpart
Prototype: lGDGDG
Help: polsturm(pol,{a},{b}): number of real roots of the squarefree polynomial
pol in the interval ]a,b] (which are respectively taken to be -oo or +oo when
omitted).
Doc: number of real roots of the real squarefree polynomial \var{pol} in the
interval $]a,b]$, using Sturm's algorithm. $a$ (resp.~$b$) is taken to be
$-\infty$ (resp.~$+\infty$) if omitted.
Variant: Also available is \fun{long}{sturm}{GEN pol} (total number of real
roots).
Function: polsubcyclo
Class: basic
Section: polynomials
C-Name: polsubcyclo
Prototype: LLDn
Help: polsubcyclo(n,d,{v=x}): finds an equation (in variable v) for the d-th
degree subfields of Q(zeta_n). Output is a polynomial or a vector of
polynomials is there are several such fields, or none.
Doc: gives polynomials (in variable
$v$) defining the sub-Abelian extensions of degree $d$ of the cyclotomic
field $\Q(\zeta_n)$, where $d\mid \phi(n)$.
If there is exactly one such extension the output is a polynomial, else it is
a vector of polynomials, possibly empty. To get a vector in all cases,
use \kbd{concat([], polsubcyclo(n,d))}
The function \tet{galoissubcyclo} allows to specify more closely which
sub-Abelian extension should be computed.
Function: polsylvestermatrix
Class: basic
Section: polynomials
C-Name: sylvestermatrix
Prototype: GG
Help: polsylvestermatrix(x,y): forms the sylvester matrix associated to the
two polynomials x and y. Warning: the polynomial coefficients are in
columns, not in rows.
Doc: forms the Sylvester matrix
corresponding to the two polynomials $x$ and $y$, where the coefficients of
the polynomials are put in the columns of the matrix (which is the natural
direction for solving equations afterwards). The use of this matrix can be
essential when dealing with polynomials with inexact entries, since
polynomial Euclidean division doesn't make much sense in this case.
Function: polsym
Class: basic
Section: polynomials
C-Name: polsym
Prototype: GL
Help: polsym(x,n): column vector of symmetric powers of the roots of x up to n.
Doc: creates the column vector of the \idx{symmetric powers} of the roots of the
polynomial $x$ up to power $n$, using Newton's formula.
Function: poltchebi
Class: basic
Section: polynomials
C-Name: polchebyshev1
Prototype: LDn
Help: poltchebi(n,{v=x}): Tchebitcheff polynomial of degree n, in variable v.
(For backward compatibility.)
Doc: creates the $n^{\text{th}}$ \idx{Chebyshev} polynomial~$T_n$ of the
first kind in variable $v$. This function is retained for backward
compatibility only. Use \tet{polchebyshev}.
Function: poltschirnhaus
Class: basic
Section: number_fields
C-Name: tschirnhaus
Prototype: G
Help: poltschirnhaus(x): random Tschirnhausen transformation of the
polynomial x.
Doc: applies a random Tschirnhausen
transformation to the polynomial $x$, which is assumed to be non-constant
and separable, so as to obtain a new equation for the \'etale algebra
defined by $x$. This is for instance useful when computing resolvents,
hence is used by the \kbd{polgalois} function.
Function: polylog
Class: basic
Section: transcendental
C-Name: polylog0
Prototype: LGD0,L,p
Help: polylog(m,x,{flag=0}): m-th polylogarithm of x. flag is optional, and
can be 0: default, 1: D_m~-modified m-th polylog of x, 2: D_m-modified m-th
polylog of x, 3: P_m-modified m-th polylog of x.
Doc: one of the different polylogarithms, depending on \fl:
If $\fl=0$ or is omitted: $m^\text{th}$ polylogarithm of $x$, i.e.~analytic
continuation of the power series $\text{Li}_m(x)=\sum_{n\ge1}x^n/n^m$
($x < 1$). Uses the functional equation linking the values at $x$ and $1/x$
to restrict to the case $|x|\leq 1$, then the power series when
$|x|^2\le1/2$, and the power series expansion in $\log(x)$ otherwise.
Using $\fl$, computes a modified $m^\text{th}$ polylogarithm of $x$.
We use Zagier's notations; let $\Re_m$ denote $\Re$ or $\Im$ depending
on whether $m$ is odd or even:
If $\fl=1$: compute $\tilde D_m(x)$, defined for $|x|\le1$ by
$$\Re_m\left(\sum_{k=0}^{m-1} \dfrac{(-\log|x|)^k}{k!}\text{Li}_{m-k}(x)
+\dfrac{(-\log|x|)^{m-1}}{m!}\log|1-x|\right).$$
If $\fl=2$: compute $D_m(x)$, defined for $|x|\le1$ by
$$\Re_m\left(\sum_{k=0}^{m-1}\dfrac{(-\log|x|)^k}{k!}\text{Li}_{m-k}(x)
-\dfrac{1}{2}\dfrac{(-\log|x|)^m}{m!}\right).$$
If $\fl=3$: compute $P_m(x)$, defined for $|x|\le1$ by
$$\Re_m\left(\sum_{k=0}^{m-1}\dfrac{2^kB_k}{k!}(\log|x|)^k\text{Li}_{m-k}(x)
-\dfrac{2^{m-1}B_m}{m!}(\log|x|)^m\right).$$
These three functions satisfy the functional equation
$f_m(1/x) = (-1)^{m-1}f_m(x)$.
Variant: Also available is
\fun{GEN}{gpolylog}{long m, GEN x, long prec} (\fl = 0).
Function: polzagier
Class: basic
Section: polynomials
C-Name: polzag
Prototype: LL
Help: polzagier(n,m): Zagier's polynomials of index n,m.
Doc: creates Zagier's polynomial $P_n^{(m)}$ used in
the functions \kbd{sumalt} and \kbd{sumpos} (with $\fl=1$). One must have $m\le
n$. The exact definition can be found in ``Convergence acceleration of
alternating series'', Cohen et al., Experiment.~Math., vol.~9, 2000, pp.~3--12.
%@article {MR2001m:11222,
% AUTHOR = {Cohen, Henri and Rodriguez Villegas, Fernando and Zagier, Don},
% TITLE = {Convergence acceleration of alternating series},
% JOURNAL = {Experiment. Math.},
% VOLUME = {9},
% YEAR = {2000},
% NUMBER = {1},
% PAGES = {3--12},
%}
Function: precision
Class: basic
Section: conversions
C-Name: precision0
Prototype: GD0,L,
Help: precision(x,{n}): change the precision of x to be n. If n is omitted,
output real precision of object x.
Description:
(real):small prec2ndec(gprecision($1))
(gen):int precision0($1, 0)
(real,0):small prec2ndec(gprecision($1))
(gen,0):int precision0($1, 0)
(real,#small):real rtor($1, ndec2prec($2))
(gen,#small):gen gprec($1, $2)
(real,small):real precision0($1, $2)
(gen,small):gen precision0($1, $2)
Doc: gives the precision in decimal digits of the PARI object $x$. If $x$ is
an exact object, the largest single precision integer is returned.
\bprog
? precision(exp(1e-100))
%1 = 134 \\ 134 significant decimal digits
? precision(2 + x)
%2 = 2147483647 \\ exact object
? precision(0.5 + O(x))
%3 = 28 \\ floating point accuracy, NOT series precision
? precision( [ exp(1e-100), 0.5 ] )
%4 = 28 \\ minimal accuracy among components
@eprog\noindent
The return value for exact objects is meaningless since it is not even the
same on 32 and 64-bit machines. The proper way to test whether an object is
exact is
\bprog
? isexact(x) = precision(x) == precision(0)
@eprog
If $n$ is not omitted, creates a new object equal to $x$ with a new
``precision'' $n$. (This never changes the type of the result. In particular
it is not possible to use it to obtain a polynomial from a power series; tor
that, see \tet{truncate}.) Now the meaning of precision is different from the
above (floating point accuracy), and depends on the type of $x$:
For exact types, no change. For $x$ a vector or a matrix, the operation is
done componentwise.
For real $x$, $n$ is the number of desired significant \emph{decimal}
digits. If $n$ is smaller than the precision of $x$, $x$ is truncated,
otherwise $x$ is extended with zeros.
For $x$ a $p$-adic or a power series, $n$ is the desired number of
\emph{significant} $p$-adic or $X$-adic digits, where $X$ is the main
variable of $x$. (Note: yes, this is inconsistent.)
Note that the precision is a priori distinct from the exponent $k$ appearing
in $O(*^k)$; it is indeed equal to $k$ if and only if $x$ is a $p$-adic
or $X$-adic \emph{unit}.
\bprog
? precision(1 + O(x), 10)
%1 = 1 + O(x^10)
? precision(x^2 + O(x^10), 3)
%2 = x^2 + O(x^5)
? precision(7^2 + O(7^10), 3)
%3 = 7^2 + O(7^5)
@eprog\noindent
For the last two examples, note that $x^2 + O(x^5) = x^2(1 + O(x^3))$
indeed has 3 significant coefficients
Variant: Also available are \fun{GEN}{gprec}{GEN x, long n} and
\fun{long}{precision}{GEN x}. In both, the accuracy is expressed in
\emph{words} (32-bit or 64-bit depending on the architecture).
Function: precprime
Class: basic
Section: number_theoretical
C-Name: gprecprime
Prototype: G
Help: precprime(x): largest pseudoprime <= x, 0 if x<=1.
Description:
(int):int precprime($1)
(gen):gen gprecprime($1)
Doc: finds the largest pseudoprime (see
\tet{ispseudoprime}) less than or equal to $x$. $x$ can be of any real type.
Returns 0 if $x\le1$. Note that if $x$ is a prime, this function returns $x$
and not the largest prime strictly smaller than $x$. To rigorously prove that
the result is prime, use \kbd{isprime}.
The function accepts vector/matrices arguments, and is then applied
componentwise.
Variant: For a scalar $x$, \fun{long}{precprime}{GEN n} is also available.
Function: prime
Class: basic
Section: number_theoretical
C-Name: prime
Prototype: L
Help: prime(n): returns the n-th prime (n C-integer).
Doc: the $x^{\text{th}}$ prime number, which must be among
the precalculated primes.
Function: primepi
Class: basic
Section: number_theoretical
C-Name: primepi
Prototype: G
Help: primepi(x): the prime counting function pi(x) = #{p <= x, p prime}.
Description:
(gen):int primepi($1)
Doc: the prime counting function. Returns the number of
primes $p$, $p \leq x$. Uses a naive algorithm so that $x$ must be less than
\kbd{primelimit}.
Function: primes
Class: basic
Section: number_theoretical
C-Name: primes
Prototype: L
Help: primes(x): returns the vector of the first x primes.
Doc: creates a row vector whose components
are the first $x$ prime numbers, which must be among the precalculated primes.
\bprog
? primes(10) \\ the first 10 primes
%1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
? primes(primepi(10)) \\ the primes up to 10
%2 = [2, 3, 5, 7]
@eprog
Function: print
Class: basic
Section: programming/specific
C-Name: print
Prototype: vs*
Help: print({str}*): outputs its string arguments (in raw format) ending with
a newline.
Description:
(?gen,...):void pari_printf("${2 format_string}\n"${2 format_args})
Doc: outputs its (string) arguments in raw format, ending with a newline.
%\syn{NO}
Function: print1
Class: basic
Section: programming/specific
C-Name: print1
Prototype: vs*
Help: print1({str}*): outputs its string arguments (in raw format) without
ending with newline.
Description:
(?gen,...):void pari_printf("${2 format_string}"${2 format_args})
Doc: outputs its (string) arguments in raw
format, without ending with a newline. Note that you can still embed newlines
within your strings, using the \b{n} notation~!
%\syn{NO}
Function: printf
Class: basic
Section: programming/specific
C-Name: printf0
Prototype: vss*
Help: printf(fmt,{x}*): prints its arguments according to the format fmt.
Doc: This function is based on the C library command of the same name.
It prints its arguments according to the format \var{fmt}, which specifies how
subsequent arguments are converted for output. The format is a
character string composed of zero or more directives:
\item ordinary characters (not \kbd{\%}), printed unchanged,
\item conversions specifications (\kbd{\%} followed by some characters)
which fetch one argument from the list and prints it according to the
specification.
More precisely, a conversion specification consists in a \kbd{\%}, one or more
optional flags (among \kbd{\#}, \kbd{0}, \kbd{-}, \kbd{+}, ` '), an optional
decimal digit string specifying a minimal field width, an optional precision
in the form of a period (`\kbd{.}') followed by a decimal digit string, and
the conversion specifier (among \kbd{d},\kbd{i}, \kbd{o}, \kbd{u},
\kbd{x},\kbd{X}, \kbd{p}, \kbd{e},\kbd{E}, \kbd{f}, \kbd{g},\kbd{G}, \kbd{s}).
\misctitle{The flag characters} The character \kbd{\%} is followed by zero or
more of the following flags:
\item \kbd{\#}: The value is converted to an ``alternate form''. For
\kbd{o} conversion (octal), a \kbd{0} is prefixed to the string. For \kbd{x}
and \kbd{X} conversions (hexa), respectively \kbd{0x} and \kbd{0X} are
prepended. For other conversions, the flag is ignored.
\item \kbd{0}: The value should be zero padded. For
\kbd{d},
\kbd{i},
\kbd{o},
\kbd{u},
\kbd{x},
\kbd{X}
\kbd{e},
\kbd{E},
\kbd{f},
\kbd{F},
\kbd{g}, and
\kbd{G} conversions, the value is padded on the left with zeros rather than
blanks. (If the \kbd{0} and \kbd{-} flags both appear, the \kbd{0} flag is
ignored.)
\item \kbd{-}: The value is left adjusted on the field boundary. (The
default is right justification.) The value is padded on the right with
blanks, rather than on the left with blanks or zeros. A \kbd{-} overrides a
\kbd{0} if both are given.
\item \kbd{` '} (a space): A blank is left before a positive number
produced by a signed conversion.
\item \kbd{+}: A sign (+ or -) is placed before a number produced by a
signed conversion. A \kbd{+} overrides a space if both are used.
\misctitle{The field width} An optional decimal digit string (whose first
digit is non-zero) specifying a \emph{minimum} field width. If the value has
fewer characters than the field width, it is padded with spaces on the left
(or right, if the left-adjustment flag has been given). In no case does a
small field width cause truncation of a field; if the value is wider than
the field width, the field is expanded to contain the conversion result.
Instead of a decimal digit string, one may write \kbd{*} to specify that the
field width is given in the next argument.
\misctitle{The precision} An optional precision in the form of a period
(`\kbd{.}') followed by a decimal digit string. This gives
the number of digits to appear after the radix character for \kbd{e},
\kbd{E}, \kbd{f}, and \kbd{F} conversions, the maximum number of significant
digits for \kbd{g} and \kbd{G} conversions, and the maximum number of
characters to be printed from an \kbd{s} conversion.
Instead of a decimal digit string, one may write \kbd{*} to specify that the
field width is given in the next argument.
\misctitle{The length modifier} This is ignored under \kbd{gp}, but
necessary for \kbd{libpari} programming. Description given here for
completeness:
\item \kbd{l}: argument is a \kbd{long} integer.
\item \kbd{P}: argument is a \kbd{GEN}.
\misctitle{The conversion specifier} A character that specifies the type of
conversion to be applied.
\item \kbd{d}, \kbd{i}: A signed integer.
\item \kbd{o}, \kbd{u}, \kbd{x}, \kbd{X}: An unsigned integer, converted
to unsigned octal (\kbd{o}), decimal (\kbd{u}) or hexadecimal (\kbd{x} or
\kbd{X}) notation. The letters \kbd{abcdef} are used for \kbd{x}
conversions; the letters \kbd{ABCDEF} are used for \kbd{X} conversions.
\item \kbd{e}, \kbd{E}: The (real) argument is converted in the style
\kbd{[ -]d.ddd e[ -]dd}, where there is one digit before the decimal point,
and the number of digits after it is equal to the precision; if the
precision is missing, use the current \kbd{realprecision} for the total
number of printed digits. If the precision is explicitly 0, no decimal-point
character appears. An \kbd{E} conversion uses the letter \kbd{E} rather
than \kbd{e} to introduce the exponent.
\item \kbd{f}, \kbd{F}: The (real) argument is converted in the style
\kbd{[ -]ddd.ddd}, where the number of digits after the decimal point
is equal to the precision; if the precision is missing, use the current
\kbd{realprecision} for the total number of printed digits. If the precision
is explicitly 0, no decimal-point character appears. If a decimal point
appears, at least one digit appears before it.
\item \kbd{g}, \kbd{G}: The (real) argument is converted in style
\kbd{e} or \kbd{f} (or \kbd{E} or \kbd{F} for \kbd{G} conversions)
\kbd{[ -]ddd.ddd}, where the total number of digits printed
is equal to the precision; if the precision is missing, use the current
\kbd{realprecision}. If the precision is explicitly 0, it is treated as 1.
Style \kbd{e} is used when
the decimal exponent is $< -4$, to print \kbd{0.}, or when the integer
part cannot be decided given the known significant digits, and the \kbd{f}
format otherwise.
\item \kbd{c}: The integer argument is converted to an unsigned char, and the
resulting character is written.
\item \kbd{s}: Convert to a character string. If a precision is given, no
more than the specified number of characters are written.
\item \kbd{p}: Print the address of the argument in hexadecimal (as if by
\kbd{\%\#x}).
\item \kbd{\%}: A \kbd{\%} is written. No argument is converted. The complete
conversion specification is \kbd{\%\%}.
\noindent Examples:
\bprog
? printf("floor: %d, field width 3: %3d, with sign: %+3d\n", Pi, 1, 2);
floor: 3, field width 3: 1, with sign: +2
? printf("%.5g %.5g %.5g\n",123,123/456,123456789);
123.00 0.26974 1.2346 e8
? printf("%-2.5s:%2.5s:%2.5s\n", "P", "PARI", "PARIGP");
P :PARI:PARIG
\\ min field width and precision given by arguments
? x = 23; y=-1/x; printf("x=%+06.2f y=%+0*.*f\n", x, 6, 2, y);
x=+23.00 y=-00.04
\\ minimum fields width 5, pad left with zeroes
? for (i = 2, 5, printf("%05d\n", 10^i))
00100
01000
10000
100000 \\@com don't truncate fields whose length is larger than the minimum width
? printf("%.2f |%06.2f|", Pi,Pi)
3.14 | 3.14|
@eprog\noindent All numerical conversions apply recursively to the entries
of vectors and matrices:
\bprog
? printf("%4d", [1,2,3]);
[ 1, 2, 3]
? printf("%5.2f", mathilbert(3));
[ 1.00 0.50 0.33]
[ 0.50 0.33 0.25]
[ 0.33 0.25 0.20]
@eprog
\misctitle{Technical note} Our implementation of \tet{printf}
deviates from the C89 and C99 standards in a few places:
\item whenever a precision is missing, the current \kbd{realprecision} is
used to determine the number of printed digits (C89: use 6 decimals after
the radix character).
\item in conversion style \kbd{e}, we do not impose that the
exponent has at least two digits; we never write a \kbd{+} sign in the
exponent; 0 is printed in a special way, always as \kbd{0.E\var{exp}}.
\item in conversion style \kbd{f}, we switch to style \kbd{e} if the
exponent is greater or equal to the precision.
\item in conversion \kbd{g} and \kbd{G}, we do not remove trailing zeros
from the fractional part of the result; nor a trailing decimal point;
0 is printed in a special way, always as \kbd{0.E\var{exp}}.
%\syn{NO}
Function: printtex
Class: basic
Section: programming/specific
C-Name: printtex
Prototype: vs*
Help: printtex({str}*): outputs its string arguments in TeX format.
Doc: outputs its (string) arguments in \TeX\ format. This output can then be
used in a \TeX\ manuscript.
The printing is done on the standard output. If you want to print it to a
file you should use \kbd{writetex} (see there).
Another possibility is to enable the \tet{log} default
(see~\secref{se:defaults}).
You could for instance do:\sidx{logfile}
%
\bprog
default(logfile, "new.tex");
default(log, 1);
printtex(result);
@eprog
%\syn{NO}
Function: prod
Class: basic
Section: sums
C-Name: produit
Prototype: V=GGEDG
Help: prod(X=a,b,expr,{x=1}): x times the product (X runs from a to b) of
expression.
Doc: product of expression
\var{expr}, initialized at $x$, the formal parameter $X$ going from $a$ to
$b$. As for \kbd{sum}, the main purpose of the initialization parameter $x$
is to force the type of the operations being performed. For example if it is
set equal to the integer 1, operations will start being done exactly. If it
is set equal to the real $1.$, they will be done using real numbers having
the default precision. If it is set equal to the power series $1+O(X^k)$ for
a certain $k$, they will be done using power series of precision at most $k$.
These are the three most common initializations.
\noindent As an extreme example, compare
\bprog
? prod(i=1, 100, 1 - X^i); \\@com this has degree $5050$ !!
time = 128 ms.
? prod(i=1, 100, 1 - X^i, 1 + O(X^101))
time = 8 ms.
%2 = 1 - X - X^2 + X^5 + X^7 - X^12 - X^15 + X^22 + X^26 - X^35 - X^40 + \
X^51 + X^57 - X^70 - X^77 + X^92 + X^100 + O(X^101)
@eprog\noindent
Of course, in this specific case, it is faster to use \tet{eta},
which is computed using Euler's formula.
\bprog
? prod(i=1, 1000, 1 - X^i, 1 + O(X^1001));
time = 589 ms.
? \ps1000
seriesprecision = 1000 significant terms
? eta(X) - %
time = 8ms.
%4 = O(X^1001)
@eprog
\synt{produit}{GEN a, GEN b, char *expr, GEN x}.
Function: prodeuler
Class: basic
Section: sums
C-Name: prodeuler0
Prototype: V=GGEp
Help: prodeuler(X=a,b,expr): Euler product (X runs over the primes between a
and b) of real or complex expression.
Doc: product of expression \var{expr},
initialized at 1. (i.e.~to a \emph{real} number equal to 1 to the current
\kbd{realprecision}), the formal parameter $X$ ranging over the prime numbers
between $a$ and $b$.\sidx{Euler product}
\synt{prodeuler}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b, long prec}.
Function: prodinf
Class: basic
Section: sums
C-Name: prodinf0
Prototype: V=GED0,L,p
Help: prodinf(X=a,expr,{flag=0}): infinite product (X goes from a to
infinity) of real or complex expression. flag can be 0 (default) or 1, in
which case compute the product of the 1+expr instead.
Wrapper: (,G)
Description:
(gen,gen,?small):gen:prec prodinf(${2 cookie}, ${2 wrapper}, $1, $3, prec)
Doc: \idx{infinite product} of
expression \var{expr}, the formal parameter $X$ starting at $a$. The evaluation
stops when the relative error of the expression minus 1 is less than the
default precision. In particular, non-convergent products result in infinite
loops. The expressions must always evaluate to an element of $\C$.
If $\fl=1$, do the product of the ($1+\var{expr}$) instead.
\synt{prodinf}{void *E, GEN (*eval)(void*,GEN), GEN a, long prec}
($\fl=0$), or \tet{prodinf1} with the same arguments ($\fl=1$).
Function: psdraw
Class: highlevel
Section: graphic
C-Name: postdraw_flag
Prototype: vGD0,L,
Help: psdraw(list, {flag=0}): same as plotdraw, except that the output is a
PostScript program in psfile (pari.ps by default), and flag!=0 scales the
plot from size of the current output device to the standard PostScript
plotting size.
Doc: same as \kbd{plotdraw}, except that the output is a PostScript program
appended to the \kbd{psfile}, and flag!=0 scales the plot from size of the
current output device to the standard PostScript plotting size
Function: psi
Class: basic
Section: transcendental
C-Name: gpsi
Prototype: Gp
Help: psi(x): psi-function at x.
Doc: the $\psi$-function of $x$, i.e.~the
logarithmic derivative $\Gamma'(x)/\Gamma(x)$.
Function: psploth
Class: highlevel
Section: graphic
C-Name: postploth
Prototype: V=GGEpD0,L,D0,L,
Help: psploth(X=a,b,expr,{flags=0},{n=0}): same as ploth, except that the
output is a PostScript program in psfile (pari.ps by default).
Doc: same as \kbd{ploth}, except that the output is a PostScript program
appended to the \kbd{psfile}.
Function: psplothraw
Class: highlevel
Section: graphic
C-Name: postplothraw
Prototype: GGD0,L,
Help: psplothraw(listx,listy,{flag=0}): same as plothraw, except that the
output is a postscript program in psfile (pari.ps by default).
Doc: same as \kbd{plothraw}, except that the output is a PostScript program
appended to the \kbd{psfile}.
Function: qfbclassno
Class: basic
Section: number_theoretical
C-Name: qfbclassno0
Prototype: GD0,L,
Help: qfbclassno(D,{flag=0}): class number of discriminant D using Shanks's
method by default. If (optional) flag is set to 1, use Euler products.
Doc: ordinary class number of the quadratic
order of discriminant $D$. In the present version \vers, a $O(D^{1/2})$
algorithm is used for $D > 0$ (using Euler product and the functional
equation) so $D$ should not be too large, say $D < 10^8$, for the time to be
reasonable. On the other hand, for $D < 0$ one can reasonably compute
\kbd{qfbclassno($D$)} for $|D|<10^{25}$, since the routine uses
\idx{Shanks}'s method which is in $O(|D|^{1/4})$. For larger values of $|D|$,
see \kbd{quadclassunit}.
If $\fl=1$, compute the class number using \idx{Euler product}s and the
functional equation. However, it is in $O(|D|^{1/2})$.
\misctitle{Important warning} For $D < 0$, this function may give incorrect
results when the class group has many cyclic factors,
because implementing \idx{Shanks}'s method in full generality slows it down
immensely. It is therefore strongly recommended to double-check results using
either the version with $\fl = 1$ or the function \kbd{quadclassunit}.
\misctitle{Warning} Contrary to what its name implies, this routine does not
compute the number of classes of binary primitive forms of discriminant $D$,
which is equal to the \emph{narrow} class number. The two notions are the same
when $D < 0$ or the fundamental unit $\varepsilon$ has negative norm; when $D
> 0$ and $N\varepsilon > 0$, the number of classes of forms is twice the
ordinary class number. This is a problem which we cannot fix for backward
compatibility reasons. Use the following routine if you are only interested
in the number of classes of forms:
\bprog
QFBclassno(D) =
qfbclassno(D) * if (D < 0 || norm(quadunit(D)) < 0, 1, 2)
@eprog\noindent
Here are a few examples:
\bprog
? qfbclassno(400000028)
time = 3,140 ms.
%1 = 1
? quadclassunit(400000028).no
time = 20 ms. \\@com{ much faster}
%2 = 1
? qfbclassno(-400000028)
time = 0 ms.
%3 = 7253 \\@com{ correct, and fast enough}
? quadclassunit(-400000028).no
time = 0 ms.
%4 = 7253
@eprog\noindent
See also \kbd{qfbhclassno}.
Variant: The following functions are also available:
\fun{GEN}{classno}{GEN D} ($\fl = 0$)
\fun{GEN}{classno2}{GEN D} ($\fl = 1$).
\noindent Finally
\fun{GEN}{hclassno}{GEN D} computes the class number of an imaginary
quadratic field by counting reduced forms, an $O(|D|)$ algorithm.
Function: qfbcompraw
Class: basic
Section: number_theoretical
C-Name: qfbcompraw
Prototype: GG
Help: qfbcompraw(x,y): Gaussian composition without reduction of the binary
quadratic forms x and y.
Doc: \idx{composition} of the binary quadratic forms
$x$ and $y$, without \idx{reduction} of the result. This is useful e.g.~to
compute a generating element of an ideal.
Function: qfbhclassno
Class: basic
Section: number_theoretical
C-Name: hclassno
Prototype: G
Help: qfbhclassno(x): Hurwitz-Kronecker class number of x>0.
Doc: \idx{Hurwitz class number} of $x$, where
$x$ is non-negative and congruent to 0 or 3 modulo 4. For $x > 5\cdot
10^5$, we assume the GRH, and use \kbd{quadclassunit} with default
parameters.
Function: qfbnucomp
Class: basic
Section: number_theoretical
C-Name: nucomp
Prototype: GGG
Help: qfbnucomp(x,y,L): composite of primitive positive definite quadratic
forms x and y using nucomp and nudupl, where L=[|D/4|^(1/4)] is precomputed.
Doc: \idx{composition} of the primitive positive
definite binary quadratic forms $x$ and $y$ (type \typ{QFI}) using the NUCOMP
and NUDUPL algorithms of \idx{Shanks}, \`a la Atkin. $L$ is any positive
constant, but for optimal speed, one should take $L=|D|^{1/4}$, where $D$ is
the common discriminant of $x$ and $y$. When $x$ and $y$ do not have the same
discriminant, the result is undefined.
The current implementation is straightforward and in general \emph{slower}
than the generic routine (since the latter takes advantage of asymptotically
fast operations and careful optimizations).
Variant: Also available is \fun{GEN}{nudupl}{GEN x, GEN L} when $x=y$.
Function: qfbnupow
Class: basic
Section: number_theoretical
C-Name: nupow
Prototype: GG
Help: qfbnupow(x,n): n-th power of primitive positive definite quadratic
form x using nucomp and nudupl.
Doc: $n$-th power of the primitive positive definite
binary quadratic form $x$ using \idx{Shanks}'s NUCOMP and NUDUPL algorithms
(see \kbd{qfbnucomp}, in particular the final warning).
Function: qfbpowraw
Class: basic
Section: number_theoretical
C-Name: qfbpowraw
Prototype: GL
Help: qfbpowraw(x,n): n-th power without reduction of the binary quadratic
form x.
Doc: $n$-th power of the binary quadratic form
$x$, computed without doing any \idx{reduction} (i.e.~using \kbd{qfbcompraw}).
Here $n$ must be non-negative and $n<2^{31}$.
Function: qfbprimeform
Class: basic
Section: number_theoretical
C-Name: primeform
Prototype: GGp
Help: qfbprimeform(x,p): returns the prime form of discriminant x, whose
first coefficient is p.
Doc: prime binary quadratic form of discriminant
$x$ whose first coefficient is $p$, where $|p|$ is a prime number.
By abuse of notation,
$p = \pm 1$ is also valid and returns the unit form. Returns an
error if $x$ is not a quadratic residue mod $p$, or if $x < 0$ and $p < 0$.
(Negative definite \typ{QFI} are not implemented.) In the case where $x>0$,
the ``distance'' component of the form is set equal to zero according to the
current precision.
Function: qfbred
Class: basic
Section: number_theoretical
C-Name: qfbred0
Prototype: GD0,L,DGDGDG
Help: qfbred(x,{flag=0},{d},{isd},{sd}): reduction of the binary
quadratic form x. All other args. are optional. The arguments d, isd and
sd, if
present, supply the values of the discriminant, floor(sqrt(d)) and sqrt(d)
respectively. If d<0, its value is not used and all references to Shanks's
distance hereafter are meaningless. flag can be any of 0: default, uses
Shanks's distance function d; 1: use d, do a single reduction step; 2: do
not use d; 3: do not use d, single reduction step.
Doc: reduces the binary quadratic form $x$ (updating Shanks's distance function
if $x$ is indefinite). The binary digits of $\fl$ are toggles meaning
\quad 1: perform a single \idx{reduction} step
\quad 2: don't update \idx{Shanks}'s distance
The arguments $d$, \var{isd}, \var{sd}, if present, supply the values of the
discriminant, $\floor{\sqrt{d}}$, and $\sqrt{d}$ respectively
(no checking is done of these facts). If $d<0$ these values are useless,
and all references to Shanks's distance are irrelevant.
Variant: Also available are
\fun{GEN}{redimag}{GEN x} (for definite $x$),
\noindent and for indefinite forms:
\fun{GEN}{redreal}{GEN x}
\fun{GEN}{rhoreal}{GEN x} (= \kbd{qfbred(x,1)}),
\fun{GEN}{redrealnod}{GEN x, GEN isd} (= \kbd{qfbred(x,2,,isd)}),
\fun{GEN}{rhorealnod}{GEN x, GEN isd} (= \kbd{qfbred(x,3,,isd)}).
Function: qfbsolve
Class: basic
Section: number_theoretical
C-Name: qfbsolve
Prototype: GG
Help: qfbsolve(Q,p): Return [x,y] so that Q(x,y)=p where Q is a binary
quadratic form and p a prime number, or 0 if there is no solution.
Doc: Solve the equation $Q(x,y)=p$ over the integers,
where $Q$ is a binary quadratic form and $p$ a prime number.
Return $[x,y]$ as a two-components vector, or zero if there is no solution.
Note that this function returns only one solution and not all the solutions.
Let $D = \disc Q$. The algorithm used runs in probabilistic polynomial time
in $p$ (through the computation of a square root of $D$ modulo $p$); it is
polynomial time in $D$ if $Q$ is imaginary, but exponential time if $Q$ is
real (through the computation of a full cycle of reduced forms). In the
latter case, note that \tet{bnfisprincipal} provides a solution in heuristic
subexponential time in $D$ assuming the GRH.
Function: qfgaussred
Class: basic
Section: linear_algebra
C-Name: qfgaussred
Prototype: G
Help: qfgaussred(q): square reduction of the (symmetric) matrix q (returns a
square matrix whose i-th diagonal term is the coefficient of the i-th square
in which the coefficient of the i-th variable is 1).
Doc:
\idx{decomposition into squares} of the
quadratic form represented by the symmetric matrix $q$. The result is a
matrix whose diagonal entries are the coefficients of the squares, and the
off-diagonal entries on each line represent the bilinear forms. More
precisely, if $(a_{ij})$ denotes the output, one has
$$ q(x) = \sum_i a_{ii} (x_i + \sum_{j \neq i} a_{ij} x_j)^2 $$
\bprog
? qfgaussred([0,1;1,0])
%1 =
[1/2 1]
[-1 -1/2]
@eprog\noindent This means that $2xy = (1/2)(x+y)^2 - (1/2)(x-y)^2$.
Variant: \fun{GEN}{qfgaussred_positive}{GEN q} assumes that $q$ is
positive definite and is a little faster; returns \kbd{NULL} if a vector
with negative norm occurs (non positive matrix or too many rounding errors).
Function: qfjacobi
Class: basic
Section: linear_algebra
C-Name: jacobi
Prototype: Gp
Help: qfjacobi(x): eigenvalues and orthogonal matrix of eigenvectors of the
real symmetric matrix x.
Doc: $x$ being a real symmetric matrix, this gives a
vector having two components: the first one is the vector of (real)
eigenvalues of $x$, sorted in increasing order, the second is the
corresponding orthogonal matrix of eigenvectors of $x$. The method used is
Jacobi's method for symmetric matrices.
Function: qflll
Class: basic
Section: linear_algebra
C-Name: qflll0
Prototype: GD0,L,
Help: qflll(x,{flag=0}): LLL reduction of the vectors forming the matrix x
(gives the unimodular transformation matrix T such that x*T is LLL-reduced). flag is
optional, and can be 0: default, 1: assumes x is integral, 2: assumes x is
integral, returns a partially reduced basis,
4: assumes x is integral, returns [K,T] where K is the integer kernel of x
and T the LLL reduced image, 5: same as 4 but x may have polynomial
coefficients, 8: same as 0 but x may have polynomial coefficients.
Description:
(vec, ?0):vec lll($1)
(vec, 1):vec lllint($1)
(vec, 2):vec lllintpartial($1)
(vec, 4):vec lllkerim($1)
(vec, 5):vec lllkerimgen($1)
(vec, 8):vec lllgen($1)
(vec, #small):vec $"Bad flag in qflll"
(vec, small):vec qflll0($1, $2)
Doc: \idx{LLL} algorithm applied to the
\emph{columns} of the matrix $x$. The columns of $x$ may be linearly
dependent. The result is a unimodular transformation matrix $T$ such that $x
\cdot T$ is an LLL-reduced basis of the lattice generated by the column
vectors of $x$. Note that if $x$ is not of maximal rank $T$ will not be
square. The LLL parameters are $(0.51,0.99)$, meaning that the Gram-Schmidt
coefficients for the final basis satisfy $\mu_{i,j} \leq |0.51|$, and the
Lov\'{a}sz's constant is $0.99$.
If $\fl=0$ (default), assume that $x$ has either exact (integral or
rational) or real floating point entries. The matrix is rescaled, converted
to integers and the behavior is then as in $\fl = 1$.
If $\fl=1$, assume that $x$ is integral. Computations involving Gram-Schmidt
vectors are approximate, with precision varying as needed (Lehmer's trick,
as generalized by Schnorr). Adapted from Nguyen and Stehl\'e's algorithm
and Stehl\'e's code (\kbd{fplll-1.3}).
If $\fl=2$, $x$ should be an integer matrix whose columns are linearly
independent. Returns a partially reduced basis for $x$, using an unpublished
algorithm by Peter Montgomery: a basis is said to be \emph{partially reduced}
if $|v_i \pm v_j| \geq |v_i|$ for any two distinct basis vectors $v_i, \,
v_j$.
This is faster than $\fl=1$, esp. when one row is huge compared
to the other rows (knapsack-style), and should quickly produce relatively
short vectors. The resulting basis is \emph{not} LLL-reduced in general.
If LLL reduction is eventually desired, avoid this partial reduction:
applying LLL to the partially reduced matrix is significantly \emph{slower}
than starting from a knapsack-type lattice.
If $\fl=4$, as $\fl=1$, returning a vector $[K, T]$ of matrices: the
columns of $K$ represent a basis of the integer kernel of $x$
(not LLL-reduced in general) and $T$ is the transformation
matrix such that $x\cdot T$ is an LLL-reduced $\Z$-basis of the image
of the matrix $x$.
If $\fl=5$, case as case $4$, but $x$ may have polynomial coefficients.
If $\fl=8$, same as case $0$, but $x$ may have polynomial coefficients.
Variant: Also available are \fun{GEN}{lll}{GEN x} ($\fl=0$),
\fun{GEN}{lllint}{GEN x} ($\fl=1$), and \fun{GEN}{lllkerim}{GEN x} ($\fl=4$).
Function: qflllgram
Class: basic
Section: linear_algebra
C-Name: qflllgram0
Prototype: GD0,L,
Help: qflllgram(G,{flag=0}): LLL reduction of the lattice whose gram matrix
is G (gives the unimodular transformation matrix). flag is optional and can
be 0: default,1: assumes x is integral, 4: assumes x is integral,
returns [K,T], where K is the integer kernel of x
and T the LLL reduced image, 5: same as 4 but x may have polynomial
coefficients, 8: same as 0 but x may have polynomial coefficients.
Doc: same as \kbd{qflll}, except that the
matrix $G = \kbd{x\til * x}$ is the Gram matrix of some lattice vectors $x$,
and not the coordinates of the vectors themselves. In particular, $G$ must
now be a square symmetric real matrix, corresponding to a positive
quadratic form (not necessarily definite: $x$ needs not have maximal rank).
The result is a unimodular
transformation matrix $T$ such that $x \cdot T$ is an LLL-reduced basis of
the lattice generated by the column vectors of $x$. See \tet{qflll} for
further details about the LLL implementation.
If $\fl=0$ (default), assume that $G$ has either exact (integral or
rational) or real floating point entries. The matrix is rescaled, converted
to integers and the behavior is then as in $\fl = 1$.
If $\fl=1$, assume that $G$ is integral. Computations involving Gram-Schmidt
vectors are approximate, with precision varying as needed (Lehmer's trick,
as generalized by Schnorr). Adapted from Nguyen and Stehl\'e's algorithm
and Stehl\'e's code (\kbd{fplll-1.3}).
$\fl=4$: $G$ has integer entries, gives the kernel and reduced image of $x$.
$\fl=5$: same as $4$, but $G$ may have polynomial coefficients.
Variant: Also available are \fun{GEN}{lllgram}{GEN G} ($\fl=0$),
\fun{GEN}{lllgramint}{GEN G} ($\fl=1$), and \fun{GEN}{lllgramkerim}{GEN G}
($\fl=4$).
Function: qfminim
Class: basic
Section: linear_algebra
C-Name: qfminim0
Prototype: GDGDGD0,L,p
Help: qfminim(x,{b},{m},{flag=0}): x being a square and symmetric
matrix representing a positive definite quadratic form, this function
deals with the vectors of x whose norm is less than or equal to b,
enumerated using the Fincke-Pohst algorithm, storing at most m vectors (no
limit if m is omitted). The function searches for
the minimal non-zero vectors if b is omitted. The precise behavior
depends on flag. 0: seeks at most 2m vectors (unless m omitted), returns
[N,M,mat] where N is the number of vectors found, M the maximum norm among
these, and mat lists half the vectors (the other half is given by -mat). 1:
ignores m and returns the first vector whose norm is less than b. 2: as 0
but uses a more robust, slower implementation, valid for non integral
quadratic forms.
Doc: $x$ being a square and symmetric matrix representing a positive definite
quadratic form, this function deals with the vectors of $x$ whose norm is
less than or equal to $b$, enumerated using the Fincke-Pohst algorithm,
storing at most $m$ vectors (no limit if $m$ is omitted). The function
searches for the minimal non-zero vectors if $b$ is omitted. The behavior is
undefined if $x$ is not positive definite (a ``precision too low'' error is
most likely, although more precise error messages are possible). The precise
behavior depends on $\fl$.
If $\fl=0$ (default), seeks at most $2m$ vectors. The result is a
three-component vector, the first component being the number of vectors
found, the second being the maximum norm found, and the last vector is a
matrix whose columns are the vectors found, only one being given for each
pair $\pm v$ (at most $m$ such pairs, unless $m$ was omitted). The vectors
are returned in no particular order.
If $\fl=1$, ignores $m$ and returns the first vector whose norm is less
than $b$. In this variant, an explicit $b$ must be provided.
In these two cases, $x$ must have \emph{integral} entries. The
implementation uses low precision floating point computations for maximal
speed, which gives incorrect result when $x$ has large entries. (The
condition is checked in the code and the routine raises an error if
large rounding errors occur.) A more robust, but much slower,
implementation is chosen if the following flag is used:
If $\fl=2$, $x$ can have non integral real entries. In this case, if $b$
is omitted, the ``minimal'' vectors only have approximately the same norm.
If $b$ is omitted, $m$ is an upper bound for the number of vectors that
will be stored and returned, but all minimal vectors are nevertheless
enumerated. If $m$ is omitted, all vectors found are stored and returned;
note that this may be a huge vector!
\bprog
? x = matid(2);
? qfminim(x) \\@com 4 minimal vectors of norm 1: $\pm[0,1]$, $\pm[1,0]$
%2 = [4, 1, [0, 1; 1, 0]]
? { x =
[4, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1, 0,-1, 0, 0, 0,-2;
2, 4,-2,-2, 0,-2, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1, 0, 1,-1,-1;
0,-2, 4, 0,-2, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 0, 1,-1,-1, 0, 0;
0,-2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1,-1, 0, 1,-1, 1, 0;
0, 0,-2, 0, 4, 0, 0, 0, 1,-1, 0, 0, 1, 0, 0, 0,-2, 0, 0,-1, 1, 1, 0, 0;
-2, -2,0, 0, 0, 4,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,-1, 1, 1;
0, 0, 0, 0, 0,-2, 4,-2, 0, 0, 0, 0, 0, 1, 0, 0, 0,-1, 0, 0, 0, 1,-1, 0;
0, 0, 0, 0, 0, 0,-2, 4, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1,-1,-1, 0, 1, 0;
0, 0, 0, 0, 1,-1, 0, 0, 4, 0,-2, 0, 1, 1, 0,-1, 0, 1, 0, 0, 0, 0, 0, 0;
0, 0, 0, 0,-1, 0, 0, 0, 0, 4, 0, 0, 1, 1,-1, 1, 0, 0, 0, 1, 0, 0, 1, 0;
0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 4,-2, 0,-1, 0, 0, 0,-1, 0,-1, 0, 0, 0, 0;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 4,-1, 1, 0, 0,-1, 1, 0, 1, 1, 1,-1, 0;
1, 0,-1, 1, 1, 0, 0,-1, 1, 1, 0,-1, 4, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1,-1;
-1,-1, 1,-1, 0, 0, 1, 0, 1, 1,-1, 1, 0, 4, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0;
0, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 1, 0, 4, 0, 0, 0, 0, 1, 1, 0, 0;
0, 0, 1, 0,-2, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 4, 1, 1, 1, 0, 0, 1, 1;
1, 0, 0, 1, 0, 0,-1, 0, 1, 0,-1, 1, 1, 0, 0, 0, 1, 4, 0, 1, 1, 0, 1, 0;
0, 0, 0,-1, 0, 1, 0,-1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 4, 0, 1, 1, 0, 1;
-1, -1,1, 0,-1, 1, 0,-1, 0, 1,-1, 1, 0, 1, 0, 0, 1, 1, 0, 4, 0, 0, 1, 1;
0, 0,-1, 1, 1, 0, 0,-1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 4, 1, 0, 1;
0, 1,-1,-1, 1,-1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 4, 0, 1;
0,-1, 0, 1, 0, 1,-1, 1, 0, 1, 0,-1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 4, 1;
-2,-1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 4]; }
? qfminim(x,,0) \\ the Leech lattice has 196560 minimal vectors of norm 4
time = 648 ms.
%4 = [196560, 4, [;]]
? qfminim(x,,0,2); \\ safe algorithm. Slower and unnecessary here.
time = 18,161 ms.
%5 = [196560, 4.000061035156250000, [;]]
@eprog\noindent\sidx{Leech lattice}\sidx{minimal vector}
In the last example, we store 0 vectors to limit memory use. All minimal
vectors are nevertheless enumerated. Provided \kbd{parisize} is about 50MB,
\kbd{qfminim(x)} succeeds in 2.5 seconds.
Variant: Also available are
\fun{GEN}{minim}{GEN x, GEN b = NULL, GEN m = NULL} ($\fl=0$),
\fun{GEN}{minim2}{GEN x, GEN b = NULL, GEN m = NULL} ($\fl=1$).
Function: qfperfection
Class: basic
Section: linear_algebra
C-Name: perf
Prototype: G
Help: qfperfection(G): rank of matrix of xx~ for x minimal vectors of a gram
matrix G.
Doc:
$G$ being a square and symmetric matrix with
integer entries representing a positive definite quadratic form, outputs the
perfection rank of the form. That is, gives the rank of the family of the $s$
symmetric matrices $v_iv_i^t$, where $s$ is half the number of minimal
vectors and the $v_i$ ($1\le i\le s$) are the minimal vectors.
Since this requires computing the minimal vectors, the computations can
become very lengthy as the dimension of $x$ grows.
Function: qfrep
Class: basic
Section: linear_algebra
C-Name: qfrep0
Prototype: GGD0,L,
Help: qfrep(q,B,{flag=0}): vector of (half) the number of vectors of norms
from 1 to B for the integral and definite quadratic form q. Binary digits of
flag mean 1: count vectors of even norm from 1 to 2B, 2: return a t_VECSMALL
instead of a t_VEC.
Doc:
$q$ being a square and symmetric
matrix with integer entries representing a positive definite quadratic form,
outputs the vector whose $i$-th entry, $1 \leq i \leq B$ is half the number
of vectors $v$ such that $q(v) = i$. This routine uses a naive algorithm
based on \tet{qfminim}, and will fail if any entry becomes larger than
$2^{31}$.
\noindent The binary digits of \fl\ mean:
\item 1: count vectors of even norm from $1$ to $2B$.
\item 2: return a \typ{VECSMALL} instead of a \typ{VEC}
Function: qfsign
Class: basic
Section: linear_algebra
C-Name: qfsign
Prototype: G
Help: qfsign(x): signature of the symmetric matrix x.
Doc:
returns $[p,m]$ the signature of the quadratic form represented by the
symmetric matrix $x$. Namely, $p$ (resp.~$m$) is the number of positive
(resp.~negative) eigenvalues of $x$.The result is computed using Gaussian
reduction.
Function: quadclassunit
Class: basic
Section: number_theoretical
C-Name: quadclassunit0
Prototype: GD0,L,DGp
Help: quadclassunit(D,{flag=0},{tech=[]}): compute the structure of the
class group and the regulator of the quadratic field of discriminant D.
See manual for the optional technical parameters.
Doc: \idx{Buchmann-McCurley}'s sub-exponential algorithm for computing the
class group of a quadratic order of discriminant $D$.
This function should be used instead of \tet{qfbclassno} or \tet{quadregula}
when $D<-10^{25}$, $D>10^{10}$, or when the \emph{structure} is wanted. It
is a special case of \tet{bnfinit}, which is slower, but more robust.
The result is a vector $v$ whose components should be accessed using member
functions:
\item \kbd{$v$.no}: the class number
\item \kbd{$v$.cyc}: a vector giving the structure of the class group as a
product of cyclic groups;
\item \kbd{$v$.gen}: a vector giving generators of those cyclic groups (as
binary quadratic forms).
\item \kbd{$v$.reg}: the regulator, computed to an accuracy which is the
maximum of an internal accuracy determined by the program and the current
default (note that once the regulator is known to a small accuracy it is
trivial to compute it to very high accuracy, see the tutorial).
The $\fl$ is obsolete and should be left alone. In older versions,
it supposedly computed the narrow class group when $D>0$, but this did not
work at all; use the general function \tet{bnfnarrow}.
Optional parameter \var{tech} is a row vector of the form $[c_1, c_2]$,
where $c_1 \leq c_2$ are positive real numbers which control the execution
time and the stack size, see \ref{se:GRHbnf}. The parameter is used as a
threshold to balance the relation finding phase against the final linear
algebra. Increasing the default $c_1 = 0.2$ means that relations are easier
to find, but more relations are needed and the linear algebra will be
harder. The parameter $c_2$ is mostly obsolete and should not be changed,
but we still document it for completeness: we compute a tentative class
group by generators and relations using a factorbase of prime ideals $\leq
c_1 (\log |D|)^2$, then prove that ideals of norm $\leq c_2 (\log |D|)^2$ do
not generate a larger group. By default an optimal $c_2$ is chosen, so that
the result is provably correct under the GRH --- a famous result of Bach
states that $c_2 = 6$ is fine, but it is possible to improve on this
algorithmically. You may provide a smaller $c_2$, it will be ignored
(we use the provably correct
one); you may provide a larger $c_2$ than the default value, which results
in longer computing times for equally correct outputs (under GRH).
Variant: If you really need to experiment with the \var{tech} parameter, it is
usually more convenient to use
\fun{GEN}{Buchquad}{GEN D, double c1, double c2, long prec}
Function: quaddisc
Class: basic
Section: number_theoretical
C-Name: quaddisc
Prototype: G
Help: quaddisc(x): discriminant of the quadratic field Q(sqrt(x)).
Doc: discriminant of the quadratic field $\Q(\sqrt{x})$, where $x\in\Q$.
Function: quadgen
Class: basic
Section: number_theoretical
C-Name: quadgen
Prototype: G
Help: quadgen(D): standard generator of quadratic order of discriminant D.
Doc: creates the quadratic
number\sidx{omega} $\omega=(a+\sqrt{D})/2$ where $a=0$ if $D\equiv0\mod4$,
$a=1$ if $D\equiv1\mod4$, so that $(1,\omega)$ is an integral basis for the
quadratic order of discriminant $D$. $D$ must be an integer congruent to 0 or
1 modulo 4, which is not a square.
Function: quadhilbert
Class: basic
Section: number_theoretical
C-Name: quadhilbert
Prototype: Gp
Help: quadhilbert(D): relative equation for the Hilbert class field
of the quadratic field of discriminant D (which can also be a bnf).
Doc: relative equation defining the
\idx{Hilbert class field} of the quadratic field of discriminant $D$.
If $D < 0$, uses complex multiplication (\idx{Schertz}'s variant).
If $D > 0$ \idx{Stark units} are used and (in rare cases) a
vector of extensions may be returned whose compositum is the requested class
field. See \kbd{bnrstark} for details.
Function: quadpoly
Class: basic
Section: number_theoretical
C-Name: quadpoly0
Prototype: GDn
Help: quadpoly(D,{v=x}): quadratic polynomial corresponding to the
discriminant D, in variable v.
Doc: creates the ``canonical'' quadratic
polynomial (in the variable $v$) corresponding to the discriminant $D$,
i.e.~the minimal polynomial of $\kbd{quadgen}(D)$. $D$ must be an integer
congruent to 0 or 1 modulo 4, which is not a square.
Function: quadray
Class: basic
Section: number_theoretical
C-Name: quadray
Prototype: GGp
Help: quadray(D,f): relative equation for the ray class field of
conductor f for the quadratic field of discriminant D (which can also be a
bnf).
Doc: relative equation for the ray
class field of conductor $f$ for the quadratic field of discriminant $D$
using analytic methods. A \kbd{bnf} for $x^2 - D$ is also accepted in place
of $D$.
For $D < 0$, uses the $\sigma$ function and Schertz's method.
For $D>0$, uses Stark's conjecture, and a vector of relative equations may be
returned. See \tet{bnrstark} for more details.
Function: quadregulator
Class: basic
Section: number_theoretical
C-Name: quadregulator
Prototype: Gp
Help: quadregulator(x): regulator of the real quadratic field of
discriminant x.
Doc: regulator of the quadratic field of positive discriminant $x$. Returns
an error if $x$ is not a discriminant (fundamental or not) or if $x$ is a
square. See also \kbd{quadclassunit} if $x$ is large.
Function: quadunit
Class: basic
Section: number_theoretical
C-Name: quadunit
Prototype: G
Help: quadunit(D): fundamental unit of the quadratic field of discriminant D
where D must be positive.
Doc: fundamental unit\sidx{fundamental units} of the
real quadratic field $\Q(\sqrt D)$ where $D$ is the positive discriminant
of the field. If $D$ is not a fundamental discriminant, this probably gives
the fundamental unit of the corresponding order. $D$ must be an integer
congruent to 0 or 1 modulo 4, which is not a square; the result is a
quadratic number (see \secref{se:quadgen}).
Function: quit
Class: gp
Section: programming/specific
C-Name: gp_quit
Prototype: vD0,L,
Help: quit({status = 0}): quit, return to the system with exit status
'status'.
Doc: exits \kbd{gp} and return to the system with exit status
\kbd{status}, a small integer. A non-zero exit status normally indicates
abnormal termination. (Note: the system actually sees only
\kbd{status} mod $256$, see your man pages for \kbd{exit(3)} or \kbd{wait(2)}).
Function: random
Class: basic
Section: conversions
C-Name: genrand
Prototype: DG
Help: random({N=2^31}): random object, depending on the type of N.
Integer between 0 and N-1 (t_INT), int mod N (t_INTMOD), element in a finite
field (t_FFELT), point on an elliptic curve (ellinit mod p or over a finite
field).
Doc:
returns a random element in various natural sets depending on the
argument $N$.
\item \typ{INT}: returns an integer
uniformly distributed between $0$ and $N-1$. Omitting the argument
is equivalent to \kbd{random(2\pow31)}.
\item \typ{REAL}: returns a real number in $[0,1[$ with the same accuracy as
$N$ (whose mantissa has the same number of significant words).
\item \typ{INTMOD}: returns a random intmod for the same modulus.
\item \typ{FFELT}: returns a random element in the same finite field.
\item \typ{VEC} generated by \kbd{ellinit} over a finite field $k$
(coefficients are \typ{INTMOD}s modulo a prime or \typ{FFELT}s): returns a
random $k$-rational \emph{affine} point on the curve. More precisely an
abscissa is drawn uniformly at random until \tet{ellordinate} succeeds.
In particular, the curves over $\F_2$ with a single point (at infinity!)
will trigger an infinite loop. Note that this is definitely not a uniform
distribution over $E(k)$.
\item \typ{POL} return a random polynomial of degree at most the degree of $N$.
The coefficients are drawn by applying \kbd{random} to the leading
coefficient of $N$.
\bprog
? random(10)
%1 = 9
? random(Mod(0,7))
%2 = Mod(1, 7)
? a = ffgen(ffinit(3,7), 'a); random(a)
%3 = a^6 + 2*a^5 + a^4 + a^3 + a^2 + 2*a
? E = ellinit([0,0,0,3,7]*Mod(1,109)); random(E)
%4 = [Mod(103, 109), Mod(10, 109)]
? E = ellinit([0,0,0,1,7]*a^0); random(E)
%5 = [a^6 + a^5 + 2*a^4 + 2*a^2, 2*a^6 + 2*a^4 + 2*a^3 + a^2 + 2*a]
? random(Mod(1,7)*x^4)
%6 = Mod(5, 7)*x^4 + Mod(6, 7)*x^3 + Mod(2, 7)*x^2 + Mod(2, 7)*x + Mod(5, 7)
@eprog
These variants all depend on a single internal generator, and are
independent from the system's random number generator.
A random seed may be obtained via \tet{getrand}, and reset
using \tet{setrand}: from a given seed, and given sequence of \kbd{random}s,
the exact same values will be generated. The same seed is used at each
startup, reseed the generator yourself if this is a problem.
\misctitle{Technical note}
Up to
version 2.4 included, the internal generator produced pseudo-random numbers
by means of linear congruences, which were not well distributed in arithmetic
progressions. We now
use Brent's XORGEN algorithm, based on Feedback Shift Registers, see
\kbd{http://wwwmaths.anu.edu.au/\til{}brent/random.html}. The generator has period
$2^{4096}-1$, passes the Crush battery of statistical tests of L'Ecuyer and
Simard, but is not suitable for cryptographic purposes: one can reconstruct
the state vector from a small sample of consecutive values, thus predicting
the entire sequence.
Variant:
Also available: \fun{GEN}{ellrandom}{GEN E} and \fun{GEN}{ffrandom}{GEN a}.
Function: read
Class: gp
Section: programming/specific
C-Name: read0
Prototype: D"",s,
Help: read({filename}): read from the input file filename. If filename is
omitted, reread last input file, be it from read() or \r.
Description:
(str):gen gp_read_file($1)
Doc: reads in the file
\var{filename} (subject to string expansion). If \var{filename} is
omitted, re-reads the last file that was fed into \kbd{gp}. The return
value is the result of the last expression evaluated.
If a GP \tet{binary file} is read using this command (see
\secref{se:writebin}), the file is loaded and the last object in the file
is returned.
In case the file you read in contains an \tet{allocatemem} statement (to be
generally avoided), you should leave \kbd{read} instructions by themselves,
and not part of larger instruction sequences.
Function: readvec
Class: basic
Section: programming/specific
C-Name: gp_readvec_file
Prototype: D"",s,
Help: readvec({filename}): create a vector whose components are the evaluation
of all the expressions found in the input file filename.
Description:
(str):gen gp_readvec_file($1)
Doc: reads in the file
\var{filename} (subject to string expansion). If \var{filename} is
omitted, re-reads the last file that was fed into \kbd{gp}. The return
value is a vector whose components are the evaluation of all sequences
of instructions contained in the file. For instance, if \var{file} contains
\bprog
1
2
3
@eprog\noindent
then we will get:
\bprog
? \r a
%1 = 1
%2 = 2
%3 = 3
? read(a)
%4 = 3
? readvec(a)
%5 = [1, 2, 3]
@eprog
In general a sequence is just a single line, but as usual braces and
\kbd{\bs} may be used to enter multiline sequences.
Variant: The underlying library function
\fun{GEN}{gp_readvec_stream}{FILE *f} is usually more flexible.
Function: real
Class: basic
Section: conversions
C-Name: greal
Prototype: G
Help: real(x): real part of x.
Doc: real part of $x$. In the case where $x$ is a quadratic number, this is the
coefficient of $1$ in the ``canonical'' integral basis $(1,\omega)$.
Function: removeprimes
Class: basic
Section: number_theoretical
C-Name: removeprimes
Prototype: DG
Help: removeprimes({x=[]}): remove primes in the vector x from the prime table.
x can also be a single integer. List the current extra primes if x is omitted.
Doc: removes the primes listed in $x$ from
the prime number table. In particular \kbd{removeprimes(addprimes())} empties
the extra prime table. $x$ can also be a single integer. List the current
extra primes if $x$ is omitted.
Function: return
Class: basic
Section: programming/control
C-Name: return0
Prototype: DG
Help: return({x=0}): return from current subroutine with result x.
Doc: returns from current subroutine, with
result $x$. If $x$ is omitted, return the \kbd{(void)} value (return no
result, like \kbd{print}).
Function: rnfalgtobasis
Class: basic
Section: number_fields
C-Name: rnfalgtobasis
Prototype: GG
Help: rnfalgtobasis(rnf,x): relative version of nfalgtobasis, where rnf is a
relative numberfield.
Doc: expresses $x$ on the relative
integral basis. Here, $\var{rnf}$ is a relative number field extension $L/K$
as output by \kbd{rnfinit}, and $x$ an element of $L$ in absolute form, i.e.
expressed as a polynomial or polmod with polmod coefficients, \emph{not} on
the relative integral basis.
Function: rnfbasis
Class: basic
Section: number_fields
C-Name: rnfbasis
Prototype: GG
Help: rnfbasis(bnf,M): given a projective Z_K-module M as output by
rnfpseudobasis or rnfsteinitz, gives either a basis of M if it is free, or an
n+1-element generating set.
Doc: let $K$ the field represented by
\var{bnf}, as output by \kbd{bnfinit}. $M$ is a projective $\Z_K$-module
of rank $n$ ($M\otimes K$ is an $n$-dimensional $K$-vector space), given by a
pseudo-basis of size $n$. The routine returns either a true $\Z_K$-basis of
$M$ (of size $n$) if it exists, or an $n+1$-element generating set of $M$ if
not.
It is allowed to use an irreducible polynomial $P$ in $K[X]$ instead of $M$,
in which case, $M$ is defined as the ring of integers of $K[X]/(P)$, viewed
as a $\Z_K$-module.
Function: rnfbasistoalg
Class: basic
Section: number_fields
C-Name: rnfbasistoalg
Prototype: GG
Help: rnfbasistoalg(rnf,x): relative version of nfbasistoalg, where rnf is a
relative numberfield.
Doc: computes the representation of $x$
as a polmod with polmods coefficients. Here, $\var{rnf}$ is a relative number
field extension $L/K$ as output by \kbd{rnfinit}, and $x$ an element of
$L$ expressed on the relative integral basis.
Function: rnfcharpoly
Class: basic
Section: number_fields
C-Name: rnfcharpoly
Prototype: GGGDn
Help: rnfcharpoly(nf,T,a,{var=x}): characteristic polynomial of a
over nf, where a belongs to the algebra defined by T over nf. Returns a
polynomial in variable var (x by default).
Doc: characteristic polynomial of
$a$ over $\var{nf}$, where $a$ belongs to the algebra defined by $T$ over
$\var{nf}$, i.e.~$\var{nf}[X]/(T)$. Returns a polynomial in variable $v$
($x$ by default).
\bprog
? nf = nfinit(y^2+1);
? rnfcharpoly(nf, x^2+y*x+1, x+y)
%2 = x^2 + Mod(-y, y^2 + 1)*x + 1
@eprog
Function: rnfconductor
Class: basic
Section: number_fields
C-Name: rnfconductor
Prototype: GGD0,L,
Help: rnfconductor(bnf,pol): conductor of the Abelian extension
of bnf defined by pol. The result is [conductor,rayclassgroup,subgroup],
where conductor is the conductor itself, rayclassgroup the structure of the
corresponding full ray class group, and subgroup the HNF defining the norm
group (Artin or Takagi group) on the given generators rayclassgroup[3].
Doc: given $\var{bnf}$
as output by \kbd{bnfinit}, and \var{pol} a relative polynomial defining an
\idx{Abelian extension}, computes the class field theory conductor of this
Abelian extension. The result is a 3-component vector
$[\var{conductor},\var{rayclgp},\var{subgroup}]$, where \var{conductor} is
the conductor of the extension given as a 2-component row vector
$[f_0,f_\infty]$, \var{rayclgp} is the full ray class group corresponding to
the conductor given as a 3-component vector [h,cyc,gen] as usual for a group,
and \var{subgroup} is a matrix in HNF defining the subgroup of the ray class
group on the given generators gen.
Function: rnfdedekind
Class: basic
Section: number_fields
C-Name: rnfdedekind
Prototype: GGDGD0,L,
Help: rnfdedekind(nf,pol,{pr},{flag=0}): relative Dedekind criterion over the
number field K, represented by nf, applied to the order O_K[X]/(P),
modulo the prime ideal pr (at all primes if pr omitted, in which case
flag is automatically set to 1).
P is assumed to be monic, irreducible, in O_K[X].
Returns [max,basis,v], where basis is a pseudo-basis of the
enlarged order, max is 1 iff this order is pr-maximal, and v is the
valuation at pr of the order discriminant. If flag is set, just return 1 if
the order is maximal, and 0 if not.
Doc: given a number field $K$ coded by $\var{nf}$ and a monic
polynomial $P\in \Z_K[X]$, irreducible over $K$ and thus defining a relative
extension $L$ of $K$, applies \idx{Dedekind}'s criterion to the order
$\Z_K[X]/(P)$, at the prime ideal \var{pr}. It is possible to set \var{pr}
to a vector of prime ideals (test maximality at all primes in the vector),
or to omit altogether, in which case maximality at \emph{all} primes is tested;
in this situation \fl\ is automatically set to $1$.
The default historic behavior (\fl\ is 0 or omitted and \var{pr} is a
single prime ideal) is not so useful since
\kbd{rnfpseudobasis} gives more information and is generally not that
much slower. It returns a 3-component vector $[\var{max}, \var{basis}, v]$:
\item \var{basis} is a pseudo-basis of an enlarged order $O$ produced by
Dedekind's criterion, containing the original order $\Z_K[X]/(P)$
with index a power of \var{pr}. Possibly equal to the original order.
\item \var{max} is a flag equal to 1 if the enlarged order $O$
could be proven to be \var{pr}-maximal and to 0 otherwise; it may still be
maximal in the latter case if \var{pr} is ramified in $L$,
\item $v$ is the valuation at \var{pr} of the order discriminant.
If \fl\ is non-zero, on the other hand, we just return $1$ if the order
$\Z_K[X]/(P)$ is \var{pr}-maximal (resp.~maximal at all relevant primes, as
described above), and $0$ if not. This is much faster than the default,
since the enlarged order is not computed.
\bprog
? nf = nfinit(y^2-3); P = x^3 - 2*y;
? pr3 = idealprimedec(nf,3)[1];
? rnfdedekind(nf, P, pr3)
%2 = [1, [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, 1]], 8]
? rnfdedekind(nf, P, pr3, 1)
%3 = 1
@eprog\noindent In this example, \kbd{pr3} is the ramified ideal above $3$,
and the order generated by the cube roots of $y$ is already
\kbd{pr3}-maximal. The order-discriminant has valuation $8$. On the other
hand, the order is not maximal at the prime above 2:
\bprog
? pr2 = idealprimedec(nf,2)[1];
? rnfdedekind(nf, P, pr2, 1)
%5 = 0
? rnfdedekind(nf, P, pr2)
%6 = [0, [[2, 0, 0; 0, 1, 0; 0, 0, 1], [[1, 0; 0, 1], [1, 0; 0, 1],
[1, 1/2; 0, 1/2]]], 2]
@eprog
The enlarged order is not proven to be \kbd{pr2}-maximal yet. In fact, it
is; it is in fact the maximal order:
\bprog
? B = rnfpseudobasis(nf, P)
%7 = [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, [1, 1/2; 0, 1/2]],
[162, 0; 0, 162], -1]
? idealval(nf,B[3], pr2)
%4 = 2
@eprog\noindent
It is possible to use this routine with non-monic
$P = \sum_{i\leq n} a_i X^i \in \Z_K[X]$ if $\fl = 1$;
in this case, we test maximality of Dedekind's order generated by
$$1, a_n \alpha, a_n\alpha^2 + a_{n-1}\alpha, \dots,
a_n\alpha^{n-1} + a_{n-1}\alpha^{n-2} + \cdots + a_1\alpha.$$
The routine will fail if $P$ is $0$ on the projective line over the residue
field $\Z_K/\kbd{pr}$ (FIXME).
Function: rnfdet
Class: basic
Section: number_fields
C-Name: rnfdet
Prototype: GG
Help: rnfdet(nf,M): given a pseudo-matrix M, compute its determinant.
Doc: given a pseudo-matrix $M$ over the maximal
order of $\var{nf}$, computes its determinant.
Function: rnfdisc
Class: basic
Section: number_fields
C-Name: rnfdiscf
Prototype: GG
Help: rnfdisc(nf,pol): given a pol with coefficients in nf, gives a
2-component vector [D,d], where D is the relative ideal discriminant, and d
is the relative discriminant in nf^*/nf*^2.
Doc: given a number field $\var{nf}$ as
output by \kbd{nfinit} and a polynomial \var{pol} with coefficients in
$\var{nf}$ defining a relative extension $L$ of $\var{nf}$, computes the
relative discriminant of $L$. This is a two-element row vector $[D,d]$, where
$D$ is the relative ideal discriminant and $d$ is the relative discriminant
considered as an element of $\var{nf}^*/{\var{nf}^*}^2$. The main variable of
$\var{nf}$ \emph{must} be of lower priority than that of \var{pol}, see
\secref{se:priority}.
Function: rnfeltabstorel
Class: basic
Section: number_fields
C-Name: rnfelementabstorel
Prototype: GG
Help: rnfeltabstorel(rnf,x): transforms the element x from absolute to
relative representation.
Doc: $\var{rnf}$ being a relative
number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an
element of $L$ expressed as a polynomial modulo the absolute equation
\kbd{\var{rnf}.pol}, computes $x$ as an element of the relative extension
$L/K$ as a polmod with polmod coefficients.
Function: rnfeltdown
Class: basic
Section: number_fields
C-Name: rnfelementdown
Prototype: GG
Help: rnfeltdown(rnf,x): expresses x on the base field if possible; returns
an error otherwise.
Doc: $\var{rnf}$ being a relative number
field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an element of
$L$ expressed as a polynomial or polmod with polmod coefficients, computes
$x$ as an element of $K$ as a polmod, assuming $x$ is in $K$ (otherwise an
error will occur). If $x$ is given on the relative integral basis, apply
\kbd{rnfbasistoalg} first, otherwise PARI will believe you are dealing with a
vector.
Function: rnfeltreltoabs
Class: basic
Section: number_fields
C-Name: rnfelementreltoabs
Prototype: GG
Help: rnfeltreltoabs(rnf,x): transforms the element x from relative to
absolute representation.
Doc: $\var{rnf}$ being a relative
number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an
element of $L$ expressed as a polynomial or polmod with polmod
coefficients, computes $x$ as an element of the absolute extension $L/\Q$ as
a polynomial modulo the absolute equation \kbd{\var{rnf}.pol}. If $x$ is
given on the relative integral basis, apply \kbd{rnfbasistoalg} first,
otherwise PARI will believe you are dealing with a vector.
Function: rnfeltup
Class: basic
Section: number_fields
C-Name: rnfelementup
Prototype: GG
Help: rnfeltup(rnf,x): expresses x (belonging to the base field) on the
relative field.
Doc: $\var{rnf}$ being a relative number
field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an element of
$K$ expressed as a polynomial or polmod, computes $x$ as an element of the
absolute extension $L/\Q$ as a polynomial modulo the absolute equation
\kbd{\var{rnf}.pol}. If $x$ is given on the integral basis of $K$, apply
\kbd{nfbasistoalg} first, otherwise PARI will believe you are dealing with a
vector.
Function: rnfequation
Class: basic
Section: number_fields
C-Name: rnfequation0
Prototype: GGD0,L,
Help: rnfequation(nf,pol,{flag=0}): given a pol with coefficients in nf,
gives the absolute equation apol of the number field defined by pol. flag is
optional, and can be 0: default, or non-zero, gives [apol,th], where th
expresses the root of nf.pol in terms of the root of apol.
Doc: given a number field
$\var{nf}$ as output by \kbd{nfinit} (or simply a polynomial) and a
polynomial \var{pol} with coefficients in $\var{nf}$ defining a relative
extension $L$ of $\var{nf}$, computes the absolute equation of $L$ over
$\Q$.
If $\fl$ is non-zero, outputs a 3-component row vector $[z,a,k]$, where
$z$ is the absolute equation of $L$ over $\Q$, as in the default behavior,
$a$ expresses as an element of $L$ a root $\alpha$ of the polynomial
defining the base field $\var{nf}$, and $k$ is a small integer such that
$\theta = \beta+k\alpha$ where $\theta$ is a root of $z$ and $\beta$ a root
of $\var{pol}$.
The main variable of $\var{nf}$ \emph{must} be of lower priority than that
of \var{pol} (see \secref{se:priority}). Note that for efficiency, this does
not check whether the relative equation is irreducible over $\var{nf}$, but
only if it is squarefree. If it is reducible but squarefree, the result will
be the absolute equation of the \'etale algebra defined by \var{pol}. If
\var{pol} is not squarefree, an error message will be issued.
Variant: Also available are
\fun{GEN}{rnfequation}{GEN nf, GEN pol} ($\fl = 0$) and
\fun{GEN}{rnfequation2}{GEN nf, GEN pol} ($\fl = 1$).
Function: rnfhnfbasis
Class: basic
Section: number_fields
C-Name: rnfhnfbasis
Prototype: GG
Help: rnfhnfbasis(bnf,x): given an order x as output by rnfpseudobasis,
gives either a true HNF basis of the order if it exists, zero otherwise.
Doc: given $\var{bnf}$ as output by
\kbd{bnfinit}, and either a polynomial $x$ with coefficients in $\var{bnf}$
defining a relative extension $L$ of $\var{bnf}$, or a pseudo-basis $x$ of
such an extension, gives either a true $\var{bnf}$-basis of $L$ in upper
triangular Hermite normal form, if it exists, and returns $0$ otherwise.
Function: rnfidealabstorel
Class: basic
Section: number_fields
C-Name: rnfidealabstorel
Prototype: GG
Help: rnfidealabstorel(rnf,x): transforms the ideal x from absolute to
relative representation.
Doc: let $\var{rnf}$ be a relative
number field extension $L/K$ as output by \kbd{rnfinit}, and $x$ an ideal of
the absolute extension $L/\Q$ given by a $\Z$-basis of elements of $L$.
Returns the relative pseudo-matrix in HNF giving the ideal $x$ considered as
an ideal of the relative extension $L/K$.
If $x$ is an ideal in HNF form, associated to an \var{nf} structure, for
instance as output by $\tet{idealhnf}(\var{nf},\dots)$,
use \kbd{rnfidealabstorel(rnf, nf.zk * x)} to convert it to a relative ideal.
Function: rnfidealdown
Class: basic
Section: number_fields
C-Name: rnfidealdown
Prototype: GG
Help: rnfidealdown(rnf,x): finds the intersection of the ideal x with the
base field.
Doc: let $\var{rnf}$ be a relative number
field extension $L/K$ as output by \kbd{rnfinit}, and $x$ an ideal of
$L$, given either in relative form or by a $\Z$-basis of elements of $L$
(see \secref{se:rnfidealabstorel}), returns the ideal of $K$ below $x$,
i.e.~the intersection of $x$ with $K$.
Function: rnfidealhnf
Class: basic
Section: number_fields
C-Name: rnfidealhermite
Prototype: GG
Help: rnfidealhnf(rnf,x): relative version of idealhnf, where rnf is a
relative numberfield.
Doc: $\var{rnf}$ being a relative number
field extension $L/K$ as output by \kbd{rnfinit} and $x$ being a relative
ideal (which can be, as in the absolute case, of many different types,
including of course elements), computes the HNF pseudo-matrix associated to
$x$, viewed as a $\Z_K$-module.
Function: rnfidealmul
Class: basic
Section: number_fields
C-Name: rnfidealmul
Prototype: GGG
Help: rnfidealmul(rnf,x,y): relative version of idealmul, where rnf is a
relative numberfield.
Doc: $\var{rnf}$ being a relative number
field extension $L/K$ as output by \kbd{rnfinit} and $x$ and $y$ being ideals
of the relative extension $L/K$ given by pseudo-matrices, outputs the ideal
product, again as a relative ideal.
Function: rnfidealnormabs
Class: basic
Section: number_fields
C-Name: rnfidealnormabs
Prototype: GG
Help: rnfidealnormabs(rnf,x): absolute norm of the ideal x.
Doc: $\var{rnf}$ being a relative
number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being a
relative ideal (which can be, as in the absolute case, of many different
types, including of course elements), computes the norm of the ideal $x$
considered as an ideal of the absolute extension $L/\Q$. This is identical to
\kbd{idealnorm(rnfidealnormrel(\var{rnf},x))}, but faster.
Function: rnfidealnormrel
Class: basic
Section: number_fields
C-Name: rnfidealnormrel
Prototype: GG
Help: rnfidealnormrel(rnf,x): relative norm of the ideal x.
Doc: $\var{rnf}$ being a relative
number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being a
relative ideal (which can be, as in the absolute case, of many different
types, including of course elements), computes the relative norm of $x$ as a
ideal of $K$ in HNF.
Function: rnfidealreltoabs
Class: basic
Section: number_fields
C-Name: rnfidealreltoabs
Prototype: GG
Help: rnfidealreltoabs(rnf,x): transforms the ideal x from relative to
absolute representation.
Doc: $\var{rnf}$ being a relative
number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being a
relative ideal, gives the ideal $x\Z_L$ as an absolute ideal of $L/\Q$, in
the form of a $\Z$-basis, given by a vector of polynomials (modulo
\kbd{rnf.pol}).
The following routine might be useful:
\bprog
\\ return y = rnfidealreltoabs(rnf,...) as an ideal in HNF form
\\ associated to nf = nfinit( rnf.pol );
idealgentoHNF(nf, y) = mathnf( Mat( nfalgtobasis(nf, y) ) );
@eprog
Function: rnfidealtwoelt
Class: basic
Section: number_fields
C-Name: rnfidealtwoelement
Prototype: GG
Help: rnfidealtwoelt(rnf,x): relative version of idealtwoelt, where rnf
is a relative numberfield.
Doc: $\var{rnf}$ being a relative
number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an
ideal of the relative extension $L/K$ given by a pseudo-matrix, gives a
vector of two generators of $x$ over $\Z_L$ expressed as polmods with polmod
coefficients.
Function: rnfidealup
Class: basic
Section: number_fields
C-Name: rnfidealup
Prototype: GG
Help: rnfidealup(rnf,x): lifts the ideal x (of the base field) to the
relative field.
Doc: $\var{rnf}$ being a relative number
field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an ideal of
$K$, gives the ideal $x\Z_L$ as an absolute ideal of $L/\Q$, in the form of a
$\Z$-basis, given by a vector of polynomials (modulo \kbd{rnf.pol}).
The following routine might be useful:
\bprog
\\ return y = rnfidealup(rnf,...) as an ideal in HNF form
\\ associated to nf = nfinit( rnf.pol );
idealgentoHNF(nf, y) = mathnf( Mat( matalgtobasis(nf, y) ) );
@eprog
Function: rnfinit
Class: basic
Section: number_fields
C-Name: rnfinit
Prototype: GG
Help: rnfinit(nf,pol): pol being a non constant irreducible polynomial
defined over the number field nf, initializes a vector of data necessary for
working in relative number fields (rnf functions). See manual for technical
details.
Doc: $\var{nf}$ being a number field in \kbd{nfinit}
format considered as base field, and \var{pol} a polynomial defining a relative
extension over $\var{nf}$, this computes all the necessary data to work in the
relative extension. The main variable of \var{pol} must be of higher priority
(see \secref{se:priority}) than that of $\var{nf}$, and the coefficients of
\var{pol} must be in $\var{nf}$.
The result is a row vector, whose components are technical. In the following
description, we let $K$ be the base field defined by $\var{nf}$, $m$ the
degree of the base field, $n$ the relative degree, $L$ the large field (of
relative degree $n$ or absolute degree $nm$), $r_1$ and $r_2$ the number of
real and complex places of $K$.
$\var{rnf}[1]$ contains the relative polynomial \var{pol}.
$\var{rnf}[2]$ is currently unused.
$\var{rnf}[3]$ is a two-component row vector $[\goth{d}(L/K),s]$ where
$\goth{d}(L/K)$ is the relative ideal discriminant of $L/K$ and $s$ is the
discriminant of $L/K$ viewed as an element of $K^*/(K^*)^2$, in other words
it is the output of \kbd{rnfdisc}.
$\var{rnf}[4]$ is the ideal index $\goth{f}$, i.e.~such that
$d(pol)\Z_K=\goth{f}^2\goth{d}(L/K)$.
$\var{rnf}[5]$ is currently unused.
$\var{rnf}[6]$ is currently unused.
$\var{rnf}[7]$ is a two-component row vector, where the first component is
the relative integral pseudo basis expressed as polynomials (in the variable of
$pol$) with polmod coefficients in $\var{nf}$, and the second component is the
ideal list of the pseudobasis in HNF.
$\var{rnf}[8]$ is the inverse matrix of the integral basis matrix, with
coefficients polmods in $\var{nf}$.
$\var{rnf}[9]$ is currently unused.
$\var{rnf}[10]$ is $\var{nf}$.
$\var{rnf}[11]$ is the output of \kbd{rnfequation(nf, pol, 1)}. Namely, a
vector \var{vabs} with 3 entries describing the \emph{absolute} extension
$L/\Q$. $\var{vabs}[1]$ is an absolute equation, more conveniently obtained
as \kbd{rnf.pol}. $\var{vabs}[2]$ expresses the generator $\alpha$ of the
number field $\var{nf}$ as a polynomial modulo the absolute equation
$\var{vabs}[1]$. $\var{vabs}[3]$ is a small integer $k$ such that, if $\beta$
is an abstract root of \var{pol} and $\alpha$ the generator of $\var{nf}$,
the generator whose root is \var{vabs} will be
$\beta + k \alpha$. Note that one must be very careful if $k\neq0$ when
dealing simultaneously with absolute and relative quantities since the
generator chosen for the absolute extension is not the same as for the
relative one. If this happens, one can of course go on working, but we
strongly advise to change the relative polynomial so that its root will be
$\beta + k \alpha$. Typically, the GP instruction would be
\kbd{pol = subst(pol, x, x - k*Mod(y,\var{nf}.pol))}
$\var{rnf}[12]$ is by default unused and set equal to 0. This
field is used to store further information about the field as it becomes
available (which is rarely needed, hence would be too expensive to compute
during the initial \kbd{rnfinit} call).
Function: rnfisabelian
Class: basic
Section: number_fields
C-Name: rnfisabelian
Prototype: lGG
Help: rnfisabelian(nf,T): T being a relative polynomial with coefficients
in nf, return 1 if it defines an abelian extension, and 0 otherwise.
Doc: $T$ being a relative polynomial with coefficients
in \var{nf}, return 1 if it defines an abelian extension, and 0 otherwise.
\bprog
? K = nfinit(y^2 + 23);
? rnfisabelian(K, x^3 - 3*x - y)
%2 = 1
@eprog
Function: rnfisfree
Class: basic
Section: number_fields
C-Name: rnfisfree
Prototype: lGG
Help: rnfisfree(bnf,x): given an order x as output by rnfpseudobasis or
rnfsteinitz, outputs true (1) or false (0) according to whether the order is
free or not.
Doc: given $\var{bnf}$ as output by
\kbd{bnfinit}, and either a polynomial $x$ with coefficients in $\var{bnf}$
defining a relative extension $L$ of $\var{bnf}$, or a pseudo-basis $x$ of
such an extension, returns true (1) if $L/\var{bnf}$ is free, false (0) if
not.
Function: rnfisnorm
Class: basic
Section: number_fields
C-Name: rnfisnorm
Prototype: GGD0,L,
Help: rnfisnorm(T,a,{flag=0}): T is as output by rnfisnorminit applied to
L/K. Tries to tell whether a is a norm from L/K. Returns a vector [x,q]
where a=Norm(x)*q. Looks for a solution which is a S-integer, with S a list
of places in K containing the ramified primes, generators of the class group
of ext, as well as those primes dividing a. If L/K is Galois, omit flag,
otherwise it is used to add more places to S: all the places above the
primes p <= flag (resp. p | flag) if flag > 0 (resp. flag < 0). The answer
is guaranteed (i.e a is a norm iff q=1) if L/K is Galois or, under GRH, if S
contains all primes less than 12.log(disc(M))^2, where M is the normal
closure of L/K.
Doc: similar to
\kbd{bnfisnorm} but in the relative case. $T$ is as output by
\tet{rnfisnorminit} applied to the extension $L/K$. This tries to decide
whether the element $a$ in $K$ is the norm of some $x$ in the extension
$L/K$.
The output is a vector $[x,q]$, where $a = \Norm(x)*q$. The
algorithm looks for a solution $x$ which is an $S$-integer, with $S$ a list
of places of $K$ containing at least the ramified primes, the generators of
the class group of $L$, as well as those primes dividing $a$. If $L/K$ is
Galois, then this is enough; otherwise, $\fl$ is used to add more primes to
$S$: all the places above the primes $p \leq \fl$ (resp.~$p|\fl$) if $\fl>0$
(resp.~$\fl<0$).
The answer is guaranteed (i.e.~$a$ is a norm iff $q = 1$) if the field is
Galois, or, under \idx{GRH}, if $S$ contains all primes less than
$12\log^2\left|\disc(M)\right|$, where $M$ is the normal
closure of $L/K$.
If \tet{rnfisnorminit} has determined (or was told) that $L/K$ is
\idx{Galois}, and $\fl \neq 0$, a Warning is issued (so that you can set
$\fl = 1$ to check whether $L/K$ is known to be Galois, according to $T$).
Example:
\bprog
bnf = bnfinit(y^3 + y^2 - 2*y - 1);
p = x^2 + Mod(y^2 + 2*y + 1, bnf.pol);
T = rnfisnorminit(bnf, p);
rnfisnorm(T, 17)
@eprog\noindent
checks whether $17$ is a norm in the Galois extension $\Q(\beta) /
\Q(\alpha)$, where $\alpha^3 + \alpha^2 - 2\alpha - 1 = 0$ and $\beta^2 +
\alpha^2 + 2\alpha + 1 = 0$ (it is).
Function: rnfisnorminit
Class: basic
Section: number_fields
C-Name: rnfisnorminit
Prototype: GGD2,L,
Help: rnfisnorminit(pol,polrel,{flag=2}): let K be defined by a root of pol,
L/K the extension defined by polrel. Compute technical data needed by
rnfisnorm to solve norm equations Nx = a, for x in L, and a in K. If flag=0,
do not care whether L/K is Galois or not; if flag = 1, assume L/K is Galois;
if flag = 2, determine whether L/K is Galois.
Doc: let $K$ be defined by a root of \var{pol}, and $L/K$ the extension defined
by the polynomial \var{polrel}. As usual, \var{pol} can in fact be an \var{nf},
or \var{bnf}, etc; if \var{pol} has degree $1$ (the base field is $\Q$),
polrel is also allowed to be an \var{nf}, etc. Computes technical data needed
by \tet{rnfisnorm} to solve norm equations $Nx = a$, for $x$ in $L$, and $a$
in $K$.
If $\fl = 0$, do not care whether $L/K$ is Galois or not.
If $\fl = 1$, $L/K$ is assumed to be Galois (unchecked), which speeds up
\tet{rnfisnorm}.
If $\fl = 2$, let the routine determine whether $L/K$ is Galois.
Function: rnfkummer
Class: basic
Section: number_fields
C-Name: rnfkummer
Prototype: GDGD0,L,p
Help: rnfkummer(bnr,{subgp},{d=0}): bnr being as output by bnrinit,
finds a relative equation for the class field corresponding to the module in
bnr and the given congruence subgroup (the ray class field if subgp is
omitted). d can be zero (default), or positive, and in this case the
output is the list of all relative equations of degree d for the given bnr,
with the same conductor as (bnr, subgp).
Doc: \var{bnr}
being as output by \kbd{bnrinit}, finds a relative equation for the
class field corresponding to the module in \var{bnr} and the given
congruence subgroup (the full ray class field if \var{subgp} is omitted).
If $d$ is positive, outputs the list of all relative equations of
degree $d$ contained in the ray class field defined by \var{bnr}, with
the \emph{same} conductor as $(\var{bnr}, \var{subgp})$.
\misctitle{Warning} This routine only works for subgroups of prime index. It
uses Kummer theory, adjoining necessary roots of unity (it needs to compute a
tough \kbd{bnfinit} here), and finds a generator via Hecke's characterization
of ramification in Kummer extensions of prime degree. If your extension does
not have prime degree, for the time being, you have to split it by hand as a
tower / compositum of such extensions.
Function: rnflllgram
Class: basic
Section: number_fields
C-Name: rnflllgram
Prototype: GGGp
Help: rnflllgram(nf,pol,order): given a pol with coefficients in nf and an
order as output by rnfpseudobasis or similar, gives [[neworder],U], where
neworder is a reduced order and U is the unimodular transformation matrix.
Doc: given a polynomial
\var{pol} with coefficients in \var{nf} defining a relative extension $L$ and
a suborder \var{order} of $L$ (of maximal rank), as output by
\kbd{rnfpseudobasis}$(\var{nf},\var{pol})$ or similar, gives
$[[\var{neworder}],U]$, where \var{neworder} is a reduced order and $U$ is
the unimodular transformation matrix.
Function: rnfnormgroup
Class: basic
Section: number_fields
C-Name: rnfnormgroup
Prototype: GG
Help: rnfnormgroup(bnr,pol): norm group (or Artin or Takagi group)
corresponding to the Abelian extension of bnr.bnf defined by pol, where
the module corresponding to bnr is assumed to be a multiple of the
conductor. The result is the HNF defining the norm group on the
generators in bnr.gen.
Doc:
\var{bnr} being a big ray
class field as output by \kbd{bnrinit} and \var{pol} a relative polynomial
defining an \idx{Abelian extension}, computes the norm group (alias Artin
or Takagi group) corresponding to the Abelian extension of
$\var{bnf}=$\kbd{bnr.bnf}
defined by \var{pol}, where the module corresponding to \var{bnr} is assumed
to be a multiple of the conductor (i.e.~\var{pol} defines a subextension of
bnr). The result is the HNF defining the norm group on the given generators
of \kbd{bnr.gen}. Note that neither the fact that \var{pol} defines an
Abelian extension nor the fact that the module is a multiple of the conductor
is checked. The result is undefined if the assumption is not correct.
Function: rnfpolred
Class: basic
Section: number_fields
C-Name: rnfpolred
Prototype: GGp
Help: rnfpolred(nf,pol): given a pol with coefficients in nf, finds a list
of relative polynomials defining some subfields, hopefully simpler.
Doc: relative version of \kbd{polred}.
Given a monic polynomial \var{pol} with coefficients in $\var{nf}$, finds a
list of relative polynomials defining some subfields, hopefully simpler and
containing the original field. In the present version \vers, this is slower
and less efficient than \kbd{rnfpolredabs}.
Function: rnfpolredabs
Class: basic
Section: number_fields
C-Name: rnfpolredabs
Prototype: GGD0,L,
Help: rnfpolredabs(nf,pol,{flag=0}): given a pol with coefficients in nf,
finds a relative simpler polynomial defining the same field. Binary digits
of flag mean: 1: return also the element whose characteristic polynomial is
the given polynomial, 2: return an absolute polynomial, 16: partial
reduction.
Doc: relative version of
\kbd{polredabs}. Given a monic polynomial \var{pol} with coefficients in
$\var{nf}$, finds a simpler relative polynomial defining the same field. The
binary digits of $\fl$ mean
1: returns $[P,a]$ where $P$ is the default output and $a$ is an
element expressed on a root of $P$ whose characteristic polynomial is
\var{pol}
2: returns an absolute polynomial (same as
{\tt rnfequation(\var{nf},rnfpolredabs(\var{nf},\var{pol}))}
but faster).
16: possibly use a suborder of the maximal order. This is slower than the
default when the relative discriminant is smooth, and much faster otherwise.
See \secref{se:polredabs}.
\misctitle{Remark} In the present implementation, this is both faster and
much more efficient than \kbd{rnfpolred}, the difference being more
dramatic than in the absolute case. This is because the implementation of
\kbd{rnfpolred} is based on (a partial implementation of) an incomplete
reduction theory of lattices over number fields, the function
\kbd{rnflllgram}, which deserves to be improved.
Function: rnfpseudobasis
Class: basic
Section: number_fields
C-Name: rnfpseudobasis
Prototype: GG
Help: rnfpseudobasis(nf,pol): given a pol with coefficients in nf, gives a
4-component vector [A,I,D,d] where [A,I] is a pseudo basis of the maximal
order in HNF on the power basis, D is the relative ideal discriminant, and d
is the relative discriminant in nf^*/nf*^2.
Doc: given a number field
$\var{nf}$ as output by \kbd{nfinit} and a polynomial \var{pol} with
coefficients in $\var{nf}$ defining a relative extension $L$ of $\var{nf}$,
computes a pseudo-basis $(A,I)$ for the maximal order $\Z_L$ viewed as a
$\Z_K$-module, and the relative discriminant of $L$. This is output as a
four-element row vector $[A,I,D,d]$, where $D$ is the relative ideal
discriminant and $d$ is the relative discriminant considered as an element of
$\var{nf}^*/{\var{nf}^*}^2$.
Function: rnfsteinitz
Class: basic
Section: number_fields
C-Name: rnfsteinitz
Prototype: GG
Help: rnfsteinitz(nf,x): given an order x as output by rnfpseudobasis,
gives [A,I,D,d] where (A,I) is a pseudo basis where all the ideals except
perhaps the last are trivial.
Doc: given a number field $\var{nf}$ as
output by \kbd{nfinit} and either a polynomial $x$ with coefficients in
$\var{nf}$ defining a relative extension $L$ of $\var{nf}$, or a pseudo-basis
$x$ of such an extension as output for example by \kbd{rnfpseudobasis},
computes another pseudo-basis $(A,I)$ (not in HNF in general) such that all
the ideals of $I$ except perhaps the last one are equal to the ring of
integers of $\var{nf}$, and outputs the four-component row vector $[A,I,D,d]$
as in \kbd{rnfpseudobasis}. The name of this function comes from the fact
that the ideal class of the last ideal of $I$, which is well defined, is the
\idx{Steinitz class} of the $\Z_K$-module $\Z_L$ (its image in $SK_0(\Z_K)$).
Function: round
Class: basic
Section: conversions
C-Name: round0
Prototype: GD&
Help: round(x,{&e}): take the nearest integer to all the coefficients of x.
If e is present, do not take into account loss of integer part precision,
and set e = error estimate in bits.
Description:
(small):small:parens $1
(int):int:copy:parens $1
(real):int roundr($1)
(mp):int mpround($1)
(mp, &small):int grndtoi($1, &$2)
(mp, &int):int round0($1, &$2)
(gen):gen ground($1)
(gen, &small):gen grndtoi($1, &$2)
(gen, &int):gen round0($1, &$2)
Doc: If $x$ is in $\R$, rounds $x$ to the nearest integer (rounding to
$+\infty$ in case of ties), then and sets $e$ to the number of error bits,
that is the binary exponent of the difference between the original and the
rounded value (the ``fractional part''). If the exponent of $x$ is too large
compared to its precision (i.e.~$e>0$), the result is undefined and an error
occurs if $e$ was not given.
\misctitle{Important remark} Contrary to the other truncation functions,
this function operates on every coefficient at every level of a PARI object.
For example
$$\text{truncate}\left(\dfrac{2.4*X^2-1.7}{X}\right)=2.4*X,$$
whereas
$$\text{round}\left(\dfrac{2.4*X^2-1.7}{X}\right)=\dfrac{2*X^2-2}{X}.$$
An important use of \kbd{round} is to get exact results after an approximate
computation, when theory tells you that the coefficients must be integers.
Variant: Also available are \fun{GEN}{grndtoi}{GEN x, long *e} and
\fun{GEN}{ground}{GEN x}.
Function: select
Class: basic
Section: programming/specific
C-Name: select0
Prototype: GG
Help: select(f, A): selects elements of A according to the selection function f.
Wrapper: (bG)
Description:
(gen,gen):gen genselect(${1 cookie}, ${1 wrapper}, $2)
Doc: Given a vector, list or matrix \kbd{A} and a \typ{CLOSURE} \kbd{f},
returns the elements $x$ of \kbd{A} such that $f(x)$ is non-zero. In other
words, \kbd{f} is seen as a selection function returning a boolean value.
\bprog
? select(x->isprime(x), vector(50,i,i^2+1))
%1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
? select(x->(x<100), %)
%2 = [2, 5, 17, 37]
@eprog\noindent returns the primes of the form $i^2+1$ for some $i\leq 50$,
then the elements less than 100 in the preceding result. The following
function lists the elements in $(\Z/N\Z)^*$:
\bprog
? invertibles(N) = select(x->gcd(x,N) == 1, vector(N,i,i))
@eprog
\noindent Finally
\bprog
? select(x->x, M)
@eprog\noindent selects the non-0 entries in \kbd{M}. If the latter is a
\typ{MAT}, we extract the matrix of non-0 columns. Note that \emph{removing}
entries instead of selecting them just involves replacing the selection
function \kbd{f} with its negation:
\bprog
? select(x->!isprime(x), vector(50,i,i^2+1))
@eprog
\synt{genselect}{void *E, long (*fun)(void*,GEN), GEN a}.
Function: serconvol
Class: basic
Section: polynomials
C-Name: convol
Prototype: GG
Help: serconvol(x,y): convolution (or Hadamard product) of two power series.
Doc: convolution (or \idx{Hadamard product}) of the
two power series $x$ and $y$; in other words if $x=\sum a_k*X^k$ and $y=\sum
b_k*X^k$ then $\kbd{serconvol}(x,y)=\sum a_k*b_k*X^k$.
Function: serlaplace
Class: basic
Section: polynomials
C-Name: laplace
Prototype: G
Help: serlaplace(x): replaces the power series sum of a_n*x^n/n! by sum of
a_n*x^n. For the reverse operation, use serconvol(x,exp(X)).
Doc: $x$ must be a power series with non-negative
exponents. If $x=\sum (a_k/k!)*X^k$ then the result is $\sum a_k*X^k$.
Function: serreverse
Class: basic
Section: polynomials
C-Name: recip
Prototype: G
Help: serreverse(x): reversion of the power series x.
Doc: reverse power series (i.e.~$x^{-1}$, not $1/x$)
of $x$. $x$ must be a power series whose valuation is exactly equal to one.
Function: setintersect
Class: basic
Section: linear_algebra
C-Name: setintersect
Prototype: GG
Help: setintersect(x,y): intersection of the sets x and y.
Description:
(vec, vec):vec setintersect($1, $2)
Doc: intersection of the two sets $x$ and $y$ (see \kbd{setisset}).
The function also works if both $x$ and $y$ are vectors of strictly increasing
entries, according to \kbd{<}); in that case we return a vector of strictly
increasing entries, not a set. Otherwise, the result is undefined.
Function: setisset
Class: basic
Section: linear_algebra
C-Name: setisset
Prototype: lG
Help: setisset(x): true(1) if x is a set (row vector with strictly
increasing entries), false(0) if not.
Doc:
returns true (1) if $x$ is a set, false (0) if
not. In PARI, a set is a row vector whose entries are strictly
increasing \typ{STR}s. To convert any object into a set (this is most useful for
vectors, of course), use the function \kbd{Set}.
\bprog
? a = [3, 1, 1, 2];
? setisset(a)
%2 = 0
? Set(a)
%3 = ["1", "2", "3"]
@eprog
Function: setminus
Class: basic
Section: linear_algebra
C-Name: setminus
Prototype: GG
Help: setminus(x,y): set of elements of x not belonging to y.
Description:
(vec, vec):vec setminus($1, $2)
Doc: difference of the two sets $x$ and $y$ (see \kbd{setisset}),
i.e.~set of elements of $x$ which do not belong to $y$.
The function also works if both $x$ and $y$ are vectors of strictly increasing
entries, according to \kbd{<}); in that case we return a vector of strictly
increasing entries, not a set. Otherwise, the result is undefined.
Function: setrand
Class: basic
Section: programming/specific
C-Name: setrand
Prototype: vG
Help: setrand(n): reset the seed of the random number generator to n.
Doc: reseeds the random number generator using the seed $n$. No value is
returned. The seed is either a technical array output by \kbd{getrand}, or a
small positive integer, used to generate deterministically a suitable state
array. For instance, running a randomized computation starting by
\kbd{setrand(1)} twice will generate the exact same output.
Function: setsearch
Class: basic
Section: linear_algebra
C-Name: setsearch
Prototype: lGGD0,L,
Help: setsearch(S,x,{flag=0}): looks if x belongs to the set S. If flag is 0
or omitted, returns 0 if it is not, otherwise returns the index j such that
x==S[j]. If flag is non-zero, return 0 if x belongs to S, otherwise the
index j where it should be inserted.
Doc: searches if $x$ belongs to the set $S$ (see \kbd{setisset}).
A set is a vector of \typ{STR}, but this function
works also if $S$ is a arbitrary \emph{sorted} vector or list (see
\kbd{listsort}): if $x$ is not a \typ{STR}, we first
replace it by \kbd{Str}$(x)$ \emph{unless} the first element of $S$ is also
not a \typ{STR}.
If $x$ belongs to the set and $\fl$ is zero or omitted, returns the
index $j$ such that $S[j]=x$, otherwise returns 0. If $\fl$ is non-zero
returns the index $j$ where $x$ should be inserted, and $0$ if it already
belongs to $S$ (this is meant to be used in conjunction with
\kbd{listinsert}, see below).
\bprog
? T = [2,3,5,7]; S = Set(T);
? setsearch(S, 2) \\ search in a true set, t_INT 2 converted to string
%2 = 1
? setsearch(S, Str(2)) \\ search in a true set, no need for conversion
%3 = 1
? setsearch(T, 2) \\ search in a sorted vector, no need for conversion
%4 = 1
? setsearch(T, Str(2)) \\ search in a sorted vector, t_STR "2" not found
%5 = 0
? setsearch(S, 4) \\ not found
%6 = 0
? setsearch(S, 4, 1) \\ should have been inserted at index 3
%7 = 3
@eprog
Function: setunion
Class: basic
Section: linear_algebra
C-Name: setunion
Prototype: GG
Help: setunion(x,y): union of the sets x and y.
Description:
(vec, vec):vec setunion($1, $2)
Doc: union of the two sets $x$ and $y$ (see \kbd{setisset}).
The function also works if both $x$ and $y$ are vectors of strictly increasing
entries, according to \kbd{<}); in that case we return a vector of strictly
increasing entries, not a set. Otherwise, the result is undefined.
Function: shift
Class: basic
Section: operators
C-Name: gshift
Prototype: GL
Help: shift(x,n): shift x left n bits if n>=0, right -n bits if
n<0.
Doc: shifts $x$ componentwise left by $n$ bits if $n\ge0$ and right by $|n|$
bits if $n<0$. May be abbreviated as $x$ \kbd{<<} $n$ or $x$ \kbd{>>} $(-n)$.
A left shift by $n$ corresponds to multiplication by $2^n$. A right shift of an
integer $x$ by $|n|$ corresponds to a Euclidean division of $x$ by $2^{|n|}$
with a remainder of the same sign as $x$, hence is not the same (in general) as
$x \kbd{\bs} 2^n$.
Function: shiftmul
Class: basic
Section: operators
C-Name: gmul2n
Prototype: GL
Help: shiftmul(x,n): multiply x by 2^n (n>=0 or n<0)
Doc: multiplies $x$ by $2^n$. The difference with
\kbd{shift} is that when $n<0$, ordinary division takes place, hence for
example if $x$ is an integer the result may be a fraction, while for shifts
Euclidean division takes place when $n<0$ hence if $x$ is an integer the result
is still an integer.
Function: sigma
Class: basic
Section: number_theoretical
C-Name: gsumdivk
Prototype: GD1,L,
Help: sigma(x,{k=1}): sum of the k-th powers of the divisors of x. k is
optional and if omitted is assumed to be equal to 1.
Description:
(int, ?1):int sumdiv($1)
(int, 0):int numbdiv($1)
(gen, ?1):gen gsumdiv($1)
(gen, 0):gen gnumbdiv($1)
(int, small):int sumdivk($1, $2)
(gen, small):gen gsumdivk($1, $2)
Doc: sum of the $k^{\text{th}}$ powers of the positive divisors of $|x|$. $x$
and $k$ must be of type integer.
The function accepts vector/matrices arguments for $x$, and is then applied
componentwise.
Variant: Also available are
\fun{GEN}{gsumdiv}{GEN n} ($k = 1$), \fun{GEN}{sumdivk}{GEN n,long k}
($n$ a \typ{INT}) and \fun{GEN}{sumdiv}{GEN n} ($k = 1$, $n$ a \typ{INT})
Function: sign
Class: basic
Section: operators
C-Name: gsigne
Prototype: iG
Help: sign(x): sign of x, of type integer, real or fraction
Description:
(mp):small signe($1)
(gen):small gsigne($1)
Doc: \idx{sign} ($0$, $1$ or $-1$) of $x$, which must be of
type integer, real or fraction.
Function: simplify
Class: basic
Section: conversions
C-Name: simplify
Prototype: G
Help: simplify(x): simplify the object x as much as possible.
Doc:
this function simplifies $x$ as much as it can. Specifically, a complex or
quadratic number whose imaginary part is the integer 0 (i.e.~not \kbd{Mod(0,2)}
or \kbd{0.E-28}) is converted to its real part, and a polynomial of degree $0$
is converted to its constant term. Simplifications occur recursively.
This function is especially useful before using arithmetic functions,
which expect integer arguments:
\bprog
? x = 2 + y - y
%1 = 2
? isprime(x)
*** at top-level: isprime(x)
*** ^----------
*** isprime: not an integer argument in an arithmetic function
? type(x)
%2 = "t_POL"
? type(simplify(x))
%3 = "t_INT"
@eprog
Note that GP results are simplified as above before they are stored in the
history. (Unless you disable automatic simplification with \b{y}, that is.)
In particular
\bprog
? type(%1)
%4 = "t_INT"
@eprog
Function: sin
Class: basic
Section: transcendental
C-Name: gsin
Prototype: Gp
Help: sin(x): sine of x.
Doc: sine of $x$.
Function: sinh
Class: basic
Section: transcendental
C-Name: gsh
Prototype: Gp
Help: sinh(x): hyperbolic sine of x.
Doc: hyperbolic sine of $x$.
Function: sizebyte
Class: basic
Section: conversions
C-Name: gsizebyte
Prototype: lG
Help: sizebyte(x): number of bytes occupied by the complete tree of the
object x.
Doc: outputs the total number of bytes occupied by the tree representing the
PARI object $x$.
Variant: Also available is \fun{long}{gsizeword}{GEN x} returning a
number of \emph{words}.
Function: sizedigit
Class: basic
Section: conversions
C-Name: sizedigit
Prototype: lG
Help: sizedigit(x): maximum number of decimal digits minus one of (the
coefficients of) x.
Doc:
outputs a quick bound for the number of decimal
digits of (the components of) $x$, off by at most $1$. If you want the
exact value, you can use \kbd{\#Str(x)}, which is slower.
Function: solve
Class: basic
Section: sums
C-Name: zbrent0
Prototype: V=GGEp
Help: solve(X=a,b,expr): real root of expression expr (X between a and b),
where expr(a)*expr(b)<=0.
Wrapper: (,,G)
Description:
(gen,gen,gen):gen:prec zbrent(${3 cookie}, ${3 wrapper}, $1, $2, prec)
Doc: find a real root of expression
\var{expr} between $a$ and $b$, under the condition
$\var{expr}(X=a) * \var{expr}(X=b) \le 0$. (You will get an error message
\kbd{roots must be bracketed in solve} if this does not hold.)
This routine uses Brent's method and can fail miserably if \var{expr} is
not defined in the whole of $[a,b]$ (try \kbd{solve(x=1, 2, tan(x))}).
\synt{zbrent}{void *E,GEN (*eval)(void*,GEN),GEN a,GEN b,long prec}.
Function: sqr
Class: basic
Section: transcendental
C-Name: gsqr
Prototype: G
Help: sqr(x): square of x. NOT identical to x*x.
Description:
(int):int sqri($1)
(mp):mp gsqr($1)
(gen):gen gsqr($1)
Doc: square of $x$. This operation is not completely
straightforward, i.e.~identical to $x * x$, since it can usually be
computed more efficiently (roughly one-half of the elementary
multiplications can be saved). Also, squaring a $2$-adic number increases
its precision. For example,
\bprog
? (1 + O(2^4))^2
%1 = 1 + O(2^5)
? (1 + O(2^4)) * (1 + O(2^4))
%2 = 1 + O(2^4)
@eprog\noindent
Note that this function is also called whenever one multiplies two objects
which are known to be \emph{identical}, e.g.~they are the value of the same
variable, or we are computing a power.
\bprog
? x = (1 + O(2^4)); x * x
%3 = 1 + O(2^5)
? (1 + O(2^4))^4
%4 = 1 + O(2^6)
@eprog\noindent
(note the difference between \kbd{\%2} and \kbd{\%3} above).
Function: sqrt
Class: basic
Section: transcendental
C-Name: gsqrt
Prototype: Gp
Help: sqrt(x): square root of x.
Description:
(real):gen sqrtr($1)
(gen):gen:prec gsqrt($1, prec)
Doc: principal branch of the square root of $x$, defined as $\sqrt{x} =
\exp(\log x / 2)$. In particular, we have
$\text{Arg}(\text{sqrt}(x))\in{} ]-\pi/2, \pi/2]$, and if $x\in \R$ and $x<0$,
then the result is complex with positive imaginary part.
Intmod a prime $p$ and $p$-adics are allowed as arguments. In that case,
the square root (if it exists) which is returned is the one whose
first $p$-adic digit is in the interval $[0,p/2]$. When the argument is an
intmod a non-prime (or a non-prime-adic), the result is undefined.
Variant: For a \typ{PADIC} $x$, the function
\fun{GEN}{Qp_sqrt}{GEN x} is also available.
Function: sqrtint
Class: basic
Section: number_theoretical
C-Name: sqrtint
Prototype: G
Help: sqrtint(x): integer square root of x (x integer).
Description:
(gen):int sqrtint($1)
Doc: integer square root of $x$, which must be a non-negative integer. The
result is non-negative and rounded towards zero.
Function: sqrtn
Class: basic
Section: transcendental
C-Name: gsqrtn
Prototype: GGD&p
Help: sqrtn(x,n,{&z}): nth-root of x, n must be integer. If present, z is
set to a suitable root of unity to recover all solutions. If it was not
possible, z is set to zero.
Doc: principal branch of the $n$th root of $x$,
i.e.~such that $\text{Arg}(\text{sqrt}(x))\in{} ]-\pi/n, \pi/n]$. Intmod
a prime and $p$-adics are allowed as arguments.
If $z$ is present, it is set to a suitable root of unity allowing to
recover all the other roots. If it was not possible, z is
set to zero. In the case this argument is present and no square root exist,
$0$ is returned instead or raising an error.
\bprog
? sqrtn(Mod(2,7), 2)
%1 = Mod(4, 7)
? sqrtn(Mod(2,7), 2, &z); z
%2 = Mod(6, 7)
? sqrtn(Mod(2,7), 3)
*** at top-level: sqrtn(Mod(2,7),3)
*** ^-----------------
*** sqrtn: nth-root does not exist in gsqrtn.
? sqrtn(Mod(2,7), 3, &z)
%2 = 0
? z
%3 = 0
@eprog
The following script computes all roots in all possible cases:
\bprog
sqrtnall(x,n)=
{ my(V,r,z,r2);
r = sqrtn(x,n, &z);
if (!z, error("Impossible case in sqrtn"));
if (type(x) == "t_INTMOD" || type(x)=="t_PADIC" ,
r2 = r*z; n = 1;
while (r2!=r, r2*=z;n++));
V = vector(n); V[1] = r;
for(i=2, n, V[i] = V[i-1]*z);
V
}
addhelp(sqrtnall,"sqrtnall(x,n):compute the vector of nth-roots of x");
@eprog\noindent
Variant: If $x$ is a \typ{PADIC}, the function
\fun{GEN}{Qp_sqrt}{GEN x, GEN n, GEN *z} is also available.
Function: stirling
Class: basic
Section: number_theoretical
C-Name: stirling
Prototype: LLD1,L,
Help: stirling(n,k,{flag=1}): If flag=1 (default) return the Stirling number
of the first kind s(n,k), if flag=2, return the Stirling number of the second
kind S(n,k).
Doc: \idx{Stirling number} of the first kind $s(n,k)$ ($\fl=1$, default) or
of the second kind $S(n,k)$ (\fl=2), where $n$, $k$ are non-negative
integers. The former is $(-1)^{n-k}$ times the
number of permutations of $n$ symbols with exactly $k$ cycles; the latter is
the number of ways of partitioning a set of $n$ elements into $k$ non-empty
subsets. Note that if all $s(n,k)$ are needed, it is much faster to compute
$$\sum_k s(n,k) x^k = x(x-1)\dots(x-n+1).$$
Similarly, if a large number of $S(n,k)$ are needed for the same $k$,
one should use
$$\sum_n S(n,k) x^n = \dfrac{x^k}{(1-x)\dots(1-kx)}.$$
(Should be implemented using a divide and conquer product.) Here are
simple variants for $n$ fixed:
\bprog
/* list of s(n,k), k = 1..n */
vecstirling(n) = Vec( factorback(vector(n-1,i,1-i*'x)) )
/* list of S(n,k), k = 1..n */
vecstirling2(n) =
{ my(Q = x^(n-1), t);
vector(n, i, t = divrem(Q, x-i); Q=t[1]; t[2]);
}
@eprog
Variant: Also available are \fun{GEN}{stirling1}{ulong n, ulong k}
($\fl=1$) and \fun{GEN}{stirling2}{ulong n, ulong k} ($\fl=2$).
Function: subgrouplist
Class: basic
Section: number_fields
C-Name: subgrouplist0
Prototype: GDGD0,L,
Help: subgrouplist(bnr,{bound},{flag=0}): bnr being as output by bnrinit or
a list of cyclic components of a finite Abelian group G, outputs the list of
subgroups of G (of index bounded by bound, if not omitted), given as HNF
left divisors of the SNF matrix corresponding to G. If flag=0 (default) and
bnr is as output by bnrinit, gives only the subgroups for which the modulus
is the conductor.
Doc: \var{bnr} being as output by \kbd{bnrinit} or a list of cyclic components
of a finite Abelian group $G$, outputs the list of subgroups of $G$. Subgroups
are given as HNF left divisors of the SNF matrix corresponding to $G$.
If $\fl=0$ (default) and \var{bnr} is as output by \kbd{bnrinit}, gives
only the subgroups whose modulus is the conductor. Otherwise, the modulus is
not taken into account.
If \var{bound} is present, and is a positive integer, restrict the output to
subgroups of index less than \var{bound}. If \var{bound} is a vector
containing a single positive integer $B$, then only subgroups of index
exactly equal to $B$ are computed. For instance
\bprog
? subgrouplist([6,2])
%1 = [[6, 0; 0, 2], [2, 0; 0, 2], [6, 3; 0, 1], [2, 1; 0, 1], [3, 0; 0, 2],
[1, 0; 0, 2], [6, 0; 0, 1], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
? subgrouplist([6,2],3) \\@com index less than 3
%2 = [[2, 1; 0, 1], [1, 0; 0, 2], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
? subgrouplist([6,2],[3]) \\@com index 3
%3 = [[3, 0; 0, 1]]
? bnr = bnrinit(bnfinit(x), [120,[1]], 1);
? L = subgrouplist(bnr, [8]);
@eprog\noindent
In the last example, $L$ corresponds to the 24 subfields of
$\Q(\zeta_{120})$, of degree $8$ and conductor $120\infty$ (by setting \fl,
we see there are a total of $43$ subgroups of degree $8$).
\bprog
? vector(#L, i, galoissubcyclo(bnr, L[i]))
@eprog\noindent
will produce their equations. (For a general base field, you would
have to rely on \tet{bnrstark}, or \tet{rnfkummer}.)
Function: subst
Class: basic
Section: polynomials
C-Name: gsubst
Prototype: GnG
Help: subst(x,y,z): in expression x, replace the variable y by the
expression z.
Doc: replace the simple variable $y$ by the argument $z$ in the ``polynomial''
expression $x$. Every type is allowed for $x$, but if it is not a genuine
polynomial (or power series, or rational function), the substitution will be
done as if the scalar components were polynomials of degree zero. In
particular, beware that:
\bprog
? subst(1, x, [1,2; 3,4])
%1 =
[1 0]
[0 1]
? subst(1, x, Mat([0,1]))
*** at top-level: subst(1,x,Mat([0,1])
*** ^--------------------
*** subst: forbidden substitution by a non square matrix.
@eprog\noindent
If $x$ is a power series, $z$ must be either a polynomial, a power
series, or a rational function. Finally, if $x$ is a vector,
matrix or list, the substitution is applied to each individual entry.
Use the function \kbd{substvec} to replace several variables at once,
or the function \kbd{substpol} to replace a polynomial expression.
Function: substpol
Class: basic
Section: polynomials
C-Name: gsubstpol
Prototype: GGG
Help: substpol(x,y,z): in expression x, replace the polynomial y by the
expression z, using remainder decomposition of x.
Doc: replace the ``variable'' $y$ by the argument $z$ in the ``polynomial''
expression $x$. Every type is allowed for $x$, but the same behavior
as \kbd{subst} above apply.
The difference with \kbd{subst} is that $y$ is allowed to be any polynomial
here. The substitution is done moding out all components of $x$
(recursively) by $y - t$, where $t$ is a new free variable of lowest
priority. Then substituting $t$ by $z$ in the resulting expression. For
instance
\bprog
? substpol(x^4 + x^2 + 1, x^2, y)
%1 = y^2 + y + 1
? substpol(x^4 + x^2 + 1, x^3, y)
%2 = x^2 + y*x + 1
? substpol(x^4 + x^2 + 1, (x+1)^2, y)
%3 = (-4*y - 6)*x + (y^2 + 3*y - 3)
@eprog
Variant: Further, \fun{GEN}{gdeflate}{GEN T, long v, long d} attempts to
write $T(x)$ in the form $t(x^d)$, where $x=$\kbd{pol\_x}$(v)$, and returns
\kbd{NULL} if the substitution fails (for instance in the example \kbd{\%2}
above).
Function: substvec
Class: basic
Section: polynomials
C-Name: gsubstvec
Prototype: GGG
Help: substvec(x,v,w): in expression x, make a best effort to replace the
variables v1,...,vn by the expression w1,...,wn.
Doc: $v$ being a vector of monomials of degree 1 (variables),
$w$ a vector of expressions of the same length, replace in the expression
$x$ all occurrences of $v_i$ by $w_i$. The substitutions are done
simultaneously; more precisely, the $v_i$ are first replaced by new
variables in $x$, then these are replaced by the $w_i$:
\bprog
? substvec([x,y], [x,y], [y,x])
%1 = [y, x]
? substvec([x,y], [x,y], [y,x+y])
%2 = [y, x + y] \\ not [y, 2*y]
@eprog
Function: sum
Class: basic
Section: sums
C-Name: somme
Prototype: V=GGEDG
Help: sum(X=a,b,expr,{x=0}): x plus the sum (X goes from a to b) of
expression expr.
Doc: sum of expression \var{expr},
initialized at $x$, the formal parameter going from $a$ to $b$. As for
\kbd{prod}, the initialization parameter $x$ may be given to force the type
of the operations being performed.
\noindent As an extreme example, compare
\bprog
? sum(i=1, 10^4, 1/i); \\@com rational number: denominator has $4345$ digits.
time = 236 ms.
? sum(i=1, 5000, 1/i, 0.)
time = 8 ms.
%2 = 9.787606036044382264178477904
@eprog
\synt{somme}{GEN a, GEN b, char *expr, GEN x}.
Function: sumalt
Class: basic
Section: sums
C-Name: sumalt0
Prototype: V=GED0,L,p
Help: sumalt(X=a,expr,{flag=0}): Cohen-Villegas-Zagier's acceleration of
alternating series expr, X starting at a. flag is optional, and can be 0:
default, or 1: uses a slightly different method using Zagier's polynomials.
Wrapper: (,G)
Description:
(gen,gen,?0):gen:prec sumalt(${2 cookie}, ${2 wrapper}, $1, prec)
(gen,gen,1):gen:prec sumalt2(${2 cookie}, ${2 wrapper}, $1, prec)
Doc: numerical summation of the series \var{expr}, which should be an
\idx{alternating series}, the formal variable $X$ starting at $a$. Use an
algorithm of Cohen, Villegas and Zagier (\emph{Experiment. Math.} {\bf 9}
(2000), no.~1, 3--12).
If $\fl=1$, use a variant with slightly different polynomials. Sometimes
faster.
The routine is heuristic and a rigorous proof assumes that the values of
\var{expr} are the moments of a positive measure on $[0,1]$. Divergent
alternating series can sometimes be summed by this method, as well as series
which are not exactly alternating (see for example
\secref{se:user_defined}). It should be used to try and guess the value of
an infinite sum. (However, see the example at the end of
\secref{se:userfundef}.)
If the series already converges geometrically,
\tet{suminf} is often a better choice:
\bprog
? \p28
? sumalt(i = 1, -(-1)^i / i) - log(2)
time = 0 ms.
%1 = -2.524354897 E-29
? suminf(i = 1, -(-1)^i / i) \\@com Had to hit <C-C>
*** at top-level: suminf(i=1,-(-1)^i/i)
*** ^------
*** suminf: user interrupt after 10min, 20,100 ms.
? \p1000
? sumalt(i = 1, -(-1)^i / i) - log(2)
time = 90 ms.
%2 = 4.459597722 E-1002
? sumalt(i = 0, (-1)^i / i!) - exp(-1)
time = 670 ms.
%3 = -4.03698781490633483156497361352190615794353338591897830587 E-944
? suminf(i = 0, (-1)^i / i!) - exp(-1)
time = 110 ms.
%4 = -8.39147638 E-1000 \\ @com faster and more accurate
@eprog
\synt{sumalt}{void *E, GEN (*eval)(void*,GEN),GEN a,long prec}. Also
available is \tet{sumalt2} with the same arguments ($\fl = 1$).
Function: sumdedekind
Class: basic
Section: number_theoretical
C-Name: sumdedekind
Prototype: GG
Help: sumdedekind(h,k): Dedekind sum associated to h,k
Doc: returns the \idx{Dedekind sum} associated to the integers $h$ and $k$,
corresponding to a fast implementation of
\bprog
s(h,k) = sum(n = 1, k-1, (n/k)*(frac(h*n/k) - 1/2))
@eprog
Function: sumdiv
Class: basic
Section: sums
C-Name: divsum
Prototype: GVE
Help: sumdiv(n,X,expr): sum of expression expr, X running over the divisors
of n.
Doc: sum of expression \var{expr} over the positive divisors of $n$.
This function is a trivial wrapper essentially equivalent to
\bprog
D = divisors(n);
for (i = 1, #D, X = D[i]; eval(expr))
@eprog\noindent (except that \kbd{X} is lexically scoped to the \kbd{sumdiv}
loop).
Arithmetic functions like \tet{sigma} use the multiplicativity of the
underlying expression to speed up the computation. Since there is no way to
indicate that \var{expr} is multiplicative in $n$, specialized functions
should always be preferred.
%\syn{NO}
Function: suminf
Class: basic
Section: sums
C-Name: suminf0
Prototype: V=GEp
Help: suminf(X=a,expr): infinite sum (X goes from a to infinity) of real or
complex expression expr.
Wrapper: (,G)
Description:
(gen,gen):gen:prec suminf(${2 cookie}, ${2 wrapper}, $1, prec)
Doc: \idx{infinite sum} of expression
\var{expr}, the formal parameter $X$ starting at $a$. The evaluation stops
when the relative error of the expression is less than the default precision
for 3 consecutive evaluations. The expressions must always evaluate to a
complex number.
If the series converges slowly, make sure \kbd{realprecision} is low (even 28
digits may be too much). In this case, if the series is alternating or the
terms have a constant sign, \tet{sumalt} and \tet{sumpos} should be used
instead.
\bprog
? \p28
? suminf(i = 1, -(-1)^i / i) \\@com Had to hit <C-C>
*** at top-level: suminf(i=1,-(-1)^i/i)
*** ^------
*** suminf: user interrupt after 10min, 20,100 ms.
? sumalt(i = 1, -(-1)^i / i) - log(2)
time = 0 ms.
%1 = -2.524354897 E-29
@eprog
\synt{suminf}{void *E, GEN (*eval)(void*,GEN), GEN a, long prec}.
Function: sumnum
Class: basic
Section: sums
C-Name: sumnum0
Prototype: V=GGEDGD0,L,p
Help: sumnum(X=a,sig,expr,{tab},{flag=0}): numerical summation of expr from
X = ceiling(a) to +infinity. sig is either a scalar or a two-component vector
coding the function's decrease rate at infinity. It is assumed that the
scalar part of sig is to the right of all poles of expr. If present, tab
must be initialized by sumnuminit. If flag is nonzero, assumes that
conj(expr(z)) = expr(conj(z)).
Wrapper: (,,G)
Description:
(gen,gen,gen,?gen,?small):gen:prec sumnum(${3 cookie}, ${3 wrapper}, $1, $2, $4, $5, prec)
Doc: numerical summation of \var{expr}, the variable $X$ taking integer values
from ceiling of $a$ to $+\infty$, where \var{expr} is assumed to be a
holomorphic function $f(X)$ for $\Re(X)\ge \sigma$.
The parameter $\sigma\in\R$ is coded in the argument \kbd{sig} as follows: it
is either
\item a real number $\sigma$. Then the function $f$ is assumed to
decrease at least as $1/X^2$ at infinity, but not exponentially;
\item a two-component vector $[\sigma,\alpha]$, where $\sigma$ is as
before, $\alpha < -1$. The function $f$ is assumed to decrease like
$X^{\alpha}$. In particular, $\alpha\le-2$ is equivalent to no $\alpha$ at all.
\item a two-component vector $[\sigma,\alpha]$, where $\sigma$ is as
before, $\alpha > 0$. The function $f$ is assumed to decrease like
$\exp(-\alpha X)$. In this case it is essential that $\alpha$ be exactly the
rate of exponential decrease, and it is usually a good idea to increase
the default value of $m$ used for the integration step. In practice, if
the function is exponentially decreasing \kbd{sumnum} is slower and less
accurate than \kbd{sumpos} or \kbd{suminf}, so should not be used.
The function uses the \tet{intnum} routines and integration on the line
$\Re(s) = \sigma$. The optional argument \var{tab} is as in intnum, except it
must be initialized with \kbd{sumnuminit} instead of \kbd{intnuminit}.
When \var{tab} is not precomputed, \kbd{sumnum} can be slower than
\kbd{sumpos}, when the latter is applicable. It is in general faster for
slowly decreasing functions.
Finally, if $\fl$ is nonzero, we assume that the function $f$ to be summed is
of real type, i.e. satisfies $\overline{f(z)}=f(\overline{z})$, which
speeds up the computation.
\bprog
? \p 308
? a = sumpos(n=1, 1/(n^3+n+1));
time = 1,410 ms.
? tab = sumnuminit(2);
time = 1,620 ms. \\@com slower but done once and for all.
? b = sumnum(n=1, 2, 1/(n^3+n+1), tab);
time = 460 ms. \\@com 3 times as fast as \kbd{sumpos}
? a - b
%4 = -1.0... E-306 + 0.E-320*I \\@com perfect.
? sumnum(n=1, 2, 1/(n^3+n+1), tab, 1) - a; \\@com function of real type
time = 240 ms.
%2 = -1.0... E-306 \\@com twice as fast, no imaginary part.
? c = sumnum(n=1, 2, 1/(n^2+1), tab, 1);
time = 170 ms. \\@com fast
? d = sumpos(n=1, 1 / (n^2+1));
time = 2,700 ms. \\@com slow.
? d - c
time = 0 ms.
%5 = 1.97... E-306 \\@com perfect.
@eprog
For slowly decreasing function, we must indicate singularities:
\bprog
? \p 308
? a = sumnum(n=1, 2, n^(-4/3));
time = 9,930 ms. \\@com slow because of the computation of $n^{-4/3}$.
? a - zeta(4/3)
time = 110 ms.
%1 = -2.42... E-107 \\@com lost 200 decimals because of singularity at $\infty$
? b = sumnum(n=1, [2,-4/3], n^(-4/3), /*omitted*/, 1); \\@com of real type
time = 12,210 ms.
? b - zeta(4/3)
%3 = 1.05... E-300 \\@com better
@eprog
Since the \emph{complex} values of the function are used, beware of
determination problems. For instance:
\bprog
? \p 308
? tab = sumnuminit([2,-3/2]);
time = 1,870 ms.
? sumnum(n=1,[2,-3/2], 1/(n*sqrt(n)), tab,1) - zeta(3/2)
time = 690 ms.
%1 = -1.19... E-305 \\@com fast and correct
? sumnum(n=1,[2,-3/2], 1/sqrt(n^3), tab,1) - zeta(3/2)
time = 730 ms.
%2 = -1.55... \\@com nonsense. However
? sumnum(n=1,[2,-3/2], 1/n^(3/2), tab,1) - zeta(3/2)
time = 8,990 ms.
%3 = -1.19... E-305 \\@com perfect, as $1/(n*\sqrt{n})$ above but much slower
@eprog
For exponentially decreasing functions, \kbd{sumnum} is given for
completeness, but one of \tet{suminf} or \tet{sumpos} should always be
preferred. If you experiment with such functions and \kbd{sumnum} anyway,
indicate the exact rate of decrease and increase $m$ by $1$ or $2$:
\bprog
? suminf(n=1, 2^(-n)) - 1
time = 10 ms.
%1 = -1.11... E-308 \\@com fast and perfect
? sumpos(n=1, 2^(-n)) - 1
time = 10 ms.
%2 = -2.78... E-308 \\@com also fast and perfect
? sumnum(n=1,2, 2^(-n)) - 1
%3 = -1.321115060 E320 + 0.E311*I \\@com nonsense
? sumnum(n=1, [2,log(2)], 2^(-n), /*omitted*/, 1) - 1 \\@com of real type
time = 5,860 ms.
%4 = -1.5... E-236 \\@com slow and lost $70$ decimals
? m = intnumstep()
%5 = 9
? sumnum(n=1,[2,log(2)], 2^(-n), m+1, 1) - 1
time = 11,770 ms.
%6 = -1.9... E-305 \\@com now perfect, but slow.
@eprog
\synt{sumnum}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN sig,GEN tab,long flag, long prec}.
Function: sumnumalt
Class: basic
Section: sums
C-Name: sumnumalt0
Prototype: V=GGEDGD0,L,p
Help: sumnumalt(X=a,sig,expr,{tab},{flag=0}): numerical summation of (-1)^X
expr(X)
from X = ceiling(a) to +infinity. Note that the (-1)^X must not be included.
sig is either a scalar or a two-component vector coded as in intnum, and the
scalar part is larger than all the real parts of the poles of expr. Uses intnum,
hence tab is as in intnum. If flag is nonzero, assumes that the function to
be summed satisfies conj(f(z))=f(conj(z)), and then up to twice faster.
Wrapper: (,,G)
Description:
(gen,gen,gen,?gen,?small):gen:prec sumnumalt(${3 cookie}, ${3 wrapper}, $1, $2, $4, $5, prec)
Doc: numerical
summation of $(-1)^X\var{expr}(X)$, the variable $X$ taking integer values from
ceiling of $a$ to $+\infty$, where \var{expr} is assumed to be a holomorphic
function for $\Re(X)\ge sig$ (or $sig[1]$).
\misctitle{Warning} This function uses the \kbd{intnum} routines and is
orders of magnitude slower than \kbd{sumalt}. It is only given for
completeness and should not be used in practice.
\misctitle{Warning 2} The expression \var{expr} must \emph{not} include the
$(-1)^X$ coefficient. Thus $\kbd{sumalt}(n=a,(-1)^nf(n))$ is (approximately)
equal to $\kbd{sumnumalt}(n=a,sig,f(n))$.
$sig$ is coded as in \kbd{sumnum}. However for slowly decreasing functions
(where $sig$ is coded as $[\sigma,\alpha]$ with $\alpha<-1$), it is not
really important to indicate $\alpha$. In fact, as for \kbd{sumalt}, the
program will often give meaningful results (usually analytic continuations)
even for divergent series. On the other hand the exponential decrease must be
indicated.
\var{tab} is as in \kbd{intnum}, but if used must be initialized with
\kbd{sumnuminit}. If $\fl$ is nonzero, assumes that the function $f$ to be
summed is of real type, i.e. satisfies $\overline{f(z)}=f(\overline{z})$, and
then twice faster when \var{tab} is precomputed.
\bprog
? \p 308
? tab = sumnuminit(2, /*omitted*/, -1); \\@com abscissa $\sigma=2$, alternating sums.
time = 1,620 ms. \\@com slow, but done once and for all.
? a = sumnumalt(n=1, 2, 1/(n^3+n+1), tab, 1);
time = 230 ms. \\@com similar speed to \kbd{sumnum}
? b = sumalt(n=1, (-1)^n/(n^3+n+1));
time = 0 ms. \\@com infinitely faster!
? a - b
time = 0 ms.
%1 = -1.66... E-308 \\@com perfect
@eprog
\synt{sumnumalt}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN sig, GEN tab, long flag, long prec}.
Function: sumnuminit
Class: basic
Section: sums
C-Name: sumnuminit
Prototype: GD0,L,D1,L,p
Help: sumnuminit(sig, {m=0}, {sgn=1}): initialize tables for numerical
summation. sgn is 1 (in fact >= 0), the default, for sumnum (ordinary sums)
or -1 (in fact < 0) for sumnumalt (alternating sums). sig is as in sumnum and
m is as in intnuminit.
Doc: initialize tables for numerical summation using \kbd{sumnum} (with
$\var{sgn}=1$) or \kbd{sumnumalt} (with $\var{sgn}=-1$), $sig$ is the
abscissa of integration coded as in \kbd{sumnum}, and $m$ is as in
\kbd{intnuminit}.
Function: sumpos
Class: basic
Section: sums
C-Name: sumpos0
Prototype: V=GED0,L,p
Help: sumpos(X=a,expr,{flag=0}): sum of positive (or negative) series expr,
the formal
variable X starting at a. flag is optional, and can be 0: default, or 1:
uses a slightly different method using Zagier's polynomials.
Wrapper: (,G)
Description:
(gen,gen,?0):gen:prec sumpos(${2 cookie}, ${2 wrapper}, $1, prec)
(gen,gen,1):gen:prec sumpos2(${2 cookie}, ${2 wrapper}, $1, prec)
Doc: numerical summation of the series \var{expr}, which must be a series of
terms having the same sign, the formal variable $X$ starting at $a$. The
algorithm used is Van Wijngaarden's trick for converting such a series into
an alternating one, then we use \tet{sumalt}. For regular functions, the
function \kbd{sumnum} is in general much faster once the initializations
have been made using \kbd{sumnuminit}.
The routine is heuristic and assumes that \var{expr} is more or less a
decreasing function of $X$. In particular, the result will be completely
wrong if \var{expr} is 0 too often. We do not check either that all terms
have the same sign. As \tet{sumalt}, this function should be used to
try and guess the value of an infinite sum.
If $\fl=1$, use slightly different polynomials. Sometimes faster.
\synt{sumpos}{void *E, GEN (*eval)(void*,GEN),GEN a,long prec}. Also
available is \tet{sumpos2} with the same arguments ($\fl = 1$).
Function: system
Class: gp
Section: programming/specific
C-Name: system0
Prototype: vs
Help: system(str): str being a string, execute the system command str.
Doc: \var{str} is a string representing a system command. This command is
executed, its output written to the standard output (this won't get into your
logfile), and control returns to the PARI system. This simply calls the C
\kbd{system} command.
Function: tan
Class: basic
Section: transcendental
C-Name: gtan
Prototype: Gp
Help: tan(x): tangent of x.
Doc: tangent of $x$.
Function: tanh
Class: basic
Section: transcendental
C-Name: gth
Prototype: Gp
Help: tanh(x): hyperbolic tangent of x.
Doc: hyperbolic tangent of $x$.
Function: taylor
Class: basic
Section: polynomials
C-Name: tayl
Prototype: GnDP
Help: taylor(x,t,{d=seriesprecision}): taylor expansion of x with respect to
t, adding O(t^d) to all components of x.
Doc: Taylor expansion around $0$ of $x$ with respect to
the simple variable $t$. $x$ can be of any reasonable type, for example a
rational function. Contrary to \tet{Ser}, which takes the valuation into
account, this function adds $O(t^d)$ to all components of $x$.
\bprog
? taylor(x/(1+y), y, 5)
%1 = (y^4 - y^3 + y^2 - y + 1)*x + O(y^5)
? Ser(x/(1+y), y, 5)
*** at top-level: Ser(x/(1+y),y,5)
*** ^----------------
*** Ser: main variable must have higher priority in gtoser.
@eprog
Function: teichmuller
Class: basic
Section: transcendental
C-Name: teich
Prototype: G
Help: teichmuller(x): teichmuller character of p-adic number x.
Doc: Teichm\"uller character of the $p$-adic number $x$, i.e. the unique
$(p-1)$-th root of unity congruent to $x / p^{v_p(x)}$ modulo $p$.
Function: theta
Class: basic
Section: transcendental
C-Name: theta
Prototype: GGp
Help: theta(q,z): Jacobi sine theta-function.
Doc: Jacobi sine theta-function
$$ \theta_1(z, q) = 2q^{1/4} \sum_{n\geq 0} (-1)^n q^{n(n+1)} \sin((2n+1)z).$$
Function: thetanullk
Class: basic
Section: transcendental
C-Name: thetanullk
Prototype: GLp
Help: thetanullk(q,k): k'th derivative at z=0 of theta(q,z).
Doc: $k$-th derivative at $z=0$ of $\kbd{theta}(q,z)$.
Variant:
\fun{GEN}{vecthetanullk}{GEN q, long k, long prec} returns the vector
of all $\dfrac{d^i\theta}{dz^i}(q,0)$ for all odd $i = 1, 3, \dots, 2k-1$.
Function: thue
Class: basic
Section: polynomials
C-Name: thue
Prototype: GGDG
Help: thue(tnf,a,{sol}): solve the equation P(x,y)=a, where tnf was created
with thueinit(P), and sol, if present, contains the solutions of Norm(x)=a
modulo units in the number field defined by P. If tnf was computed without
assuming GRH (flag 1 in thueinit), the result is unconditional.
Doc: returns all solutions of the equation
$P(x,y)=a$ in integers $x$ and $y$, where \var{tnf} was created with
$\kbd{thueinit}(P)$. If present, \var{sol} must contain the solutions of
$\Norm(x)=a$ modulo units of positive norm in the number field
defined by $P$ (as computed by \kbd{bnfisintnorm}). If there are infinitely
many solutions, an error will be issued.
If \var{tnf} was computed without assuming GRH (flag $1$ in \tet{thueinit}),
then the result is unconditional. Otherwise, it depends in principle of the
truth of the GRH, but may still be unconditionally correct in some
favourable cases. The result is conditional on the GRH if
$a\neq \pm 1$ and, $P$ has a single irreducible rational factor, whose
associated tentative class number $h$ and regulator $R$ (as computed
assuming the GRH) satisfy
\item $h > 1$,
\item $R/0.2 > 1.5$.
Here's how to solve the Thue equation $x^{13} - 5y^{13} = - 4$:
\bprog
? tnf = thueinit(x^13 - 5);
? thue(tnf, -4)
%1 = [[1, 1]]
@eprog
Hence, the only solution is $(x,y) = (1,1)$, and the result is
unconditional. On the other hand:
\bprog
? P = x^3-2*x^2+3*x-17; tnf = thueinit(P);
? thue(tnf, -15)
%2 = [[1, 1]] \\ a priori conditional on the GRH.
? K = bnfinit(P); K.no
%3 = 3
? K.ref
%4 = 2.8682185139262873674706034475498755834
@eprog
This time the result is conditional. All results computed using this
particular \var{tnf} are likewise conditional, \emph{except} for a right-hand
side of $\pm 1$.
The above result is in fact correct, so we did not just disprove the GRH:
\bprog
? tnf = thueinit(x^3-2*x^2+3*x-17, 1 /*unconditional*/);
? thue(tnf, -15)
%4 = [[1, 1]]
@eprog
Note that reducible or non-monic polynomials are allowed:
\bprog
? tnf = thueinit((2*x+1)^5 * (4*x^3-2*x^2+3*x-17), 1);
? thue(tnf, 128)
%2 = [[-1, 0], [1, 0]]
@eprog\noindent Reducible polynomials are in fact much easier to handle.
Function: thueinit
Class: basic
Section: polynomials
C-Name: thueinit
Prototype: GD0,L,p
Help: thueinit(P,{flag=0}): initialize the tnf corresponding to P, that will
be used to solve Thue equations P(x,y) = some-integer. If flag is non-zero,
certify the result unconditionnaly. Otherwise, assume GRH (much faster of
course).
Doc: initializes the \var{tnf} corresponding to $P$, a univariate polynomial
with integer coefficients. The result is meant to be used in conjunction with
\tet{thue} to solve Thue equations $P(X / Y)Y^{\deg P} = a$, where $a$ is an
integer.
If $\fl$ is non-zero, certify results unconditionally. Otherwise, assume
\idx{GRH}, this being much faster of course. In the latter case, the result
may still be unconditionally correct, see \tet{thue}. For instance in most
cases where $P$ is reducible (not a pure power of an irreducible), \emph{or}
conditional computed class groups are trivial \emph{or} the right hand side
is $\pm1$, then results are always unconditional.
Function: trace
Class: basic
Section: linear_algebra
C-Name: gtrace
Prototype: G
Help: trace(x): trace of x.
Doc: this applies to quite general $x$. If $x$ is not a
matrix, it is equal to the sum of $x$ and its conjugate, except for polmods
where it is the trace as an algebraic number.
For $x$ a square matrix, it is the ordinary trace. If $x$ is a
non-square matrix (but not a vector), an error occurs.
Function: trap
Class: basic
Section: programming/specific
C-Name: trap0
Prototype: DrDEDE
Help: trap({e}, {rec}, seq): try to execute seq, trapping runtime error e (all
of them if e ommitted); sequence rec is executed if the error occurs and
is the result of the command.
Wrapper: (,_,_)
Description:
(?str,?closure,?closure):gen trap0($1, $2, $3)
Doc: tries to
evaluate \var{seq}, trapping runtime error $e$, that is effectively preventing
it from aborting computations in the usual way; the recovery sequence
\var{rec} is executed if the error occurs and the evaluation of \var{rec}
becomes the result of the command. If $e$ is omitted, all exceptions are
trapped. See \secref{se:errorrec} for an introduction to error recovery
under \kbd{gp}.
\bprog
? \\@com trap division by 0
? inv(x) = trap (gdiver, INFINITY, 1/x)
? inv(2)
%1 = 1/2
? inv(0)
%2 = INFINITY
@eprog\noindent
Note that \var{seq} is effectively evaluated up to the point that produced
the error, and the recovery sequence is evaluated starting from that same
context, it does not "undo" whatever happened in the other branch (restore
the evaluation context):
\bprog
? x = 1; trap (, /* recover: */ x, /* try: */ x = 0; 1/x)
%1 = 0
@eprog
\misctitle{Note} The interface is currently not adequate for trapping
individual exceptions. In the current version \vers, the following keywords
are recognized, but the name list will be expanded and changed in the
future (all library mode errors can be trapped: it's a matter of defining
the keywords to \kbd{gp}):
\kbd{alarmer}: alarm time-out
\kbd{archer}: not available on this architecture or operating system
\kbd{errpile}: the PARI stack overflows
\kbd{gdiver}: division by 0
\kbd{impl}: not yet implemented
\kbd{invmoder}: impossible inverse modulo
\kbd{overflower}: all forms of arithmetic overflow, including length
or exponent overflow (when a larger value is supplied than the
implementation can handle).
\kbd{syntaxer}: syntax error
\kbd{talker}: miscellaneous error
\kbd{typeer}: wrong type
\kbd{user}: user error (from the \kbd{error} function)
Function: truncate
Class: basic
Section: conversions
C-Name: trunc0
Prototype: GD&
Help: truncate(x,{&e}): truncation of x; when x is a power series,take away
the O(X^). If e is present, do not take into account loss of integer part
precision, and set e = error estimate in bits.
Description:
(small):small:parens $1
(int):int:copy:parens $1
(real):int truncr($1)
(mp):int mptrunc($1)
(mp, &small):int gcvtoi($1, &$2)
(mp, &int):int trunc0($1, &$2)
(gen):gen gtrunc($1)
(gen, &small):gen gcvtoi($1, &$2)
(gen, &int):gen trunc0($1, &$2)
Doc: truncates $x$ and sets $e$ to the number of
error bits. When $x$ is in $\R$, this means that the part after the decimal
point is chopped away, $e$ is the binary exponent of the difference between
the original and the truncated value (the ``fractional part''). If the
exponent of $x$ is too large compared to its precision (i.e.~$e>0$), the
result is undefined and an error occurs if $e$ was not given. The function
applies componentwise on vector / matrices; $e$ is then the maximal number of
error bits. If $x$ is a rational function, the result is the ``integer part''
(Euclidean quotient of numerator by denominator) and $e$ is not set.
Note a very special use of \kbd{truncate}: when applied to a power series, it
transforms it into a polynomial or a rational function with denominator
a power of $X$, by chopping away the $O(X^k)$. Similarly, when applied to
a $p$-adic number, it transforms it into an integer or a rational number
by chopping away the $O(p^k)$.
Variant: The following functions are also available: \fun{GEN}{gtrunc}{GEN x}
and \fun{GEN}{gcvtoi}{GEN x, long *e}.
Function: type
Class: basic
Section: programming/specific
C-Name: type0
Prototype: G
Help: type(x): return the type of the GEN x.
Description:
(gen):typ typ($1)
Doc: this is useful only under \kbd{gp}. Returns the internal type name of
the PARI object $x$ as a string. Check out existing type names with the
metacommand \b{t}. For example \kbd{type(1)} will return "\typ{INT}".
Variant: The macro \kbd{typ} is usually simpler to use since it returns a
\kbd{long} that can easily be matched with the symbols \typ{*}. The name
\kbd{type} was avoided since it is a reserved identifier for some compilers.
Function: unclone
Class: gp2c
Description:
(small):void (void)0 /*unclone*/
(gen):void gunclone($1)
Function: until
Class: basic
Section: programming/control
C-Name: untilpari
Prototype: vEI
Help: until(a,seq): evaluate the expression sequence seq until a is nonzero.
Doc: evaluates \var{seq} until $a$ is not
equal to 0 (i.e.~until $a$ is true). If $a$ is initially not equal to 0,
\var{seq} is evaluated once (more generally, the condition on $a$ is tested
\emph{after} execution of the \var{seq}, not before as in \kbd{while}).
Function: valuation
Class: basic
Section: conversions
C-Name: ggval
Prototype: lGG
Help: valuation(x,p): valuation of x with respect to p.
Doc:
computes the highest
exponent of $p$ dividing $x$. If $p$ is of type integer, $x$ must be an
integer, an intmod whose modulus is divisible by $p$, a fraction, a
$q$-adic number with $q=p$, or a polynomial or power series in which case the
valuation is the minimum of the valuation of the coefficients.
If $p$ is of type polynomial, $x$ must be of type polynomial or rational
function, and also a power series if $x$ is a monomial. Finally, the
valuation of a vector, complex or quadratic number is the minimum of the
component valuations.
If $x=0$, the result is \tet{LONG_MAX} ($2^{31}-1$ for 32-bit machines or
$2^{63}-1$ for 64-bit machines) if $x$ is an exact object. If $x$ is a
$p$-adic numbers or power series, the result is the exponent of the zero.
Any other type combinations gives an error.
Function: variable
Class: basic
Section: conversions
C-Name: gpolvar
Prototype: DG
Help: variable({x}): main variable of object x. Gives p for p-adic x, error
for scalars. Returns the list of user variables if x is omitted.
Description:
(pol):var:parens:copy $var:1
(gen):gen gpolvar($1)
Doc:
gives the main variable of the object $x$, and
$p$ if $x$ is a $p$-adic number. Gives an error if $x$ has no variable
associated to it. If $x$ is omitted, returns the list of user variables known
to the interpreter, by order of decreasing priority. (Highest priority is $x$,
which always come first.)
Variant: However, in library mode, this function should not be used for $x$
non-\kbd{NULL}, since \tet{gvar} is more appropriate. Instead, for
$x$ a $p$-adic (type \typ{PADIC}), $p$ is $gel(x,2)$; otherwise, use
\fun{long}{gvar}{GEN x} which returns the variable number of $x$ if
it exists, \kbd{NO\_VARIABLE} otherwise, which satisfies the property
$\kbd{varncmp}(\kbd{NO\_VARIABLE}, v) > 0$ for all valid variable number
$v$, i.e. it has lower priority than any variable.
Function: vecextract
Class: basic
Section: linear_algebra
C-Name: extract0
Prototype: GGDG
Help: vecextract(x,y,{z}): extraction of the components of the matrix or
vector x according to y and z. If z is omitted, y represents columns, otherwise
y corresponds to rows and z to columns. y and z can be vectors (of indices),
strings (indicating ranges as in "1..10") or masks (integers whose binary
representation indicates the indices to extract, from left to right 1, 2, 4,
8, etc.).
Description:
(vec,gen,?gen):vec extract0($1, $2, $3)
Doc: extraction of components of the
vector or matrix $x$ according to $y$. In case $x$ is a matrix, its
components are as usual the \emph{columns} of $x$. The parameter $y$ is a
component specifier, which is either an integer, a string describing a
range, or a vector.
If $y$ is an integer, it is considered as a mask: the binary bits of $y$ are
read from right to left, but correspond to taking the components from left to
right. For example, if $y=13=(1101)_2$ then the components 1,3 and 4 are
extracted.
If $y$ is a vector, which must have integer entries, these entries correspond
to the component numbers to be extracted, in the order specified.
If $y$ is a string, it can be
\item a single (non-zero) index giving a component number (a negative
index means we start counting from the end).
\item a range of the form \kbd{"$a$..$b$"}, where $a$ and $b$ are
indexes as above. Any of $a$ and $b$ can be omitted; in this case, we take
as default values $a = 1$ and $b = -1$, i.e.~ the first and last components
respectively. We then extract all components in the interval $[a,b]$, in
reverse order if $b < a$.
In addition, if the first character in the string is \kbd{\pow}, the
complement of the given set of indices is taken.
If $z$ is not omitted, $x$ must be a matrix. $y$ is then the \emph{line}
specifier, and $z$ the \emph{column} specifier, where the component specifier
is as explained above.
\bprog
? v = [a, b, c, d, e];
? vecextract(v, 5) \\@com mask
%1 = [a, c]
? vecextract(v, [4, 2, 1]) \\@com component list
%2 = [d, b, a]
? vecextract(v, "2..4") \\@com interval
%3 = [b, c, d]
? vecextract(v, "-1..-3") \\@com interval + reverse order
%4 = [e, d, c]
? vecextract(v, "^2") \\@com complement
%5 = [a, c, d, e]
? vecextract(matid(3), "2..", "..")
%6 =
[0 1 0]
[0 0 1]
@eprog
Function: vecmax
Class: basic
Section: operators
C-Name: vecmax
Prototype: G
Help: vecmax(x): maximum of the elements of the vector/matrix x
Description:
(vecsmall):small vecsmall_max($1)
(gen):gen vecmax($1)
Doc: if $x$ is a vector or a matrix, returns the maximum
of the elements of $x$, otherwise returns a copy of $x$. Error if $x$ is
empty.
Function: vecmin
Class: basic
Section: operators
C-Name: vecmin
Prototype: G
Help: vecmin(x): minimum of the elements of the vector/matrix x
Description:
(vecsmall):small vecsmall_min($1)
(gen):gen vecmin($1)
Doc: if $x$ is a vector or a matrix, returns the minimum
of the elements of $x$, otherwise returns a copy of $x$. Error if $x$ is
empty.
Function: vecsort
Class: basic
Section: linear_algebra
C-Name: vecsort0
Prototype: GDGD0,L,
Help: vecsort(x,{cmp},{flag=0}): sorts the vector of vectors (or matrix) x in
ascending order, according to the comparison function cmp, if not omitted.
(If cmp is an integer, sort according to the value of the k-th component
of each entry.) Binary digits of flag (if present) mean: 1: indirect sorting,
return the permutation instead of the permuted vector, 2: sort using
lexicographic order, 4: use descending instead of ascending order, 8: remove
duplicate entries.
Description:
(vecsmall,?gen):vecsmall vecsort0($1, $2, 0)
(vecsmall,?gen,small):vecsmall vecsort0($1, $2, $3)
(vec, , ?0):vec sort($1)
(vec, , 1):vecsmall indexsort($1)
(vec, , 2):vec lexsort($1)
(vec, gen):vec vecsort0($1, $2, 0)
(vec, ?gen, 1):vecsmall vecsort0($1, $2, 1)
(vec, ?gen, 3):vecsmall vecsort0($1, $2, 3)
(vec, ?gen, 5):vecsmall vecsort0($1, $2, 5)
(vec, ?gen, 7):vecsmall vecsort0($1, $2, 7)
(vec, ?gen, 9):vecsmall vecsort0($1, $2, 9)
(vec, ?gen, 11):vecsmall vecsort0($1, $2, 11)
(vec, ?gen, 13):vecsmall vecsort0($1, $2, 13)
(vec, ?gen, 15):vecsmall vecsort0($1, $2, 15)
(vec, ?gen, #small):vec vecsort0($1, $2, $3)
(vec, ?gen, small):gen vecsort0($1, $2, $3)
Doc: sorts the vector $x$ in ascending order, using a mergesort method.
$x$ must be a list, vector or matrix (seen as a vector of its columns).
Note that mergesort is stable, hence the initial ordering of ``equal''
entries (with respect to the sorting criterion) is not changed.
If \kbd{cmp} is omitted, we use the standard comparison function
\kbd{<}, thereby restricting the possible types for the elements of $x$
(integers, fractions or reals). If \kbd{cmp} is present, it is understood as
a comparison function and we sort according to it. The following
possibilities exist:
\item an integer $k$: sort according to the value of the $k$-th
subcomponents of the components of~$x$.
\item a vector: sort lexicographically according to the components listed in
the vector. For example, if $\kbd{cmp}=\kbd{[2,1,3]}$, sort with respect to
the second component, and when these are equal, with respect to the first,
and when these are equal, with respect to the third.
\item a comparison function (\typ{CLOSURE}), with two arguments $x$ and $y$,
and returning an integer which is $<0$, $>0$ or $=0$ if $x<y$, $x>y$ or
$x=y$ respectively. The \tet{sign} function is very useful in this context:
\bprog
? vecsort([3,0,2; 1,0,2],lex) \\ sort columns according to lex order
%1 =
[2 3]
[2 1]
? vecsort(v, (x,y)->sign(y-x)) \\@com reverse sort
? vecsort(v, (x,y)->sign(abs(x)-abs(y))) \\@com sort by increasing absolute value
? cmp(x,y) = my(dx = poldisc(x), dy = poldisc(y)); sign(abs(dx) - abs(dy))
? vecsort([x^2+1, x^3-2, x^4+5*x+1], cmp)
@eprog\noindent
The last example used the named \kbd{cmp} instead of an anonymous function,
and sorts polynomials with respect to the absolute value of their
discriminant. A more efficient approach would use precomputations to ensure
a given discriminant is computed only once:
\bprog
? DISC = vector(#v, i, abs(poldisc(v[i])));
? perm = vecsort(vector(#v,i,i), (x,y)->sign(DISC[x]-DISC[y]))
? vecextract(v, perm)
@eprog\noindent Similar ideas apply whenever we sort according to the values
of a function which is expensive to compute.
\noindent The binary digits of \fl\ mean:
\item 1: indirect sorting of the vector $x$, i.e.~if $x$ is an
$n$-component vector, returns a permutation of $[1,2,\dots,n]$ which
applied to the components of $x$ sorts $x$ in increasing order.
For example, \kbd{vecextract(x, vecsort(x,,1))} is equivalent to
\kbd{vecsort(x)}.
\item 2: sorts $x$ by ascending lexicographic order (as per the
\kbd{lex} comparison function).
\item 4: use descending instead of ascending order.
\item 8: remove ``duplicate'' entries with respect to the sorting function
(keep the first occurring entry). For example:
\bprog
? vecsort([Pi,Mod(1,2),z], (x,y)->0, 8) \\@com make everything compare equal
%1 = [3.141592653589793238462643383]
? vecsort([[2,3],[0,1],[0,3]], 2, 8)
%2 = [[0, 1], [2, 3]]
@eprog
Function: vector
Class: basic
Section: linear_algebra
C-Name: vecteur
Prototype: GDVDE
Help: vector(n,{X},{expr=0}): row vector with n components of expression
expr (X ranges from 1 to n). By default, fill with 0s.
Doc: creates a row vector (type
\typ{VEC}) with $n$ components whose components are the expression
\var{expr} evaluated at the integer points between 1 and $n$. If one of the
last two arguments is omitted, fill the vector with zeroes.
Avoid modifying $X$ within \var{expr}; if you do, the formal variable
still runs from $1$ to $n$. In particular, \kbd{vector(n,i,expr)} is not
equivalent to
\bprog
v = vector(n)
for (i = 1, n, v[i] = expr)
@eprog\noindent
as the following example shows:
\bprog
n = 3
v = vector(n); vector(n, i, i++) ----> [2, 3, 4]
v = vector(n); for (i = 1, n, v[i] = i++) ----> [2, 0, 4]
@eprog\noindent
%\syn{NO}
Function: vectorsmall
Class: basic
Section: linear_algebra
C-Name: vecteursmall
Prototype: GDVDE
Help: vectorsmall(n,{X},{expr=0}): VECSMALL with n components of expression
expr (X ranges from 1 to n) which must be small integers. By default, fill
with 0s.
Doc: creates a row vector of small integers (type
\typ{VECSMALL}) with $n$ components whose components are the expression
\var{expr} evaluated at the integer points between 1 and $n$. If one of the
last two arguments is omitted, fill the vector with zeroes.
%\syn{NO}
Function: vectorv
Class: basic
Section: linear_algebra
C-Name: vvecteur
Prototype: GDVDE
Help: vectorv(n,{X},{expr=0}): column vector with n components of expression
expr (X ranges from 1 to n). By default, fill with 0s.
Doc: as \tet{vector}, but returns a column vector (type \typ{COL}).
%\syn{NO}
Function: version
Class: basic
Section: programming/specific
C-Name: pari_version
Prototype:
Help: version(): returns the PARI version as [major,minor,patch] or [major,minor,patch,VCSversion].
Doc: returns the current version number as a \typ{VEC} with three integer
components (major version number, minor version number and patchlevel);
if your sources were obtained through our version control system, this will
be followed by a more precise version string, e.g.~\kbd{git-}\emph{commit
hash}.
This function is present in all versions of PARI following releases 2.3.4
(stable) and 2.4.3 (testing).
Unless you are working with multiple development versions, you probably only
care about the 3 first numeric components. In any case, the \kbd{lex} function
offers a clever way to check against a particular version number, since it will
compare each successive vector entry, numerically or as strings, and will not
mind if the vectors it compares have different lengths :
\bprog
if (lex(version(), [2,3,5]) >= 0,
\\ code to be executed if we are running 2.3.5 or more recent.
,
\\ compatibility code
);
@eprog\noindent On a number of different machines, \kbd{version()} could return either of
\bprog
%1 = [2, 3, 4] \\ released version, stable branch
%1 = [2, 4, 3] \\ released version, testing branch
%1 = [2, 6, 0, "git-2cce227"] \\ development
@eprog
In particular the first line of the gp introductory message can be essentially
emulated by
\bprog
v = version();
n = Str(v[1], ".", v[2], ".", v[3]);
s = if (#v > 3, v[4], "");
print("GP/PARI CALCULATOR Version ", n, " (", s, ")");
@eprog\noindent If you \emph{are} working with many development versions of
PARI/GP, the last component can be profitably included in the name of
your logfile, for instance.
Function: warning
Class: basic
Section: programming/specific
C-Name: warning0
Prototype: vs*
Help: warning({str}*): display warning message str
Description:
(?gen,...):void pari_warn(user, "${2 format_string}"${2 format_args})
Doc: outputs the message ``user warning''
and the argument list (each of them interpreted as a string).
If colors are enabled, this warning will be in a different color,
making it easy to distinguish.
\bprog
warning(n, " is very large, this might take a while.")
@eprog
% \syn{NO}
Function: weber
Class: basic
Section: transcendental
C-Name: weber0
Prototype: GD0,L,p
Help: weber(x,{flag=0}): One of Weber's f function of x. flag is optional,
and can be 0: default, function f(x)=exp(-i*Pi/24)*eta((x+1)/2)/eta(x),
1: function f1(x)=eta(x/2)/eta(x)
2: function f2(x)=sqrt(2)*eta(2*x)/eta(x). Note that
j = (f^24-16)^3/f^24 = (f1^24+16)^3/f1^24 = (f2^24+16)^3/f2^24.
Doc: one of Weber's three $f$ functions.
If $\fl=0$, returns
$$f(x)=\exp(-i\pi/24)\cdot\eta((x+1)/2)\,/\,\eta(x) \quad\hbox{such that}\quad
j=(f^{24}-16)^3/f^{24}\,,$$
where $j$ is the elliptic $j$-invariant (see the function \kbd{ellj}).
If $\fl=1$, returns
$$f_1(x)=\eta(x/2)\,/\,\eta(x)\quad\hbox{such that}\quad
j=(f_1^{24}+16)^3/f_1^{24}\,.$$
Finally, if $\fl=2$, returns
$$f_2(x)=\sqrt{2}\eta(2x)\,/\,\eta(x)\quad\hbox{such that}\quad
j=(f_2^{24}+16)^3/f_2^{24}.$$
Note the identities $f^8=f_1^8+f_2^8$ and $ff_1f_2=\sqrt2$.
Variant: Also available are \fun{GEN}{weberf}{GEN x, long prec},
\fun{GEN}{weberf1}{GEN x, long prec} and \fun{GEN}{weberf2}{GEN x, long prec}.
Function: whatnow
Class: gp
Section: programming/specific
C-Name: whatnow0
Prototype: vr
Help: whatnow(key): if key was present in GP version 1.39.15 or lower, gives
the new function name.
Description:
(str):void whatnow($1, 0)
Doc: if keyword \var{key} is the name of a function that was present in GP
version 1.39.15 or lower, outputs the new function name and syntax, if it
changed at all ($387$ out of $560$ did).
Function: while
Class: basic
Section: programming/control
C-Name: whilepari
Prototype: vEI
Help: while(a,seq): while a is nonzero evaluate the expression sequence seq.
Otherwise 0.
Doc: while $a$ is non-zero, evaluates the expression sequence \var{seq}. The
test is made \emph{before} evaluating the $seq$, hence in particular if $a$
is initially equal to zero the \var{seq} will not be evaluated at all.
Function: write
Class: basic
Section: programming/specific
C-Name: write0
Prototype: vss*
Help: write(filename,{str}*): appends the remaining arguments (same output as
print) to filename.
Doc: writes (appends) to \var{filename} the remaining arguments, and appends a
newline (same output as \kbd{print}).
%\syn{NO}
Function: write1
Class: basic
Section: programming/specific
C-Name: write1
Prototype: vss*
Help: write1(filename,{str}*): appends the remaining arguments (same output as
print1) to filename.
Doc: writes (appends) to \var{filename} the remaining arguments without a
trailing newline (same output as \kbd{print1}).
%\syn{NO}
Function: writebin
Class: basic
Section: programming/specific
C-Name: gpwritebin
Prototype: vsDG
Help: writebin(filename,{x}): write x as a binary object to file filename.
If x is omitted, write all session variables.
Doc: writes (appends) to
\var{filename} the object $x$ in binary format. This format is not human
readable, but contains the exact internal structure of $x$, and is much
faster to save/load than a string expression, as would be produced by
\tet{write}. The binary file format includes a magic number, so that such a
file can be recognized and correctly input by the regular \tet{read} or \b{r}
function. If saved objects refer to (polynomial) variables that are not
defined in the new session, they will be displayed in a funny way (see
\secref{se:kill}).
If $x$ is omitted, saves all user variables from the session, together with
their names. Reading such a ``named object'' back in a \kbd{gp} session will set
the corresponding user variable to the saved value. E.g after
\bprog
x = 1; writebin("log")
@eprog\noindent
reading \kbd{log} into a clean session will set \kbd{x} to $1$.
The relative variables priorities (see \secref{se:priority}) of new variables
set in this way remain the same (preset variables retain their former
priority, but are set to the new value). In particular, reading such a
session log into a clean session will restore all variables exactly as they
were in the original one.
User functions, installed functions and history objects can not be saved via
this function. Just as a regular input file, a binary file can be compressed
using \tet{gzip}, provided the file name has the standard \kbd{.gz}
extension.\sidx{binary file}
In the present implementation, the binary files are architecture dependent
and compatibility with future versions of \kbd{gp} is not guaranteed. Hence
binary files should not be used for long term storage (also, they are
larger and harder to compress than text files).
Function: writetex
Class: basic
Section: programming/specific
C-Name: writetex
Prototype: vss*
Help: writetex(filename,{str}*): appends the remaining arguments (same format as
print) to filename, in TeX format.
Doc: as \kbd{write}, in \TeX\ format.
%\syn{NO}
Function: zeta
Class: basic
Section: transcendental
C-Name: gzeta
Prototype: Gp
Help: zeta(s): Riemann zeta function at s with s a complex or a p-adic number.
Doc: For $s$ a complex number, Riemann's zeta
function \sidx{Riemann zeta-function} $\zeta(s)=\sum_{n\ge1}n^{-s}$,
computed using the \idx{Euler-Maclaurin} summation formula, except
when $s$ is of type integer, in which case it is computed using
Bernoulli numbers\sidx{Bernoulli numbers} for $s\le0$ or $s>0$ and
even, and using modular forms for $s>0$ and odd.
For $s$ a $p$-adic number, Kubota-Leopoldt zeta function at $s$, that
is the unique continuous $p$-adic function on the $p$-adic integers
that interpolates the values of $(1 - p^{-k}) \zeta(k)$ at negative
integers $k$ such that $k \equiv 1 \pmod{p-1}$ (resp. $k$ is odd) if
$p$ is odd (resp. $p = 2$).
Function: zetak
Class: basic
Section: number_fields
C-Name: gzetakall
Prototype: GGD0,L,p
Help: zetak(nfz,x,{flag=0}): Dedekind zeta function of the number field nfz
at x, where nfz is the vector computed by zetakinit (NOT by nfinit); flag is
optional, and can be 0: default, compute zetak, or non-zero: compute the
lambdak function, i.e. with the gamma factors.
Doc: \var{znf} being a number
field initialized by \kbd{zetakinit} (\emph{not} by \kbd{nfinit}),
computes the value of the \idx{Dedekind} zeta function of the number
field at the complex number $x$. If $\fl=1$ computes Dedekind $\Lambda$
function instead (i.e.~the product of the Dedekind zeta function by its gamma
and exponential factors).
\misctitle{CAVEAT} This implementation is not satisfactory and must be
rewritten. In particular
\item The accuracy of the result depends in an essential way on the
accuracy of both the \kbd{zetakinit} program and the current accuracy.
Be wary in particular that $x$ of large imaginary part or, on the
contrary, very close to an ordinary integer will suffer from precision
loss, yielding fewer significant digits than expected. Computing with 28
digits of relative accuracy, we have
\bprog
? zeta(3)
%1 = 1.202056903159594285399738161
? zeta(3-1e-20)
%2 = 1.202056903159594285401719424
? zetak(zetakinit(x), 3-1e-20)
%3 = 1.2020569031595952919 \\ 5 digits are wrong
? zetak(zetakinit(x), 3-1e-28)
%4 = -25.33411749 \\ junk
@eprog
\item As the precision increases, results become unexpectedly
completely wrong:
\bprog
? \p100
? zetak(zetakinit(x^2-5), -1) - 1/30
%1 = 7.26691813 E-108 \\ perfect
? \p150
? zetak(zetakinit(x^2-5), -1) - 1/30
%2 = -2.486113578 E-156 \\ perfect
? \p200
? zetak(zetakinit(x^2-5), -1) - 1/30
%3 = 4.47... E-75 \\ more than half of the digits are wrong
? \p250
? zetak(zetakinit(x^2-5), -1) - 1/30
%4 = 1.6 E43 \\ junk
@eprog
Variant: See also \fun{GEN}{glambdak}{GEN znf, GEN x, long prec} or
\fun{GEN}{gzetak}{GEN znf, GEN x, long prec}.
Function: zetakinit
Class: basic
Section: number_fields
C-Name: initzeta
Prototype: Gp
Help: zetakinit(bnf): compute number field information necessary to use zetak.
bnf may also be an irreducible polynomial.
Doc: computes a number of initialization data
concerning the number field associated to \kbd{bnf} so as to be able
to compute the \idx{Dedekind} zeta and lambda functions, respectively
$\kbd{zetak}(x)$ and $\kbd{zetak}(x,1)$, at the current real precision. If
you do not need the \kbd{bnfinit} data somewhere else, you may call it
with an irreducible polynomial instead of a \var{bnf}: it will call
\kbd{bnfinit} itself.
The result is a 9-component vector $v$ whose components are very technical
and cannot really be used except through the \kbd{zetak} function.
This function is very inefficient and should be rewritten. It needs to
computes millions of coefficients of the corresponding Dirichlet series if
the precision is big. Unless the discriminant is small it will not be able
to handle more than 9 digits of relative precision. For instance,
\kbd{zetakinit(x\pow 8 - 2)} needs 440MB of memory at default precision.
Function: zncoppersmith
Class: basic
Section: number_theoretical
C-Name: zncoppersmith
Prototype: GGGDG
Help: zncoppersmith(P, N, X, {B=N}): finds all integers x
with |x| <= X such that gcd(N, P(x)) >= B. X should be smaller than
exp((log B)^2 / (deg(P) log N)).
Doc: $N$ being an integer and $P\in \Z[X]$, finds all integers $x$ with
$|x| \leq X$ such that
$$\gcd(N, P(x)) \geq B,$$
using \idx{Coppersmith}'s algorithm (a famous application of the \idx{LLL}
algorithm). $X$ must be smaller than $\exp(\log^2 B / (\deg(P) \log N))$:
for $B = N$, this means $X < N^{1/\deg(P)}$. Some $x$ larger than $X$ may
be returned if you are very lucky. The smaller $B$ (or the larger $X$), the
slower the routine will be. The strength of Coppersmith method is the
ability to find roots modulo a general \emph{composite} $N$: if $N$ is a prime
or a prime power, \tet{polrootsmod} or \tet{polrootspadic} will be much
faster.
We shall now present two simple applications. The first one is
finding non-trivial factors of $N$, given some partial information on the
factors; in that case $B$ must obviously be smaller than the largest
non-trivial divisor of $N$.
\bprog
setrand(1); \\ to make the example reproducible
p = nextprime(random(10^30));
q = nextprime(random(10^30)); N = p*q;
p0 = p % 10^20; \\ assume we know 1) p > 10^29, 2) the last 19 digits of p
p1 = zncoppersmith(10^19*x + p0, N, 10^12, 10^29)
\\ result in 10ms.
%1 = [35023733690]
? gcd(p1[1] * 10^19 + p0, N) == p
%2 = 1
@eprog\noindent and we recovered $p$, faster than by trying all
possibilities $ < 10^{12}$.
The second application is an attack on RSA with low exponent, when the
message $x$ is short and the padding $P$ is known to the attacker. We use
the same RSA modulus $N$ as in the first example:
\bprog
setrand(1);
P = random(N); \\ known padding
e = 3; \\ small public encryption exponent
X = floor(N^0.3); \\ N^(1/e - epsilon)
x0 = random(X); \\ unknown short message
C = lift( (Mod(x0,N) + P)^e ); \\ known ciphertext, with padding P
zncoppersmith((P + x)^3 - C, N, X)
\\ result in 3.8s.
%3 = [265174753892462432]
? %[1] == x0
%4 = 1
@eprog\noindent
We guessed an integer of the order of $10^{18}$ in a couple of seconds.
Function: znlog
Class: basic
Section: number_theoretical
C-Name: znlog
Prototype: GGDG
Help: znlog(x,g,{o}): return the discrete logarithm of x in
(Z/nZ)* in base g. If present, o represents the multiplicative
order of g. If no o is given, assume that g generate (Z/nZ)*.
Doc: discrete logarithm of $x$ in $(\Z/N\Z)^*$ in base $g$.
If present, $o$ represents the multiplicative order of $g$, see
\secref{se:DLfun}; the preferred format for this parameter is
\kbd{[ord, factor(ord)]}, where \kbd{ord} is the order of $g$.
If no $o$ is given, assume that $g$ generate $(\Z/N\Z)^*$.
This function uses a simple-minded combination of generic
discrete log algorithms (index calculus methods are not yet implemented).
\item Pohlig-Hellman algorithm, to reduce to groups of prime order $q$,
where $q | p-1$ and $p$ is an odd prime divisor of $N$,
\item Shanks baby-step/giant-step ($q$ small),
\item Pollard rho method ($q$ large).
The latter two algorithms require $O(\sqrt{q})$ operations in the group on
average, hence will not be able to treat cases where $q > 10^{30}$, say.
\bprog
? g = znprimroot(101)
%1 = Mod(2,101)
? znlog(5, g)
%2 = 24
? g^24
%3 = Mod(5, 101)
? G = znprimroot(2 * 101^10)
%4 = Mod(110462212541120451003, 220924425082240902002)
? znlog(5, G)
%5 = 76210072736547066624
? G^% == 5
%6 = 1
@eprog\noindent The result is undefined when $x$ is not a power of $g$ or
when $x$ is not invertible mod $N$:
\bprog
? znlog(6, Mod(2,3))
*** at top-level: znlog(6,Mod(2,3))
*** ^-----------------
*** znlog: impossible inverse modulo: Mod(0, 3).
@eprog\noindent For convenience, $g$ is also allowed to be a $p$-adic number:
\bprog
? g = 3+O(5^10); znlog(2, g)
%1 = 1015243
? g^%
%2 = 2 + O(5^10)
@eprog
Function: znorder
Class: basic
Section: number_theoretical
C-Name: znorder
Prototype: GDG
Help: znorder(x,{o}): order of the integermod x in (Z/nZ)*.
Optional o represents a multiple of the order of the element.
Description:
(gen):int order($1)
(gen,):int order($1)
(gen,int):int znorder($1, $2)
Doc: $x$ must be an integer mod $n$, and the
result is the order of $x$ in the multiplicative group $(\Z/n\Z)^*$. Returns
an error if $x$ is not invertible.
The parameter o, if present, represents a non-zero
multiple of the order of $x$, see \secref{se:DLfun}; the preferred format for
this parameter is \kbd{[ord, factor(ord)]}, where \kbd{ord = eulerphi(n)}
is the cardinality of the group.
Variant: Also available is \fun{GEN}{order}{GEN x}.
Function: znprimroot
Class: basic
Section: number_theoretical
C-Name: znprimroot0
Prototype: G
Help: znprimroot(n): returns a primitive root of n when it exists.
Description:
(int):gen znprimroot($1)
(gen):gen znprimroot0($1)
Doc: returns a primitive root (generator) of $(\Z/n\Z)^*$, whenever this
latter group is cyclic ($n = 4$ or $n = 2p^k$ or $n = p^k$, where $p$ is an
odd prime and $k \geq 0$). If the group is not cyclic, the result is
undefined. If $n$ is a prime, then the smallest positive primitive root is
returned. This is no longer true for composites.
Note that this function requires factoring $p-1$ for $p$ as above,
in order to determine the exact order of elements in
$(\Z/n\Z)^*$: this is likely to be very costly if $p$ is large.
The function accepts vector/matrices arguments, and is then applied
componentwise.
Variant: For a \typ{INT} $x$, the special case
\fun{GEN}{znprimroot}{GEN n} is also available.
Function: znstar
Class: basic
Section: number_theoretical
C-Name: znstar
Prototype: G
Help: znstar(n): 3-component vector v, giving the structure of (Z/nZ)^*.
v[1] is the order (i.e. eulerphi(n)), v[2] is a vector of cyclic components,
and v[3] is a vector giving the corresponding generators.
Doc: gives the structure of the multiplicative group
$(\Z/n\Z)^*$ as a 3-component row vector $v$, where $v[1]=\phi(n)$ is the
order of that group, $v[2]$ is a $k$-component row-vector $d$ of integers
$d[i]$ such that $d[i]>1$ and $d[i]\mid d[i-1]$ for $i \ge 2$ and
$(\Z/n\Z)^* \simeq \prod_{i=1}^k(\Z/d[i]\Z)$, and $v[3]$ is a $k$-component row
vector giving generators of the image of the cyclic groups $\Z/d[i]\Z$.
|