/usr/share/pari/pari.desc is in libpari-dev 2.5.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 | Function: !_
Class: basic
Section: symbolic_operators
C-Name: gnot
Prototype: G
Help: !_
Description:
(negbool):bool:parens $1
(bool):negbool:parens $1
Function: #_
Class: basic
Section: symbolic_operators
C-Name: glength
Prototype: lG
Help: #x: number of non code words in x, number of characters for a string.
Description:
(vecsmall):lg lg($1)
(vec):lg lg($1)
(pol):small lgpol($1)
(gen):small glength($1)
Function: %
Class: basic
Section: symbolic_operators
C-Name: pari_get_hist
Prototype: D0,L,
Help: last history item.
Function: +_
Class: basic
Section: symbolic_operators
Help: +_
Description:
(small):small:parens $1
(int):int:parens:copy $1
(real):real:parens:copy $1
(mp):mp:parens:copy $1
(gen):gen:parens:copy $1
Function: -_
Class: basic
Section: symbolic_operators
C-Name: gneg
Prototype: G
Help: -_
Description:
(small):small:parens -$(1)
(int):int negi($1)
(real):real negr($1)
(mp):mp mpneg($1)
(gen):gen gneg($1)
Function: Col
Class: basic
Section: conversions
C-Name: gtocol
Prototype: DG
Help: Col({x=[]}): transforms the object x into a column vector.
Empty vector if x is omitted.
Description:
():vec cgetg(1,t_COL)
(gen):vec gtocol($1)
Doc:
transforms the object $x$ into a column vector.
The vector has a single component , except when $x$ is
\item a vector or a quadratic form (in which case the resulting vector is
simply the initial object considered as a column vector),
\item a matrix (the column of row vectors comprising the matrix is
returned),
\item a character string (a column of individual characters is returned),
\item a polynomial or a power series. In the case of a polynomial, the
coefficients of the vector start with the leading coefficient of the
polynomial, while for power series only the significant coefficients are
taken into account, but this time by increasing order of degree. In this last
case, \kbd{Col} is the reciprocal function of \kbd{Pol} and \kbd{Ser}
respectively.
Note that the function \kbd{Colrev} does not exist, use \kbd{Vecrev}.
Function: Euler
Class: basic
Section: transcendental
C-Name: mpeuler
Prototype: p
Help: Euler=Euler(): Euler's constant with current precision.
Description:
():real:prec mpeuler(prec)
Doc: Euler's constant $\gamma=0.57721\cdots$. Note that
\kbd{Euler} is one of the few special reserved names which cannot be used for
variables (the others are \kbd{I} and \kbd{Pi}, as well as all function
names).
Function: I
Class: basic
Section: transcendental
C-Name: gen_I
Prototype:
Help: I=I(): square root of -1.
Description:
Doc: the complex number $\sqrt{-1}$.
Function: List
Class: basic
Section: conversions
C-Name: gtolist
Prototype: DG
Help: List({x=[]}): transforms the vector or list x into a list. Empty list
if x is omitted.
Description:
():list listcreate()
(gen):list gtolist($1)
Doc:
transforms a (row or column) vector $x$ into a list, whose components are
the entries of $x$. Similarly for a list, but rather useless in this case.
For other types, creates a list with the single element $x$. Note that,
except when $x$ is omitted, this function creates a small memory leak; so,
either initialize all lists to the empty list, or use them sparingly.
Variant: The variant \fun{GEN}{listcreate}{void} creates an empty list.
Function: Mat
Class: basic
Section: conversions
C-Name: gtomat
Prototype: DG
Help: Mat({x=[]}): transforms any GEN x into a matrix. Empty matrix if x is
omitted.
Doc:
transforms the object $x$ into a matrix.
If $x$ is already a matrix, a copy of $x$ is created.
If $x$ is a row (resp. column) vector, this creates a 1-row (resp.
1-column) matrix, \emph{unless} all elements are column (resp.~row) vectors
of the same length, in which case the vectors are concatenated sideways
and the associated big matrix is returned.
If $x$ is a binary quadratic form, creates the associated $2\times 2$
matrix. Otherwise, this creates a $1\times 1$ matrix containing $x$.
\bprog
? Mat(x + 1)
%1 =
[x + 1]
? Vec( matid(3) )
%2 = [[1, 0, 0]~, [0, 1, 0]~, [0, 0, 1]~]
? Mat(%)
%3 =
[1 0 0]
[0 1 0]
[0 0 1]
? Col( [1,2; 3,4] )
%4 = [[1, 2], [3, 4]]~
? Mat(%)
%5 =
[1 2]
[3 4]
? Mat(Qfb(1,2,3))
%6 =
[1 1]
[1 3]
@eprog
Function: Mod
Class: basic
Section: conversions
C-Name: gmodulo
Prototype: GG
Help: Mod(x,y): creates 'x modulo y'.
Description:
(small, small):gen gmodulss($1, $2)
(small, gen):gen gmodulsg($1, $2)
(gen, gen):gen gmodulo($1, $2)
Doc:
creates the PARI object
$(x \mod y)$, i.e.~an intmod or a polmod. $y$ must be an integer or a
polynomial. If $y$ is an integer, $x$ must be an integer, a rational
number, or a $p$-adic number compatible with the modulus $y$. If $y$ is a
polynomial, $x$ must be a scalar (which is not a polmod), a polynomial, a
rational function, or a power series.
This function is not the same as $x$ \kbd{\%} $y$, the result of which is an
integer or a polynomial.
Function: O
Class: basic
Section: polynomials
C-Name: ggrando
Prototype:
Help: O(p^e): p-adic or power series zero with precision given by e
Doc: if $p$ is an integer
greater than $2$, returns a $p$-adic $0$ of precision $e$. In all other
cases, returns a power series zero with precision given by $e v$, where $v$
is the $X$-adic valuation of $p$ with respect to its main variable.
Variant: \fun{GEN}{zeropadic}{GEN p, long e} for a $p$-adic and
\fun{GEN}{zeroser}{long v, long e} for a power series zero in variable $v$.
Function: O(_^_)
Class: basic
Section: programming/internals
C-Name: ggrando
Prototype: GD1,L,
Help: O(p^e): p-adic or power series zero with precision given by e.
Description:
(gen):gen ggrando($1, 1)
(1,small):gen ggrando(gen_1, $2)
(int,small):gen zeropadic($1, $2)
(gen,small):gen ggrando($1, $2)
(var,small):gen zeroser($1, $2)
Function: Pi
Class: basic
Section: transcendental
C-Name: mppi
Prototype: p
Help: Pi=Pi(): the constant pi, with current precision.
Description:
():real:prec mppi(prec)
Doc: the constant $\pi$ ($3.14159\cdots$).
Function: Pol
Class: basic
Section: conversions
C-Name: gtopoly
Prototype: GDn
Help: Pol(x,{v=x}): convert x (usually a vector or a power series) into a
polynomial with variable v, starting with the leading coefficient.
Description:
(gen,?var):pol gtopoly($1, $2)
Doc:
transforms the object $x$ into a polynomial with main variable $v$. If $x$
is a scalar, this gives a constant polynomial. If $x$ is a power series with
non-negative valuation or a rational function, the effect is similar to
\kbd{truncate}, i.e.~we chop off the $O(X^k)$ or compute the Euclidean
quotient of the numerator by the denominator, then change the main variable
of the result to $v$.
The main use of this function is when $x$ is a vector: it creates the
polynomial whose coefficients are given by $x$, with $x[1]$ being the leading
coefficient (which can be zero). It is much faster to evaluate
\kbd{Pol} on a vector of coefficients in this way, than the corresponding
formal expression $a_n X^n + \dots + a_0$, which is evaluated naively exactly
as written (linear versus quadratic time in $n$). \tet{Polrev} can be used if
one wants $x[1]$ to be the constant coefficient:
\bprog
? Pol([1,2,3])
%1 = x^2 + 2*x + 3
? Polrev([1,2,3])
%2 = 3*x^2 + 2*x + 1
@eprog\noindent
The reciprocal function of \kbd{Pol} (resp.~\kbd{Polrev}) is \kbd{Vec} (resp.~
\kbd{Vecrev}).
\bprog
? Vec(Pol([1,2,3]))
%1 = [1, 2, 3]
? Vecrev( Polrev([1,2,3]) )
%2 = [1, 2, 3]
@eprog\noindent
\misctitle{Warning} This is \emph{not} a substitution function. It will not
transform an object containing variables of higher priority than~$v$.
\bprog
? Pol(x + y, y)
*** at top-level: Pol(x+y,y)
*** ^----------
*** Pol: variable must have higher priority in gtopoly.
@eprog
Function: Polrev
Class: basic
Section: conversions
C-Name: gtopolyrev
Prototype: GDn
Help: Polrev(x,{v=x}): convert x (usually a vector or a power series) into a
polynomial with variable v, starting with the constant term.
Description:
(gen,?var):pol gtopolyrev($1, $2)
Doc:
transform the object $x$ into a polynomial
with main variable $v$. If $x$ is a scalar, this gives a constant polynomial.
If $x$ is a power series, the effect is identical to \kbd{truncate}, i.e.~it
chops off the $O(X^k)$.
The main use of this function is when $x$ is a vector: it creates the
polynomial whose coefficients are given by $x$, with $x[1]$ being the
constant term. \tet{Pol} can be used if one wants $x[1]$ to be the leading
coefficient:
\bprog
? Polrev([1,2,3])
%1 = 3*x^2 + 2*x + 1
? Pol([1,2,3])
%2 = x^2 + 2*x + 3
@eprog
The reciprocal function of \kbd{Pol} (resp.~\kbd{Polrev}) is \kbd{Vec} (resp.~
\kbd{Vecrev}).
Function: Qfb
Class: basic
Section: conversions
C-Name: Qfb0
Prototype: GGGDGp
Help: Qfb(a,b,c,{D=0.}): binary quadratic form a*x^2+b*x*y+c*y^2. D is
optional (0.0 by default) and initializes Shanks's distance if b^2-4*a*c>0.
Doc: creates the binary quadratic form\sidx{binary quadratic form}
$ax^2+bxy+cy^2$. If $b^2-4ac>0$, initialize \idx{Shanks}' distance
function to $D$. Negative definite forms are not implemented,
use their positive definite counterpart instead.
Variant: Also available are
\fun{GEN}{qfi}{GEN a, GEN b, GEN c} (assumes $b^2-4ac<0$) and
\fun{GEN}{qfr}{GEN a, GEN b, GEN c, GEN D} (assumes $b^2-4ac>0$).
Function: Ser
Class: basic
Section: conversions
C-Name: gtoser
Prototype: GDnDP
Help: Ser(s,{v=x},{d=seriesprecision}): convert s into a power series with
variable v and precision d, starting with the constant coefficient.
Doc: transforms the object $s$ into a power series with main variable $v$
($x$ by default) and precision (number of significant terms) equal to
$d$ (= the default \kbd{seriesprecision} by default). If $s$ is a
scalar, this gives a constant power series with precision \kbd{d}. If $s$
is a polynomial, the precision is the maximum of \kbd{d} and the degree of
the polynomial. If $s$ is a vector, the
coefficients of the vector are understood to be the coefficients of the power
series starting from the constant term (as in \tet{Polrev}$(x)$), and the
precision $d$ is ignored.
\bprog
? Ser(x^2,, 5)
%1 = x^2 + O(x^7)
? Ser([1,2,3], t)
%2 = 1 + 2*t + 3*t^2 + O(t^3)
@eprog\noindent
The warning given for \kbd{Pol} also applies here: this is not a substitution
function.
Function: Set
Class: basic
Section: conversions
C-Name: gtoset
Prototype: DG
Help: Set({x=[]}): convert x into a set, i.e. a row vector with strictly
increasing coefficients. Empty set if x is omitted.
Description:
():vec cgetg(1,t_VEC)
(gen):vec gtoset($1)
Doc:
converts $x$ into a set, i.e.~into a row
vector of character strings, with strictly increasing entries with respect to
lexicographic ordering. The components of $x$ are put in canonical form (type
\typ{STR}) so as to be easily sorted. To recover an ordinary \kbd{GEN} from
such an element, you can apply \tet{eval} to it.
Note that most set functions also accept ordinary vectors, provided their
components can be compared with \kbd{<}. Sets as created by this function
are only useful when e.g. polynomial or vector entries are involved.
Function: Str
Class: basic
Section: conversions
C-Name: Str
Prototype: s*
Help: Str({x}*): concatenates its (string) argument into a single string.
Description:
(gen):genstr:copy:parens $genstr:1
Doc:
converts its argument list into a
single character string (type \typ{STR}, the empty string if $x$ is omitted).
To recover an ordinary \kbd{GEN} from a string, apply \kbd{eval} to it. The
arguments of \kbd{Str} are evaluated in string context, see \secref{se:strings}.
\bprog
? x2 = 0; i = 2; Str(x, i)
%1 = "x2"
? eval(%)
%2 = 0
@eprog\noindent
This function is mostly useless in library mode. Use the pair
\tet{strtoGEN}/\tet{GENtostr} to convert between \kbd{GEN} and \kbd{char*}.
The latter returns a malloced string, which should be freed after usage.
%\syn{NO}
Function: Strchr
Class: basic
Section: conversions
C-Name: Strchr
Prototype: G
Help: Strchr(x): converts x to a string, translating each integer into a
character.
Doc:
converts $x$ to a string, translating each integer
into a character.
\bprog
? Strchr(97)
%1 = "a"
? Vecsmall("hello world")
%2 = Vecsmall([104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100])
? Strchr(%)
%3 = "hello world"
@eprog
Function: Strexpand
Class: basic
Section: conversions
C-Name: Strexpand
Prototype: s*
Help: Strexpand({x}*): concatenates its (string) argument into a single
string, performing tilde expansion.
Doc:
converts its argument list into a
single character string (type \typ{STR}, the empty string if $x$ is omitted).
Then perform \idx{environment expansion}, see \secref{se:envir}.
This feature can be used to read \idx{environment variable} values.
\bprog
? Strexpand("$HOME/doc")
%1 = "/home/pari/doc"
@eprog
The individual arguments are read in string context, see \secref{se:strings}.
%\syn{NO}
Function: Strprintf
Class: basic
Section: programming/specific
C-Name: Strprintf
Prototype: ss*
Help: Strprintf(fmt,{x}*): returns a string built from the remaining
arguments according to the format fmt.
Doc: returns a string built from the remaining arguments according to the
format fmt. The format consists of ordinary characters (not \%), printed
unchanged, and conversions specifications. See \kbd{printf}.
%\syn{NO}
Function: Strtex
Class: basic
Section: conversions
C-Name: Strtex
Prototype: s*
Help: Strtex({x}*): translates its (string) arguments to TeX format and
returns the resulting string.
Doc:
translates its arguments to TeX
format, and concatenates the results into a single character string (type
\typ{STR}, the empty string if $x$ is omitted).
The individual arguments are read in string context, see \secref{se:strings}.
%\syn{NO}
Function: Vec
Class: basic
Section: conversions
C-Name: gtovec
Prototype: DG
Help: Vec({x=[]}): transforms the object x into a vector.
Empty vector if x is omitted.
Description:
():vec cgetg(1,t_VEC)
(gen):vec gtovec($1)
Doc:
transforms the object $x$ into a row vector.
That vector has a single component, except when $x$ is
\item a vector or a quadratic form (in which case the resulting vector
is simply the initial object considered as a row vector),
\item a matrix (the vector of columns comprising the matrix is return),
\item a character string (a vector of individual
characters is returned),
\item a polynomial or a power series. In the case of a polynomial, the
coefficients of the vector start with the leading coefficient of the
polynomial, while for power series only the significant coefficients are
taken into account, but this time by increasing order of degree.
In this last case, \kbd{Vec} is the reciprocal function of \kbd{Pol} and
\kbd{Ser} respectively.
Function: Vecrev
Class: basic
Section: conversions
C-Name: gtovecrev
Prototype: DG
Help: Vecrev({x=[]}): transforms the object x into a vector.
Empty vector if x is omitted.
Description:
():vec cgetg(1,t_VEC)
(gen):vec gtovecrev($1)
Doc:
as $\kbd{Vec}(x)$, then reverse the result. In particular
In this case, \kbd{Vecrev} is the reciprocal function of \kbd{Polrev}: the
coefficients of the vector start with the constant coefficient of the
polynomial and the others follow by increasing degree.
Function: Vecsmall
Class: basic
Section: conversions
C-Name: gtovecsmall
Prototype: DG
Help: Vecsmall({x=[]}): transforms the object x into a VECSMALL. Empty
vector if x is omitted.
Description:
(gen):vecsmall gtovecsmall($1)
Doc:
transforms the object $x$ into a row
vector of type \typ{VECSMALL}. This acts as \kbd{Vec}, but only on a
limited set of objects (the result must be representable as a vector of small
integers). In particular, polynomials and power series are forbidden.
If $x$ is a character string, a vector of individual characters in ASCII
encoding is returned (\tet{Strchr} yields back the character string).
Function: _!
Class: basic
Section: symbolic_operators
C-Name: mpfact
Prototype: L
Help: n!: factorial of n.
Description:
(small):int mpfact($1)
Function: _!=_
Class: basic
Section: symbolic_operators
C-Name: gne
Prototype: GG
Help: _!=_
Description:
(small, small):bool:parens $(1) != $(2)
(lg, lg):bool:parens $(1) != $(2)
(small, int):bool:parens cmpsi($1, $2) != 0
(int, small):bool:parens cmpis($1, $2) != 0
(int, 1):negbool equali1($1)
(int, -1):negbool equalim1($1)
(int, int):negbool equalii($1, $2)
(real,real):bool cmprr($1, $2) != 0
(mp, mp):bool:parens mpcmp($1, $2) != 0
(typ, typ):bool:parens $(1) != $(2)
(typ, #str):bool:parens $(1) != $(typ:2)
(#str, typ):bool:parens $(typ:1) != $(2)
(str, str):bool strcmp($1, $2)
(typ, typ):bool:parens $(1) != $(2)
(small, gen):negbool gequalsg($1, $2)
(gen, small):negbool gequalgs($1, $2)
(gen, gen):negbool gequal($1, $2)
Function: _%=_
Class: basic
Section: symbolic_operators
C-Name: gmode
Prototype: &G
Help: x%=y: shortcut for x=x%y.
Description:
(*small, small):small:parens $1 = smodss($1, $2)
(*int, small):int:parens $1 = modis($1, $2)
(*int, int):int:parens $1 = modii($1, $2)
(*pol, gen):gen:parens $1 = gmod($1, $2)
(*gen, small):gen:parens $1 = gmodgs($1, $2)
(*gen, gen):gen:parens $1 = gmod($1, $2)
Function: _%_
Class: basic
Section: symbolic_operators
C-Name: gmod
Prototype: GG
Help: x%y: Euclidean remainder of x and y.
Description:
(small, small):small smodss($1, $2)
(small, int):int modsi($1, $2)
(int, small):small smodis($1, $2)
(int, int):int modii($1, $2)
(gen, small):gen gmodgs($1, $2)
(small, gen):gen gmodsg($1, $2)
(gen, gen):gen gmod($1, $2)
Function: _&&_
Class: basic
Section: symbolic_operators
C-Name: andpari
Prototype: GE
Help: _&&_
Description:
(bool, bool):bool:parens $(1) && $(2)
Function: _'
Class: basic
Section: symbolic_operators
C-Name: deriv
Prototype: GDn
Help: x': derivative of x with respect to the main variable.
Description:
(gen):gen deriv($1,-1)
Function: _(_)
Class: symbolic_operators
Help: f(a,b,...): evaluates the function f on a,b,...
Description:
(gen):gen closure_callgenall($1, 0)
(gen,gen):gen closure_callgen1($1, $2)
(gen,gen,gen):gen closure_callgen2($1, $2, $3)
(gen,gen,...):gen closure_callgenall($1, ${nbarg 1 sub}, $3)
Function: _*=_
Class: basic
Section: symbolic_operators
C-Name: gmule
Prototype: &G
Help: x*=y: shortcut for x=x*y.
Description:
(*small, small):small:parens $1 *= $(2)
(*int, small):int:parens $1 = mulis($1, $2)
(*int, int):int:parens $1 = mulii($1, $2)
(*real, small):real:parens $1 = mulrs($1, $2)
(*real, int):real:parens $1 = mulri($1, $2)
(*real, real):real:parens $1 = mulrr($1, $2)
(*mp, mp):mp:parens $1 = mpmul($1, $2)
(*pol, small):gen:parens $1 = gmulgs($1, $2)
(*pol, gen):gen:parens $1 = gmul($1, $2)
(*vec, gen):gen:parens $1 = gmul($1, $2)
(*gen, small):gen:parens $1 = gmulgs($1, $2)
(*gen, gen):gen:parens $1 = gmul($1, $2)
Function: _*_
Class: basic
Section: symbolic_operators
C-Name: gmul
Prototype: GG
Help: x*y: product of x and y.
Description:
(small, small):small:parens $(1)*$(2)
(int, small):int mulis($1, $2)
(small, int):int mulsi($1, $2)
(int, int):int mulii($1, $2)
(0, mp):small ($2, 0)/*for side effect*/
(#small, real):real mulsr($1, $2)
(small, real):mp mulsr($1, $2)
(real, small):mp mulrs($1, $2)
(real, real):real mulrr($1, $2)
(mp, mp):mp mpmul($1, $2)
(gen, small):gen gmulgs($1, $2)
(small, gen):gen gmulsg($1, $2)
(vecsmall, vecsmall):vecsmall perm_mul($1, $2)
(gen, gen):gen gmul($1, $2)
Function: _++
Class: basic
Section: symbolic_operators
C-Name: gadd1e
Prototype: &
Help: x++
Description:
(*bptr):bptr ++$1
(*small):small ++$1
(*lg):lg ++$1
(*int):int:parens $1 = addis($1, 1)
(*real):real:parens $1 = addrs($1, 1)
(*mp):mp:parens $1 = mpadd($1, gen_1)
(*pol):pol:parens $1 = gaddgs($1, 1)
(*gen):gen:parens $1 = gaddgs($1, 1)
Function: _+=_
Class: basic
Section: symbolic_operators
C-Name: gadde
Prototype: &G
Help: x+=y: shortcut for x=x+y.
Description:
(*small, small):small:parens $1 += $(2)
(*lg, small):lg:parens $1 += $(2)
(*int, small):int:parens $1 = addis($1, $2)
(*int, int):int:parens $1 = addii($1, $2)
(*real, small):real:parens $1 = addrs($1, $2)
(*real, int):real:parens $1 = addir($2, $1)
(*real, real):real:parens $1 = addrr($1, $2)
(*mp, mp):mp:parens $1 = mpadd($1, $2)
(*pol, small):gen:parens $1 = gaddgs($1, $2)
(*pol, gen):gen:parens $1 = gadd($1, $2)
(*vec, gen):gen:parens $1 = gadd($1, $2)
(*gen, small):gen:parens $1 = gaddgs($1, $2)
(*gen, gen):gen:parens $1 = gadd($1, $2)
Function: _+_
Class: basic
Section: symbolic_operators
C-Name: gadd
Prototype: GG
Help: x+y: sum of x and y.
Description:
(lg, 1):small:parens $(1)
(small, small):small:parens $(1) + $(2)
(lg, small):lg:parens $(1) + $(2)
(small, lg):lg:parens $(1) + $(2)
(int, small):int addis($1, $2)
(small, int):int addsi($1, $2)
(int, int):int addii($1, $2)
(real, small):real addrs($1, $2)
(small, real):real addsr($1, $2)
(real, real):real addrr($1, $2)
(mp, real):real mpadd($1, $2)
(real, mp):real mpadd($1, $2)
(mp, mp):mp mpadd($1, $2)
(gen, small):gen gaddgs($1, $2)
(small, gen):gen gaddsg($1, $2)
(gen, gen):gen gadd($1, $2)
Function: _--
Class: basic
Section: symbolic_operators
C-Name: gsub1e
Prototype: &
Help: x--
Description:
(*bptr):bptr --$1
(*small):small --$1
(*lg):lg --$1
(*int):int:parens $1 = subis($1, 1)
(*real):real:parens $1 = subrs($1, 1)
(*mp):mp:parens $1 = mpsub($1, gen_1)
(*pol):pol:parens $1 = gsubgs($1, 1)
(*gen):gen:parens $1 = gsubgs($1, 1)
Function: _-=_
Class: basic
Section: symbolic_operators
C-Name: gsube
Prototype: &G
Help: x-=y: shortcut for x=x-y.
Description:
(*small, small):small:parens $1 -= $(2)
(*lg, small):lg:parens $1 -= $(2)
(*int, small):int:parens $1 = subis($1, $2)
(*int, int):int:parens $1 = subii($1, $2)
(*real, small):real:parens $1 = subrs($1, $2)
(*real, int):real:parens $1 = subri($1, $2)
(*real, real):real:parens $1 = subrr($1, $2)
(*mp, mp):mp:parens $1 = mpsub($1, $2)
(*pol, small):gen:parens $1 = gsubgs($1, $2)
(*pol, gen):gen:parens $1 = gsub($1, $2)
(*vec, gen):gen:parens $1 = gsub($1, $2)
(*gen, small):gen:parens $1 = gsubgs($1, $2)
(*gen, gen):gen:parens $1 = gsub($1, $2)
Function: _-_
Class: basic
Section: symbolic_operators
C-Name: gsub
Prototype: GG
Help: x-y: difference of x and y.
Description:
(small, small):small:parens $(1) - $(2)
(lg, small):lg:parens $(1) - $(2)
(int, small):int subis($1, $2)
(small, int):int subsi($1, $2)
(int, int):int subii($1, $2)
(real, small):real subrs($1, $2)
(small, real):real subsr($1, $2)
(real, real):real subrr($1, $2)
(mp, real):real mpsub($1, $2)
(real, mp):real mpsub($1, $2)
(mp, mp):mp mpsub($1, $2)
(gen, small):gen gsubgs($1, $2)
(small, gen):gen gsubsg($1, $2)
(gen, gen):gen gsub($1, $2)
Function: _.a1
Class: basic
Section: member_functions
C-Name: member_a1
Prototype: mG
Help: _.a1
Description:
(ell):gen:copy ell_get_a1($1)
Function: _.a2
Class: basic
Section: member_functions
C-Name: member_a2
Prototype: mG
Help: _.a2
Description:
(ell):gen:copy ell_get_a2($1)
Function: _.a3
Class: basic
Section: member_functions
C-Name: member_a3
Prototype: mG
Help: _.a3
Description:
(ell):gen:copy ell_get_a3($1)
Function: _.a4
Class: basic
Section: member_functions
C-Name: member_a4
Prototype: mG
Help: _.a4
Description:
(ell):gen:copy ell_get_a4($1)
Function: _.a6
Class: basic
Section: member_functions
C-Name: member_a6
Prototype: mG
Help: _.a6
Description:
(ell):gen:copy ell_get_a6($1)
Function: _.area
Class: basic
Section: member_functions
C-Name: member_area
Prototype: mG
Help: _.area
Description:
(bell):gen:copy gel($1, 19)
Function: _.b2
Class: basic
Section: member_functions
C-Name: member_b2
Prototype: mG
Help: _.b2
Description:
(ell):gen:copy ell_get_b2($1)
Function: _.b4
Class: basic
Section: member_functions
C-Name: member_b4
Prototype: mG
Help: _.b4
Description:
(ell):gen:copy ell_get_b4($1)
Function: _.b6
Class: basic
Section: member_functions
C-Name: member_b6
Prototype: mG
Help: _.b6
Description:
(ell):gen:copy ell_get_b6($1)
Function: _.b8
Class: basic
Section: member_functions
C-Name: member_b8
Prototype: mG
Help: _.b8
Description:
(ell):gen:copy ell_get_b8($1)
Function: _.bid
Class: basic
Section: member_functions
C-Name: member_bid
Prototype: mG
Help: _.bid
Description:
(bnr):gen:copy bnr_get_bid($1)
(gen):gen:copy member_bid($1)
Function: _.bnf
Class: basic
Section: member_functions
C-Name: member_bnf
Prototype: mG
Help: _.bnf
Description:
(bnf):bnf:parens $1
(bnr):bnf:copy:parens $bnf:1
(gen):bnf:copy member_bnf($1)
Function: _.c4
Class: basic
Section: member_functions
C-Name: member_c4
Prototype: mG
Help: _.c4
Description:
(ell):gen:copy ell_get_c4($1)
Function: _.c6
Class: basic
Section: member_functions
C-Name: member_c6
Prototype: mG
Help: _.c6
Description:
(ell):gen:copy ell_get_c6($1)
Function: _.clgp
Class: basic
Section: member_functions
C-Name: member_clgp
Prototype: mG
Help: _.clgp
Description:
(bnf):clgp:copy:parens $clgp:1
(bnr):clgp:copy:parens $clgp:1
(clgp):clgp:parens $1
(gen):clgp:copy member_clgp($1)
Function: _.codiff
Class: basic
Section: member_functions
C-Name: member_codiff
Prototype: mG
Help: _.codiff
Function: _.cyc
Class: basic
Section: member_functions
C-Name: member_cyc
Prototype: mG
Help: _.cyc
Description:
(bnr):vec:copy bnr_get_cyc($1)
(bnf):vec:copy bnf_get_cyc($1)
(clgp):vec:copy gel($1, 2)
(gen):vec:copy member_cyc($1)
Function: _.diff
Class: basic
Section: member_functions
C-Name: member_diff
Prototype: mG
Help: _.diff
Description:
(nf):gen:copy nf_get_diff($1)
(gen):gen:copy member_diff($1)
Function: _.disc
Class: basic
Section: member_functions
C-Name: member_disc
Prototype: mG
Help: _.disc
Description:
(nf):int:copy nf_get_disc($1)
(ell):gen:copy ell_get_disc($1)
(gen):gen:copy member_disc($1)
Function: _.e
Class: basic
Section: member_functions
C-Name: member_e
Prototype: mG
Help: _.e
Description:
(prid):small pr_get_e($1)
Function: _.eta
Class: basic
Section: member_functions
C-Name: member_eta
Prototype: mG
Help: _.eta
Function: _.f
Class: basic
Section: member_functions
C-Name: member_f
Prototype: mG
Help: _.f
Description:
(prid):small pr_get_f($1)
Function: _.fu
Class: basic
Section: member_functions
C-Name: member_fu
Prototype: G
Help: _.fu
Description:
(bnr):void $"ray units not implemented"
(bnf):gen:copy bnf_get_fu($1)
(gen):gen member_fu($1)
Function: _.futu
Class: basic
Section: member_functions
C-Name: member_futu
Prototype: mG
Help: _.futu
Function: _.gen
Class: basic
Section: member_functions
C-Name: member_gen
Prototype: mG
Help: _.gen
Description:
(bnr):vec:copy bnr_get_gen($1)
(bnf):vec:copy bnf_get_gen($1)
(gal):vec:copy gal_get_gen($1)
(clgp):vec:copy gel($1, 3)
(prid):gen:copy pr_get_gen($1)
(gen):gen:copy member_gen($1)
Function: _.group
Class: basic
Section: member_functions
C-Name: member_group
Prototype: mG
Help: _.group
Description:
(gal):vec:copy gal_get_group($1)
(gen):vec:copy member_group($1)
Function: _.index
Class: basic
Section: member_functions
C-Name: member_index
Prototype: mG
Help: _.index
Description:
(nf):int:copy nf_get_index($1)
(gen):int:copy member_index($1)
Function: _.j
Class: basic
Section: member_functions
C-Name: member_j
Prototype: mG
Help: _.j
Description:
(ell):gen:copy ell_get_j($1)
Function: _.mod
Class: basic
Section: member_functions
C-Name: member_mod
Prototype: mG
Help: _.mod
Function: _.nf
Class: basic
Section: member_functions
C-Name: member_nf
Prototype: mG
Help: _.nf
Description:
(nf):nf:parens $1
(gen):nf:copy member_nf($1)
Function: _.no
Class: basic
Section: member_functions
C-Name: member_no
Prototype: mG
Help: _.no
Description:
(bnr):int:copy bnr_get_no($1)
(bnf):int:copy bnf_get_no($1)
(clgp):int:copy gel($1, 1)
(gen):int:copy member_no($1)
Function: _.omega
Class: basic
Section: member_functions
C-Name: member_omega
Prototype: mG
Help: _.omega
Function: _.orders
Class: basic
Section: member_functions
C-Name: member_orders
Prototype: mG
Help: _.orders
Description:
(gal):vecsmall:copy gal_get_orders($1)
Function: _.p
Class: basic
Section: member_functions
C-Name: member_p
Prototype: mG
Help: _.p
Description:
(gal):int:copy gal_get_p($1)
(prid):int:copy pr_get_p($1)
(gen):int:copy member_p($1)
Function: _.pol
Class: basic
Section: member_functions
C-Name: member_pol
Prototype: mG
Help: _.pol
Description:
(gal):gen:copy gal_get_pol($1)
(nf):gen:copy nf_get_pol($1)
(gen):gen:copy member_pol($1)
Function: _.r1
Class: basic
Section: member_functions
C-Name: member_r1
Prototype: mG
Help: _.r1
Description:
(nf):small nf_get_r1($1)
(gen):int:copy member_r1($1)
Function: _.r2
Class: basic
Section: member_functions
C-Name: member_r2
Prototype: mG
Help: _.r2
Description:
(nf):small nf_get_r2($1)
(gen):int:copy member_r2($1)
Function: _.reg
Class: basic
Section: member_functions
C-Name: member_reg
Prototype: mG
Help: _.reg
Description:
(bnr):real $"ray regulator not implemented"
(bnf):real:copy bnf_get_reg($1)
(gen):real:copy member_reg($1)
Function: _.roots
Class: basic
Section: member_functions
C-Name: member_roots
Prototype: mG
Help: _.roots
Description:
(gal):vec:copy gal_get_roots($1)
(bell):vec:copy ell_get_roots($1)
(nf):vec:copy nf_get_roots($1)
(gen):vec:copy member_roots($1)
Function: _.sign
Class: basic
Section: member_functions
C-Name: member_sign
Prototype: mG
Help: _.sign
Description:
(nf):vec:copy gel($1, 2)
(gen):vec:copy member_sign($1)
Function: _.t2
Class: basic
Section: member_functions
C-Name: member_t2
Prototype: G
Help: _.t2
Description:
(gen):vec member_t2($1)
Function: _.tate
Class: basic
Section: member_functions
C-Name: member_tate
Prototype: mG
Help: _.tate
Function: _.tu
Class: basic
Section: member_functions
C-Name: member_tu
Prototype: G
Help: _.tu
Description:
(gen):gen:copy member_tu($1)
Function: _.tufu
Class: basic
Section: member_functions
C-Name: member_tufu
Prototype: mG
Help: _.tufu
Function: _.w
Class: basic
Section: member_functions
C-Name: member_w
Prototype: mG
Help: _.w
Description:
(bell):gen:copy gel($1, 18)
Function: _.zk
Class: basic
Section: member_functions
C-Name: member_zk
Prototype: mG
Help: _.zk
Description:
(nf):vec:copy nf_get_zk($1)
(gen):vec:copy member_zk($1)
Function: _.zkst
Class: basic
Section: member_functions
C-Name: member_zkst
Prototype: mG
Help: _.zkst
Description:
(bnr):gen:copy bnr_get_bid($1)
Function: _/=_
Class: basic
Section: symbolic_operators
C-Name: gdive
Prototype: &G
Help: x/=y: shortcut for x=x/y.
Description:
(*small, gen):void $"cannot divide small: use \= instead."
(*int, gen):void $"cannot divide int: use \= instead."
(*real, real):real:parens $1 = divrr($1, $2)
(*real, small):real:parens $1 = divrs($1, $2)
(*real, mp):real:parens $1 = mpdiv($1, $2)
(*mp, real):mp:parens $1 = mpdiv($1, $2)
(*pol, gen):gen:parens $1 = gdiv($1, $2)
(*vec, gen):gen:parens $1 = gdiv($1, $2)
(*gen, small):gen:parens $1 = gdivgs($1, $2)
(*gen, gen):gen:parens $1 = gdiv($1, $2)
Function: _/_
Class: basic
Section: symbolic_operators
C-Name: gdiv
Prototype: GG
Help: x/y: quotient of x and y.
Description:
(0, mp):small ($2, 0)/*for side effect*/
(1, real):real invr($2)
(#small, real):real divsr($1, $2)
(small, real):mp divsr($1, $2)
(real, small):real divrs($1, $2)
(real, real):real divrr($1, $2)
(real, mp):real mpdiv($1, $2)
(mp, real):mp mpdiv($1, $2)
(1, gen):gen ginv($2)
(gen, small):gen gdivgs($1, $2)
(small, gen):gen gdivsg($1, $2)
(gen, gen):gen gdiv($1, $2)
Function: _<<=_
Class: basic
Section: symbolic_operators
C-Name: gshiftle
Prototype: &L
Help: x<<=y: shortcut for x=x<<y.
Description:
(*small, small):small:parens $1 <<= $(2)
(*int, small):int:parens $1 = shifti($1, $2)
(*mp, small):mp:parens $1 = mpshift($1, $2)
(*gen, small):mp:parens $1 = gshift($1, $2)
Function: _<<_
Class: basic
Section: symbolic_operators
C-Name: gshift
Prototype: GL
Help: x<<y
Description:
(int, small):int shifti($1, $2)
(mp, small):mp mpshift($1, $2)
(gen, small):mp gshift($1, $2)
Function: _<=_
Class: basic
Section: symbolic_operators
C-Name: gle
Prototype: GG
Help: _<=_
Description:
(small, small):bool:parens $(1) <= $(2)
(small, lg):bool:parens $(1) < $(2)
(lg, lg):bool:parens $(1) <= $(2)
(small, int):bool:parens cmpsi($1, $2) <= 0
(int, lg):bool:parens cmpis($1, $2) < 0
(int, small):bool:parens cmpis($1, $2) <= 0
(int, int):bool:parens cmpii($1, $2) <= 0
(mp, mp):bool:parens mpcmp($1, $2) <= 0
(str, str):bool:parens strcmp($1, $2) <= 0
(small, gen):bool:parens gcmpsg($1, $2) <= 0
(gen, small):bool:parens gcmpgs($1, $2) <= 0
(gen, gen):bool:parens gcmp($1, $2) <= 0
Function: _<_
Class: basic
Section: symbolic_operators
C-Name: glt
Prototype: GG
Help: _<_
Description:
(small, small):bool:parens $(1) < $(2)
(lg, lg):bool:parens $(1) < $(2)
(lg, small):bool:parens $(1) <= $(2)
(small, int):bool:parens cmpsi($1, $2) < 0
(int, small):bool:parens cmpis($1, $2) < 0
(int, int):bool:parens cmpii($1, $2) < 0
(mp, mp):bool:parens mpcmp($1, $2) < 0
(str, str):bool:parens strcmp($1, $2) < 0
(small, gen):bool:parens gcmpsg($1, $2) < 0
(gen, small):bool:parens gcmpgs($1, $2) < 0
(gen, gen):bool:parens gcmp($1, $2) < 0
Function: _===_
Class: basic
Section: symbolic_operators
C-Name: gidentical
Prototype: iGG
Help: a === b : true if a and b are identical
Function: _==_
Class: basic
Section: symbolic_operators
C-Name: geq
Prototype: GG
Help: _==_
Description:
(small, small):bool:parens $(1) == $(2)
(lg, lg):bool:parens $(1) == $(2)
(small, int):bool:parens cmpsi($1, $2) == 0
(mp, 0):bool !signe($1)
(int, 1):bool equali1($1)
(int, -1):bool equalim1($1)
(int, small):bool:parens cmpis($1, $2) == 0
(int, int):bool equalii($1, $2)
(gen, 0):bool gequal0($1)
(gen, 1):bool gequal1($1)
(gen, -1):bool gequalm1($1)
(real,real):bool cmprr($1, $2) == 0
(mp, mp):bool:parens mpcmp($1, $2) == 0
(typ, typ):bool:parens $(1) == $(2)
(typ, #str):bool:parens $(1) == $(typ:2)
(#str, typ):bool:parens $(typ:1) == $(2)
(str, str):negbool strcmp($1, $2)
(small, gen):bool gequalsg($1, $2)
(gen, small):bool gequalgs($1, $2)
(gen, gen):bool gequal($1, $2)
Function: _=_
Class: basic
Section: symbolic_operators
C-Name: gstore
Prototype: m&G
Help: x=y: store value y in variable x.
Function: _>=_
Class: basic
Section: symbolic_operators
C-Name: gge
Prototype: GG
Help: _>=_
Description:
(small, small):bool:parens $(1) >= $(2)
(lg, lg):bool:parens $(1) >= $(2)
(lg, small):bool:parens $(1) > $(2)
(small, int):bool:parens cmpsi($1, $2) >= 0
(int, small):bool:parens cmpis($1, $2) >= 0
(int, int):bool:parens cmpii($1, $2) >= 0
(mp, mp):bool:parens mpcmp($1, $2) >= 0
(str, str):bool:parens strcmp($1, $2) >= 0
(small, gen):bool:parens gcmpsg($1, $2) >= 0
(gen, small):bool:parens gcmpgs($1, $2) >= 0
(gen, gen):bool:parens gcmp($1, $2) >= 0
Function: _>>=_
Class: basic
Section: symbolic_operators
C-Name: gshiftre
Prototype: &L
Help: x>>=y: shortcut for x=x>>y.
Description:
(*small, small):small:parens $1 >>= $(2)
(*int, small):int:parens $1 = shifti($1, -$(2))
(*mp, small):mp:parens $1 = mpshift($1, -$(2))
(*gen, small):mp:parens $1 = gshift($1, -$(2))
Function: _>>_
Class: basic
Section: symbolic_operators
C-Name: gshift_right
Prototype: GL
Help: x>>y
Description:
(small, small):small:parens $(1)>>$(2)
(int, small):int shifti($1, -$(2))
(mp, small):mp mpshift($1, -$(2))
(gen, small):mp gshift($1, -$(2))
Function: _>_
Class: basic
Section: symbolic_operators
C-Name: ggt
Prototype: GG
Help: _>_
Description:
(small, small):bool:parens $(1) > $(2)
(lg, lg):bool:parens $(1) > $(2)
(small, lg):bool:parens $(1) >= $(2)
(small, int):bool:parens cmpsi($1, $2) > 0
(int, small):bool:parens cmpis($1, $2) > 0
(int, int):bool:parens cmpii($1, $2) > 0
(mp, mp):bool:parens mpcmp($1, $2) > 0
(str, str):bool:parens strcmp($1, $2) > 0
(small, gen):bool:parens gcmpsg($1, $2) > 0
(gen, small):bool:parens gcmpgs($1, $2) > 0
(gen, gen):bool:parens gcmp($1, $2) > 0
Function: _[_,]
Class: symbolic_operators
Help: x[y,]: y-th row of x.
Description:
(mp,small):gen $"Scalar has no rows"
(vec,small):vec rowcopy($1, $2)
(gen,small):vec rowcopy($1, $2)
Function: _[_,_]
Class: symbolic_operators
Description:
(mp,small):gen $"Scalar has no components"
(mp,small,small):gen $"Scalar has no components"
(vecsmall,small):small $(1)[$2]
(vecsmall,small,small):gen $"Vecsmall are single-dimensional"
(list,small):gen:copy gel(list_data($1), $2)
(vec,small):gen:copy gel($1, $2)
(vec,small,small):gen:copy gcoeff($1, $2, $3)
(gen,small):gen:copy gel($1, $2)
(gen,small,small):gen:copy gcoeff($1, $2, $3)
Function: _\/=_
Class: basic
Section: symbolic_operators
C-Name: gdivrounde
Prototype: &G
Help: x\/=y: shortcut for x=x\/y.
Description:
(*int, int):int:parens $1 = gdivround($1, $2)
(*pol, gen):gen:parens $1 = gdivround($1, $2)
(*gen, gen):gen:parens $1 = gdivround($1, $2)
Function: _\/_
Class: basic
Section: symbolic_operators
C-Name: gdivround
Prototype: GG
Help: x\/y: rounded Euclidean quotient of x and y.
Description:
(int, int):int gdivround($1, $2)
(gen, gen):gen gdivround($1, $2)
Function: _\=_
Class: basic
Section: symbolic_operators
C-Name: gdivente
Prototype: &G
Help: x\=y: shortcut for x=x\y.
Description:
(*small, small):small:parens $1 /= $(2)
(*int, int):int:parens $1 = gdivent($1, $2)
(*pol, gen):gen:parens $1 = gdivent($1, $2)
(*gen, gen):gen:parens $1 = gdivent($1, $2)
Function: _\_
Class: basic
Section: symbolic_operators
C-Name: gdivent
Prototype: GG
Help: x\y: Euclidean quotient of x and y.
Description:
(small, small):small:parens $(1)/$(2)
(int, small):int truedivis($1, $2)
(small, int):int gdiventsg($1, $2)
(int, int):int truedivii($1, $2)
(gen, small):gen gdiventgs($1, $2)
(small, gen):gen gdiventsg($1, $2)
(gen, gen):gen gdivent($1, $2)
Function: _^_
Class: basic
Section: symbolic_operators
C-Name: gpow
Prototype: GGp
Help: x^y: compute x to the power y.
Description:
(int, 2):int sqri($1)
(int, 3):int powiu($1, 3)
(int, 4):int powiu($1, 4)
(int, 5):int powiu($1, 5)
(real, -1):real invr($1)
(mp, -1):mp ginv($1)
(gen, -1):gen ginv($1)
(real, 2):real sqrr($1)
(mp, 2):mp mpsqr($1)
(gen, 2):gen gsqr($1)
(int, small):gen powis($1, $2)
(real, small):real gpowgs($1, $2)
(gen, small):gen gpowgs($1, $2)
(real, int):real powgi($1, $2)
(gen, int):gen powgi($1, $2)
(gen, gen):gen:prec gpow($1, $2, prec)
Function: _^s
Class: basic
Section: programming/internals
C-Name: gpowgs
Prototype: GL
Help: return x^n where n is a small integer
Function: __
Class: basic
Section: symbolic_operators
Help: __
Description:
(genstr, genstr):genstr concat($1, $2)
(genstr, gen):genstr concat($1, $2)
(gen, genstr):genstr concat($1, $2)
(gen, gen):genstr concat($genstr:1, $2)
Function: _avma
Class: gp2c_internal
Description:
():pari_sp avma
Function: _badtype
Class: gp2c_internal
Help: Code to check types. If not void, will be used as if(...).
Description:
(int):bool:parens typ($1) != t_INT
(real):bool:parens typ($1) != t_REAL
(mp):negbool is_intreal_t(typ($1))
(vec):negbool is_matvec_t(typ($1))
(vecsmall):bool:parens typ($1) != t_VECSMALL
(pol):bool:parens typ($1) != t_POL
(*nf):void:parens $1 = checknf($1)
(*bnf):void:parens $1 = checkbnf($1)
(bnr):void checkbnr($1)
(prid):void checkprid($1)
(@clgp):bool:parens lg($1) != 3 || typ($(1)[2]) != t_POLMOD
(ell):void checksmallell($1)
(bell):void checkell($1)
(*gal):gal:parens $1 = checkgal($1)
Function: _call_GG
Class: gp2c_internal
Help: Call a function with proto GG on two GENs.
Description:
(func_GG, gen, gen):gen $(1)($2, $3)
Function: _cast
Class: gp2c_internal
Help: (type1):type2 : cast expression of type1 to type2
Description:
(void):bool 0
(#negbool):bool ${1 value not}
(negbool):bool !$(1)
(small_int):bool
(small):bool
(lg):bool:parens $(1)!=1
(bptr):bool *$(1)
(gen):bool !gequal0($1)
(real):bool signe($1)
(int):bool signe($1)
(mp):bool signe($1)
(pol):bool signe($1)
(void):negbool 1
(#bool):negbool ${1 value not}
(bool):negbool !$(1)
(lg):negbool:parens $(1)==1
(bptr):negbool !*$(1)
(gen):negbool gequal0($1)
(int):negbool !signe($1)
(real):negbool !signe($1)
(mp):negbool !signe($1)
(pol):negbool !signe($1)
(bool):small_int
(typ):small_int
(small):small_int
(bool):small
(typ):small
(small_int):small
(bptr):small *$(1)
(int):small itos($1)
(#lg):small:parens ${1 value 1 sub}
(lg):small:parens $(1)-1
(gen):small gtos($1)
(void):int gen_0
(-2):int gen_m2
(-1):int gen_m1
(0):int gen_0
(1):int gen_1
(2):int gen_2
(bool):int stoi($1)
(small):int stoi($1)
(mp):int
(gen):int
(mp):real
(gen):real
(int):mp
(real):mp
(gen):mp
(#bool):lg:parens ${1 1 value add}
(bool):lg:parens $(1)+1
(#small):lg:parens ${1 1 value add}
(small):lg:parens $(1)+1
(gen):closure
(gen):vecsmall
(nf):vec
(bnf):vec
(bnr):vec
(ell):vec
(bell):vec
(clgp):vec
(prid):vec
(gal):vec
(gen):vec
(gen):list
(pol):var varn($1)
(gen):var gvar($1)
(var):pol pol_x($1)
(gen):pol
(int):gen
(mp):gen
(vecsmall):gen
(vec):gen
(list):gen
(pol):gen
(genstr):gen
(closure):gen
(gen):genstr GENtoGENstr($1)
(str):genstr strtoGENstr($1)
(genstr):str GSTR($1)
(typ):str type_name($1)
(#str):typ ${1 str_format}
(bnf):nf bnf_get_nf($1)
(gen):nf
(bnr):bnf bnr_get_bnf($1)
(gen):bnf
(gen):bnr
(bnf):clgp bnf_get_clgp($1)
(bnr):clgp bnr_get_clgp($1)
(gen):clgp
(bell):ell
(gen):ell
(gen):bell
(gen):gal
(gen):prid
Function: _cgetg
Class: gp2c_internal
Description:
(lg,#str):gen cgetg($1, ${2 str_raw})
(gen,lg,#str):gen $1 = cgetg($2, ${3 str_raw})
Function: _const_expr
Class: gp2c_internal
Description:
(str):gen readseq($1)
Function: _const_quote
Class: gp2c_internal
Description:
(str):var fetch_user_var($1)
Function: _const_real
Class: gp2c_internal
Description:
(str):real:prec strtor($1, prec)
Function: _const_smallreal
Class: gp2c_internal
Description:
(0):real:prec real_0(prec)
(1):real:prec real_1(prec)
(-1):real:prec real_m1(prec)
(small):real:prec stor($1, prec)
Function: _decl_base
Class: gp2c_internal
Description:
(C!void) void
(C!long) long
(C!int) int
(C!GEN) GEN
(C!char*) char
(C!byteptr) byteptr
(C!pari_sp) pari_sp
(C!func_GG) GEN
Function: _decl_ext
Class: gp2c_internal
Description:
(C!char*) *$1
(C!func_GG) (*$1)(GEN, GEN)
Function: _def_TeXstyle
Class: default
Section: default
C-Name: sd_TeXstyle
Prototype:
Help:
Doc: the bits of this default allow
\kbd{gp} to use less rigid TeX formatting commands in the logfile. This
default is only taken into account when $\kbd{log} = 3$. The bits of
\kbd{TeXstyle} have the following meaning
2: insert \kbd{\bs right} / \kbd{\bs left} pairs where appropriate.
4: insert discretionary breaks in polynomials, to enhance the probability of
a good line break.
The default value is \kbd{0}.
Function: _def_breakloop
Class: gp_default
Section: default
C-Name: sd_breakloop
Prototype:
Help:
Doc: if true, enables the ``break loop'' debugging mode, see
\secref{se:break_loop}.
The default value is \kbd{1} if we are running an interactive \kbd{gp}
session, and \kbd{0} otherwise.
Function: _def_colors
Class: default
Section: default
C-Name: sd_colors
Prototype:
Help:
Doc: this default is only usable if \kbd{gp}
is running within certain color-capable terminals. For instance \kbd{rxvt},
\kbd{color\_xterm} and modern versions of \kbd{xterm} under X Windows, or
standard Linux/DOS text consoles. It causes \kbd{gp} to use a small palette of
colors for its output. With xterms, the colormap used corresponds to the
resources \kbd{Xterm*color$n$} where $n$ ranges from $0$ to $15$ (see the
file \kbd{misc/color.dft} for an example). Accepted values for this
default are strings \kbd{"$a_1$,\dots,$a_k$"} where $k\le7$ and each
$a_i$ is either
\noindent $\bullet$ the keyword \kbd{no} (use the default color, usually
black on transparent background)
\noindent $\bullet$ an integer between 0 and 15 corresponding to the
aforementioned colormap
\noindent $\bullet$ a triple $[c_0,c_1,c_2]$ where $c_0$ stands for foreground
color, $c_1$ for background color, and $c_2$ for attributes (0 is default, 1
is bold, 4 is underline).
The output objects thus affected are respectively error messages,
history numbers, prompt, input line, output, help messages, timer (that's
seven of them). If $k < 7$, the remaining $a_i$ are assumed to be $no$. For
instance
%
\bprog
default(colors, "9, 5, no, no, 4")
@eprog
\noindent
typesets error messages in color $9$, history numbers in color $5$, output in
color $4$, and does not affect the rest.
A set of default colors for dark (reverse video or PC console) and light
backgrounds respectively is activated when \kbd{colors} is set to
\kbd{darkbg}, resp.~\kbd{lightbg} (or any proper prefix: \kbd{d} is
recognized as an abbreviation for \kbd{darkbg}). A bold variant of
\kbd{darkbg}, called \kbd{boldfg}, is provided if you find the former too
pale.
\emacs In the present version, this default is incompatible with PariEmacs.
Changing it will just fail silently (the alternative would be to display
escape sequences as is, since Emacs will refuse to interpret them).
You must customize color highlighting from the PariEmacs side, see its
documentation.
The default value is \kbd{""} (no colors).
Function: _def_compatible
Class: default
Section: default
C-Name: sd_compatible
Prototype:
Help:
Doc: The GP function names and syntax
have changed tremendously between versions 1.xx and 2.00. To help you cope
with this we provide some kind of backward compatibility, depending on the
value of this default:
\quad \kbd{compatible} = 0: no backward compatibility. In this mode, a very
handy function, to be described in \secref{se:whatnow}, is \kbd{whatnow},
which tells you what has become of your favourite functions, which \kbd{gp}
suddenly can't seem to remember.
\quad \kbd{compatible} = 1: warn when using obsolete functions, but
otherwise accept them. The output uses the new conventions though, and
there may be subtle incompatibilities between the behavior of former and
current functions, even when they share the same name (the current function
is used in such cases, of course!). We thought of this one as a transitory
help for \kbd{gp} old-timers. Thus, to encourage switching to \kbd{compatible}=0,
it is not possible to disable the warning.
\quad \kbd{compatible} = 2: use only the old function naming scheme (as
used up to version 1.39.15), but \emph{taking case into account}. Thus
\kbd{I} (${}=\sqrt{-1}$) is not the same as \kbd{i} (user variable, unbound
by default), and you won't get an error message using \kbd{i} as a loop
index as used to be the case.
\quad \kbd{compatible} = 3: try to mimic exactly the former behavior. This
is not always possible when functions have changed in a fundamental way.
But these differences are usually for the better (they were meant to,
anyway), and will probably not be discovered by the casual user.
One adverse side effect is that any user functions and aliases that have
been defined \emph{before} changing \kbd{compatible} will get erased if this
change modifies the function list, i.e.~if you move between groups
$\{0,1\}$ and $\{2,3\}$ (variables are unaffected). We of course strongly
encourage you to try and get used to the setting \kbd{compatible}=0.
Note that the default \tet{new_galois_format} is another compatibility setting,
which is completely independent of \kbd{compatible}.
The default value is \kbd{0}.
Function: _def_datadir
Class: default
Section: default
C-Name: sd_datadir
Prototype:
Help:
Doc: the name of directory containing the optional data files. For now,
this includes the \kbd{elldata}, \kbd{galdata}, \kbd{galpol}, \kbd{seadata}
packages.
The default value is \datadir (the location of installed precomputed data,
can be specified via \kbd{Configure --datadir=}).
Function: _def_debug
Class: default
Section: default
C-Name: sd_debug
Prototype:
Help:
Doc: debugging level. If it is non-zero, some extra messages may be printed,
according to what is going on (see~\b{g}).
The default value is \kbd{0} (no debugging messages).
Function: _def_debugfiles
Class: default
Section: default
C-Name: sd_debugfiles
Prototype:
Help:
Doc: file usage debugging level. If it is non-zero, \kbd{gp} will print
information on file descriptors in use, from PARI's point of view
(see~\b{gf}).
The default value is \kbd{0} (no debugging messages).
Function: _def_debugmem
Class: default
Section: default
C-Name: sd_debugmem
Prototype:
Help:
Doc: memory debugging level. If it is non-zero, \kbd{gp} will regularly print
information on memory usage. If it's greater than 2, it will indicate any
important garbage collecting and the function it is taking place in
(see~\b{gm}).
\noindent {\bf Important Note:} As it noticeably slows down the performance,
the first functionality (memory usage) is disabled if you're not running a
version compiled for debugging (see Appendix~A).
The default value is \kbd{0} (no debugging messages).
Function: _def_echo
Class: gp_default
Section: default
C-Name: sd_echo
Prototype:
Help:
Doc: this toggle is either 1 (on) or 0 (off). When \kbd{echo}
mode is on, each command is reprinted before being executed. This can be
useful when reading a file with the \b{r} or \kbd{read} commands. For
example, it is turned on at the beginning of the test files used to check
whether \kbd{gp} has been built correctly (see \b{e}).
The default value is \kbd{0} (no echo).
Function: _def_factor_add_primes
Class: default
Section: default
C-Name: sd_factor_add_primes
Prototype:
Help:
Doc: this toggle is either 1 (on) or 0 (off). If on,
the integer factorization machinery calls \tet{addprimes} on primes
factor that were difficult to find (larger than $2^24$), so they are
automatically tried first in other factorizations. If a routine is performing
(or has performed) a factorization and is interrupted by an error or via
Control-C, this lets you recover the prime factors already found. The
downside is that a huge \kbd{addprimes} table unrelated to the current
computations will slow down arithmetic functions relying on integer
factorization; one should then empty the table using \tet{removeprimes}.
The defaut value is \kbd{0}.
Function: _def_factor_proven
Class: default
Section: default
C-Name: sd_factor_proven
Prototype:
Help:
Doc: this toggle is either 1 (on) or 0 (off). By
default, the factors output by the integer factorization machinery are
only pseudo-primes, not proven primes. If this toggle is
set, a primality proof is done for each factor and all results depending on
integer factorization are fully proven. This flag does not affect partial
factorization when it is explicitly requested. It also does not affect the
private table managed by \tet{addprimes}: its entries are included as is in
factorizations, without being tested for primality.
The defaut value is \kbd{0}.
Function: _def_format
Class: default
Section: default
C-Name: sd_format
Prototype:
Help:
Doc: of the form x$.n$, where x (conversion style)
is a letter in $\{\kbd{e},\kbd{f},\kbd{g}\}$, and $n$ (precision) is an
integer; this affects the way real numbers are printed:
\item If the conversion style is \kbd{e}, real numbers are printed in
\idx{scientific format}, always with an explicit exponent,
e.g.~\kbd{3.3 E-5}.
\item In style \kbd{f}, real numbers are generally printed in \idx{fixed
floating point format} without exponent, e.g.~\kbd{0.000033}. A large
real number, whose integer part is not well defined (not enough significant
digits), is printed in style~\kbd{e}. For instance \kbd{10.\pow 100} known to
ten significant digits is always printed in style \kbd{e}.
\item In style \kbd{g}, non-zero real numbers are printed in \kbd{f} format,
except when their decimal exponent is $< -4$, in which case they are printed in
\kbd{e} format. Real zeroes (of arbitrary exponent) are printed in \kbd{e}
format.
The precision $n$ is the number of significant digits printed for real
numbers, except if $n<0$ where all the significant digits will be printed
(initial default 28, or 38 for 64-bit machines). For more powerful formatting
possibilities, see \tet{printf} and \tet{Strprintf}.
The default value is \kbd{"g.28"} and \kbd{"g.38"} on 32-bit and
64-bit machines, respectively.
Function: _def_graphcolormap
Class: gp_default
Section: default
C-Name: sd_graphcolormap
Prototype:
Help:
Doc: a vector of colors, to be
used by hi-res graphing routines. Its length is arbitrary, but it must
contain at least 3 entries: the first 3 colors are used for background,
frame/ticks and axes respectively. All colors in the colormap may be freely
used in \tet{plotcolor} calls.
A color is either given as in the default by character strings or by an RGB
code. For valid character strings, see the standard \kbd{rgb.txt} file in X11
distributions, where we restrict to lowercase letters and remove all
whitespace from color names. An RGB code is a vector with 3 integer entries
between 0 and 255. For instance \kbd{[250, 235, 215]} and \kbd{"antique
white"} represent the same color. RGB codes are a little cryptic but often
easier to generate.
The default value is [\kbd{"white"}, \kbd{"black"}, \kbd{"blue"},
\kbd{"violetred"}, \kbd{"red"}, \kbd{"green"}, \kbd{"grey"},
\kbd{"gainsboro"}].
Function: _def_graphcolors
Class: gp_default
Section: default
C-Name: sd_graphcolors
Prototype:
Help:
Doc: entries in the
\tet{graphcolormap} that will be used to plot multi-curves. The successive
curves are drawn in colors
\kbd{graphcolormap[graphcolors[1]]}, \kbd{graphcolormap[graphcolors[2]]},
\dots
cycling when the \kbd{graphcolors} list is exhausted.
The default value is \kbd{[4,5]}.
Function: _def_help
Class: gp_default
Section: default
C-Name: sd_help
Prototype:
Help:
Doc: name of the external help program which will be used from within
\kbd{gp} when extended help is invoked, usually through a \kbd{??} or
\kbd{???} request (see \secref{se:exthelp}), or \kbd{M-H} under readline (see
\secref{se:readline}).
The default value is the local of the \kbd{gphelp} script.
Function: _def_histfile
Class: gp_default
Section: default
C-Name: sd_histfile
Prototype:
Help:
Doc: name of a file where
\kbd{gp} will keep a history of all \emph{input} commands (results are
omitted). If this file exists when the value of \kbd{histfile} changes,
it is read in and becomes part of the session history. Thus, setting this
default in your gprc saves your readline history between sessions. Setting
this default to the empty string \kbd{""} changes it to
\kbd{$<$undefined$>$}
The default value is \kbd{$<$undefined$>$} (no history file).
Function: _def_histsize
Class: default
Section: default
C-Name: sd_histsize
Prototype:
Help:
Doc: \kbd{gp} keeps a history of the last
\kbd{histsize} results computed so far, which you can recover using the
\kbd{\%} notation (see \secref{se:history}). When this number is exceeded,
the oldest values are erased. Tampering with this default is the only way to
get rid of the ones you do not need anymore.
The default value is \kbd{5000}.
Function: _def_lines
Class: gp_default
Section: default
C-Name: sd_lines
Prototype:
Help:
Doc: if set to a positive value, \kbd{gp} prints at
most that many lines from each result, terminating the last line shown with
\kbd{[+++]} if further material has been suppressed. The various \kbd{print}
commands (see \secref{se:gp_program}) are unaffected, so you can always type
\kbd{print(\%)} or \b{a} to view the full result. If the actual screen width
cannot be determined, a ``line'' is assumed to be 80 characters long.
The default value is \kbd{0}.
Function: _def_log
Class: default
Section: default
C-Name: sd_log
Prototype:
Help:
Doc: this can be either 0 (off) or 1, 2, 3
(on, see below for the various modes). When logging mode is turned on, \kbd{gp}
opens a log file, whose exact name is determined by the \kbd{logfile}
default. Subsequently, all the commands and results will be written to that
file (see \b{l}). In case a file with this precise name already existed, it
will not be erased: your data will be \emph{appended} at the end.
The specific positive values of \kbd{log} have the following meaning
1: plain logfile
2: emit color codes to the logfile (if \kbd{colors} is set).
3: write LaTeX output to the logfile (can be further customized using
\tet{TeXstyle}).
The default value is \kbd{0}.
Function: _def_logfile
Class: default
Section: default
C-Name: sd_logfile
Prototype:
Help:
Doc: name of the log file to be used when the \kbd{log} toggle is on.
Environment and time expansion are performed.
The default value is \kbd{"pari.log"}.
Function: _def_new_galois_format
Class: default
Section: default
C-Name: sd_new_galois_format
Prototype:
Help:
Doc: this toggle is either 1 (on) or 0 (off). If on,
the \tet{polgalois} command will use a different, more
consistent, naming scheme for Galois groups. This default is provided to
ensure that scripts can control this behavior and do not break unexpectedly.
The defaut value is \kbd{0}. This value will change to $1$ (set) in the next
major version.
Function: _def_output
Class: default
Section: default
C-Name: sd_output
Prototype:
Help:
Doc: there are three possible values: 0
(=~\var{raw}), 1 (=~\var{prettymatrix}), or 3
(=~\var{external} \var{prettyprint}). This
means that, independently of the default \kbd{format} for reals which we
explained above, you can print results in three ways:
$\bullet$ \tev{raw format}, i.e.~a format which is equivalent to what you
input, including explicit multiplication signs, and everything typed on a
line instead of two dimensional boxes. This can have several advantages, for
instance it allows you to pick the result with a mouse or an editor, and to
paste it somewhere else.
$\bullet$ \tev{prettymatrix format}: this is identical to raw format, except
that matrices are printed as boxes instead of horizontally. This is
prettier, but takes more space and cannot be used for input. Column vectors
are still printed horizontally.
$\bullet$ \tev{external prettyprint}: pipes all \kbd{gp}
output in TeX format to an external prettyprinter, according to the value of
\tet{prettyprinter}. The default script (\tet{tex2mail}) converts its input
to readable two-dimensional text.
Independently of the setting of this default, an object can be printed
in any of the three formats at any time using the commands \b{a} and \b{m}
and \b{B} respectively.
The default value is \kbd{1} (\var{prettymatrix}).
Function: _def_parisize
Class: default
Section: default
C-Name: sd_parisize
Prototype:
Help:
Doc: \kbd{gp}, and in fact any program using the PARI
library, needs a \tev{stack} in which to do its computations. \kbd{parisize}
is the stack size, in bytes. It is strongly recommended you increase this
default (using the \kbd{-s} command-line switch, or a \tet{gprc}) if you can
afford it. Don't increase it beyond the actual amount of RAM installed on
your computer or \kbd{gp} will spend most of its time paging.
In case of emergency, you can use the \tet{allocatemem} function to
increase \kbd{parisize}, once the session is started.
The default value is 4M, resp.~8M on a 32-bit, resp.~64-bit machine.
Function: _def_path
Class: default
Section: default
C-Name: sd_path
Prototype:
Help:
Doc: this is a list of directories, separated by colons ':'
(semicolons ';' in the DOS world, since colons are preempted for drive names).
When asked to read a file whose name is not given by an absolute path
(does not start with \kbd{/}, \kbd{./} or \kbd{../}), \kbd{gp} will look for
it in these directories, in the order they were written in \kbd{path}. Here,
as usual, \kbd{.} means the current directory, and \kbd{..} its immediate
parent. Environment expansion is performed.
The default value is \kbd{".:\til:\til/gp"} on UNIX systems,
\kbd{".;C:\bs;C:\bs GP"} on DOS, OS/2 and Windows, and \kbd{"."} otherwise.
Function: _def_prettyprinter
Class: default
Section: default
C-Name: sd_prettyprinter
Prototype:
Help:
Doc: the name of an external prettyprinter to use when
\kbd{output} is~3 (alternate prettyprinter). Note that the default
\tet{tex2mail} looks much nicer than the built-in ``beautified
format'' ($\kbd{output} = 2$).
The default value is \kbd{"tex2mail -TeX -noindent -ragged -by\_par"}.
Function: _def_primelimit
Class: default
Section: default
C-Name: sd_primelimit
Prototype:
Help:
Doc: \kbd{gp} precomputes a list of
all primes less than \kbd{primelimit} at initialization time. These are used
by many arithmetic functions, usually for trial division purposes. If you do
not plan to invoke any of them, you can just set this to 1. The maximal value
is a little less than $2^{32}$ (resp $2^{64}$) on a 32-bit (resp.~64-bit)
machine.
Since almost all arithmetic functions eventually require some table of prime
numbers, PARI currently guarantees that the first 6547 primes, up to and
including 65557, are precomputed, even if \kbd{primelimit} is $1$.
The default value is \kbd{500k}.
Function: _def_prompt
Class: gp_default
Section: default
C-Name: sd_prompt
Prototype:
Help:
Doc: a string that will be printed as
prompt. Note that most usual escape sequences are available there: \b{e} for
Esc, \b{n} for Newline, \dots, \kbd{\bs\bs} for \kbd{\bs}. Time expansion is
performed.
This string is sent through the library function \tet{strftime} (on a
Unix system, you can try \kbd{man strftime} at your shell prompt). This means
that \kbd{\%} constructs have a special meaning, usually related to the time
and date. For instance, \kbd{\%H} = hour (24-hour clock) and \kbd{\%M} =
minute [00,59] (use \kbd{\%\%} to get a real \kbd{\%}).
If you use \kbd{readline}, escape sequences in your prompt will result in
display bugs. If you have a relatively recent \kbd{readline} (see the comment
at the end of \secref{se:def,colors}), you can brace them with special sequences
(\kbd{\bs[} and \kbd{\bs]}), and you will be safe. If these just result in
extra spaces in your prompt, then you'll have to get a more recent
\kbd{readline}. See the file \kbd{misc/gprc.dft} for an example.
\emacs {\bf Caution}: PariEmacs needs to know about the prompt pattern to
separate your input from previous \kbd{gp} results, without ambiguity. It is
not a trivial problem to adapt automatically this regular expression to an
arbitrary prompt (which can be self-modifying!). See PariEmacs's
documentation.
The default value is \kbd{"? "}.
Function: _def_prompt_cont
Class: gp_default
Section: default
C-Name: sd_prompt_cont
Prototype:
Help:
Doc: a string that will be printed
to prompt for continuation lines (e.g. in between braces, or after a
line-terminating backslash). Everything that applies to \kbd{prompt}
applies to \kbd{prompt\_cont} as well.
The defaut value is \kbd{""}.
Function: _def_psfile
Class: gp_default
Section: default
C-Name: sd_psfile
Prototype:
Help:
Doc: name of the default file where
\kbd{gp} is to dump its PostScript drawings (these are appended, so that no
previous data are lost). Environment and time expansion are performed.
The default value is \kbd{"pari.ps"}.
Function: _def_readline
Class: gp_default
Section: default
C-Name: sd_readline
Prototype:
Help:
Doc: switches readline line-editing
facilities on and off. This may be useful if you are running \kbd{gp} in a Sun
\tet{cmdtool}, which interacts badly with readline. Of course, until readline
is switched on again, advanced editing features like automatic completion
and editing history are not available.
The default value is \kbd{1}.
Function: _def_realprecision
Class: default
Section: default
C-Name: sd_realprecision
Prototype:
Help:
Doc:
\subsecidx{realprecision} : the number of significant digits and, at the same
time, the number of printed digits of real numbers (see~\b{p}). Note that
PARI internal precision works on a word basis (32 or 64 bits), hence may not
coincide with the number of decimal digits you input. For instance to get 2
decimal digits you need one word of precision which, on a 32-bit machine,
actually gives you 9 digits ($9 < \log_{10}(2^{32}) < 10$):
\bprog
? default(realprecision, 2)
realprecision = 9 significant digits (2 digits displayed)
@eprog
The default value is \kbd{28}, resp.~\kbd{38} on a 32-bit, resp~.64-bit,
machine.
Function: _def_recover
Class: gp_default
Section: default
C-Name: sd_recover
Prototype:
Help:
Doc: this toggle is either 1 (on) or 0 (off). If you change this to $0$, any
error becomes fatal and causes the gp interpreter to exit immediately. Can be
useful in batch job scripts.
The default value is \kbd{1}.
Function: _def_secure
Class: default
Section: default
C-Name: sd_secure
Prototype:
Help:
Doc: this toggle is either 1 (on) or 0 (off). If on, the \tet{system} and
\tet{extern} command are disabled. These two commands are potentially
dangerous when you execute foreign scripts since they let \kbd{gp} execute
arbitrary UNIX commands. \kbd{gp} will ask for confirmation before letting
you (or a script) unset this toggle.
The default value is \kbd{0}.
Function: _def_seriesprecision
Class: default
Section: default
C-Name: sd_seriesprecision
Prototype:
Help:
Doc: number of significant terms
when converting a polynomial or rational function to a power series
(see~\b{ps}).
The default value is \kbd{16}.
Function: _def_simplify
Class: default
Section: default
C-Name: sd_simplify
Prototype:
Help:
Doc: this toggle is either 1 (on) or 0 (off). When the PARI library computes
something, the type of the
result is not always the simplest possible. The only type conversions which
the PARI library does automatically are rational numbers to integers (when
they are of type \typ{FRAC} and equal to integers), and similarly rational
functions to polynomials (when they are of type \typ{RFRAC} and equal to
polynomials). This feature is useful in many cases, and saves time, but can
be annoying at times. Hence you can disable this and, whenever you feel like
it, use the function \kbd{simplify} (see Chapter 3) which allows you to
simplify objects to the simplest possible types recursively (see~\b{y}).
\sidx{automatic simplification}
The default value is \kbd{1}.
Function: _def_strictmatch
Class: default
Section: default
C-Name: sd_strictmatch
Prototype:
Help:
Doc: this toggle is either 1 (on) or 0 (off). If on, unused characters after a
sequence has been
processed will produce an error. Otherwise just a warning is printed. This
can be useful when you are unsure how many parentheses you have to close
after complicated nested loops. Please do not use this; find a decent
text-editor instead.
The default value is \kbd{1}.
Function: _def_timer
Class: gp_default
Section: default
C-Name: sd_timer
Prototype:
Help:
Doc: this toggle is either 1 (on) or 0 (off). If on, every instruction
sequence (anything ended by a
newline in your input) is timed, to some accuracy depending on the hardware
and operating system. The time measured is the user \idx{CPU time},
\emph{not} including the time for printing the results (see \kbd{\#} and
\kbd{\#\#}).
The default value is \kbd{0}.
Function: _default_check
Class: gp2c_internal
Help: Code to check for the default marker
Description:
(C!GEN):bool !$(1)
(var):bool $(1) == -1
Function: _default_marker
Class: gp2c_internal
Help: Code for default value of GP function
Description:
(C!GEN) NULL
(var) -1
(small) 0
(str) ""
Function: _derivfun
Class: basic
Section: programming/internals
C-Name: derivfun0
Prototype: GGp
Help: _derivfun(closure,[args]) numerical derivation of closure with respect to
the first variable at (args).
Function: _diffptr
Class: gp2c_internal
Help: Table of difference of primes.
Description:
():bptr diffptr
Function: _err_primes
Class: gp2c_internal
Description:
():void pari_err(primer1)
Function: _err_type
Class: gp2c_internal
Description:
(str):void pari_err(typeer, $1)
Function: _eval_mnemonic
Class: basic
Section: programming/internals
C-Name: eval_mnemonic
Prototype: lGs
Help: Convert a mnemonic string to a flag.
Function: _factor_Aurifeuille
Class: basic
Section: programming/internals
C-Name: factor_Aurifeuille
Prototype: GL
Help: _factor_Aurifeuille(a,d): return an algebraic factor of Phi_d(a), a != 0
Function: _factor_Aurifeuille_prime
Class: basic
Section: programming/internals
C-Name: factor_Aurifeuille_prime
Prototype: GL
Help: _factor_Aurifeuille_prime(p,d): return an algebraic factor of Phi_d(p), p prime
Function: _formatcode
Class: gp2c_internal
Description:
(#small):void $1
(small):small %ld
(#str):void $%1
(str):str %s
(gen):gen %Ps
Function: _forprime_next
Class: gp2c_internal
Help: Compute the next prime from the diffptr table.
Description:
(*small,*bptr):void NEXT_PRIME_VIADIFF($1, $2)
Function: _forvec_start
Class: gp2c_internal
Help: Initializes parameters for forvec_start.
Description:
(gen, small, &gen, &func_GG):vec forvec_start($1, $2, &$3, &$4)
Function: _gerepileall
Class: gp2c_internal
Description:
(pari_sp,gen):void:parens $2 = gerepilecopy($1, $2)
(pari_sp,gen,...):void gerepileall($1, ${nbarg 1 sub}, ${stdref 3 code})
Function: _gerepileupto
Class: gp2c_internal
Description:
(pari_sp, int):int gerepileuptoint($1, $2)
(pari_sp, mp):mp gerepileuptoleaf($1, $2)
(pari_sp, vecsmall):vecsmall gerepileuptoleaf($1, $2)
(pari_sp, vec):vec gerepileupto($1, $2)
(pari_sp, gen):gen gerepileupto($1, $2)
Function: _low_stack_lim
Class: gp2c_internal
Description:
(pari_sp,pari_sp):bool low_stack($1, stack_lim($2, 1))
Function: _maxprime
Class: gp2c_internal
Description:
():small maxprime()
Function: _proto_code
Class: gp2c_internal
Help: Code for argument of a function
Description:
(var) n
(C!long) L
(C!GEN) G
(C!char*) s
Function: _proto_max_args
Class: gp2c_internal
Help: Max number of arguments supported by install.
Description:
(20)
Function: _proto_ret
Class: gp2c_internal
Help: Code for return value of functions
Description:
(C!void) v
(C!int) i
(C!long) l
(C!GEN)
Function: _stack_lim
Class: gp2c_internal
Description:
(pari_sp,small):pari_sp stack_lim($1, $2)
Function: _strtoclosure
Class: gp2c_internal
Description:
(str):closure strtofunction($1)
(str,gen,...):closure strtoclosure($1, ${nbarg 1 sub}, $3)
Function: _toGENstr
Class: gp2c_internal
Description:
(str):genstr strtoGENstr($1)
(gen):genstr GENtoGENstr($1)
Function: _tovec
Class: gp2c_internal
Help: Create a vector holding the arguments (shallow)
Description:
():vec cgetg(1, t_VEC)
(gen):vec mkvec($1)
(gen,gen):vec mkvec2($1, $2)
(gen,gen,gen):vec mkvec3($1, $2, $3)
(gen,gen,gen,gen):vec mkvec4($1, $2, $3, $4)
(gen,...):vec mkvecn($#, $2)
Function: _tovecprec
Class: gp2c_internal
Help: Create a vector holding the arguments and prec (shallow)
Description:
():vec:prec mkvecs(prec)
(gen):vec:prec mkvec2($1, stoi(prec))
(gen,gen):vec:prec mkvec3($1, $2, stoi(prec))
(gen,gen,gen):vec:prec mkvec4($1, $2, $3, stoi(prec))
(gen,...):vec:prec mkvecn(${nbarg 1 add}, $2, stoi(prec))
Function: _type_preorder
Class: gp2c_internal
Help: List of chains of type preorder.
Description:
(empty, void, bool, small, int, mp, gen)
(empty, real, mp)
(empty, bptr, small)
(empty, bool, lg, small)
(empty, bool, small_int, small)
(empty, void, negbool, bool)
(empty, typ, str, genstr,gen)
(empty, vecsmall, gen)
(empty, vec, gen)
(empty, list, gen)
(empty, closure, gen)
(empty, bnr, bnf, nf, vec)
(empty, bnr, bnf, clgp, vec)
(empty, bell, ell, vec)
(empty, prid, vec)
(empty, gal, vec)
(empty, var, pol, gen)
Function: _typedef
Class: gp2c_internal
Description:
(empty) void
(void) void
(negbool) long
(bool) long
(small_int) int
(small) long
(int) GEN
(real) GEN
(mp) GEN
(lg) long
(vecsmall) GEN
(vec) GEN
(list) GEN
(var) long
(pol) GEN
(gen) GEN
(closure) GEN
(genstr) GEN
(str) char*
(bptr) byteptr
(func_GG) func_GG
(pari_sp) pari_sp
(typ) long
(nf) GEN
(bnf) GEN
(bnr) GEN
(ell) GEN
(bell) GEN
(clgp) GEN
(prid) GEN
(gal) GEN
Function: _void_if
Class: basic
Section: programming/internals
C-Name: ifpari_void
Prototype: vGDIDI
Help: internal variant of if() that does not return a value.
Function: _wrap_G
Class: gp2c_internal
C-Name: gp_call
Prototype: G
Description:
(gen):gen $1
Function: _wrap_bG
Class: gp2c_internal
C-Name: gp_callbool
Prototype: lG
Description:
(bool):bool $1
Function: _wrap_vG
Class: gp2c_internal
C-Name: gp_callvoid
Prototype: lG
Description:
(void):small 0
Function: _||_
Class: basic
Section: symbolic_operators
C-Name: orpari
Prototype: GE
Help: x||y: inclusive OR.
Description:
(bool, bool):bool:parens $(1) || $(2)
Function: _~
Class: basic
Section: symbolic_operators
C-Name: gtrans
Prototype: G
Help: x~: transpose of x.
Description:
(vec):vec gtrans($1)
(gen):gen gtrans($1)
Function: abs
Class: basic
Section: transcendental
C-Name: gabs
Prototype: Gp
Help: abs(x): absolute value (or modulus) of x.
Description:
(small):small labs($1)
(int):int mpabs($1)
(real):real mpabs($1)
(mp):mp mpabs($1)
(gen):gen:prec gabs($1, prec)
Doc: absolute value of $x$ (modulus if $x$ is complex).
Rational functions are not allowed. Contrary to most transcendental
functions, an exact argument is \emph{not} converted to a real number before
applying \kbd{abs} and an exact result is returned if possible.
\bprog
? abs(-1)
%1 = 1
? abs(3/7 + 4/7*I)
%2 = 5/7
? abs(1 + I)
%3 = 1.414213562373095048801688724
@eprog\noindent
If $x$ is a polynomial, returns $-x$ if the leading coefficient is
real and negative else returns $x$. For a power series, the constant
coefficient is considered instead.
Function: acos
Class: basic
Section: transcendental
C-Name: gacos
Prototype: Gp
Help: acos(x): arc cosine of x.
Doc: principal branch of $\text{cos}^{-1}(x) = -i \log (x + i\sqrt{1-x^2})$.
In particular, $\text{Re(acos}(x))\in [0,\pi]$ and if $x\in \R$ and $|x|>1$,
then $\text{acos}(x)$ is complex. The branch cut is in two pieces:
$]-\infty,-1]$ , continuous with quadrant II, and $[1,+\infty[$, continuous
with quadrant IV. We have $\text{acos}(x) = \pi/2 - \text{asin}(x)$ for all
$x$.
Function: acosh
Class: basic
Section: transcendental
C-Name: gach
Prototype: Gp
Help: acosh(x): inverse hyperbolic cosine of x.
Doc: principal branch of $\text{cosh}^{-1}(x) = 2
\log(\sqrt{(x+1)/2} + \sqrt{(x-1)/2})$. In particular,
$\text{Re}(\text{acosh}(x))\geq 0$ and
$\text{In}(\text{acosh}(x))\in ]-\pi,\pi]0$; if $x\in \R$ and $x<1$, then
$\text{acosh}(x)$ is complex.
Function: addhelp
Class: basic
Section: programming/specific
C-Name: addhelp
Prototype: vrs
Help: addhelp(sym,str): add/change help message for the symbol sym.
Doc: changes the help message for the symbol \kbd{sym}. The string \var{str} is
expanded on the spot and stored as the online help for \kbd{sym}. If \kbd{sym}
is a function \emph{you} have defined, its definition will still be printed
before the message \var{str}. It is recommended that you document global
variables and user functions in this way. Of course \kbd{gp} will not protest
if you skip this. It is possible to attach a help text to an alias, but it
will never be shown: aliases are expanded by the \kbd{?} help operator and we
get the help of the functions the alias points to.
Nothing prevents you from modifying the help of built-in PARI
functions. But if you do, we would like to hear why you needed to do it!
Function: addprimes
Class: basic
Section: number_theoretical
C-Name: addprimes
Prototype: DG
Help: addprimes({x=[]}): add primes in the vector x to the prime table to
be used in trial division. x may also be a single integer. Composite
"primes" are NOT allowed!
Doc: adds the integers contained in the
vector $x$ (or the single integer $x$) to a special table of
``user-defined primes'', and returns that table. Whenever \kbd{factor} is
subsequently called, it will trial divide by the elements in this table.
If $x$ is empty or omitted, just returns the current list of extra
primes.
The entries in $x$ must be primes: there is no internal check, even if
the \tet{factor_proven} default is set. To remove primes from the list use
\kbd{removeprimes}.
Function: agm
Class: basic
Section: transcendental
C-Name: agm
Prototype: GGp
Help: agm(x,y): arithmetic-geometric mean of x and y.
Doc: arithmetic-geometric mean of $x$ and $y$. In the
case of complex or negative numbers, the principal square root is always
chosen. $p$-adic or power series arguments are also allowed. Note that
a $p$-adic agm exists only if $x/y$ is congruent to 1 modulo $p$ (modulo
16 for $p=2$). $x$ and $y$ cannot both be vectors or matrices.
Function: alarm
Class: gp
Section: programming/specific
C-Name: alarm0
Prototype: vD0,L,
Help: alarm({s = 0}): trigger an "alarmer" exception after s seconds,
cancelling any previously set alarm. Stop a pending alarm if s = 0 or is
omitted.
Doc: trigger an \var{alarmer} exception after $s$ seconds, cancelling any
previously set alarm. Stop a pending alarm if s = 0 or is omitted.
For example, the function \kbd{timefact(N,sec)} below
will try to factor $N$ and give up after \var{sec} seconds,
returning a partial factorisation.
\bprog
default(factor_add_primes,1);
default(primelimit,16777216);
timefact(N,sec)=
{
trap(alarmer,factor(N,0),alarm(sec);my(F=factor(N));alarm(0);F);
}
@eprog
Function: algdep
Class: basic
Section: linear_algebra
C-Name: algdep0
Prototype: GLD0,L,
Help: algdep(x,k,{flag=0}): algebraic relations up to degree n of x, using
lindep([1,x,...,x^(k-1)], flag).
Doc: \sidx{algebraic dependence}
$x$ being real/complex, or $p$-adic, finds a polynomial of degree at most
$k$ with integer coefficients having $x$ as approximate root. Note that the
polynomial which is obtained is not necessarily the ``correct'' one. In fact
it is not even guaranteed to be irreducible. One can check the closeness
either by a polynomial evaluation (use \tet{subst}), or by computing the
roots of the polynomial given by \kbd{algdep} (use \tet{polroots}).
Internally, \tet{lindep}$([1,x,\ldots,x^k], \fl)$ is used. If
\tet{lindep} is not able to find a relation and returns a lower bound for the
sup norm of the smallest relation, \tet{algdep} returns that bound instead.
A non-zero value of $\fl$ may improve on the default behavior
if the input number is known to a \emph{huge} accuracy, and you suspect the
last bits are incorrect (this truncates the number, throwing away the least
significant bits), but default values are usually sufficient:
\bprog
\\\\\\\\\ LLL
? \p200
? algdep(2^(1/6)+3^(1/5), 30); \\ wrong in 0.8s
? algdep(2^(1/6)+3^(1/5), 30, 100); \\ wrong in 0.4s
? algdep(2^(1/6)+3^(1/5), 30, 170); \\ right in 0.8s
? algdep(2^(1/6)+3^(1/5), 30, 200); \\ wrong in 1.0s
? \p250
? algdep(2^(1/6)+3^(1/5), 30); \\ right in 1.0s
? algdep(2^(1/6)+3^(1/5), 30, 200); \\ right in 1.0s
? \p500
? algdep(2^(1/6)+3^(1/5), 30); \\ right in 2.9s
? \p1000
? algdep(2^(1/6)+3^(1/5), 30); \\ right in 10.6s
\\\\\\\\\ PSLQ
? \p200
? algdep(2^(1/6)+3^(1/5), 30, -3); \\ failure in 15s
? \p250
? algdep(2^(1/6)+3^(1/5), 30, -3); \\ right in 20s
? \p500
? algdep(2^(1/6)+3^(1/5), 30, -3); \\ right in 52s
? \p1000
? algdep(2^(1/6)+3^(1/5), 30, -3); \\ right in 164s
@eprog\noindent
The changes in \kbd{defaultprecision} only affect the quality of the
initial approximation to $2^{1/6} + 3^{1/5}$, \kbd{algdep} itself uses
exact operations (the size of its operands depend on the accuracy of the
input of course: more accurate input means slower operations).
Proceeding by increments of 5 digits of accuracy, \kbd{algdep} with default
flag produces its first correct result at 205 digits, and from then on a
steady stream of correct results. Interestingly enough, our PSLQ also
reliably succeeds from 205 digits on (and is 15 times slower at that
accuracy).
The above example is the test case studied in a 2000 paper by Borwein and
Lisonek: Applications of integer relation algorithms, \emph{Discrete Math.},
{\bf 217}, p.~65--82. The paper concludes in the superiority of the PSLQ
algorithm, which either shows that PARI's implementation of PSLQ is lacking,
or that its LLL is extremely good. The version of PARI tested there was
1.39, which succeeded reliably from precision 265 on, in about 200 as much
time as the current version.
Variant: Also available is \fun{GEN}{algdep}{GEN x, long k} ($\fl=0$).
Function: alias
Class: basic
Section: programming/specific
C-Name: alias0
Prototype: vrr
Help: alias(newsym,sym): defines the symbol newsym as an alias for the symbol
sym.
Doc: defines the symbol \var{newsym} as an alias for the the symbol \var{sym}:
\bprog
? alias("det", "matdet");
? det([1,2;3,4])
%1 = -2
@eprog\noindent
You are not restricted to ordinary functions, as in the above example:
to alias (from/to) member functions, prefix them with `\kbd{\_.}';
to alias operators, use their internal name, obtained by writing
\kbd{\_} in lieu of the operators argument: for instance, \kbd{\_!} and
\kbd{!\_} are the internal names of the factorial and the
logical negation, respectively.
\bprog
? alias("mod", "_.mod");
? alias("add", "_+_");
? alias("_.sin", "sin");
? mod(Mod(x,x^4+1))
%2 = x^4 + 1
? add(4,6)
%3 = 10
? Pi.sin
%4 = 0.E-37
@eprog
Alias expansion is performed directly by the internal GP compiler.
Note that since alias is performed at compilation-time, it does not
require any run-time processing, however it only affects GP code
compiled \emph{after} the alias command is evaluated. A slower but more
flexible alternative is to use variables. Compare
\bprog
? fun = sin;
? g(a,b) = intnum(t=a,b,fun(t));
? g(0, Pi)
%3 = 2.0000000000000000000000000000000000000
? fun = cos;
? g(0, Pi)
%5 = 1.8830410776607851098 E-39
@eprog\noindent
with
\bprog
? alias(fun, sin);
? g(a,b) = intnum(t=a,b,fun(t));
? g(0,Pi)
%2 = 2.0000000000000000000000000000000000000
? alias(fun, cos); \\ Oops. Does not affect *previous* definition!
? g(0,Pi)
%3 = 2.0000000000000000000000000000000000000
? g(a,b) = intnum(t=a,b,fun(t)); \\ Redefine, taking new alias into account
? g(0,Pi)
%5 = 1.8830410776607851098 E-39
@eprog
A sample alias file \kbd{misc/gpalias} is provided with
the standard distribution.
Function: allocatemem
Class: gp
Section: programming/specific
C-Name: allocatemem0
Prototype: vDG
Help: allocatemem({s=0}): allocates a new stack of s bytes. doubles the
stack if s is omitted.
Doc: this very special operation
allows the user to change the stack size \emph{after} initialization. $x$
must be a non-negative integer. If $x \neq 0$, a new stack of size
$16*\ceil{x/16}$ bytes is allocated. If $x=0$, the size of
the new stack is twice the size of the old one. The old stack is discarded.
\misctitle{Warning} This function should be typed at the \kbd{gp} prompt in
interactive usage, or left by itself at the start of batch files.
It cannot be used meaningfully in loop-like constructs, or as part of a
larger expression sequence, e.g
\bprog
allocatemem(); x = 1; \\@com This will not set \kbd{x}!
@eprog\noindent
In fact, all loops are immediately exited, user functions terminated, and
the rest of the sequence following \kbd{allocatemem()} is silently
discarded, as well as all pending sequences of instructions. We just go on
reading the next instruction sequence from the file we're in (or from the
user). In particular, we have the following possibly unexpected behavior: in
\bprog
read("file.gp"); x = 1
@eprog\noindent were \kbd{file.gp} contains an \kbd{allocatemem} statement,
the \kbd{x = 1} is never executed, since all pending instructions in the
current sequence are discarded.
The technical reason is that this routine moves the stack, so temporary
objects created during the current expression evaluation are not correct
anymore. (In particular byte-compiled expressions, which are allocated on
the stack.) To avoid accessing obsolete pointers to the old stack, this
routine ends by a \kbd{longjmp}.
Function: apply
Class: basic
Section: programming/specific
C-Name: apply0
Prototype: GG
Help: apply(f, A): apply function f to each entry in A.
Wrapper: (G)
Description:
(closure,gen):gen genapply(${1 cookie}, ${1 wrapper}, $2)
Doc: Apply the \typ{CLOSURE} \kbd{f} to the entries of \kbd{A}. If \kbd{A}
is a scalar, return \kbd{f(A)}. If \kbd{A} is a polynomial or power series,
apply \kbd{f} on all coefficients. If \kbd{A} is a vector or list, return
the elements $f(x)$ where $x$ runs through \kbd{A}. If \kbd{A} is a matrix,
return the matrix whose entries are the $f(\kbd{A[i,j]})$.
\bprog
? apply(x->x^2, [1,2,3,4])
%1 = [1, 4, 9, 16]
? apply(x->x^2, [1,2;3,4])
%2 =
[1 4]
[9 16]
? apply(x->x^2, 4*x^2 + 3*x+ 2)
%3 = 16*x^2 + 9*x + 4
@eprog\noindent Note that many functions already act componentwise on
vectors or matrices, but they almost never act on lists; in this
case, \kbd{apply} is a good solution:
\bprog
? L = List([Mod(1,3), Mod(2,4)]);
? lift(L)
*** at top-level: lift(L)
*** ^-------
*** lift: incorrect type in lift.
? apply(lift, L);
%2 = List([1, 2])
@eprog
\synt{genapply}{void *E, GEN (*fun)(void*,GEN), GEN a}.
Function: arg
Class: basic
Section: transcendental
C-Name: garg
Prototype: Gp
Help: arg(x): argument of x,such that -pi<arg(x)<=pi.
Doc: argument of the complex number $x$, such that $-\pi<\text{arg}(x)\le\pi$.
Function: asin
Class: basic
Section: transcendental
C-Name: gasin
Prototype: Gp
Help: asin(x): arc sine of x.
Doc: principal branch of $\text{sin}^{-1}(x) = -i \log(ix + \sqrt{1 - x^2})$.
In particular, $\text{Re(asin}(x))\in [-\pi/2,\pi/2]$ and if $x\in \R$ and
$|x|>1$ then $\text{asin}(x)$ is complex. The branch cut is in two pieces:
$]-\infty,-1]$, continuous with quadrant II, and $[1,+\infty[$ continuous
with quadrant IV. The function satisfies $i \text{asin}(x) =
\text{asinh}(ix)$.
Function: asinh
Class: basic
Section: transcendental
C-Name: gash
Prototype: Gp
Help: asinh(x): inverse hyperbolic sine of x.
Doc: principal branch of $\text{sinh}^{-1}(x) = \log(x + \sqrt{1+x^2})$. In
particular $\text{Im(asinh}(x))\in [-\pi/2,\pi/2]$.
The branch cut is in two pieces: [-i oo ,-i], continuous with quadrant III
and [i,+i oo [ continuous with quadrant I.
Function: atan
Class: basic
Section: transcendental
C-Name: gatan
Prototype: Gp
Help: atan(x): arc tangent of x.
Doc: principal branch of $\text{tan}^{-1}(x) = \log ((1+ix)/(1-ix)) /
2i$. In particular the real part of $\text{atan}(x))$ belongs to
$]-\pi/2,\pi/2[$.
The branch cut is in two pieces:
$]-i\infty,-i[$, continuous with quadrant IV, and $]i,+i \infty[$ continuous
with quadrant II. The function satisfies $i \text{atan}(x) =
-i\text{atanh}(ix)$ for all $x\neq \pm i$.
Function: atanh
Class: basic
Section: transcendental
C-Name: gath
Prototype: Gp
Help: atanh(x): inverse hyperbolic tangent of x.
Doc: principal branch of $\text{tanh}^{-1}(x) = log ((1+x)/(1-x)) / 2$. In
particular the imaginary part of $\text{atanh}(x)$ belongs to
$[-\pi/2,\pi/2]$; if $x\in \R$ and $|x|>1$ then $\text{atanh}(x)$ is complex.
Function: bernfrac
Class: basic
Section: transcendental
C-Name: bernfrac
Prototype: L
Help: bernfrac(x): Bernoulli number B_x, as a rational number.
Doc: Bernoulli number\sidx{Bernoulli numbers} $B_x$,
where $B_0=1$, $B_1=-1/2$, $B_2=1/6$,\dots, expressed as a rational number.
The argument $x$ should be of type integer.
Function: bernreal
Class: basic
Section: transcendental
C-Name: bernreal
Prototype: Lp
Help: bernreal(x): Bernoulli number B_x, as a real number with the current
precision.
Doc: Bernoulli number\sidx{Bernoulli numbers}
$B_x$, as \kbd{bernfrac}, but $B_x$ is returned as a real number
(with the current precision).
Function: bernvec
Class: basic
Section: transcendental
C-Name: bernvec
Prototype: L
Help: bernvec(x): Vector of rational Bernoulli numbers B_0, B_2,...up to
B_(2x).
Doc: creates a vector containing, as rational numbers,
the \idx{Bernoulli numbers} $B_0$, $B_2$,\dots, $B_{2x}$.
This routine is obsolete. Use \kbd{bernfrac} instead each time you need a
Bernoulli number in exact form.
\misctitle{Note} This routine is implemented using repeated independent
calls to \kbd{bernfrac}, which is faster than the standard recursion in exact
arithmetic. It is only kept for backward compatibility: it is not faster than
individual calls to \kbd{bernfrac}, its output uses a lot of memory space,
and coping with the index shift is awkward.
Function: besselh1
Class: basic
Section: transcendental
C-Name: hbessel1
Prototype: GGp
Help: besselh1(nu,x): H^1-bessel function of index nu and argument x.
Doc: $H^1$-Bessel function of index \var{nu} and argument $x$.
Function: besselh2
Class: basic
Section: transcendental
C-Name: hbessel2
Prototype: GGp
Help: besselh2(nu,x): H^2-bessel function of index nu and argument x.
Doc: $H^2$-Bessel function of index \var{nu} and argument $x$.
Function: besseli
Class: basic
Section: transcendental
C-Name: ibessel
Prototype: GGp
Help: besseli(nu,x): I-bessel function of index nu and argument x.
Doc: $I$-Bessel function of index \var{nu} and
argument $x$. If $x$ converts to a power series, the initial factor
$(x/2)^\nu/\Gamma(\nu+1)$ is omitted (since it cannot be represented in PARI
when $\nu$ is not integral).
Function: besselj
Class: basic
Section: transcendental
C-Name: jbessel
Prototype: GGp
Help: besselj(nu,x): J-bessel function of index nu and argument x.
Doc: $J$-Bessel function of index \var{nu} and
argument $x$. If $x$ converts to a power series, the initial factor
$(x/2)^\nu/\Gamma(\nu+1)$ is omitted (since it cannot be represented in PARI
when $\nu$ is not integral).
Function: besseljh
Class: basic
Section: transcendental
C-Name: jbesselh
Prototype: GGp
Help: besseljh(n,x): J-bessel function of index n+1/2 and argument x, where
n is a non-negative integer.
Doc: $J$-Bessel function of half integral index.
More precisely, $\kbd{besseljh}(n,x)$ computes $J_{n+1/2}(x)$ where $n$
must be of type integer, and $x$ is any element of $\C$. In the
present version \vers, this function is not very accurate when $x$ is small.
Function: besselk
Class: basic
Section: transcendental
C-Name: kbessel
Prototype: GGp
Help: besselk(nu,x): K-bessel function of index nu and argument x.
Doc: $K$-Bessel function of index \var{nu} and argument $x$.
Function: besseln
Class: basic
Section: transcendental
C-Name: nbessel
Prototype: GGp
Help: besseln(nu,x): N-bessel function of index nu and argument x.
Doc: $N$-Bessel function of index \var{nu} and argument $x$.
Function: bestappr
Class: basic
Section: number_theoretical
C-Name: bestappr0
Prototype: GDGDG
Help: bestappr(x, {A},{B}): if x is real, gives the best approximation to x with
denominator less or equal to A. If x is an intmod, returns a rational number
congruent to x with numerator less than A and denominator less than B, which
must be given. If x is a polmod, returns a rational functions congruent to x
with numerator degree less than A and denominator degree less than B, which
must be given. Otherwise applies recursively to all components.
Doc: if $B$ is omitted, finds the best rational approximation to $x\in\R$
using continued fractions. If $A$ is omitted, return the best approximation
affordable given the input accuracy; otherwise make sure that denominator is
at most equal to $A$.
If $B$ is
present perform rational modular reconstruction (see below). In both cases,
the function applies recursively to components of complex objects
(polynomials, vectors, \dots).
\bprog
? bestappr(Pi, 100)
%1 = 22/7
? bestappr(0.1428571428571428571428571429)
%2 = 1/7
? bestappr([Pi, sqrt(2) + 'x], 10^3)
%3 = [355/113, x + 1393/985]
@eprog
By definition, $n/d$ is the best rational approximation to $x$ if
$|d x - n| < |v x - u|$ for all integers $(u,v)$ with $v \leq A$. (Which
implies that $n/d$ is a convergent of the continued fraction of $x$.)
If $x$ is an \typ{INTMOD}, (or a recursive combination of
those), modulo $N$ say, $B$ must be present. The routine then returns the
unique rational number $a/b$ in coprime integers $a\leq A$ and $b\leq B$ which
is congruent to $x$ modulo $N$. If $N \leq 2AB$, uniqueness is not guaranteed
and the function fails with an error message. If rational reconstruction is not
possible (no such $a/b$ exists for at least one component of $x$), returns
$-1$.
\bprog
? bestappr(Mod(18526731858, 11^10), 10^10, 10^10)
*** at top-level: bestappr(Mod(1852673
*** ^--------------------
*** bestappr: ratlift: must have 2*amax*bmax < m, found
amax=10000000000
bmax=10000000000
m=25937424601
? bestappr(Mod(18526731858, 11^10), 10^5, 10^5)
%1 = 1/7
? bestappr(Mod(18526731858, 11^20), 10^10, 10^10)
%2 = -1
@eprog\noindent In most concrete uses, $B$ is a prime power and we performed
Hensel lifting to obtain $x$.
If $x$ is a \typ{POLMOD}, modulo $T$ say, $B$ must be present. The routine
then returns the unique rational function $P/Q$ with $\deg P\leq A$ and $\deg
Q\leq B$ which is congruent to $x$ modulo $T$. If $\deg T \leq A+B$, uniqueness
is not guaranteed and the function fails with an error message. If rational
reconstruction is not possible, returns $-1$.
Variant: Also available is \fun{GEN}{bestappr}{GEN x, GEN A}.
Function: bezout
Class: basic
Section: number_theoretical
C-Name: vecbezout
Prototype: GG
Help: bezout(x,y): returns [u,v,d] such that d=gcd(x,y) and u*x+v*y=d.
Doc: Returns $[u,v,d]$ such that $d$ is the gcd of $x,y$,
$x*u+y*v=\gcd(x,y)$, and $u$ and $v$ minimal in a natural sense.
The arguments must be integers or polynomials. \sidx{extended gcd}
If $x,y$ are polynomials in the same variable and \emph{inexact}
coefficients, then compute $u,v,d$ such that $x*u+y*v = d$, where $d$
approximately divides both and $x$ and $y$; in particular, we do not obtain
\kbd{gcd(x,y)} which is \emph{defined} to be a scalar in this case:
\bprog
? a = x + 0.0; gcd(a,a)
%1 = 1
? bezout(a,a)
%2 = [0, 1, x + 0.E-28]
? bezout(x-Pi,6*x^2-zeta(2))
%3 = [-6*x - 18.8495559, 1, 57.5726923]
@eprog\noindent For inexact inputs, the output is thus not well defined
mathematically, but you obtain explicit polynomials to check whether the
approximation is close enough for your needs.
Function: bezoutres
Class: basic
Section: number_theoretical
C-Name: vecbezoutres
Prototype: GG
Help: bezoutres(x,y): gives a 3-dimensional row vector [u,v,d] such that
d=resultant(x,y) and u*x+v*y=d, where x and y are polynomials.
Doc: finds $u$ and $v$ such that $x*u + y*v = d$, where $d$ is the resultant
of $x$ and $y$. The result is the row vector $[u,v,d]$. \sidx{extended gcd}
The algorithm used (subresultant) assumes that the base ring is a domain.
Function: bigomega
Class: basic
Section: number_theoretical
C-Name: gbigomega
Prototype: G
Help: bigomega(x): number of prime divisors of x, counted with multiplicity.
Description:
(int):small bigomega($1)
(gen):gen gbigomega($1)
Doc: number of prime divisors of the integer $|x|$ counted with
multiplicity:
\bprog
? factor(392)
%1 =
[2 3]
[7 2]
? bigomega(392)
%2 = 5; \\ = 3+2
? omega(392)
%3 = 2; \\ without multiplicity
@eprog
The function accepts vector/matrices arguments, and is then applied
componentwise.
Variant: For a \typ{INT} $x$, the variant
\fun{long}{bigomega}{GEN n} is generally easier to use.
Function: binary
Class: basic
Section: conversions
C-Name: binaire
Prototype: G
Help: binary(x): gives the vector formed by the binary digits of x (x
integer).
Doc:
outputs the vector of the binary digits of $|x|$.
Here $x$ can be an integer, a real number (in which case the result has two
components, one for the integer part, one for the fractional part) or a
vector/matrix.
Function: binomial
Class: basic
Section: number_theoretical
C-Name: binomial
Prototype: GL
Help: binomial(x,y): binomial coefficient x*(x-1)...*(x-y+1)/y! defined for
y in Z and any x.
Doc: \idx{binomial coefficient} $\binom{x}{y}$.
Here $y$ must be an integer, but $x$ can be any PARI object.
Variant: The function
\fun{GEN}{binomialuu}{ulong n, ulong k} is also available, and so is
\fun{GEN}{vecbinome}{long n}, which returns a vector $v$
with $n+1$ components such that $v[k+1] = \kbd{binomial}(n,k)$ for $k$ from
$0$ up to $n$.
Function: bitand
Class: basic
Section: conversions
C-Name: gbitand
Prototype: GG
Help: bitand(x,y): bitwise "and" of two integers x and y. Negative numbers
behave as if modulo big power of 2.
Description:
(small, small):small:parens $(1)&$(2)
(gen, gen):int gbitand($1, $2)
Doc:
bitwise \tet{and}
\sidx{bitwise and}of two integers $x$ and $y$, that is the integer
$$\sum_i (x_i~\kbd{and}~y_i) 2^i$$
Negative numbers behave $2$-adically, i.e.~the result is the $2$-adic limit
of \kbd{bitand}$(x_n,y_n)$, where $x_n$ and $y_n$ are non-negative integers
tending to $x$ and $y$ respectively. (The result is an ordinary integer,
possibly negative.)
\bprog
? bitand(5, 3)
%1 = 1
? bitand(-5, 3)
%2 = 3
? bitand(-5, -3)
%3 = -7
@eprog
Variant: Also available is
\fun{GEN}{ibitand}{GEN x, GEN y}, which returns the bitwise \emph{and}
of $|x|$ and $|y|$, two integers.
Function: bitneg
Class: basic
Section: conversions
C-Name: gbitneg
Prototype: GD-1,L,
Help: bitneg(x,{n=-1}): bitwise negation of an integers x truncated to n
bits. n=-1 means represent infinite sequences of bit 1 as negative numbers.
Negative numbers behave as if modulo big power of 2.
Doc:
\idx{bitwise negation} of an integer $x$,
truncated to $n$ bits, that is the integer $$\sum_{i=0}^{n-1} \kbd{not}(x_i)
2^i$$ The special case $n=-1$ means no truncation: an infinite sequence of
leading $1$ is then represented as a negative number.
See \secref{se:bitand} for the behavior for negative arguments.
Function: bitnegimply
Class: basic
Section: conversions
C-Name: gbitnegimply
Prototype: GG
Help: bitnegimply(x,y): bitwise "negated imply" of two integers x and y,
in other words, x BITAND BITNEG(y). Negative numbers behave as if modulo big
power of 2.
Description:
(small, small):small:parens $(1)&~$(2)
(gen, gen):int gbitnegimply($1, $2)
Doc:
bitwise negated imply of two integers $x$ and
$y$ (or \kbd{not} $(x \Rightarrow y)$), that is the integer $$\sum
(x_i~\kbd{and not}(y_i)) 2^i$$
See \secref{se:bitand} for the behavior for negative arguments.
Variant: Also available is
\fun{GEN}{ibitnegimply}{GEN x, GEN y}, which returns the bitwise negated
imply of $|x|$ and $|y|$, two integers.
Function: bitor
Class: basic
Section: conversions
C-Name: gbitor
Prototype: GG
Help: bitor(x,y): bitwise "or" of two integers x and y. Negative numbers
behave as if modulo big power of 2.
Description:
(small, small):small:parens $(1)|$(2)
(gen, gen):int gbitor($1, $2)
Doc:
\sidx{bitwise inclusive or}bitwise (inclusive)
\tet{or} of two integers $x$ and $y$, that is the integer $$\sum
(x_i~\kbd{or}~y_i) 2^i$$
See \secref{se:bitand} for the behavior for negative arguments.
Variant: Also available is
\fun{GEN}{ibitor}{GEN x, GEN y}, which returns the bitwise \emph{ir}
of $|x|$ and $|y|$, two integers.
Function: bittest
Class: basic
Section: conversions
C-Name: gbittest
Prototype: GL
Help: bittest(x,n): gives bit number n (coefficient of 2^n) of the integer x.
Negative numbers behave as if modulo big power of 2.
Description:
(small, small):bool:parens ($(1)>>$(2))&1
(int, small):bool bittest($1, $2)
(gen, small):gen gbittest($1, $2)
Doc:
outputs the $n^{\text{th}}$ bit of $x$ starting
from the right (i.e.~the coefficient of $2^n$ in the binary expansion of $x$).
The result is 0 or 1.
\bprog
? bittest(7, 3)
%1 = 1 \\ the 3rd bit is 1
? bittest(7, 4)
%2 = 0 \\ the 4th bit is 0
@eprog\noindent
See \secref{se:bitand} for the behavior at negative arguments.
Variant: For a \typ{INT} $x$, the variant \fun{long}{bittest}{GEN x, long n} is
generally easier to use.
Function: bitxor
Class: basic
Section: conversions
C-Name: gbitxor
Prototype: GG
Help: bitxor(x,y): bitwise "exclusive or" of two integers x and y.
Negative numbers behave as if modulo big power of 2.
Description:
(small, small):small:parens $(1)^$(2)
(gen, gen):int gbitxor($1, $2)
Doc:
bitwise (exclusive) \tet{or}
\sidx{bitwise exclusive or}of two integers $x$ and $y$, that is the integer
$$\sum (x_i~\kbd{xor}~y_i) 2^i$$
See \secref{se:bitand} for the behavior for negative arguments.
Variant: Also available is
\fun{GEN}{ibitxor}{GEN x, GEN y}, which returns the bitwise \emph{xor}
of $|x|$ and $|y|$, two integers.
Function: bnfcertify
Class: basic
Section: number_fields
C-Name: bnfcertify0
Prototype: lGD0,L,
Help: bnfcertify(bnf,{flag = 0}): certify the correctness (i.e. remove the GRH) of the bnf data output by bnfinit. If flag is present, only certify that the class group is a quotient of the one computed in bnf (much simpler in general).
Doc: $\var{bnf}$ being as output by
\kbd{bnfinit}, checks whether the result is correct, i.e.~whether it is
possible to remove the assumption of the Generalized Riemann
Hypothesis\sidx{GRH}. It is correct if and only if the answer is 1. If it is
incorrect, the program may output some error message, or loop indefinitely.
You can check its progress by increasing the debug level.
If flag is present, only certify that the class group is a quotient of the
one computed in bnf (much simpler in general).
Variant: Also available is \fun{GEN}{bnfcertify}{GEN bnf} ($\fl=0$).
Function: bnfcompress
Class: basic
Section: number_fields
C-Name: bnfcompress
Prototype: G
Help: bnfcompress(bnf): converts bnf to a much smaller sbnf, containing the
same information. Use bnfinit(sbnf) to recover a true bnf.
Doc: computes a compressed version of \var{bnf} (from \tet{bnfinit}), a
``small Buchmann's number field'' (or \var{sbnf} for short) which contains
enough information to recover a full $\var{bnf}$ vector very rapidly, but
which is much smaller and hence easy to store and print. Calling
\kbd{bnfinit} on the result recovers a true \kbd{bnf}, in general different
from the original. Note that an \tev{snbf} is useless for almost all
purposes besides storage, and must be converted back to \tev{bnf} form
before use; for instance, no \kbd{nf*}, \kbd{bnf*} or member function
accepts them.
An \var{sbnf} is a 12 component vector $v$, as follows. Let \kbd{bnf} be
the result of a full \kbd{bnfinit}, complete with units. Then $v[1]$ is
\kbd{bnf.pol}, $v[2]$ is the number of real embeddings \kbd{bnf.sign[1]},
$v[3]$ is \kbd{bnf.disc}, $v[4]$ is \kbd{bnf.zk}, $v[5]$ is the list of roots
\kbd{bnf.roots}, $v[7]$ is the matrix $\kbd{W} = \kbd{bnf[1]}$,
$v[8]$ is the matrix $\kbd{matalpha}=\kbd{bnf[2]}$,
$v[9]$ is the prime ideal factor base \kbd{bnf[5]} coded in a compact way,
and ordered according to the permutation \kbd{bnf[6]}, $v[10]$ is the
2-component vector giving the number of roots of unity and a generator,
expressed on the integral basis, $v[11]$ is the list of fundamental units,
expressed on the integral basis, $v[12]$ is a vector containing the algebraic
numbers alpha corresponding to the columns of the matrix \kbd{matalpha},
expressed on the integral basis.
All the components are exact (integral or rational), except for the roots in
$v[5]$.
Function: bnfdecodemodule
Class: basic
Section: number_fields
C-Name: decodemodule
Prototype: GG
Help: bnfdecodemodule(nf,m): given a coded module m as in bnrdisclist,
gives the true module.
Doc: if $m$ is a module as output in the
first component of an extension given by \kbd{bnrdisclist}, outputs the
true module.
Function: bnfinit
Class: basic
Section: number_fields
C-Name: bnfinit0
Prototype: GD0,L,DGp
Help: bnfinit(P,{flag=0},{tech=[]}): compute the necessary data for future
use in ideal and unit group computations, including fundamental units if
they are not too large. flag and tech are both optional. flag can be any of
0: default, 1: insist on having fundamental units.
See manual for details about tech.
Description:
(gen):bnf:prec Buchall($1, 0, prec)
(gen, 0):bnf:prec Buchall($1, 0, prec)
(gen, 1):bnf:prec Buchall($1, nf_FORCE, prec)
(gen, ?small, ?gen):bnf:prec bnfinit0($1, $2, $3, prec)
Doc: initializes a
\var{bnf} structure. Used in programs such as \kbd{bnfisprincipal},
\kbd{bnfisunit} or \kbd{bnfnarrow}. By default, the results are conditional
on the GRH, see \ref{se:GRHbnf}. The result is a
10-component vector \var{bnf}.
This implements \idx{Buchmann}'s sub-exponential algorithm for computing the
class group, the regulator and a system of \idx{fundamental units} of the
general algebraic number field $K$ defined by the irreducible polynomial $P$
with integer coefficients.
If the precision becomes insufficient, \kbd{gp} does not strive to compute
the units by default ($\fl=0$).
When $\fl=1$, we insist on finding the fundamental units exactly. Be
warned that this can take a very long time when the coefficients of the
fundamental units on the integral basis are very large. If the fundamental
units are simply too large to be represented in this form, an error message
is issued. They could be obtained using the so-called compact representation
of algebraic numbers as a formal product of algebraic integers. The latter is
implemented internally but not publicly accessible yet.
$\var{tech}$ is a technical vector (empty by default, see \ref{se:GRHbnf}).
Careful use of this parameter may speed up your computations,
but it is mostly obsolete and you should leave it alone.
\smallskip
The components of a \var{bnf} or \var{sbnf} are technical and never used by
the casual user. In fact: \emph{never access a component directly, always use
a proper member function.} However, for the sake of completeness and internal
documentation, their description is as follows. We use the notations
explained in the book by H. Cohen, \emph{A Course in Computational Algebraic
Number Theory}, Graduate Texts in Maths \key{138}, Springer-Verlag, 1993,
Section 6.5, and subsection 6.5.5 in particular.
$\var{bnf}[1]$ contains the matrix $W$, i.e.~the matrix in Hermite normal
form giving relations for the class group on prime ideal generators
$(\goth{p}_i)_{1\le i\le r}$.
$\var{bnf}[2]$ contains the matrix $B$, i.e.~the matrix containing the
expressions of the prime ideal factorbase in terms of the $\goth{p}_i$.
It is an $r\times c$ matrix.
$\var{bnf}[3]$ contains the complex logarithmic embeddings of the system of
fundamental units which has been found. It is an $(r_1+r_2)\times(r_1+r_2-1)$
matrix.
$\var{bnf}[4]$ contains the matrix $M''_C$ of Archimedean components of the
relations of the matrix $(W|B)$.
$\var{bnf}[5]$ contains the prime factor base, i.e.~the list of prime
ideals used in finding the relations.
$\var{bnf}[6]$ used to contain a permutation of the prime factor base, but
has been obsoleted. It contains a dummy $0$.
$\var{bnf}[7]$ or \kbd{\var{bnf}.nf} is equal to the number field data
$\var{nf}$ as would be given by \kbd{nfinit}.
$\var{bnf}[8]$ is a vector containing the classgroup \kbd{\var{bnf}.clgp}
as a finite abelian group, the regulator \kbd{\var{bnf}.reg}, a $1$ (used to
contain an obsolete ``check number''), the number of roots of unity and a
generator \kbd{\var{bnf}.tu}, the fundamental units \kbd{\var{bnf}.fu}.
$\var{bnf}[9]$ is a 3-element row vector used in \tet{bnfisprincipal} only
and obtained as follows. Let $D = U W V$ obtained by applying the
\idx{Smith normal form} algorithm to the matrix $W$ (= $\var{bnf}[1]$) and
let $U_r$ be the reduction of $U$ modulo $D$. The first elements of the
factorbase are given (in terms of \kbd{bnf.gen}) by the columns of $U_r$,
with Archimedean component $g_a$; let also $GD_a$ be the Archimedean
components of the generators of the (principal) ideals defined by the
\kbd{bnf.gen[i]\pow bnf.cyc[i]}. Then $\var{bnf}[9]=[U_r, g_a, GD_a]$.
$\var{bnf}[10]$ is by default unused and set equal to 0. This field is used
to store further information about the field as it becomes available, which
is rarely needed, hence would be too expensive to compute during the initial
\kbd{bnfinit} call. For instance, the generators of the principal ideals
\kbd{bnf.gen[i]\pow bnf.cyc[i]} (during a call to \tet{bnrisprincipal}), or
those corresponding to the relations in $W$ and $B$ (when the \kbd{bnf}
internal precision needs to be increased).
Variant:
Also available is \fun{GEN}{Buchall}{GEN P, long flag, long prec},
corresponding to \kbd{tech = NULL}, where
\kbd{flag} is either $0$ (default) or \tet{nf_FORCE} (insist on finding
fundamental units). The function
\fun{GEN}{Buchall_param}{GEN P, double c1, double c2, long nrpid, long
flag, long prec} gives direct access to the technical parameters.
Function: bnfisintnorm
Class: basic
Section: number_fields
C-Name: bnfisintnorm
Prototype: GG
Help: bnfisintnorm(bnf,x): compute a complete system of solutions (modulo
units of positive norm) of the absolute norm equation N(a)=x, where a
belongs to the maximal order of big number field bnf (if bnf is not
certified, this depends on GRH).
Doc: computes a complete system of
solutions (modulo units of positive norm) of the absolute norm equation
$\Norm(a)=x$,
where $a$ is an integer in $\var{bnf}$. If $\var{bnf}$ has not been certified,
the correctness of the result depends on the validity of \idx{GRH}.
See also \tet{bnfisnorm}.
Function: bnfisnorm
Class: basic
Section: number_fields
C-Name: bnfisnorm
Prototype: GGD1,L,
Help: bnfisnorm(bnf,x,{flag=1}): Tries to tell whether x (in Q) is the norm
of some fractional y (in bnf). Returns a vector [a,b] where x=Norm(a)*b.
Looks for a solution which is a S-unit, with S a certain list of primes (in
bnf) containing (among others) all primes dividing x. If bnf is known to be
Galois, set flag=0 (in this case, x is a norm iff b=1). If flag is non zero
the program adds to S all the primes : dividing flag if flag<0, or less than
flag if flag>0. The answer is guaranteed (i.e x norm iff b=1) under GRH, if
S contains all primes less than 12.log(disc(Bnf))^2, where Bnf is the Galois
closure of bnf.
Doc: tries to tell whether the
rational number $x$ is the norm of some element y in $\var{bnf}$. Returns a
vector $[a,b]$ where $x=Norm(a)*b$. Looks for a solution which is an $S$-unit,
with $S$ a certain set of prime ideals containing (among others) all primes
dividing $x$. If $\var{bnf}$ is known to be \idx{Galois}, set $\fl=0$ (in
this case, $x$ is a norm iff $b=1$). If $\fl$ is non zero the program adds to
$S$ the following prime ideals, depending on the sign of $\fl$. If $\fl>0$,
the ideals of norm less than $\fl$. And if $\fl<0$ the ideals dividing $\fl$.
Assuming \idx{GRH}, the answer is guaranteed (i.e.~$x$ is a norm iff $b=1$),
if $S$ contains all primes less than $12\log(\disc(\var{Bnf}))^2$, where
$\var{Bnf}$ is the Galois closure of $\var{bnf}$.
See also \tet{bnfisintnorm}.
Function: bnfisprincipal
Class: basic
Section: number_fields
C-Name: bnfisprincipal0
Prototype: GGD1,L,
Help: bnfisprincipal(bnf,x,{flag=1}): bnf being output by bnfinit (with
flag<=2), gives [v,alpha], where v is the vector of exponents on
the class group generators and alpha is the generator of the resulting
principal ideal. In particular x is principal if and only if v is the zero
vector. flag is optional, whose binary digits mean 1: output [v,alpha] (only v
if unset); 2: increase precision until alpha can be computed (do not insist
if unset).
Doc: $\var{bnf}$ being the \sidx{principal ideal}
number field data output by \kbd{bnfinit}, and $x$ being an ideal, this
function tests whether the ideal is principal or not. The result is more
complete than a simple true/false answer and solves general discrete
logarithm problem. Assume the class group is $\oplus (\Z/d_i\Z)g_i$
(where the generators $g_i$ and their orders $d_i$ are respectively given by
\kbd{bnf.gen} and \kbd{bnf.cyc}). The routine returns a row vector $[e,t]$,
where $e$ is a vector of exponents $0 \leq e_i < d_i$, and $t$ is a number
field element such that
$$ x = (t) \prod_i g_i^{e_i}.$$
For \emph{given} $g_i$ (i.e. for a given \kbd{bnf}), the $e_i$ are unique,
and $t$ is unique modulo units.
In particular, $x$ is principal if and only if $e$ is the zero vector. Note
that the empty vector, which is returned when the class number is $1$, is
considered to be a zero vector (of dimension $0$).
\bprog
? K = bnfinit(y^2+23);
? K.cyc
%2 = [3]
? K.gen
%3 = [[2, 0; 0, 1]] \\ a prime ideal above 2
? P = idealprimedec(K,3)[1]; \\ a prime ideal above 3
? v = bnfisprincipal(K, P)
%5 = [[2]~, [3/4, 1/4]~]
? idealmul(K, v[2], idealfactorback(K, K.gen, v[1]))
%6 =
[3 0]
[0 1]
? % == idealhnf(K, P)
%7 = 1
@eprog
\noindent The binary digits of \fl mean:
\item $1$: If set, outputs $[e,t]$ as explained above, otherwise returns
only $e$, which is much easier to compute. The following idiom only tests
whether an ideal is principal:
\bprog
is_principal(bnf, x) = !bnfisprincipal(bnf,x,0);
@eprog
\item $2$: It may not be possible to recover $t$, given the initial accuracy
to which \kbd{bnf} was computed. In that case, a warning is printed and $t$ is
set equal to the empty vector \kbd{[]\til}. If this bit is set,
increase the precision and recompute needed quantities until $t$ can be
computed. Warning: setting this may induce \emph{very} lengthy computations.
Variant: Instead of the above hardcoded numerical flags, one should
rather use an or-ed combination of the symbolic flags \tet{nf_GEN} (include
generators, possibly a place holder if too difficult) and \tet{nf_FORCE}
(insist on finding the generators).
Function: bnfissunit
Class: basic
Section: number_fields
C-Name: bnfissunit
Prototype: GGG
Help: bnfissunit(bnf,sfu,x): bnf being output by bnfinit (with flag<=2), sfu
by bnfsunit, gives the column vector of exponents of x on the fundamental
S-units and the roots of unity if x is a unit, the empty vector otherwise.
Doc: $\var{bnf}$ being output by
\kbd{bnfinit}, \var{sfu} by \kbd{bnfsunit}, gives the column vector of
exponents of $x$ on the fundamental $S$-units and the roots of unity.
If $x$ is not a unit, outputs an empty vector.
Function: bnfisunit
Class: basic
Section: number_fields
C-Name: bnfisunit
Prototype: GG
Help: bnfisunit(bnf,x): bnf being output by bnfinit, gives
the column vector of exponents of x on the fundamental units and the roots
of unity if x is a unit, the empty vector otherwise.
Doc: \var{bnf} being the number field data
output by \kbd{bnfinit} and $x$ being an algebraic number (type integer,
rational or polmod), this outputs the decomposition of $x$ on the fundamental
units and the roots of unity if $x$ is a unit, the empty vector otherwise.
More precisely, if $u_1$,\dots,$u_r$ are the fundamental units, and $\zeta$
is the generator of the group of roots of unity (\kbd{bnf.tu}), the output is
a vector $[x_1,\dots,x_r,x_{r+1}]$ such that $x=u_1^{x_1}\cdots
u_r^{x_r}\cdot\zeta^{x_{r+1}}$. The $x_i$ are integers for $i\le r$ and is an
integer modulo the order of $\zeta$ for $i=r+1$.
Note that \var{bnf} need not contain the fundamental unit explicitly:
\bprog
? setrand(1); bnf = bnfinit(x^2-x-100000);
? bnf.fu
*** at top-level: bnf.fu
*** ^--
*** _.fu: missing units in .fu.
? u = [119836165644250789990462835950022871665178127611316131167, \
379554884019013781006303254896369154068336082609238336]~;
? bnfisunit(bnf, u)
%3 = [-1, Mod(0, 2)]~
@eprog\noindent The given $u$ is the inverse of the fundamental unit
implicitly stored in \var{bnf}. In this case, the fundamental unit was not
computed and stored in algebraic form since the default accuracy was too
low. (Re-run the command at \bs g1 or higher to see such diagnostics.)
Function: bnfnarrow
Class: basic
Section: number_fields
C-Name: buchnarrow
Prototype: G
Help: bnfnarrow(bnf): given a big number field as output by bnfinit, gives
as a 3-component vector the structure of the narrow class group.
Doc: $\var{bnf}$ being as output by
\kbd{bnfinit}, computes the narrow class group of $\var{bnf}$. The output is
a 3-component row vector $v$ analogous to the corresponding class group
component \kbd{\var{bnf}.clgp} (\kbd{\var{bnf}[8][1]}): the first component
is the narrow class number \kbd{$v$.no}, the second component is a vector
containing the SNF\sidx{Smith normal form} cyclic components \kbd{$v$.cyc} of
the narrow class group, and the third is a vector giving the generators of
the corresponding \kbd{$v$.gen} cyclic groups. Note that this function is a
special case of \kbd{bnrinit}.
Function: bnfsignunit
Class: basic
Section: number_fields
C-Name: signunits
Prototype: G
Help: bnfsignunit(bnf): matrix of signs of the real embeddings of the system
of fundamental units found by bnfinit.
Doc: $\var{bnf}$ being as output by
\kbd{bnfinit}, this computes an $r_1\times(r_1+r_2-1)$ matrix having $\pm1$
components, giving the signs of the real embeddings of the fundamental units.
The following functions compute generators for the totally positive units:
\bprog
/* exponents of totally positive units generators on bnf.tufu */
tpuexpo(bnf)=
{ my(S,d,K);
S = bnfsignunit(bnf); d = matsize(S);
S = matrix(d[1],d[2], i,j, if (S[i,j] < 0, 1,0));
S = concat(vectorv(d[1],i,1), S); \\ add sign(-1)
K = lift(matker(S * Mod(1,2)));
if (K, mathnfmodid(K, 2), 2*matid(d[1]))
}
/* totally positive units */
tpu(bnf)=
{ my(vu = bnf.tufu, ex = tpuexpo(bnf));
vector(#ex-1, i, factorback(vu, ex[,i+1])) \\ ex[,1] is 1
}
@eprog
Function: bnfsunit
Class: basic
Section: number_fields
C-Name: bnfsunit
Prototype: GGp
Help: bnfsunit(bnf,S): compute the fundamental S-units of the number field
bnf output by bnfinit, S being a list of prime ideals. res[1] contains the
S-units, res[5] the S-classgroup. See manual for details.
Doc: computes the fundamental $S$-units of the
number field $\var{bnf}$ (output by \kbd{bnfinit}), where $S$ is a list of
prime ideals (output by \kbd{idealprimedec}). The output is a vector $v$ with
6 components.
$v[1]$ gives a minimal system of (integral) generators of the $S$-unit group
modulo the unit group.
$v[2]$ contains technical data needed by \kbd{bnfissunit}.
$v[3]$ is an empty vector (used to give the logarithmic embeddings of the
generators in $v[1]$ in version 2.0.16).
$v[4]$ is the $S$-regulator (this is the product of the regulator, the
determinant of $v[2]$ and the natural logarithms of the norms of the ideals
in $S$).
$v[5]$ gives the $S$-class group structure, in the usual format
(a row vector whose three components give in order the $S$-class number,
the cyclic components and the generators).
$v[6]$ is a copy of $S$.
Function: bnrL1
Class: basic
Section: number_fields
C-Name: bnrL1
Prototype: GDGD0,L,p
Help: bnrL1(bnr, {subgrp}, {flag=0}): bnr being output by bnrinit(,,1) and
subgrp being a square matrix defining a congruence subgroup of bnr (the
trivial subgroup if omitted), for each character of bnr trivial on this
subgroup, compute L(1, chi) (or equivalently the first non-zero term c(chi)
of the expansion at s = 0). The binary digits of flag mean 1: if 0 then
compute the term c(chi) and return [r(chi), c(chi)] where r(chi) is the
order of L(s, chi) at s = 0, or if 1 then compute the value at s = 1 (and in
this case, only for non-trivial characters), 2: if 0 then compute the value
of the primitive L-function associated to chi, if 1 then compute the value
of the L-function L_S(s, chi) where S is the set of places dividing the
modulus of bnr (and the infinite places), 3: return also the characters.
Doc: \var{bnr} being
the number field data which is output by \kbd{bnrinit(,,1)} and
\var{subgrp} being a square matrix defining a congruence subgroup of the
ray class group corresponding to \var{bnr} (the trivial congruence subgroup
if omitted), returns for each \idx{character} $\chi$ of the ray class group
which is trivial on this subgroup, the value at $s = 1$ (or $s = 0$) of the
abelian $L$-function associated to $\chi$. For the value at $s = 0$, the
function returns in fact for each character $\chi$ a vector $[r_\chi ,
c_\chi]$ where $r_\chi$ is the order of $L(s, \chi)$ at $s = 0$ and $c_\chi$
the first non-zero term in the expansion of $L(s, \chi)$ at $s = 0$; in other
words
%
$$L(s, \chi) = c_\chi \cdot s^{r_\chi} + O(s^{r_\chi + 1})$$
%
\noindent near $0$. \fl\ is optional, default value is 0; its binary digits
mean 1: compute at $s = 1$ if set to 1 or $s = 0$ if set to 0, 2: compute the
primitive $L$-functions associated to $\chi$ if set to 0 or the $L$-function
with Euler factors at prime ideals dividing the modulus of \var{bnr} removed
if set to 1 (this is the so-called $L_S(s, \chi)$ function where $S$ is the
set of infinite places of the number field together with the finite prime
ideals dividing the modulus of \var{bnr}, see the example below), 3: returns
also the character. Example:
\bprog
bnf = bnfinit(x^2 - 229);
bnr = bnrinit(bnf,1,1);
bnrL1(bnr)
@eprog\noindent
returns the order and the first non-zero term of the abelian
$L$-functions $L(s, \chi)$ at $s = 0$ where $\chi$ runs through the
characters of the class group of $\Q(\sqrt{229})$. Then
\bprog
bnr2 = bnrinit(bnf,2,1);
bnrL1(bnr2,,2)
@eprog\noindent
returns the order and the first non-zero terms of the abelian
$L$-functions $L_S(s, \chi)$ at $s = 0$ where $\chi$ runs through the
characters of the class group of $\Q(\sqrt{229})$ and $S$ is the set
of infinite places of $\Q(\sqrt{229})$ together with the finite prime
$2$. Note that the ray class group modulo $2$ is in fact the class
group, so \kbd{bnrL1(bnr2,0)} returns exactly the same answer as
\kbd{bnrL1(bnr,0)}.
Function: bnrclassno
Class: basic
Section: number_fields
C-Name: bnrclassno
Prototype: GG
Help: bnrclassno(bnf,I): ray class number of the module I for the big number
field bnf. Faster than bnrinit if only the ray class number is wanted.
Doc: $\var{bnf}$ being as output by
\kbd{bnfinit} (units are mandatory unless the ideal is trivial), and $I$
being a modulus, computes the ray class number of the number field for the
modulus $I$. One can input the associated \var{bid} for $I$ instead of the
module itself, saving some time.
This function is faster than \kbd{bnrinit} and should be used if only the
ray class number is desired. See \tet{bnrclassnolist} if you need ray class
numbers for all moduli less than some bound.
Function: bnrclassnolist
Class: basic
Section: number_fields
C-Name: bnrclassnolist
Prototype: GG
Help: bnrclassnolist(bnf,list): if list is as output by ideallist or
similar, gives list of corresponding ray class numbers.
Doc: $\var{bnf}$ being as
output by \kbd{bnfinit}, and \var{list} being a list of moduli (with units) as
output by \kbd{ideallist} or \kbd{ideallistarch}, outputs the list of the
class numbers of the corresponding ray class groups. To compute a single
class number, \tet{bnrclassno} is more efficient.
\bprog
? bnf = bnfinit(x^2 - 2);
? L = ideallist(bnf, 100, 2);
? H = bnrclassnolist(bnf, L);
? H[98]
%4 = [1, 3, 1]
? l = L[1][98]; ids = vector(#l, i, l[i].mod[1])
%5 = [[98, 88; 0, 1], [14, 0; 0, 7], [98, 10; 0, 1]]
@eprog
The weird \kbd{l[i].mod[1]}, is the first component of \kbd{l[i].mod}, i.e.
the finite part of the conductor. (This is cosmetic: since by construction
the Archimedean part is trivial, I do not want to see it). This tells us that
the ray class groups modulo the ideals of norm 98 (printed as \kbd{\%5}) have
respectively order $1$, $3$ and $1$. Indeed, we may check directly :
\bprog
? bnrclassno(bnf, ids[2])
%6 = 3
@eprog
Function: bnrconductor
Class: basic
Section: number_fields
C-Name: bnrconductor0
Prototype: GDGDGD0,L,
Help: bnrconductor(A,{B},{C},{flag=0}): conductor f of the subfield of
the ray class field given by A,B,C. flag is optional and
can be 0: default, 1: returns [f, Cl_f, H], H subgroup of the ray class
group modulo f defining the extension, 2: returns [f, bnr(f), H].
Doc: conductor $f$ of the subfield of a ray class field as defined by $[A,B,C]$
(of type \kbd{[\var{bnr}]},
\kbd{[\var{bnr}, \var{subgroup}]},
\kbd{[\var{bnf}, \var{modulus}]} or
\kbd{[\var{bnf}, \var{modulus}, \var{subgroup}]},
\secref{se:CFT})
If $\fl = 0$, returns $f$.
If $\fl = 1$, returns $[f, Cl_f, H]$, where $Cl_f$ is the ray class group
modulo $f$, as a finite abelian group; finally $H$ is the subgroup of $Cl_f$
defining the extension.
If $\fl = 2$, returns $[f, \var{bnr}(f), H]$, as above except $Cl_f$ is
replaced by a \kbd{bnr} structure, as output by $\tet{bnrinit}(,f,1)$.
Variant:
Also available is \fun{GEN}{bnrconductor}{GEN bnr, GEN H, long flag}
Function: bnrconductorofchar
Class: basic
Section: number_fields
C-Name: bnrconductorofchar
Prototype: GG
Help: bnrconductorofchar(bnr,chi): conductor of the character chi on the ray
class group bnr.
Doc: \var{bnr} being a big
ray number field as output by \kbd{bnrinit}, and \var{chi} being a row vector
representing a \idx{character} as expressed on the generators of the ray
class group, gives the conductor of this character as a modulus.
Function: bnrdisc
Class: basic
Section: number_fields
C-Name: bnrdisc0
Prototype: GDGDGD0,L,
Help: bnrdisc(A,{B},{C},{flag=0}): absolute or relative [N,R1,discf] of
the field defined by A,B,C. [A,{B},{C}] is of type [bnr],
[bnr,subgroup], [bnf, modulus] or [bnf,modulus,subgroup], where bnf is as
output by bnfinit, bnr by bnrinit, and
subgroup is the HNF matrix of a subgroup of the corresponding ray class
group (if omitted, the trivial subgroup). flag is optional whose binary
digits mean 1: give relative data; 2: return 0 if modulus is not the
conductor.
Doc: $A$, $B$, $C$ defining a class field $L$ over a ground field $K$
(of type \kbd{[\var{bnr}]},
\kbd{[\var{bnr}, \var{subgroup}]},
\kbd{[\var{bnf}, \var{modulus}]} or
\kbd{[\var{bnf}, \var{modulus}, \var{subgroup}]},
\secref{se:CFT}), outputs data $[N,r_1,D]$ giving the discriminant and
signature of $L$, depending on the binary digits of \fl:
\item 1: if this bit is unset, output absolute data related to $L/\Q$:
$N$ is the absolute degree $[L:\Q]$, $r_1$ the number of real places of $L$,
and $D$ the discriminant of $L/\Q$. Otherwise, output relative data for $L/K$:
$N$ is the relative degree $[L:K]$, $r_1$ is the number of real places of $K$
unramified in $L$ (so that the number of real places of $L$ is equal to $r_1$
times $N$), and $D$ is the relative discriminant ideal of $L/K$.
\item 2: if this bit is set and if the modulus is not the conductor of $L$,
only return 0.
Function: bnrdisclist
Class: basic
Section: number_fields
C-Name: bnrdisclist0
Prototype: GGDG
Help: bnrdisclist(bnf,bound,{arch}): gives list of discriminants of
ray class fields of all conductors up to norm bound, in a long vector
The ramified Archimedean places are given by arch; all possible values are
taken if arch is omitted. Supports the alternative syntax
bnrdisclist(bnf,list), where list is as output by ideallist or ideallistarch
(with units).
Doc: $\var{bnf}$ being as output by \kbd{bnfinit} (with units), computes a
list of discriminants of Abelian extensions of the number field by increasing
modulus norm up to bound \var{bound}. The ramified Archimedean places are
given by \var{arch}; all possible values are taken if \var{arch} is omitted.
The alternative syntax $\kbd{bnrdisclist}(\var{bnf},\var{list})$ is
supported, where \var{list} is as output by \kbd{ideallist} or
\kbd{ideallistarch} (with units), in which case \var{arch} is disregarded.
The output $v$ is a vector of vectors, where $v[i][j]$ is understood to be in
fact $V[2^{15}(i-1)+j]$ of a unique big vector $V$. (This awkward scheme
allows for larger vectors than could be otherwise represented.)
$V[k]$ is itself a vector $W$, whose length is the number of ideals of norm
$k$. We consider first the case where \var{arch} was specified. Each
component of $W$ corresponds to an ideal $m$ of norm $k$, and
gives invariants associated to the ray class field $L$ of $\var{bnf}$ of
conductor $[m, \var{arch}]$. Namely, each contains a vector $[m,d,r,D]$ with
the following meaning: $m$ is the prime ideal factorization of the modulus,
$d = [L:\Q]$ is the absolute degree of $L$, $r$ is the number of real places
of $L$, and $D$ is the factorization of its absolute discriminant. We set $d
= r = D = 0$ if $m$ is not the finite part of a conductor.
If \var{arch} was omitted, all $t = 2^{r_1}$ possible values are taken and a
component of $W$ has the form $[m, [[d_1,r_1,D_1], \dots, [d_t,r_t,D_t]]]$,
where $m$ is the finite part of the conductor as above, and
$[d_i,r_i,D_i]$ are the invariants of the ray class field of conductor
$[m,v_i]$, where $v_i$ is the $i$-th Archimedean component, ordered by
inverse lexicographic order; so $v_1 = [0,\dots,0]$, $v_2 = [1,0\dots,0]$,
etc. Again, we set $d_i = r_i = D_i = 0$ if $[m,v_i]$ is not a conductor.
Finally, each prime ideal $pr = [p,\alpha,e,f,\beta]$ in the prime
factorization $m$ is coded as the integer $p\cdot n^2+(f-1)\cdot n+(j-1)$,
where $n$ is the degree of the base field and $j$ is such that
\kbd{pr = idealprimedec(\var{nf},p)[j]}.
\noindent $m$ can be decoded using \tet{bnfdecodemodule}.
Note that to compute such data for a single field, either \tet{bnrclassno}
or \tet{bnrdisc} is more efficient.
Function: bnrinit
Class: basic
Section: number_fields
C-Name: bnrinit0
Prototype: GGD0,L,
Help: bnrinit(bnf,f,{flag=0}): given a bnf as output by
bnfinit and a modulus f, initializes data
linked to the ray class group structure corresponding to this module. flag
is optional, and can be 0: default, 1: compute also the generators.
Description:
(gen,gen,?small):bnr bnrinit0($1, $2, $3)
Doc: $\var{bnf}$ is as
output by \kbd{bnfinit}, $f$ is a modulus, initializes data linked to
the ray class group structure corresponding to this module, a so-called
\var{bnr} structure. The following member functions are available
on the result: \kbd{.bnf} is the underlying \var{bnf},
\kbd{.mod} the modulus, \kbd{.bid} the \var{bid} structure associated to the
modulus; finally, \kbd{.clgp}, \kbd{.no}, \kbd{.cyc}, \kbd{.gen} refer to the
ray class group (as a finite abelian group), its cardinality, its elementary
divisors, its generators.
The last group of functions are different from the members of the underlying
\var{bnf}, which refer to the class group; use \kbd{\var{bnr}.bnf.\var{xxx}}
to access these, e.g.~\kbd{\var{bnr}.bnf.cyc} to get the cyclic decomposition
of the class group.
They are also different from the members of the underlying \var{bid}, which
refer to $(\Z_K/f)^*$; use \kbd{\var{bnr}.bid.\var{xxx}} to access these,
e.g.~\kbd{\var{bnr}.bid.no} to get $\phi(f)$.
If $\fl=0$ (default), the generators of the ray class group are not computed,
which saves time. Hence \kbd{\var{bnr}.gen} would produce an error.
If $\fl=1$, as the default, except that generators are computed.
Variant: Instead the above hardcoded numerical flags, one should rather use
\fun{GEN}{Buchray}{GEN bnf, GEN module, long flag}
where flag is an or-ed combination of \kbd{nf\_GEN} (include generators)
and \kbd{nf\_INIT} (if omitted, return just the cardinal of the ray class group
and its structure), possibly 0.
Function: bnrisconductor
Class: basic
Section: number_fields
C-Name: bnrisconductor0
Prototype: lGDGDG
Help: bnrisconductor(A,{B},{C}): returns 1 if the modulus is the
conductor of the subfield of the ray class field given by A,B,C (see
bnrdisc), and 0 otherwise. Slightly faster than bnrconductor if this is the
only desired result.
Doc: $A$, $B$, $C$ represent
an extension of the base field, given by class field theory
(see~\secref{se:CFT}). Outputs 1 if this modulus is the conductor, and 0
otherwise. This is slightly faster than \kbd{bnrconductor}.
Function: bnrisprincipal
Class: basic
Section: number_fields
C-Name: bnrisprincipal
Prototype: GGD1,L,
Help: bnrisprincipal(bnr,x,{flag=1}): bnr being output by bnrinit, gives
[v,alpha], where v is the vector of exponents on the class group
generators and alpha is the generator of the resulting principal ideal. In
particular x is principal if and only if v is the zero vector. If (optional)
flag is set to 0, output only v.
Doc: \var{bnr} being the
number field data which is output by \kbd{bnrinit}$(,,1)$ and $x$ being an
ideal in any form, outputs the components of $x$ on the ray class group
generators in a way similar to \kbd{bnfisprincipal}. That is a 2-component
vector $v$ where $v[1]$ is the vector of components of $x$ on the ray class
group generators, $v[2]$ gives on the integral basis an element $\alpha$ such
that $x=\alpha\prod_ig_i^{x_i}$.
If $\fl=0$, outputs only $v_1$. In that case, \var{bnr} need not contain the
ray class group generators, i.e.~it may be created with \kbd{bnrinit}$(,,0)$
If $x$ is not coprime to the modulus of \var{bnr} the result is undefined.
Variant: Instead of hardcoded numerical flags, one should rather
use
\fun{GEN}{isprincipalray}{GEN bnr, GEN x} for $\kbd{flag} = 0$, and if you
want generators:
\bprog
bnrisprincipal(bnr, x, nf_GEN)
@eprog
Function: bnrrootnumber
Class: basic
Section: number_fields
C-Name: bnrrootnumber
Prototype: GGD0,L,p
Help: bnrrootnumber(bnr,chi,{flag=0}): returns the so-called Artin Root
Number, i.e. the constant W appearing in the functional equation of the
Hecke L-function associated to chi. Set flag = 1 if the character is known
to be primitive.
Doc: if $\chi=\var{chi}$ is a
\idx{character} over \var{bnr}, not necessarily primitive, let
$L(s,\chi) = \sum_{id} \chi(id) N(id)^{-s}$ be the associated
\idx{Artin L-function}. Returns the so-called \idx{Artin root number}, i.e.~the
complex number $W(\chi)$ of modulus 1 such that
%
$$\Lambda(1-s,\chi) = W(\chi) \Lambda(s,\overline{\chi})$$
%
\noindent where $\Lambda(s,\chi) = A(\chi)^{s/2}\gamma_\chi(s) L(s,\chi)$ is
the enlarged L-function associated to $L$.
The generators of the ray class group are needed, and you can set $\fl=1$ if
the character is known to be primitive. Example:
\bprog
bnf = bnfinit(x^2 - x - 57);
bnr = bnrinit(bnf, [7,[1,1]], 1);
bnrrootnumber(bnr, [2,1])
@eprog\noindent
returns the root number of the character $\chi$ of
$\Cl_{7\infty_1\infty_2}(\Q(\sqrt{229}))$ defined by $\chi(g_1^ag_2^b)
= \zeta_1^{2a}\zeta_2^b$. Here $g_1, g_2$ are the generators of the
ray-class group given by \kbd{bnr.gen} and $\zeta_1 = e^{2i\pi/N_1},
\zeta_2 = e^{2i\pi/N_2}$ where $N_1, N_2$ are the orders of $g_1$ and
$g_2$ respectively ($N_1=6$ and $N_2=3$ as \kbd{bnr.cyc} readily tells us).
Function: bnrstark
Class: basic
Section: number_fields
C-Name: bnrstark
Prototype: GDGp
Help: bnrstark(bnr,{subgroup}): bnr being as output by
bnrinit(,,1), finds a relative equation for the class field corresponding to
the module in bnr and the given congruence subgroup (the trivial subgroup if
omitted) using Stark's units. The ground field and the class field must be
totally real.
Doc: \var{bnr} being as output by \kbd{bnrinit(,,1)}, finds a relative equation
for the class field corresponding to the modulus in \var{bnr} and the given
congruence subgroup (as usual, omit $\var{subgroup}$ if you want the whole ray
class group).
The main variable of \var{bnr} must not be $x$, and the ground field and the
class field must be totally real. When the base field is $\Q$, the vastly
simpler \tet{galoissubcyclo} is used instead. Here is an example:
\bprog
bnf = bnfinit(y^2 - 3);
bnr = bnrinit(bnf, 5, 1);
bnrstark(bnr)
@eprog\noindent
returns the ray class field of $\Q(\sqrt{3})$ modulo $5$. Usually, one wants
to apply to the result one of
\bprog
rnfpolredabs(bnf, pol, 16) \\@com compute a reduced relative polynomial
rnfpolredabs(bnf, pol, 16 + 2) \\@com compute a reduced absolute polynomial
@eprog
The routine uses \idx{Stark units} and needs to find a suitable auxiliary
conductor, which may not exist when the class field is not cyclic over the
base. In this case \kbd{bnrstark} is allowed to return a vector of
polynomials defining \emph{independent} relative extensions, whose compositum
is the requested class field. It was decided that it was more useful
to keep the extra information thus made available, hence the user has to take
the compositum herself.
Even if it exists, the auxiliary conductor may be so large that later
computations become unfeasible. (And of course, Stark's conjecture may simply
be wrong.) In case of difficulties, try \tet{rnfkummer}:
\bprog
? bnr = bnrinit(bnfinit(y^8-12*y^6+36*y^4-36*y^2+9,1), 2, 1);
? bnrstark(bnr)
*** at top-level: bnrstark(bnr)
*** ^-------------
*** bnrstark: need 3919350809720744 coefficients in initzeta.
*** Computation impossible.
? lift( rnfkummer(bnr) )
time = 24 ms.
%2 = x^2 + (1/3*y^6 - 11/3*y^4 + 8*y^2 - 5)
@eprog
Function: break
Class: basic
Section: programming/control
C-Name: break0
Prototype: D1,L,
Help: break({n=1}): interrupt execution of current instruction sequence, and
exit from the n innermost enclosing loops.
Doc: interrupts execution of current \var{seq}, and
immediately exits from the $n$ innermost enclosing loops, within the
current function call (or the top level loop); the integer $n$ must be
positive. If $n$ is greater than the number of enclosing loops, all
enclosing loops are exited.
Function: ceil
Class: basic
Section: conversions
C-Name: gceil
Prototype: G
Help: ceil(x): ceiling of x = smallest integer >= x.
Description:
(small):small:parens $1
(int):int:copy:parens $1
(real):int ceilr($1)
(mp):int mpceil($1)
(gen):gen gceil($1)
Doc:
ceiling of $x$. When $x$ is in $\R$, the result is the
smallest integer greater than or equal to $x$. Applied to a rational
function, $\kbd{ceil}(x)$ returns the Euclidean quotient of the numerator by
the denominator.
Function: centerlift
Class: basic
Section: conversions
C-Name: centerlift0
Prototype: GDn
Help: centerlift(x,{v}): centered lift of x. Same as lift except for
integermods.
Description:
(pol):pol centerlift($1)
(vec):vec centerlift($1)
(gen):gen centerlift($1)
(pol, var):pol centerlift0($1, $2)
(vec, var):vec centerlift0($1, $2)
(gen, var):gen centerlift0($1, $2)
Doc:
lifts an element $x=a \bmod n$ of $\Z/n\Z$
to $a$ in $\Z$, and similarly lifts a polmod to a polynomial. This is the
same as \tet{lift} except that in the particular case of elements of
$\Z/n\Z$, the lift $y$ is such that $-n/2<y\le n/2$. A \typ{PADIC} is lifted
as above if its valuation $v$ is non-negative; if not, returns the fraction
$p^v$ \kbd{centerlift}$(x^{-v})$; in particular, note that rational
reconstruction is not attempted.
If $x$ is of type fraction, complex, quadratic, polynomial, power series,
rational function, vector or matrix, the lift is done for each coefficient.
Reals are forbidden.
Variant: Also available is \fun{GEN}{centerlift}{GEN x} corresponding to
\kbd{centerlift0(x,-1)}.
Function: charpoly
Class: basic
Section: linear_algebra
C-Name: charpoly0
Prototype: GDnD3,L,
Help: charpoly(A,{v=x},{flag=3}): det(v*Id-A)=characteristic polynomial of
the matrix or polmod A. flag is optional and ignored unless A is a matrix;
it may be set to 0 (Le Verrier), 1
(Lagrange interpolation) or 2 (use Hessenberg form), 3 (Berkowitz, default).
All algorithms except flag = 3 (Berkowitz) assume that n! is invertible,
where n is the dimension of the matrix.
Doc:
\idx{characteristic polynomial}
of $A$ with respect to the variable $v$, i.e.~determinant of $v*I-A$ if $A$
is a square matrix. If $A$ is not a square matrix, it returns the
characteristic polynomial of the map ``multiplication by $A$'' if $A$ is a
scalar, in particular a polmod. E.g.~\kbd{charpoly(I) = x\pow2+1}.
The value of $\fl$ is only significant for matrices. Let $n$ be the dimension
of $A$.
If $\fl=0$, same method (Le Verrier's) as for computing the adjoint matrix,
i.e.~using the traces of the powers of $A$. Assumes that $n!$ is
invertible; uses $O(n^4)$ scalar operations.
If $\fl=1$, uses Lagrange interpolation which is usually the slowest method.
Assumes that $n!$ is invertible; uses $O(n^4)$ scalar operations.
If $\fl=2$, uses the Hessenberg form. Assumes that the base ring is a field.
Uses $O(n^3)$ scalar operations, but suffers from coefficient explosion
unless the base field is finite or $\R$.
If $\fl=3$, uses Berkowitz's division free algorithm, valid over any
ring (commutative, with unit). Uses $O(n^4)$ scalar operations.
If $\fl=4$, $x$ must be integral. Uses a modular algorithm.
In practice one should use the default (Berkowitz) unless the base ring is
$\Z$ (use $\fl=4$) or a field where coefficient explosion does not occur,
e.g.~a finite field or the reals (use $\fl=2$).
Variant: Also available are \fun{GEN}{caract}{GEN A, long v} ($\fl=1$),
\fun{GEN}{carhess}{GEN A, long v} ($\fl=2$), \fun{GEN}{carberkowitz}{GEN A,
long v} ($\fl=3$) and \fun{GEN}{caradj}{GEN A, long v, GEN *pt}. In this
last case, if \var{pt} is not \kbd{NULL}, \kbd{*pt} receives the address of
the adjoint matrix of $A$ (see \tet{matadjoint}), so both can be obtained at
once.
Function: chinese
Class: basic
Section: number_theoretical
C-Name: chinese
Prototype: GDG
Help: chinese(x,{y}): x,y being both intmods (or polmods) computes z in the
same residue classes as x and y.
Description:
(gen):gen chinese1($1)
(gen, gen):gen chinese($1, $2)
Doc: if $x$ and $y$ are both intmods or both
polmods, creates (with the same type) a $z$ in the same residue class
as $x$ and in the same residue class as $y$, if it is possible.
This function also allows vector and matrix arguments, in which case the
operation is recursively applied to each component of the vector or matrix.
For polynomial arguments, it is applied to each coefficient.
If $y$ is omitted, and $x$ is a vector, \kbd{chinese} is applied recursively
to the components of $x$, yielding a residue belonging to the same class as all
components of $x$.
Finally $\kbd{chinese}(x,x) = x$ regardless of the type of $x$; this allows
vector arguments to contain other data, so long as they are identical in both
vectors.
Variant: \fun{GEN}{chinese1}{GEN x} is also available.
Function: clone
Class: gp2c
Description:
(small):small:parens $1
(int):int gclone($1)
(real):real gclone($1)
(mp):mp gclone($1)
(vecsmall):vecsmall gclone($1)
(vec):vec gclone($1)
(pol):pol gclone($1)
(gen):gen gclone($1)
Function: component
Class: basic
Section: conversions
C-Name: compo
Prototype: GL
Help: component(x,n): the n'th component of the internal representation of
x. For vectors or matrices, it is simpler to use x[]. For list objects such
as nf, bnf, bnr or ell, it is much easier to use member functions starting
with ".".
Doc: extracts the $n^{\text{th}}$-component of $x$. This is to be understood
as follows: every PARI type has one or two initial \idx{code words}. The
components are counted, starting at 1, after these code words. In particular
if $x$ is a vector, this is indeed the $n^{\text{th}}$-component of $x$, if
$x$ is a matrix, the $n^{\text{th}}$ column, if $x$ is a polynomial, the
$n^{\text{th}}$ coefficient (i.e.~of degree $n-1$), and for power series,
the $n^{\text{th}}$ significant coefficient.
For polynomials and power series, one should rather use \tet{polcoeff}, and
for vectors and matrices, the \kbd{[$\,$]} operator. Namely, if $x$ is a
vector, then \tet{x[n]} represents the $n^{\text{th}}$ component of $x$. If
$x$ is a matrix, \tet{x[m,n]} represents the coefficient of row \kbd{m} and
column \kbd{n} of the matrix, \tet{x[m,]} represents the $m^{\text{th}}$
\emph{row} of $x$, and \tet{x[,n]} represents the $n^{\text{th}}$
\emph{column} of $x$.
Using of this function requires detailed knowledge of the structure of the
different PARI types, and thus it should almost never be used directly.
Some useful exceptions:
\bprog
? x = 3 + O(3^5);
? component(x, 2)
%2 = 81 \\ p^(p-adic acurracy)
? component(x, 1)
%3 = 3 \\ p
? q = Qfb(1,2,3);
? component(q, 1)
%5 = 1
@eprog
Function: concat
Class: basic
Section: linear_algebra
C-Name: concat
Prototype: GDG
Help: concat(x,{y}): concatenation of x and y, which can be scalars, vectors
or matrices, or lists (in this last case, both x and y have to be lists). If
y is omitted, x has to be a list or row vector and its elements are
concatenated.
Description:
(mp,mp):vec concat($1, $2)
(vec,mp):vec concat($1, $2)
(mp,vec):vec concat($1, $2)
(vec,vec):vec concat($1, $2)
(list,list):list concat($1, $2)
(genstr,gen):genstr concat($1, $2)
(gen,genstr):genstr concat($1, $2)
(gen,?gen):gen concat($1, $2)
Doc: concatenation of $x$ and $y$. If $x$ or $y$ is
not a vector or matrix, it is considered as a one-dimensional vector. All
types are allowed for $x$ and $y$, but the sizes must be compatible. Note
that matrices are concatenated horizontally, i.e.~the number of rows stays
the same. Using transpositions, it is easy to concatenate them vertically.
To concatenate vectors sideways (i.e.~to obtain a two-row or two-column
matrix), use \tet{Mat} instead (see the example there). Concatenating a row
vector to a matrix having the same number of columns will add the row to the
matrix (top row if the vector is $x$, i.e.~comes first, and bottom row
otherwise).
The empty matrix \kbd{[;]} is considered to have a number of rows compatible
with any operation, in particular concatenation. (Note that this is
definitely \emph{not} the case for empty vectors \kbd{[~]} or \kbd{[~]\til}.)
If $y$ is omitted, $x$ has to be a row vector or a list, in which case its
elements are concatenated, from left to right, using the above rules.
\bprog
? concat([1,2], [3,4])
%1 = [1, 2, 3, 4]
? a = [[1,2]~, [3,4]~]; concat(a)
%2 =
[1 3]
[2 4]
? concat([1,2; 3,4], [5,6]~)
%3 =
[1 2 5]
[3 4 6]
? concat([%, [7,8]~, [1,2,3,4]])
%5 =
[1 2 5 7]
[3 4 6 8]
[1 2 3 4]
@eprog
Variant: \fun{GEN}{concat1}{GEN x} is a shortcut for \kbd{concat(x,NULL)}.
Function: conj
Class: basic
Section: conversions
C-Name: gconj
Prototype: G
Help: conj(x): the algebraic conjugate of x.
Doc:
conjugate of $x$. The meaning of this
is clear, except that for real quadratic numbers, it means conjugation in the
real quadratic field. This function has no effect on integers, reals,
intmods, fractions or $p$-adics. The only forbidden type is polmod
(see \kbd{conjvec} for this).
Function: conjvec
Class: basic
Section: conversions
C-Name: conjvec
Prototype: Gp
Help: conjvec(z): conjugate vector of the algebraic number z.
Doc:
conjugate vector representation of $z$. If $z$ is a
polmod, equal to \kbd{Mod}$(a,T)$, this gives a vector of length
$\text{degree}(T)$ containing:
\item the complex embeddings of $z$ if $T$ has rational coefficients,
i.e.~the $a(r[i])$ where $r = \kbd{polroots}(T)$;
\item the conjugates of $z$ if $T$ has some intmod coefficients;
\noindent if $z$ is a finite field element, the result is the vector of
conjugates $[z,z^p,z^{p^2},\ldots,z^{p^{n-1}}]$ where $n=\text{degree}(T)$.
\noindent If $z$ is an integer or a rational number, the result is~$z$. If
$z$ is a (row or column) vector, the result is a matrix whose columns are
the conjugate vectors of the individual elements of $z$.
Function: content
Class: basic
Section: number_theoretical
C-Name: content
Prototype: G
Help: content(x): gcd of all the components of x, when this makes sense.
Doc: computes the gcd of all the coefficients of $x$,
when this gcd makes sense. This is the natural definition
if $x$ is a polynomial (and by extension a power series) or a
vector/matrix. This is in general a weaker notion than the \emph{ideal}
generated by the coefficients:
\bprog
? content(2*x+y)
%1 = 1 \\ = gcd(2,y) over Q[y]
@eprog
If $x$ is a scalar, this simply returns the absolute value of $x$ if $x$ is
rational (\typ{INT} or \typ{FRAC}), and either $1$ (inexact input) or $x$
(exact input) otherwise; the result should be identical to \kbd{gcd(x, 0)}.
The content of a rational function is the ratio of the contents of the
numerator and the denominator. In recursive structures, if a
matrix or vector \emph{coefficient} $x$ appears, the gcd is taken
not with $x$, but with its content:
\bprog
? content([ [2], 4*matid(3) ])
%1 = 2
@eprog
Function: contfrac
Class: basic
Section: number_theoretical
C-Name: contfrac0
Prototype: GDGD0,L,
Help: contfrac(x,{b},{nmax}): continued fraction expansion of x (x
rational,real or rational function). b and nmax are both optional, where b
is the vector of numerators of the continued fraction, and nmax is a bound
for the number of terms in the continued fraction expansion.
Doc: returns the row vector whose components are the partial quotients of the
\idx{continued fraction} expansion of $x$. In other words, a result
$[a_0,\dots,a_n]$ means that $x \approx a_0+1/(a_1+\dots+1/a_n)$. The
output is normalized so that $a_n \neq 1$ (unless we also have $n = 0$).
The number of partial quotients $n+1$ is limited by \kbd{nmax}. If
\kbd{nmax} is omitted, the expansion stops at the last significant partial
quotient.
\bprog
? \p19
realprecision = 19 significant digits
? contfrac(Pi)
%1 = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2]
? contfrac(Pi,, 3) \\ n = 2
%2 = [3, 7, 15]
@eprog\noindent
$x$ can also be a rational function or a power series.
If a vector $b$ is supplied, the numerators are equal to the coefficients
of $b$, instead of all equal to $1$ as above; more precisely, $x \approx
(1/b_0)(a_0+b_1/(a_1+\dots+b_n/a_n))$; for a numerical continued fraction
($x$ real), the $a_i$ are integers, as large as possible; if $x$ is a
rational function, they are polynomials with $\deg a_i = \deg b_i + 1$.
The length of the result is then equal to the length of $b$, unless the next
partial quotient cannot be reliably computed, in which case the expansion
stops. This happens when a partial remainder is equal to zero (or too small
compared to the available significant digits for $x$ a \typ{REAL}).
A direct implementation of the numerical continued fraction
\kbd{contfrac(x,b)} described above would be
\bprog
\\ "greedy" generalized continued fraction
cf(x, b) =
{ my( a= vector(#b), t );
x *= b[1];
for (i = 1, #b,
a[i] = floor(x);
t = x - a[i]; if (!t || i == #b, break);
x = b[i+1] / t;
); a;
}
@eprog\noindent There is some degree of freedom when choosing the $a_i$; the
program above can easily be modified to derive variants of the standard
algorithm. In the same vein, although no builtin
function implements the related \idx{Engel expansion} (a special kind of
\idx{Egyptian fraction} decomposition: $x = 1/a_1 + 1/(a_1a_2) + \dots$ ),
it can be obtained as follows:
\bprog
\\ n terms of the Engel expansion of x
engel(x, n = 10) =
{ my( u = x, a = vector(n) );
for (k = 1, n,
a[k] = ceil(1/u);
u = u*a[k] - 1;
if (!u, break);
); a
}
@eprog
\misctitle{Obsolete hack} (don't use this): If $b$ is an integer, \var{nmax}
is ignored and the command is understood as \kbd{contfrac($x,, b$)}.
Variant: Also available are \fun{GEN}{gboundcf}{GEN x, long nmax},
\fun{GEN}{gcf}{GEN x} and \fun{GEN}{gcf2}{GEN b, GEN x}.
Function: contfracpnqn
Class: basic
Section: number_theoretical
C-Name: pnqn
Prototype: G
Help: contfracpnqn(x): [p_n,p_{n-1}; q_n,q_{n-1}] corresponding to the
continued fraction x.
Doc: when $x$ is a vector or a one-row matrix, $x$
is considered as the list of partial quotients $[a_0,a_1,\dots,a_n]$ of a
rational number, and the result is the 2 by 2 matrix
$[p_n,p_{n-1};q_n,q_{n-1}]$ in the standard notation of continued fractions,
so $p_n/q_n=a_0+1/(a_1+\dots+1/a_n)$. If $x$ is a matrix with two rows
$[b_0,b_1,\dots,b_n]$ and $[a_0,a_1,\dots,a_n]$, this is then considered as a
generalized continued fraction and we have similarly
$p_n/q_n=(1/b_0)(a_0+b_1/(a_1+\dots+b_n/a_n))$. Note that in this case one
usually has $b_0=1$.
Function: copy
Class: gp2c
Description:
(small):small:parens $1
(int):int icopy($1)
(real):real gcopy($1)
(mp):mp gcopy($1)
(vecsmall):vecsmall gcopy($1)
(vec):vec gcopy($1)
(pol):pol gcopy($1)
(gen):gen gcopy($1)
Function: core
Class: basic
Section: number_theoretical
C-Name: core0
Prototype: GD0,L,
Help: core(n,{flag=0}): unique squarefree integer d
dividing n such that n/d is a square. If (optional) flag is non-null, output
the two-component row vector [d,f], where d is the unique squarefree integer
dividing n such that n/d=f^2 is a square.
Doc: if $n$ is an integer written as
$n=df^2$ with $d$ squarefree, returns $d$. If $\fl$ is non-zero,
returns the two-element row vector $[d,f]$. By convention, we write $0 = 0
\times 1^2$, so \kbd{core(0, 1)} returns $[0,1]$.
Variant: Also available are \fun{GEN}{core}{GEN n} ($\fl = 0$) and
\fun{GEN}{core2}{GEN n} ($\fl = 1$)
Function: coredisc
Class: basic
Section: number_theoretical
C-Name: coredisc0
Prototype: GD0,L,
Help: coredisc(n,{flag=0}): discriminant of the quadratic field Q(sqrt(n)).
If (optional) flag is non-null, output a two-component row vector [d,f],
where d is the discriminant of the quadratic field Q(sqrt(n)) and n=df^2. f
may be a half integer.
Doc: a \emph{fundamental discriminant} is an integer of the form $t\equiv 1
\mod 4$ or $4t \equiv 8,12 \mod 16$, with $t$ squarefree (i.e.~$1$ or the
discriminant of a quadratic number field). Given a non-zero integer
$n$, this routine returns the (unique) fundamental discriminant $d$
such that $n=df^2$, $f$ a positive rational number. If $\fl$ is non-zero,
returns the two-element row vector $[d,f]$. If $n$ is congruent to
0 or 1 modulo 4, $f$ is an integer, and a half-integer otherwise.
By convention, \kbd{coredisc(0, 1))} returns $[0,1]$.
Note that \tet{quaddisc}$(n)$ returns the same value as \kbd{coredisc}$(n)$,
and also works with rational inputs $n\in\Q^*$.
Variant: Also available are \fun{GEN}{coredisc}{GEN n} ($\fl = 0$) and
\fun{GEN}{coredisc2}{GEN n} ($\fl = 1$)
Function: cos
Class: basic
Section: transcendental
C-Name: gcos
Prototype: Gp
Help: cos(x): cosine of x.
Doc: cosine of $x$.
Function: cosh
Class: basic
Section: transcendental
C-Name: gch
Prototype: Gp
Help: cosh(x): hyperbolic cosine of x.
Doc: hyperbolic cosine of $x$.
Function: cotan
Class: basic
Section: transcendental
C-Name: gcotan
Prototype: Gp
Help: cotan(x): cotangent of x.
Doc: cotangent of $x$.
Function: default
Class: basic
Section: programming/specific
C-Name: default0
Prototype: DrDs
Help: default({key},{val}): returns the current value of the
default key. If val is present, set opt to val first. If no argument is
given, print a list of all defaults as well as their values.
Description:
("realprecision"):small:prec getrealprecision()
("realprecision",small):small:prec setrealprecision($2, &prec)
("seriesprecision"):small precdl
("seriesprecision",small):small:parens precdl = $2
("debug"):small DEBUGLEVEL
("debug",small):small:parens DEBUGLEVEL = $2
("debugmem"):small DEBUGMEM
("debugmem",small):small:parens DEBUGMEM = $2
("debugfiles"):small DEBUGFILES
("debugfiles",small):small:parens DEBUGFILES = $2
("factor_add_primes"):small factor_add_primes
("factor_add_primes",small):small factor_add_primes = $2
("factor_proven"):small factor_proven
("factor_proven",small):small factor_proven = $2
("new_galois_format"):small new_galois_format
("new_galois_format",small):small new_galois_format = $2
Doc: returns the default corresponding to keyword \var{key}. If \var{val} is
present, sets the default to \var{val} first (which is subject to string
expansion first). Typing \kbd{default()} (or \b{d}) yields the complete
default list as well as their current values. See \secref{se:defaults} for an
introduction to GP defaults, \secref{se:gp_defaults} for a
list of available defaults, and \secref{se:meta} for some shortcut
alternatives. Note that the shortcuts are meant for interactive use and
usually display more information than \kbd{default}.
Function: denominator
Class: basic
Section: conversions
C-Name: denom
Prototype: G
Help: denominator(x): denominator of x (or lowest common denominator in case
of an array).
Doc:
denominator of $x$. The meaning of this
is clear when $x$ is a rational number or function. If $x$ is an integer
or a polynomial, it is treated as a rational number or function,
respectively, and the result is equal to $1$. For polynomials, you
probably want to use
\bprog
denominator( content(x) )
@eprog\noindent
instead. As for modular objects, \typ{INTMOD} and \typ{PADIC} have
denominator $1$, and the denominator of a \typ{POLMOD} is the denominator
of its (minimal degree) polynomial representative.
If $x$ is a recursive structure, for instance a vector or matrix, the lcm
of the denominators of its components (a common denominator) is computed.
This also applies for \typ{COMPLEX}s and \typ{QUAD}s.
\misctitle{Warning} Multivariate objects are created according to variable
priorities, with possibly surprising side effects ($x/y$ is a polynomial, but
$y/x$ is a rational function). See \secref{se:priority}.
Function: deriv
Class: basic
Section: polynomials
C-Name: deriv
Prototype: GDn
Help: deriv(x,{v}): derivative of x with respect to v, or to the main
variable of x if v is omitted.
Doc:
derivative of $x$ with respect to the main
variable if $v$ is omitted, and with respect to $v$ otherwise. The derivative
of a scalar type is zero, and the derivative of a vector or matrix is done
componentwise. One can use $x'$ as a shortcut if the derivative is with
respect to the main variable of $x$.
By definition, the main variable of a \typ{POLMOD} is the main variable among
the coefficients from its two polynomial components (representative and
modulus); in other words, assuming a polmod represents an element of
$R[X]/(T(X))$, the variable $X$ is a mute variable and the derivative is
taken with respect to the main variable used in the base ring $R$.
Function: derivnum
Class: basic
Section: sums
C-Name: derivnum0
Prototype: V=GEp
Help: derivnum(X=a,expr): numerical derivation of expr with respect to
X at X = a.
Wrapper: (,G)
Description:
(gen,gen):gen:prec derivnum(${2 cookie}, ${2 wrapper}, $1, prec)
Doc: numerical derivation of \var{expr} with respect to $X$ at $X=a$.
\bprog
? derivnum(x=0,sin(exp(x))) - cos(1)
%1 = -1.262177448 E-29
@eprog
A clumsier approach, which would not work in library mode, is
\bprog
? f(x) = sin(exp(x))
? f'(0) - cos(1)
%1 = -1.262177448 E-29
@eprog
When $a$ is a power series, compute \kbd{derivnum(t=a,f)} as $f'(a) =
(f(a))'/a'$.
\synt{derivnum}{void *E, GEN (*eval)(void*,GEN), GEN a, long prec}. Also
available is \fun{GEN}{derivfun}{void *E, GEN (*eval)(void *, GEN), GEN a,
long prec}, which also allows power series for $a$.
Function: diffop
Class: basic
Section: polynomials
C-Name: diffop0
Prototype: GGGD1,L,
Help: diffop(x,v,d,{n=1}): apply the differential operator D to x, where D is defined
by D(v[i])=d[i], where v is a vector of variable names. D is 0 for variables
outside of v unless they appear as modulus of a POLMOD. If the optional parameter n
is given, return D^n(x) instead.
Description:
(gen,gen,gen,?1):gen diffop($1, $2, $3)
(gen,gen,gen,small):gen diffop0($1, $2, $3, $4)
Doc:
Let $v$ be a vector of variables, and $d$ a vector of the same length,
return the image of $x$ by the $n$-power ($1$ if n is not given) of the differential
operator $D$ that assumes the value \kbd{d[i]} on the variable \kbd{v[i]}.
The value of $D$ on a scalar type is zero, and $D$ applies componentwise to a vector
or matrix. When applied to a \typ{POLMOD}, if no value is provided for the variable
of the modulus, such value is derived using the implicit function theorem.
Some examples:
This function can be used to differentiate formal expressions:
If $E=\exp(X^2)$ then we have $E'=2*X*E$. We can derivate $X*exp(X^2)$ as follow:
\bprog
? diffop(E*X,[X,E],[1,2*X*E])
%1 = (2*X^2 + 1)*E
@eprog
Let \kbd{Sin} and \kbd{Cos} be two function such that $\kbd{Sin}^2+\kbd{Cos}^2=1$
and $\kbd{Cos}'=-\kbd{Sin}$. We can differentiate $\kbd{Sin}/\kbd{Cos}$ as follow,
PARI inferring the value of $\kbd{Sin}'$ from the equation:
\bprog
? diffop(Mod('Sin/'Cos,'Sin^2+'Cos^2-1),['Cos],[-'Sin])
%1 = Mod(1/Cos^2, Sin^2 + (Cos^2 - 1))
@eprog
Compute the Bell polynomials (both complete and partial) via the Faa di Bruno formula:
\bprog
Bell(k,n=-1)=
{
my(var(i)=eval(Str("X",i)));
my(x,v,dv);
v=vector(k,i,if(i==1,'E,var(i-1)));
dv=vector(k,i,if(i==1,'X*var(1)*'E,var(i)));
x=diffop('E,v,dv,k)/'E;
if(n<0,subst(x,'X,1),polcoeff(x,n,'X))
}
@eprog
Variant:
For $n=1$, the function \fun{GEN}{diffop}{GEN x, GEN v, GEN d} is also available.
Function: dilog
Class: basic
Section: transcendental
C-Name: dilog
Prototype: Gp
Help: dilog(x): dilogarithm of x.
Doc: principal branch of the dilogarithm of $x$,
i.e.~analytic continuation of the power series $\log_2(x)=\sum_{n\ge1}x^n/n^2$.
Function: dirdiv
Class: basic
Section: number_theoretical
C-Name: dirdiv
Prototype: GG
Help: dirdiv(x,y): division of the Dirichlet series x by the Dirichlet
series y.
Doc: $x$ and $y$ being vectors of perhaps different
lengths but with $y[1]\neq 0$ considered as \idx{Dirichlet series}, computes
the quotient of $x$ by $y$, again as a vector.
Function: direuler
Class: basic
Section: number_theoretical
C-Name: direuler0
Prototype: V=GGEDG
Help: direuler(p=a,b,expr,{c}): Dirichlet Euler product of expression expr
from p=a to p=b, limited to b terms. Expr should be a polynomial or rational
function in p and X, and X is understood to mean p^(-s). If c is present,
output only the first c terms.
Wrapper: (,,G)
Description:
(gen,gen,gen,?gen):gen direuler(${3 cookie}, ${3 wrapper}, $1, $2, $4)
Doc: computes the \idx{Dirichlet series} associated to the \idx{Euler
product} of expression \var{expr} as $p$ ranges through the primes from $a$
to $b$. \var{expr} must be a polynomial or rational function in another
variable than $p$ (say $X$) and $\var{expr}(X)$ is understood as the local
factor $\var{expr}(p^{-s})$.
The series is output as a vector of coefficients. If $c$ is present, output
only the first $c$ coefficients in the series. The following command computes
the \teb{sigma} function, associated to $\zeta(s)\zeta(s-1)$:
\bprog
? direuler(p=2, 10, 1/((1-X)*(1-p*X)))
%1 = [1, 3, 4, 7, 6, 12, 8, 15, 13, 18]
@eprog
\synt{direuler}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b}
Function: dirmul
Class: basic
Section: number_theoretical
C-Name: dirmul
Prototype: GG
Help: dirmul(x,y): multiplication of the Dirichlet series x by the Dirichlet
series y.
Doc: $x$ and $y$ being vectors of perhaps different lengths representing
the \idx{Dirichlet series} $\sum_n x_n n^{-s}$ and $\sum_n y_n n^{-s}$,
computes the product of $x$ by $y$, again as a vector.
\bprog
? dirmul(vector(10,n,1), vector(10,n,moebius(n)))
%1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
@eprog\noindent
The product
length is the minimum of $\kbd{\#}x\kbd{*}v(y)$ and $\kbd{\#}y\kbd{*}v(x)$,
where $v(x)$ is the index of the first non-zero coefficient.
\bprog
? dirmul([0,1], [0,1]);
%2 = [0, 0, 0, 1]
@eprog
Function: dirzetak
Class: basic
Section: number_fields
C-Name: dirzetak
Prototype: GG
Help: dirzetak(nf,b): Dirichlet series of the Dedekind zeta function of the
number field nf up to the bound b-1.
Doc: gives as a vector the first $b$
coefficients of the \idx{Dedekind} zeta function of the number field $\var{nf}$
considered as a \idx{Dirichlet series}.
Function: divisors
Class: basic
Section: number_theoretical
C-Name: divisors
Prototype: G
Help: divisors(x): gives a vector formed by the divisors of x in increasing
order.
Description:
(gen):vec divisors($1)
Doc: creates a row vector whose components are the
divisors of $x$. The factorization of $x$ (as output by \tet{factor}) can
be used instead.
By definition, these divisors are the products of the irreducible
factors of $n$, as produced by \kbd{factor(n)}, raised to appropriate
powers (no negative exponent may occur in the factorization). If $n$ is
an integer, they are the positive divisors, in increasing order.
Function: divrem
Class: basic
Section: operators
C-Name: divrem
Prototype: GGDn
Help: divrem(x,y,{v}): euclidean division of x by y giving as a
2-dimensional column vector the quotient and the remainder, with respect to
v (to main variable if v is omitted)
Doc: creates a column vector with two components, the first being the Euclidean
quotient (\kbd{$x$ \bs\ $y$}), the second the Euclidean remainder
(\kbd{$x$ - ($x$\bs$y$)*$y$}), of the division of $x$ by $y$. This avoids the
need to do two divisions if one needs both the quotient and the remainder.
If $v$ is present, and $x$, $y$ are multivariate
polynomials, divide with respect to the variable $v$.
Beware that \kbd{divrem($x$,$y$)[2]} is in general not the same as
\kbd{$x$ \% $y$}; no GP operator corresponds to it:
\bprog
? divrem(1/2, 3)[2]
%1 = 1/2
? (1/2) % 3
%2 = 2
? divrem(Mod(2,9), 3)[2]
*** at top-level: divrem(Mod(2,9),3)[2
*** ^--------------------
*** forbidden division t_INTMOD \ t_INT.
? Mod(2,9) % 6
%3 = Mod(2,3)
@eprog
Variant: Also available is \fun{GEN}{gdiventres}{GEN x, GEN y} when $v$ is
not needed.
Function: eint1
Class: basic
Section: transcendental
C-Name: veceint1
Prototype: GDGp
Help: eint1(x,{n}): exponential integral E1(x). If n is present, computes
the vector of the first n values of the exponential integral E1(n.x) (x > 0).
Doc: exponential integral $\int_x^\infty \dfrac{e^{-t}}{t}\,dt$ ($x\in\R$)
If $n$ is present, outputs the $n$-dimensional vector
$[\kbd{eint1}(x),\dots,\kbd{eint1}(nx)]$ ($x \geq 0$). This is faster than
repeatedly calling \kbd{eint1($i$ * x)}.
Variant: Also available is \fun{GEN}{eint1}{GEN x, long prec}.
Function: ellL1
Class: basic
Section: elliptic_curves
C-Name: ellL1
Prototype: GLp
Help: ellL1(e, r): returns the value at s=1 of the derivative of order r of the L-function of the elliptic curve e assuming that r is at most the order of vanishing of the function at s=1.
Doc: returns the value at $s=1$ of the derivative of order $r$ of the
$L$-function of the elliptic curve $e$ assuming that $r$ is at most the order
of vanishing of the $L$-function at $s=1$. (The result is wrong if $r$ is
strictly larger than the order of vanishing at 1.)
\bprog
? e = ellinit("11a1"); \\ order of vanishing is 0
? ellL1(e, 0)
%2 = 0.2538418608559106843377589233
? e = ellinit("389a1"); \\ order of vanishing is 2
? ellL1(e, 0)
%4 = -5.384067311837218089235032414 E-29
? ellL1(e, 1)
%5 = 0
? ellL1(e, 2)
%6 = 1.518633000576853540460385214
@eprog\noindent
The main use of this function, after computing at \emph{low} accuracy the
order of vanishing using \tet{ellanalyticrank}, is to compute the
leading term at \emph{high} accuracy to check (or use) the Birch and
Swinnerton-Dyer conjecture:
\bprog
? \p18
realprecision = 18 significant digits
? ellanalyticrank(ellinit([0, 0, 1, -7, 6]))
time = 32 ms.
%1 = [3, 10.3910994007158041]
? \p200
realprecision = 202 significant digits (200 digits displayed)
? ellL1(e, 3)
time = 23,113 ms.
%3 = 10.3910994007158041387518505103609170697263563756570092797@com$[\dots]$
@eprog
Function: elladd
Class: basic
Section: elliptic_curves
C-Name: addell
Prototype: GGG
Help: elladd(E,z1,z2): sum of the points z1 and z2 on elliptic curve E.
Doc:
sum of the points $z1$ and $z2$ on the
elliptic curve corresponding to $E$.
Function: ellak
Class: basic
Section: elliptic_curves
C-Name: akell
Prototype: GG
Help: ellak(E,n): computes the n-th Fourier coefficient of the L-function of
the elliptic curve E (assumed E is a minimal model).
Doc:
computes the coefficient $a_n$ of the
$L$-function of the elliptic curve $E$, i.e.~in principle coefficients of a
newform of weight 2 assuming \idx{Taniyama-Weil conjecture} (which is now
known to hold in full generality thanks to the work of \idx{Breuil},
\idx{Conrad}, \idx{Diamond}, \idx{Taylor} and \idx{Wiles}). $E$ must be a
\var{smallell} as output by \kbd{ellinit}. For this function
to work for every $n$ and not just those prime to the conductor, $E$ must
be a minimal Weierstrass equation. If this is not the case, use the
function \kbd{ellminimalmodel} before using \kbd{ellak}.
Function: ellan
Class: basic
Section: elliptic_curves
C-Name: anell
Prototype: GL
Help: ellan(E,n): computes the first n Fourier coefficients of the
L-function of the elliptic curve E (n<2^24 on a 32-bit machine).
Doc:
computes the vector of the first $n$ $a_k$
corresponding to the elliptic curve $E$. All comments in \kbd{ellak}
description remain valid.
Function: ellanalyticrank
Class: basic
Section: elliptic_curves
C-Name: ellanalyticrank
Prototype: GDGp
Help: ellanalyticrank(e, {eps}): returns the order of vanishing at s=1
of the L-function of the elliptic curve e and the value of the first
non-zero derivative. To determine this order, it is assumed that any
value less than eps is zero. If no value of eps is given, a value of
half the current precision is used.
Doc: returns the order of vanishing at $s=1$ of the $L$-function of the
elliptic curve $e$ and the value of the first non-zero derivative. To
determine this order, it is assumed that any value less than \kbd{eps} is
zero. If no value of \kbd{eps} is given, a value of half the current
precision is used.
\bprog
? e = ellinit("11a1"); \\ rank 0
? ellanalyticrank(e)
%2 = [0, 0.2538418608559106843377589233]
? e = ellinit("37a1"); \\ rank 1
? ellanalyticrank(e)
%4 = [1, 0.3059997738340523018204836835]
? e = ellinit("389a1"); \\ rank 2
? ellanalyticrank(e)
%6 = [2, 1.518633000576853540460385214]
? e = ellinit("5077a1"); \\ rank 3
? ellanalyticrank(e)
%8 = [3, 10.39109940071580413875185035]
@eprog
Function: ellap
Class: basic
Section: elliptic_curves
C-Name: ellap
Prototype: GDG
Help: ellap(E,{p}): computes a_p for the elliptic curve E using
Shanks-Mestre's method, or SEA algorithm if the package seadata is installed.
Assume the equation is minimal at p.
Doc: computes the trace of Frobenius $a_p$ for the elliptic curve $E$ and the
prime number $p$. This is defined by the equation $\#E(\F_p) = p+1 - a_p$,
where $\#E(\F_p)$ stands for the number of points of the curve $E$ over the
finite field $\F_p$.
No checking is done that $p$ is indeed prime. $E$ must be a \var{smallell} as
output by \kbd{ellinit}, defined over $\Q$, $\Q_p$, or $\F_p$. The prime $p$
may be omitted if the curve was defined over $\F_p$ (\typ{INTMOD}
coefficients) or $\Q_p$ (\typ{PADIC} coefficients). Otherwise the curve must
be defined over $\Q$, and $p$ must be explicitly given. Over $\Q$ or
$\Q_p$, the equation is assumed to be minimal at $p$.
\bprog
? E = ellinit([0,0,0,0,1]); \\ defined over Q
? ellap(E, 3) \\ 3 necessary here
%2 = 0 \\ #E(F_3) = 3+1 - 0 = 4
? ellap(E, 7)
%3 = -4 \\ #E(F_7) = 12
? E = ellinit([0,0,0,0,1] * Mod(1,11)); \\ defined over F_11
? ellap(E) \\ no need to repeat 11
%5 = 0
? ellap(E, 11) \\ ... but it also works
%6 = 0
? ellgroup(E, 13) \\ ouch, inconsistent input !
*** at top-level: ellap(E,13)
*** ^-----------
*** ellap: inconsistent moduli in Rg_to_Fp: 11, 13.
@eprog
\misctitle{Algorithms used} If $E/\F_p$ has CM by a principal imaginary
quadratic order we use an explicit formula (involving essentially Kronecker
symbols and Cornacchia's algorithm, hence very fast: $O(\log p)^2$).
Otherwise, we use Shanks-Mestre's baby-step/giant-step method, which runs in
time $O(p^{1/4})$ using $O(p^{1/4})$ storage, hence becomes unreasonable when
$p$ has about 30~digits. If the \tet{seadata} package is installed, the
\tet{SEA} algorithm becomes available and primes of the order of 200~digits
become feasible.
Function: ellbil
Class: basic
Section: elliptic_curves
C-Name: bilhell
Prototype: GGGp
Help: ellbil(E,z1,z2): canonical bilinear form for the points z1,z2 on the
elliptic curve E (assumed to be minimal). Either z1 or z2 can also be a
vector/matrix of points.
Doc:
if $z1$ and $z2$ are points on the elliptic
curve $E$, assumed to be integral given by a minimal model, this function
computes the value of the canonical bilinear form on $z1$, $z2$:
$$ ( h(E,z1\kbd{+}z2) - h(E,z1) - h(E,z2) ) / 2 $$
where \kbd{+} denotes of course addition on $E$. In addition, $z1$ or $z2$
(but not both) can be vectors or matrices.
Function: ellchangecurve
Class: basic
Section: elliptic_curves
C-Name: ellchangecurve
Prototype: GG
Help: ellchangecurve(E,v): change data on elliptic curve according to
v=[u,r,s,t].
Description:
(gen, gen):ell ellchangecurve($1, $2)
Doc:
changes the data for the elliptic curve $E$
by changing the coordinates using the vector \kbd{v=[u,r,s,t]}, i.e.~if $x'$
and $y'$ are the new coordinates, then $x=u^2x'+r$, $y=u^3y'+su^2x'+t$.
$E$ must be a \var{smallell} as output by \kbd{ellinit}.
Function: ellchangepoint
Class: basic
Section: elliptic_curves
C-Name: ellchangepoint
Prototype: GG
Help: ellchangepoint(x,v): change data on point or vector of points x on an
elliptic curve according to v=[u,r,s,t].
Doc:
changes the coordinates of the point or
vector of points $x$ using the vector \kbd{v=[u,r,s,t]}, i.e.~if $x'$ and
$y'$ are the new coordinates, then $x=u^2x'+r$, $y=u^3y'+su^2x'+t$ (see also
\kbd{ellchangecurve}).
Variant: The reciprocal function \fun{GEN}{ellchangepointinv}{GEN x, GEN ch}
inverts the coordinate change.
Function: ellconvertname
Class: basic
Section: elliptic_curves
C-Name: ellconvertname
Prototype: G
Help: ellconvertname(name): convert an elliptic curve name (as found in
the elldata database) from a string to a triplet [conductor, isogeny class,
index]. It will also convert a triplet back to a curve name.
Doc:
converts an elliptic curve name, as found in the \tet{elldata} database,
from a string to a triplet $[\var{conductor}, \var{isogeny class},
\var{index}]$. It will also convert a triplet back to a curve name.
Examples:
\bprog
? ellconvertname("123b1")
%1 = [123, 1, 1]
? ellconvertname(%)
%2 = "123b1"
@eprog
Function: elldivpol
Class: basic
Section: elliptic_curves
C-Name: elldivpol
Prototype: GLDn
Help: elldivpol(E,n,{v='x}): n-division polynomial for the curve E in the
variable v.
Doc: $n$-division polynomial for the curve \kbd{E} in the
variable $v$.
Function: elleisnum
Class: basic
Section: elliptic_curves
C-Name: elleisnum
Prototype: GLD0,L,p
Help: elleisnum(E,k,{flag=0}): E being an elliptic curve (or, alternatively,
given by a 2-component vector representing its periods)
and k an even positive integer, computes the
numerical value of the Eisenstein series of weight k. When flag is non-zero
and k=4 or 6, this gives g2 or g3 with the correct normalization.
Doc:
$E$ being an elliptic curve as
output by \kbd{ellinit} (or, alternatively, given by a 2-component vector
$[\omega_1,\omega_2]$ representing its periods), and $k$ being an even
positive integer, computes the numerical value of the Eisenstein series of
weight $k$ at $E$, namely
$$
(2i \pi/\omega_2)^k
\Big(1 + 2/\zeta(1-k) \sum_{n\geq 0} n^{k-1}q^n / (1-q^n)\Big),
$$
where $q = \exp(2i\pi \tau)$ and $\tau:=\omega_1/\omega_2$ belongs to the
complex upper half-plane.
When \fl\ is non-zero and $k=4$ or 6, returns the elliptic invariants $g_2$
or $g_3$, such that
$$y^2 = 4x^3 - g_2 x - g_3$$
is a Weierstrass equation for $E$.
Function: elleta
Class: basic
Section: elliptic_curves
C-Name: elleta
Prototype: Gp
Help: elleta(om): om=[om1,om2], returns the two-component row vector
[eta1,eta2] of quasi-periods associated to [om1,om2].
Doc:
returns the quasi-periods $[\eta_1,\eta_2]$
associated to the lattice basis $\var{om} = [\omega_1, \omega_2]$.
Alternatively, \var{om} can be an elliptic curve $E$ as output by
\kbd{ellinit}, in which case, the quasi periods associated to the period
lattice basis \kbd{$E$.omega} (namely, \kbd{$E$.eta}) are returned.
\bprog
? elleta([1, I])
%1 = [3.141592653589793238462643383, 9.424777960769379715387930149*I]
@eprog
Function: ellgenerators
Class: basic
Section: elliptic_curves
C-Name: ellgenerators
Prototype: G
Help: ellgenerators(E): if E is an elliptic curve as output by ellinit(),
return the generators of the Mordell-Weil group associated to the curve.
This function depends on the curve being referenced in the elldata database.
Doc:
returns a $\Z$-basis of the free part of the
\idx{Mordell-Weil group} associated to $E$. This function depends on the
\tet{elldata} database being installed and referencing the curve, and so
is only available for curves over $\Z$ of small conductors.
Function: ellglobalred
Class: basic
Section: elliptic_curves
C-Name: ellglobalred
Prototype: G
Help: ellglobalred(E): E being an elliptic curve, returns [N,[u,r,s,t],c],
where N is the conductor of E, [u,r,s,t] leads to the standard model for E,
and c is the product of the local Tamagawa numbers c_p.
Description:
(gen):gen ellglobalred($1)
Doc:
calculates the arithmetic conductor, the global
minimal model of $E$ and the global \idx{Tamagawa number} $c$.
$E$ must be a \var{smallell} as output by \kbd{ellinit}, \emph{and is supposed
to have all its coefficients $a_i$ in} $\Q$. The result is a 3 component
vector $[N,v,c]$. $N$ is the arithmetic conductor of the curve. $v$ gives the
coordinate change for $E$ over $\Q$ to the minimal integral model (see
\tet{ellminimalmodel}). Finally $c$ is the product of the local Tamagawa
numbers $c_p$, a quantity which enters in the \idx{Birch and Swinnerton-Dyer
conjecture}.\sidx{minimal model}
Function: ellgroup
Class: basic
Section: elliptic_curves
C-Name: ellgroup
Prototype: GDG
Help: ellgroup(E,{p}): computes the structure of the group E(Fp)
Assume the equation is minimal at p.
Doc: computes the structure of the group $E(\F_p) \sim \Z/d_1\Z \times
\Z/d_2\Z$, with $d_2\mid d_1$. The prime $p$ may be omitted if the curve
was defined over $\F_p$ (\typ{INTMOD} coefficients) or $\Q_p$ (\typ{PADIC}
coefficients). Otherwise the curve must be defined over $\Q$, and $p$ must
be explicitly given. Over $\Q$ or $\Q_p$, the equation is assumed to be
minimal at $p$.
\bprog
? E = ellinit([0,0,0,0,1]); \\ defined over Q
? ellgroup(E, 3) \\ 3 necessary here
%2 = [4] \\ cyclic
? ellgroup(E, 7)
%3 = [6, 2] \\ non-cyclic
? E = ellinit([0,0,0,0,1] * Mod(1,11)); \\ defined over F_11
? ellgroup(E) \\ no need to repeat 11
%5 = [12]
? ellgroup(E, 11) \\ ... but it also works
%6 = [12]
? ellgroup(E, 13) \\ ouch, inconsistent input !
*** at top-level: ellgroup(E,13)
*** ^--------------
*** ellgroup: inconsistent moduli in Rg_to_Fp: 11, 13.
@eprog
Function: ellheight
Class: basic
Section: elliptic_curves
C-Name: ellheight0
Prototype: GGD2,L,p
Help: ellheight(E,x,{flag=2}): canonical height of point x on elliptic curve
E (assumed to be a minimal model). flag is optional and selects the algorithm
used to compute the Archimedean local height. Its meaning is 0: use
theta-functions, 1: use Tate's method, 2: use Mestre's AGM.
Doc: global \idx{N\'eron-Tate height} of the point $z$ on the elliptic curve
$E$ (defined over $\Q$), given by a standard minimal integral model. $E$
must be an \kbd{ell} as output by \kbd{ellinit}. \fl selects the algorithm
used to compute the Archimedean local height. If $\fl=0$, this computation
is done using sigma and theta-functions and a trick due to J.~Silverman. If
$\fl=1$, use Tate's $4^n$ algorithm. If $\fl=2$, use Mestre's AGM algorithm.
The latter is much faster than the other two, both in theory (converges
quadratically) and in practice.
Variant: Also available is \fun{GEN}{ghell}{GEN E, GEN x, long prec}
($\fl=2$).
Function: ellheightmatrix
Class: basic
Section: elliptic_curves
C-Name: mathell
Prototype: GGp
Help: ellheightmatrix(E,x): gives the height matrix for vector of points x
on elliptic curve E, assume to be a minimal model.
Doc:
$x$ being a vector of points, this
function outputs the Gram matrix of $x$ with respect to the N\'eron-Tate
height, in other words, the $(i,j)$ component of the matrix is equal to
\kbd{ellbil($E$,x[$i$],x[$j$])}. The rank of this matrix, at least in some
approximate sense, gives the rank of the set of points, and if $x$ is a
basis of the \idx{Mordell-Weil group} of $E$, its determinant is equal to
the regulator of $E$. Note that this matrix should be divided by 2 to be in
accordance with certain normalizations. $E$ is assumed to be integral,
given by a minimal model.
Function: ellidentify
Class: basic
Section: elliptic_curves
C-Name: ellidentify
Prototype: G
Help: ellidentify(E): look up the elliptic curve E in the elldata database and
return [[N, M, ...], C] where N is the name of the curve in J. E. Cremona
database, M the minimal model and C the coordinates change (see
ellchangecurve).
Doc:
look up the elliptic curve $E$ (over $\Z$)
in the \tet{elldata} database and return \kbd{[[N, M, G], C]} where $N$
is the name of the curve in the J.~E.~Cremona database, $M$ the minimal
model, $G$ a $\Z$-basis of the free part of the \idx{Mordell-Weil group}
of $E$ and $C$ the coordinates change (see \kbd{ellchangecurve}).
Function: ellinit
Class: basic
Section: elliptic_curves
C-Name: ellinit0
Prototype: GD0,L,p
Help: ellinit(x,{flag=0}): x being the vector [a1,a2,a3,a4,a6] defining the
curve Y^2 + a1.XY + a3.Y = X^3 + a2.X^2 + a4.X + a6, gives the vector:
[a1,a2,a3,a4,a6,b2,b4,b6,b8,c4,c6,disc,j,[e1,e2,e3],w1,w2,eta1,eta2,area].
If the curve is defined over a p-adic field, the last six components are
replaced by root,u^2,u,q,w,0. If optional flag is 1, omit them altogether.
x can also be a string, in this case the coefficients of the curve with
matching name are looked in the elldata database if available.
Description:
(gen, ?0):bell:prec ellinit($1, prec)
(gen, 1):ell smallellinit($1)
(gen, small):ell:prec ellinit0($1, $2, prec)
Doc:
initialize an \tet{ell} structure,
associated to the elliptic curve $E$. $E$ is either a $5$-component
vector $[a_1,a_2,a_3,a_4,a_6]$ defining the elliptic curve with Weierstrass
equation
$$ Y^2 + a_1 XY + a_3 Y = X^3 + a_2 X^2 + a_4 X + a_6 $$
or a string, in this case the coefficients of the curve with matching name
are looked in the \tet{elldata} database if available.
\bprog
? E = ellinit([0,0,0,0,1]); \\ y^2 = x^3 + 1
? E = ellinit("36a1"); \\ the same curve, using Cremona's notations
@eprog\noindent
For the time being, only curves over a prime field $\F_p$ and over the
$p$-adic or real numbers (including rational numbers) are fully supported.
Other domains are only supported for very basic operations such as point
addition.
The result of \tet{ellinit} is an \tev{ell} structure by default, and
a shorter \tev{sell} if $\fl=1$. Both contain the following information in
their components:
%
$$ a_1,a_2,a_3,a_4,a_6,b_2,b_4,b_6,b_8,c_4,c_6,\Delta,j.$$
%
All are accessible via member functions. In particular, the discriminant is
\kbd{$E$.disc}, and the $j$-invariant is \kbd{$E$.j}.
The other six components are only present if $\fl$ is $0$ or omitted, in
which case the computation will be 10 ($p$-adic) to 200 (complex) times
slower. Their content depends on whether the curve is defined over $\R$ or
not:
\smallskip
\item When $E$ is defined over $\R$, \kbd{$E$.roots} is a vector whose
three components contain the roots of the right hand side of the associated
Weierstrass equation.
$$ (y + a_1x/2 + a_3/2)^2 = g(x) $$
If the roots are all real, they are ordered by decreasing value. If only
one is real, it is the first component.
Then $\omega_1 = $\kbd{$E$.omega[1]} is the real period of $E$ (integral of
$dx/(2y+a_1x+a_3)$ over the connected component of the identity element of
the real points of the curve), and $\omega_2 = $\kbd{$E$.omega[2]} is a
complex period. \kbd{$E$.omega} forms a basis of the
complex lattice defining $E$, such that
$\tau=\dfrac{\omega_1}{\omega_2}$ has positive imaginary part.
\kbd{$E$.eta} is a row vector containing the quasi-periods $\eta_1$ and
$\eta_2$ such that $\eta_i = 2\zeta(\omega_i/2)$, where $\zeta$ is the
Weierstrass zeta function associated to the period lattice (see
\tet{ellzeta}). In particular, the Legendre relation holds:
$\eta_2\omega_1 - \eta_1\omega_2 = 2i\pi$.
Finally, \kbd{$E$.area} is the volume of the complex lattice defining
$E$.\smallskip
\item When $E$ is defined over $\Q_p$, the $p$-adic valuation of $j$
must be negative. Then \kbd{$E$.roots} is the vector with a single component
equal to the $p$-adic root of the associated Weierstrass equation
corresponding to $-1$ under the Tate parametrization.
\kbd{$E$.tate} yields the three-component vector $[u^2,u,q]$, in the
notations of Tate. If the $u$-component does not belong to $\Q_p$, it is set
to zero.
\kbd{$E$.w} is Mestre's $w$ (this is technical).
\smallskip For all other base fields or rings, the last six components are
arbitrarily set to zero. See also the description of member functions
related to elliptic curves at the beginning of this section.
Variant: Also available are \fun{GEN}{ellinit}{GEN E, long prec} ($\fl=0$) and
\fun{GEN}{smallellinit}{GEN E, long prec} ($\fl=1$).
Function: ellisoncurve
Class: basic
Section: elliptic_curves
C-Name: ellisoncurve
Prototype: GG
Help: ellisoncurve(E,z): true(1) if z is on elliptic curve E, false(0) if not.
Doc: gives 1 (i.e.~true) if the point $z$ is on the elliptic curve $E$, 0
otherwise. If $E$ or $z$ have imprecise coefficients, an attempt is made to
take this into account, i.e.~an imprecise equality is checked, not a precise
one. It is allowed for $z$ to be a vector of points in which case a vector
(of the same type) is returned.
Variant: Also available is \fun{int}{oncurve}{GEN E, GEN z} which does not
accept vectors of points.
Function: ellj
Class: basic
Section: elliptic_curves
C-Name: jell
Prototype: Gp
Help: ellj(x): elliptic j invariant of x.
Doc:
elliptic $j$-invariant. $x$ must be a complex number
with positive imaginary part, or convertible into a power series or a
$p$-adic number with positive valuation.
Function: elllocalred
Class: basic
Section: elliptic_curves
C-Name: elllocalred
Prototype: GG
Help: elllocalred(E,p): E being an elliptic curve, returns
[f,kod,[u,r,s,t],c], where f is the conductor's exponent, kod is the Kodaira
type for E at p, [u,r,s,t] is the change of variable needed to make E
minimal at p, and c is the local Tamagawa number c_p.
Doc:
calculates the \idx{Kodaira} type of the
local fiber of the elliptic curve $E$ at the prime $p$.
$E$ must be a \var{smallell} as output by \kbd{ellinit}, and is assumed to have
all its coefficients $a_i$ in $\Z$. The result is a 4-component vector
$[f,kod,v,c]$. Here $f$ is the exponent of $p$ in the arithmetic conductor of
$E$, and $kod$ is the Kodaira type which is coded as follows:
1 means good reduction (type I$_0$), 2, 3 and 4 mean types II, III and IV
respectively, $4+\nu$ with $\nu>0$ means type I$_\nu$;
finally the opposite values $-1$, $-2$, etc.~refer to the starred types
I$_0^*$, II$^*$, etc. The third component $v$ is itself a vector $[u,r,s,t]$
giving the coordinate changes done during the local reduction. Normally, this
has no use if $u$ is 1, that is, if the given equation was already minimal.
Finally, the last component $c$ is the local \idx{Tamagawa number} $c_p$.
Function: elllog
Class: basic
Section: elliptic_curves
C-Name: elllog
Prototype: GGGDG
Help: elllog(E,P,G,{o}): return the discrete logarithm of the point P of
the elliptic curve E in base G. If present, o represents the order of G.
If not present, assume that G generates the curve.
Doc: discrete logarithm of the point $P$ of the elliptic curve $E$ in base $G$.
See \tet{znlog} for the limitations of the underlying discrete log algorithms.
If present, $o$ represents the order of $G$, see \secref{se:DLfun};
the preferred format for this parameter is \kbd{[N, factor(N)]}, where $N$
is the order of $G$.
If no $o$ is given, assume that $G$ generates the curve.
The function also assumes that $P$ is a multiple of $G$.
\bprog
? a = ffgen(ffinit(2,8),'a);
? E = ellinit([a,1,0,0,1]); \\ over F_{2^8}
? x = a^3; y = ellordinate(E,x)[1];
? P = [x,y]; G = ellpow(E, P, 113);
? ord = [242, factor(242)]; \\ P generates a group of order 242. Initialize.
? ellorder(E, G, ord)
%4 = 242
? e = elllog(E, P, G, ord)
%5 = 15
? ellpow(E,G,e) == P
%6 = 1
@eprog
Function: elllseries
Class: basic
Section: elliptic_curves
C-Name: elllseries
Prototype: GGDGp
Help: elllseries(E,s,{A=1}): L-series at s of the elliptic curve E, where A
a cut-off point close to 1.
Doc:
$E$ being an \var{sell} as output by
\kbd{ellinit}, this computes the value of the L-series of $E$ at $s$. It is
assumed that $E$ is defined over $\Q$, not necessarily minimal. The optional
parameter $A$ is a cutoff point for the integral, which must be chosen close
to 1 for best speed. The result must be independent of $A$, so this allows
some internal checking of the function.
Note that if the conductor of the curve is large, say greater than $10^{12}$,
this function will take an unreasonable amount of time since it uses an
$O(N^{1/2})$ algorithm.
Function: ellminimalmodel
Class: basic
Section: elliptic_curves
C-Name: ellminimalmodel
Prototype: GD&
Help: ellminimalmodel(E,{&v}): return the standard minimal integral model of
the rational elliptic curve E. Sets v to the corresponding change of
variables.
Doc: return the standard minimal integral model of the rational elliptic
curve $E$. If present, sets $v$ to the corresponding change of variables,
which is a vector $[u,r,s,t]$ with rational components. The return value is
identical to that of \kbd{ellchangecurve(E, v)}.
The resulting model has integral coefficients, is everywhere minimal, $a_1$
is 0 or 1, $a_2$ is 0, 1 or $-1$ and $a_3$ is 0 or 1. Such a model is
unique, and the vector $v$ is unique if we specify that $u$ is positive,
which we do. \sidx{minimal model}
Function: ellmodulareqn
Class: basic
Section: elliptic_curves
C-Name: ellmodulareqn
Prototype: LDnDn
Help: ellmodulareqn(l,{x},{y}): return a vector [eqn, t] where eqn is a modular
equation of level l, for l<500, l prime. This requires the package seadata to
be installed. The equation is either of canonical type (t=0) or of Atkin type
(t=1)
Doc: return a vector [\kbd{eqn},$t$] where \kbd{eqn} is a modular equation of
level $l$, for $l<500$, $l$ prime. This requires the package seadata to be
installed. The equation is either of canonical type ($t=0$) or of Atkin type
($t=1$).
Function: ellorder
Class: basic
Section: elliptic_curves
C-Name: ellorder
Prototype: GGDG
Help: ellorder(E,z,{o}): order of the point z on the elliptic curve E over Q
or a finite field, 0 if non-torsion. The parameter o, if present,
represents a non-zero multiple of the order of z
(mandatory over non-prime finite fields).
Doc:
gives the order of the point $z$ on the elliptic
curve $E$. If the curve is defined over $\Q$, return zero if the point has
infinite order. The parameter $o$, if present, represents a non-zero
multiple of the order of $z$, see \secref{se:DLfun}; the preferred format for
this parameter is \kbd{[ord, factor(ord)]}, where \kbd{ord} is the
cardinality of the curve.
For a curve defined over $\F_p$, it is very important to supply $o$ since
its computation is very expensive and should only be done once, using
\bprog
? N = p+1-ellap(E,p); o = [N, factor(N)];
@eprog\noindent possibly using the \tet{seadata} package; for a curve defined
over a non-prime finite field,
giving the order is \emph{mandatory} since no function is available yet to
compute the cardinality or trace of Frobenius in that case.
Variant: The obsolete form \fun{GEN}{orderell}{GEN e, GEN z} should no longer be
used.
Function: ellordinate
Class: basic
Section: elliptic_curves
C-Name: ellordinate
Prototype: GGp
Help: ellordinate(E,x): y-coordinates corresponding to x-ordinate x on
elliptic curve E.
Doc:
gives a 0, 1 or 2-component vector containing
the $y$-coordinates of the points of the curve $E$ having $x$ as
$x$-coordinate.
Function: ellpointtoz
Class: basic
Section: elliptic_curves
C-Name: zell
Prototype: GGp
Help: ellpointtoz(E,P): lattice point z corresponding to the point P on the
elliptic curve E.
Doc:
if $E$ is an elliptic curve with coefficients
in $\R$, this computes a complex number $t$ (modulo the lattice defining
$E$) corresponding to the point $z$, i.e.~such that, in the standard
Weierstrass model, $\wp(t)=z[1],\wp'(t)=z[2]$. In other words, this is the
inverse function of \kbd{ellztopoint}. More precisely, if $(w1,w2)$ are the
real and complex periods of $E$, $t$ is such that $0 \leq \Re(t) < w1$
and $0 \leq \Im(t) < \Im(w2)$.
If $E$ has coefficients in $\Q_p$, then either Tate's $u$ is in $\Q_p$, in
which case the output is a $p$-adic number $t$ corresponding to the point $z$
under the Tate parametrization, or only its square is, in which case the
output is $t+1/t$. $E$ must be an \var{ell} as output by \kbd{ellinit}.
Function: ellpow
Class: basic
Section: elliptic_curves
C-Name: powell
Prototype: GGG
Help: ellpow(E,z,n): n times the point z on elliptic curve E (n in Z).
Doc:
computes $[n]z$, where $z$ is a point on the elliptic curve $E$. The
exponent $n$ is in $\Z$, or may be a complex quadratic integer if the curve $E$
has complex multiplication by $n$ (if not, an error message is issued).
\bprog
? Ei = ellinit([0,0,0,1,0]); z = [0,0];
? ellpow(Ei, z, 10)
%2 = [0] \\ unsurprising: z has order 2
? ellpow(Ei, z, I)
%3 = [0, 0] \\ Ei has complex multiplication by Z[i]
? ellpow(Ei, z, quadgen(-4))
%4 = [0, 0] \\ an alternative syntax for the same query
? Ej = ellinit([0,0,0,0,1]); z = [-1,0];
? ellpow(Ej, z, I)
*** at top-level: ellpow(Ej,z,I)
*** ^--------------
*** ellpow: not a complex multiplication in powell.
? ellpow(Ej, z, 1+quadgen(-3))
%6 = [1 - w, 0]
@eprog
The simple-minded algorithm for the CM case assumes that we are in
characteristic $0$, and that the quadratic order to which $n$ belongs has
small discriminant.
Function: ellrootno
Class: basic
Section: elliptic_curves
C-Name: ellrootno
Prototype: lGDG
Help: ellrootno(E,{p=1}): root number for the L-function of the elliptic
curve E. p can be 1 (default), global root number, or a prime p (including
0) for the local root number at p.
Doc:
$E$ being a \var{smallell} as output by
\kbd{ellinit}, this computes the local (if $p\neq 1$) or global (if $p=1$)
root number of the L-series of the elliptic curve $E$. Note that the global
root number is the sign of the functional equation and conjecturally is the
parity of the rank of the \idx{Mordell-Weil group}. The equation for $E$ must
have coefficients in $\Q$ but need \emph{not} be minimal.
Function: ellsearch
Class: basic
Section: elliptic_curves
C-Name: ellsearch
Prototype: G
Help: ellsearch(N): if N is an integer, it is taken as a conductor else if N is
a string, it can be a curve name ("11a1"), a isogeny class ("11a") or a
conductor ("11"). Return all curves in the elldata database that match the
property.
Doc: if $N$ is an integer, it is taken as a conductor else if $N$ is a
string, it can be a curve name ("11a1"), an isogeny class ("11a") or a
conductor "11". This function finds all curves in the \tet{elldata} database
with the given property.
If $N$ is a full curve name, the output format is $[N, [a_1,a_2,a_3,a_4,a_6],
G]$ where $[a_1,a_2,a_3,a_4,a_6]$ are the coefficients of the Weierstrass
equation of the curve and $G$ is a $\Z$-basis of the free part of the
\idx{Mordell-Weil group} associated to the curve.
If $N$ is not a full-curve name, the output is a vector of all matching
curves in the above format.
Variant: Also available is \fun{GEN}{ellsearchcurve}{GEN N} that only
accepts complete curve names.
Function: ellsigma
Class: basic
Section: elliptic_curves
C-Name: ellsigma
Prototype: GGD0,L,p
Help: ellsigma(E,z,{flag=0}): E being given by ellinit, returns the value of
the Weierstrass sigma
function of the lattice generated by om at z if flag = 0 (default). If flag
= 1, arbitrary determination of the logarithm of sigma. If flag = 2 or 3,
same but using the product expansion instead of theta series.
Doc:
$E$ being given by \kbd{ellinit},
returns the value at $z$ of the Weierstrass $\sigma$ function of the period
lattice $L$ of $E$:
$$ \sigma(z, L) = z \prod_{\omega\in L^*} \left(1 -
\dfrac{z}{\omega}\right)e^{\dfrac{z}{\omega} + \dfrac{z^2}{2\omega^2}}$$
Alternatively, one can input a lattice basis $[\omega_1,\omega_2]$ directly
instead of $E$.
If $\fl=1$, computes an (arbitrary) determination of $\log(\sigma(z))$.
If $\fl=2,3$, same using the product expansion instead of theta series.
Function: ellsub
Class: basic
Section: elliptic_curves
C-Name: subell
Prototype: GGG
Help: ellsub(E,z1,z2): difference of the points z1 and z2 on elliptic curve E.
Doc:
difference of the points $z1$ and $z2$ on the
elliptic curve corresponding to $E$.
Function: elltaniyama
Class: basic
Section: elliptic_curves
C-Name: elltaniyama
Prototype: GDP
Help: elltaniyama(E, {d = seriesprecision}): modular parametrization of elliptic curve E (minimal
model).
Doc:
computes the modular parametrization of the
elliptic curve $E$, where $E$ is a \var{smallell} as output by \kbd{ellinit},
in the form of a two-component vector $[u,v]$ of power series, given to $d$
significant terms (\tet{seriesprecision} by default). This vector is
characterized by the
following two properties. First the point $(x,y)=(u,v)$ satisfies the
equation of the elliptic curve. Second, the differential $du/(2v+a_1u+a_3)$
is equal to $f(z)dz$, a differential form on $H/\Gamma_0(N)$ where $N$ is the
conductor of the curve. The variable used in the power series for $u$ and $v$
is $x$, which is implicitly understood to be equal to $\exp(2i\pi z)$. It is
assumed that the curve is a \emph{strong} \idx{Weil curve}, and that the
Manin constant is equal to 1. The equation of the curve $E$ must be minimal
(use \kbd{ellminimalmodel} to get a minimal equation).
Function: elltatepairing
Class: basic
Section: elliptic_curves
C-Name: elltatepairing
Prototype: GGGG
Help: elltatepairing(E, P, Q, m): Computes the Tate pairing of the two points
P and Q on the elliptic curve E. The point P must be of m-torsion.
Doc: Computes the Tate pairing of the two points $P$ and $Q$ on the elliptic
curve $E$. The point $P$ must be of $m$-torsion.
Function: elltors
Class: basic
Section: elliptic_curves
C-Name: elltors0
Prototype: GD0,L,
Help: elltors(E,{flag=0}): torsion subgroup of elliptic curve E: order,
structure, generators. If flag = 0, use Doud's algorithm; if flag = 1, use
Lutz-Nagell.
Doc:
if $E$ is an elliptic curve \emph{defined
over $\Q$}, outputs the torsion subgroup of $E$ as a 3-component vector
\kbd{[t,v1,v2]}, where \kbd{t} is the order of the torsion group, \kbd{v1}
gives the structure of the torsion group as a product of cyclic groups
(sorted by decreasing order), and \kbd{v2} gives generators for these cyclic
groups. $E$ must be an \var{ell} as output by \kbd{ellinit}.
\bprog
? E = ellinit([0,0,0,-1,0]);
? elltors(E)
%1 = [4, [2, 2], [[0, 0], [1, 0]]]
@eprog
Here, the torsion subgroup is isomorphic to $\Z/2\Z \times \Z/2\Z$, with
generators $[0,0]$ and $[1,0]$.
If $\fl = 0$, use Doud's algorithm: bound torsion by computing $\#E(\F_p)$
for small primes of good reduction, then look for torsion points using
Weierstrass parametrization (and Mazur's classification).
If $\fl = 1$, use Lutz-Nagell (\emph{much} slower), $E$ is allowed to be a
\var{smallell}.
Variant: Also available is \fun{GEN}{elltors}{GEN E} for \kbd{elltors(E, 0)}.
Function: ellweilpairing
Class: basic
Section: elliptic_curves
C-Name: ellweilpairing
Prototype: GGGG
Help: ellweilpairing(E, P, Q, m): Computes the Weil pairing of the two points
of m-torsion P and Q on the elliptic curve E.
Doc: Computes the Weil pairing of the two points of $m$-torsion $P$ and $Q$
on the elliptic curve $E$.
Function: ellwp
Class: basic
Section: elliptic_curves
C-Name: ellwp0
Prototype: GDGD0,L,DPp
Help: ellwp(E,{z=x},{flag=0},{d=seriesprecision}):
computes the value at z of the Weierstrass P function attached to the
elliptic curve E as given by ellinit (alternatively, E can be
given as a lattice [om1,om2]). Optional flag means 0 (default), compute only
P(z), 1 compute [P(z),P'(z)], 2 consider om as an elliptic curve and compute
P(z) for that curve (identical to ellztopoint in that case). If z is omitted
or is a simple variable, return formal expansion in z with d significant
terms.
Doc: Computes the value at $z$ of the Weierstrass $\wp$ function attached to
the elliptic curve $E$ as given by \kbd{ellinit} (alternatively, $E$ can be
given as a lattice $[\omega_1,\omega_2]$).
If $z$ is omitted or is a simple variable, computes the \emph{power series}
expansion in $z$ (starting $z^{-2}+O(z^2)$). The series is given to $d$
significant terms (\tet{seriesprecision} by default).
Optional \fl\ is (for now) only taken into account when $z$ is numeric, and
means 0: compute only $\wp(z)$, 1: compute $[\wp(z),\wp'(z)]$.
Variant: Also available is \fun{GEN}{weipell}{GEN E, long precdl} for the power
series.
Function: ellzeta
Class: basic
Section: elliptic_curves
C-Name: ellzeta
Prototype: GGp
Help: ellzeta(E,z): E being given by ellinit, returns the value at z of the
Weierstrass zeta function of the period lattice of E.
Doc:
$E$ being given by \kbd{ellinit}, returns the
value at $z$ of the Weierstrass $\zeta$ function of the period lattice $L$
of $E$:
$$ \zeta(z, L) = \dfrac{1}{z} + z^2\sum_{\omega\in L^*}
\dfrac{1}{\omega^2(z-\omega)}.$$
Alternatively, one can input a lattice basis $[\omega_1,\omega_2]$ directly
instead of $E$.
\bprog
? e = ellinit([0,0,0,1,0]);
? ellzeta(e, e.omega[1]/2)
%2 = 0.8472130847939790866064991234 + 4.417621070 E-29*I
? 2*ellzeta([1,I], 1/2)
%3 = 3.141592653589793238462643384 + 0.E-37*I
@eprog\noindent
The quasi-periods of $\zeta$, such that
$$\zeta(z + a\omega_1 + b\omega_2) = \zeta(z) + a\eta_1 + b\eta_2 $$
for integers $a$ and $b$ are obtained directly as $\eta_i =
2\zeta(\omega_i/2)$ or using \tet{elleta}.
Function: ellztopoint
Class: basic
Section: elliptic_curves
C-Name: pointell
Prototype: GGp
Help: ellztopoint(E,z): coordinates of point P on the curve E corresponding
to the complex number z.
Doc:
$E$ being an \var{ell} as output by
\kbd{ellinit}, computes the coordinates $[x,y]$ on the curve $E$
corresponding to the complex number $z$. Hence this is the inverse function
of \kbd{ellpointtoz}. In other words, if the curve is put in Weierstrass
form, $[x,y]$ represents the \idx{Weierstrass $\wp$-function} and its
derivative. If $z$ is in the lattice defining $E$ over $\C$, the result is
the point at infinity $[0]$.
Function: erfc
Class: basic
Section: transcendental
C-Name: gerfc
Prototype: Gp
Help: erfc(x): complementary error function.
Doc: complementary error function, analytic continuation of
$(2/\sqrt\pi)\int_x^\infty e^{-t^2}\,dt$ ($x\in\R$).
Function: error
Class: basic
Section: programming/specific
C-Name: error0
Prototype: vs*
Help: error({str}*): abort script with error message str.
Description:
(?gen,...):void pari_err(talker, "${2 format_string}"${2 format_args})
Doc: outputs its argument list (each of
them interpreted as a string), then interrupts the running \kbd{gp} program,
returning to the input prompt. For instance
\bprog
error("n = ", n, " is not squarefree !")
@eprog\noindent
% \syn{NO}
Function: eta
Class: basic
Section: transcendental
C-Name: eta0
Prototype: GD0,L,p
Help: eta(z,{flag=0}): if flag=0, returns prod(n=1,oo, 1-q^n), where
q = exp(2 i Pi z) if z is a complex scalar (belonging to the upper half plane);
q = z if z is a p-adic number or can be converted to a power series.
If flag is non-zero, the function only applies to complex scalars and returns
the true eta function, with the factor q^(1/24) included.
Doc: Variants of \idx{Dedekind}'s $\eta$ function.
If $\fl = 0$, return $\prod_{n=1}^\infty(1-q^n)$, where $q$ depends on $x$
in the following way:
\item $q = e^{2i\pi x}$ if $x$ is a \emph{complex number} (which must then
have positive imaginary part); notice that the factor $q^{1/24}$ is
missing!
\item $q = x$ if $x$ is a \typ{PADIC}, or can be converted to a
\emph{power series} (which must then have positive valuation).
If $\fl$ is non-zero, $x$ is converted to a complex number and we return the
true $\eta$ function, $q^{1/24}\prod_{n=1}^\infty(1-q^n)$,
where $q = e^{2i\pi x}$.
Variant:
Also available is \fun{GEN}{trueeta}{GEN x, long prec} ($\fl=1$).
Function: eulerphi
Class: basic
Section: number_theoretical
C-Name: geulerphi
Prototype: G
Help: eulerphi(x): Euler's totient function of x.
Description:
(int):int eulerphi($1)
(gen):gen geulerphi($1)
Doc: Euler's $\phi$ (totient)\sidx{Euler totient function} function of $|x|$,
in other words $|(\Z/x\Z)^*|$. Normally, $x$ must be of type integer, but
the function accepts vector/matrices arguments, and is then applied
componentwise.
Variant: For a \typ{INT} $x$, the variant
\fun{GEN}{eulerphi}{GEN n} is also available.
Function: eval
Class: basic
Section: polynomials
C-Name: geval_gp
Prototype: GC
Help: eval(x): evaluation of x, replacing variables by their value.
Description:
(gen):gen geval($1)
Doc: replaces in $x$ the formal variables by the values that
have been assigned to them after the creation of $x$. This is mainly useful
in GP, and not in library mode. Do not confuse this with substitution (see
\kbd{subst}).
If $x$ is a character string, \kbd{eval($x$)} executes $x$ as a GP
command, as if directly input from the keyboard, and returns its
output. For convenience, $x$ is evaluated as if
\kbd{strictmatch} was off. In particular, unused characters at the end of
$x$ do not prevent its evaluation:
\bprog
? eval("1a")
*** eval: Warning: unused characters: a.
% 1 = 1
@eprog
\synt{geval}{GEN x}.
Function: exp
Class: basic
Section: transcendental
C-Name: gexp
Prototype: Gp
Help: exp(x): exponential of x.
Description:
(real):real mpexp($1)
(mp):mp:prec gexp($1, prec)
(gen):gen:prec gexp($1, prec)
Doc: exponential of $x$.
$p$-adic arguments with positive valuation are accepted.
Variant: For a \typ{PADIC} $x$, the function
\fun{GEN}{Qp_exp}{GEN x} is also available.
Function: extern
Class: gp
Section: programming/specific
C-Name: extern0
Prototype: s
Help: extern(str): execute shell command str, and feeds the result to GP (as
if loading from file).
Doc: the string \var{str} is the name of an external command (i.e.~one you
would type from your UNIX shell prompt). This command is immediately run and
its output fed into \kbd{gp}, just as if read from a file.
Function: externstr
Class: gp
Section: programming/specific
C-Name: externstr
Prototype: s
Help: externstr(str): execute shell command str, and returns the result as a
vector of GP strings, one component per output line.
Doc: the string \var{str} is the name of an external command (i.e.~one you
would type from your UNIX shell prompt). This command is immediately run and
its output is returned as a vector of GP strings, one component per output
line.
Function: factor
Class: basic
Section: number_theoretical
C-Name: gp_factor0
Prototype: GDG
Help: factor(x,{lim}): factorization of x. lim is optional and can be set
whenever x is of (possibly recursive) rational type. If lim is set return
partial factorization, using primes < lim (up to primelimit if lim=0).
Description:
(int, ?-1):vec Z_factor($1)
(gen, ?-1):vec factor($1)
(gen, small):vec factor0($1, $2)
Doc: general factorization function, where $x$ is a
rational (including integers), a complex number with rational
real and imaginary parts, or a rational function (including polynomials).
The result is a two-column matrix: the first contains the irreducibles
dividing $x$ (rational or Gaussian primes, irreducible polynomials),
and the second the exponents. By convention, $0$ is factored as $0^1$.
\misctitle{$\Q$ and $\Q(i)$}
See \tet{factorint} for more information about the algorithms used.
The rational or Gaussian primes are in fact \var{pseudoprimes}
(see \kbd{ispseudoprime}), a priori not rigorously proven primes. In fact,
any factor which is $\leq 10^{15}$ (whose norm is $\leq 10^{15}$ for an
irrational Gaussian prime) is a genuine prime. Use
\kbd{isprime} to prove primality of other factors, as in
\bprog
? fa = factor(2^2^7 + 1)
%1 =
[59649589127497217 1]
[5704689200685129054721 1]
? isprime( fa[,1] )
%2 = [1, 1]~ \\ both entries are proven primes
@eprog\noindent
Another possibility is to set the global default \tet{factor_proven}, which
will perform a rigorous primality proof for each pseudoprime factor.
A \typ{INT} argument \var{lim} can be added, meaning that we look only for
prime factors $p < \var{lim}$. The limit \var{lim} must be non-negative and
satisfy
$\var{lim} \leq \kbd{primelimit} + 1$; setting $\var{lim}=0$ is the same
as setting it to $\kbd{primelimit} + 1$. In this case, all but the last
factor
are proven primes, but the remaining factor may actually be a proven composite!
If the remaining factor is less than $\var{lim}^2$, then it is prime.
\bprog
? factor(2^2^7 +1, 10^5)
%3 =
[340282366920938463463374607431768211457 1]
@eprog\noindent
This routine uses trial division and perfect power tests, and should not be
used for huge values
of \var{lim} (at most $10^9$, say): \kbd{factorint(, 1 + 8)} will in general
be faster. The latter does not guarantee that all small prime factors are
found, but it also finds larger factors, and in a much more efficient way.
\bprog
? F = (2^2^7 + 1) * 1009 * 100003; factor(F, 10^5) \\ fast, incomplete
time = 0 ms.
%4 =
[1009 1]
[34029257539194609161727850866999116450334371 1]
? default(primelimit,10^9)
time = 4,360 ms.
%5 = 1000000000
? factor(F, 10^9) \\ very slow
time = 6,120 ms.
%6 =
[1009 1]
[100003 1]
[340282366920938463463374607431768211457 1]
? factorint(F, 1+8) \\ much faster, all small primes were found
time = 40 ms.
%7 =
[1009 1]
[100003 1]
[340282366920938463463374607431768211457 1]
? factorint(F) \\ complete factorisation
time = 260 ms.
%8 =
[1009 1]
[100003 1]
[59649589127497217 1]
[5704689200685129054721 1]
@eprog
\misctitle{Rational functions}
The polynomials or rational functions to be factored must have scalar
coefficients. In particular PARI does not know how to factor
\emph{multivariate} polynomials. See \tet{factormod} and \tet{factorff} for
the algorithms used over finite fields, \tet{factornf} for the algorithms
over number fields. Over $\Q$, \idx{van Hoeij}'s method is used, which is
able to cope with hundreds of modular factors.
The routine guesses a sensible ring over which you want to factor: the
smallest ring containing all coefficients, taking into account quotient
structures induced by \typ{INTMOD}s and \typ{POLMOD}s (e.g.~if a coefficient
in $\Z/n\Z$ is known, all rational numbers encountered are first mapped to
$\Z/n\Z$; different moduli will produce an error).
Note that factorization of polynomials is done up to
multiplication by a constant. In particular, the factors of rational
polynomials will have integer coefficients, and the content of a polynomial
or rational function is discarded and not included in the factorization. If
needed, you can always ask for the content explicitly:
\bprog
? factor(t^2 + 5/2*t + 1)
%1 =
[2*t + 1 1]
[t + 2 1]
? content(t^2 + 5/2*t + 1)
%2 = 1/2
@eprog\noindent
See also \tet{nffactor}.
Variant: This function should only be used by the \kbd{gp} interface. Use
directly \fun{GEN}{factor}{GEN x} or \fun{GEN}{boundfact}{GEN x, long lim}.
The obsolete function \fun{GEN}{factor0}{GEN x, long lim} is kept for
backward compatibility.
Function: factorback
Class: basic
Section: number_theoretical
C-Name: factorback2
Prototype: GDG
Help: factorback(f,{e}): given a factorisation f, gives the factored
object back. If this is a prime ideal factorisation you must supply the
corresponding number field as last argument. If e is present, f has to be a
vector of the same length, and we return the product of the f[i]^e[i].
Description:
(gen):gen factorback($1)
(gen,):gen factorback($1)
(gen,gen):gen factorback2($1, $2)
Doc: gives back the factored object
corresponding to a factorization. The integer $1$ corresponds to the empty
factorization.
If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
integral), and the corresponding factorization is the product of the
$f[i]^{e[i]}$.
If not, and $f$ is vector, it is understood as in the preceding case with $e$
a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
regular factorization, as produced with any \kbd{factor} command. A few
examples:
\bprog
? factor(12)
%1 =
[2 2]
[3 1]
? factorback(%)
%2 = 12
? factorback([2,3], [2,1]) \\ 2^3 * 3^1
%3 = 12
? factorback([5,2,3])
%4 = 30
@eprog
Variant: Also available is \fun{GEN}{factorback}{GEN f} (case $e = \kbd{NULL}$).
Function: factorcantor
Class: basic
Section: number_theoretical
C-Name: factcantor
Prototype: GG
Help: factorcantor(x,p): factorization mod p of the polynomial x using
Cantor-Zassenhaus.
Doc: factors the polynomial $x$ modulo the
prime $p$, using distinct degree plus
\idx{Cantor-Zassenhaus}\sidx{Zassenhaus}. The coefficients of $x$ must be
operation-compatible with $\Z/p\Z$. The result is a two-column matrix, the
first column being the irreducible polynomials dividing $x$, and the second
the exponents. If you want only the \emph{degrees} of the irreducible
polynomials (for example for computing an $L$-function), use
$\kbd{factormod}(x,p,1)$. Note that the \kbd{factormod} algorithm is
usually faster than \kbd{factorcantor}.
Function: factorff
Class: basic
Section: number_theoretical
C-Name: factorff
Prototype: GDGDG
Help: factorff(x,{p},{a}): factorization of the polynomial x in the finite field
F_p[X]/a(X)F_p[X].
Doc: factors the polynomial $x$ in the field
$\F_q$ defined by the irreducible polynomial $a$ over $\F_p$. The
coefficients of $x$ must be operation-compatible with $\Z/p\Z$. The result
is a two-column matrix: the first column contains the irreducible factors of
$x$, and the second their exponents. If all the coefficients of $x$ are in
$\F_p$, a much faster algorithm is applied, using the computation of
isomorphisms between finite fields.
Either $a$ or $p$ can omitted (in which case both are ignored) if x has
\typ{FFELT} coefficients; the function then becomes identical to \kbd{factor}:
\bprog
? factorff(x^2 + 1, 5, y^2+3) \\ over F_5[y]/(y^2+3) ~ F_25
%1 =
[Mod(Mod(1, 5), Mod(1, 5)*y^2 + Mod(3, 5))*x
+ Mod(Mod(2, 5), Mod(1, 5)*y^2 + Mod(3, 5)) 1]
[Mod(Mod(1, 5), Mod(1, 5)*y^2 + Mod(3, 5))*x
+ Mod(Mod(3, 5), Mod(1, 5)*y^2 + Mod(3, 5)) 1]
? t = ffgen(y^2 + Mod(3,5), 't); \\ a generator for F_25 as a t_FFELT
? factorff(x^2 + 1) \\ not enough information to determine the base field
*** at top-level: factorff(x^2+1)
*** ^---------------
*** factorff: incorrect type in factorff.
? factorff(x^2 + t^0) \\ make sure a coeff. is a t_FFELT
%3 =
[x + 2 1]
[x + 3 1]
? factorff(x^2 + t + 1)
%11 =
[x + (2*t + 1) 1]
[x + (3*t + 4) 1]
@eprog\noindent
Notice that the second syntax is easier to use and much more readable.
Function: factorial
Class: basic
Section: number_theoretical
C-Name: mpfactr
Prototype: Lp
Help: factorial(x): factorial of x, the result being given as a real number.
Doc: factorial of $x$. The expression $x!$ gives a result which is an integer,
while $\kbd{factorial}(x)$ gives a real number.
Variant: \fun{GEN}{mpfact}{long x} returns $x!$ as a \typ{INT}.
Function: factorint
Class: basic
Section: number_theoretical
C-Name: factorint
Prototype: GD0,L,
Help: factorint(x,{flag=0}): factor the integer x. flag is optional, whose
binary digits mean 1: avoid MPQS, 2: avoid first-stage ECM (may fall back on
it later), 4: avoid Pollard-Brent Rho and Shanks SQUFOF, 8: skip final ECM
(huge composites will be declared prime).
Doc: factors the integer $n$ into a product of
pseudoprimes (see \kbd{ispseudoprime}), using a combination of the
\idx{Shanks SQUFOF} and \idx{Pollard Rho} method (with modifications due to
Brent), \idx{Lenstra}'s \idx{ECM} (with modifications by Montgomery), and
\idx{MPQS} (the latter adapted from the \idx{LiDIA} code with the kind
permission of the LiDIA maintainers), as well as a search for pure powers.
The output is a two-column matrix as for \kbd{factor}: the first column
contains the ``prime'' divisors of $n$, the second one contains the
(positive) exponents.
By convention $0$ is factored as $0^1$, and $1$ as the empty factorization;
also the divisors are by default not proven primes is they are larger than
$2^64$, they only failed the BPSW compositeness test (see
\tet{ispseudoprime}). Use \kbd{isprime} on the result if you want to
guarantee primality or set the \tet{factor_proven} default to $1$.
Entries of the private prime tables (see \tet{addprimes}) are also included
as is.
This gives direct access to the integer factoring engine called by most
arithmetical functions. \fl\ is optional; its binary digits mean 1: avoid
MPQS, 2: skip first stage ECM (we may still fall back to it later), 4: avoid
Rho and SQUFOF, 8: don't run final ECM (as a result, a huge composite may be
declared to be prime). Note that a (strong) probabilistic primality test is
used; thus composites might not be detected, although no example is known.
You are invited to play with the flag settings and watch the internals at
work by using \kbd{gp}'s \tet{debug} default parameter (level 3 shows
just the outline, 4 turns on time keeping, 5 and above show an increasing
amount of internal details).
Function: factormod
Class: basic
Section: number_theoretical
C-Name: factormod0
Prototype: GGD0,L,
Help: factormod(x,p,{flag=0}): factors the polynomial x modulo the prime p, using Berlekamp. flag is optional, and can be 0: default or 1:
only the degrees of the irreducible factors are given.
Doc: factors the polynomial $x$ modulo the prime integer $p$, using
\idx{Berlekamp}. The coefficients of $x$ must be operation-compatible with
$\Z/p\Z$. The result is a two-column matrix, the first column being the
irreducible polynomials dividing $x$, and the second the exponents. If $\fl$
is non-zero, outputs only the \emph{degrees} of the irreducible polynomials
(for example, for computing an $L$-function). A different algorithm for
computing the mod $p$ factorization is \kbd{factorcantor} which is sometimes
faster.
Function: factornf
Class: basic
Section: number_fields
C-Name: polfnf
Prototype: GG
Help: factornf(x,t): factorization of the polynomial x over the number field
defined by the polynomial t.
Doc: factorization of the univariate polynomial $x$
over the number field defined by the (univariate) polynomial $t$. $x$ may
have coefficients in $\Q$ or in the number field. The algorithm reduces to
factorization over $\Q$ (\idx{Trager}'s trick). The direct approach of
\tet{nffactor}, which uses \idx{van Hoeij}'s method in a relative setting, is
in general faster.
The main variable of $t$ must be of \emph{lower} priority than that of $x$
(see \secref{se:priority}). However if non-rational number field elements
occur (as polmods or polynomials) as coefficients of $x$, the variable of
these polmods \emph{must} be the same as the main variable of $t$. For
example
\bprog
? factornf(x^2 + Mod(y, y^2+1), y^2+1);
? factornf(x^2 + y, y^2+1); \\@com these two are OK
? factornf(x^2 + Mod(z,z^2+1), y^2+1)
*** at top-level: factornf(x^2+Mod(z,z
*** ^--------------------
*** factornf: inconsistent data in rnf function.
? factornf(x^2 + z, y^2+1)
*** at top-level: factornf(x^2+z,y^2+1
*** ^--------------------
*** factornf: incorrect variable in rnf function.
@eprog
Function: factorpadic
Class: basic
Section: polynomials
C-Name: factorpadic0
Prototype: GGLD0,L,
Help: factorpadic(pol,p,r,{flag=0}): p-adic factorization of the polynomial pol
to precision r. flag is optional and may be set to 0 (use round 4) or 1 (use
Buchmann-Lenstra).
Doc: $p$-adic factorization
of the polynomial \var{pol} to precision $r$, the result being a
two-column matrix as in \kbd{factor}. The factors are normalized so that
their leading coefficient is a power of $p$. $r$ must be strictly larger than
the $p$-adic valuation of the discriminant of \var{pol} for the result to
make any sense. The method used is a modified version of the \idx{round 4}
algorithm of \idx{Zassenhaus}.
If $\fl=1$, use an algorithm due to \idx{Buchmann} and \idx{Lenstra}, which is
much less efficient.
Variant:
\fun{GEN}{factorpadic}{GEN f,GEN p, long r} corresponds to the default
$\fl=0$.
Function: ffgen
Class: basic
Section: number_theoretical
C-Name: ffgen
Prototype: GDn
Help: ffgen(P,{v}): return the generator g=X mod P(X) of the finite field
defined by the polynomial P(X). If v is given, the variable name is used to
display g, else the variable of the polynomial P is used.
Doc: return the generator $g=X \pmod{P(X)}$ of the
finite field defined by the polynomial $P$ (which must have \typ{INTMOD}
coefficients). If \kbd{v} is given, the variable name is used to display $g$,
else the variable of the polynomial $P$ is used.
Function: ffinit
Class: basic
Section: number_theoretical
C-Name: ffinit
Prototype: GLDn
Help: ffinit(p,n,{v=x}): monic irreducible polynomial of degree n over F_p[v].
Description:
(int, small, ?var):pol ffinit($1, $2, $3)
Doc: computes a monic polynomial of degree $n$ which is irreducible over
$\F_p$, where $p$ is assumed to be prime. This function uses a fast variant
of Adleman-Lenstra's algorithm.
It is useful in conjunction with \tet{ffgen}; for instance if \kbd{P =
ffinit(3,2)}, you can represent elements in $\F_{3^2}$ in term of \kbd{g =
ffgen(P,g)}.
Function: fflog
Class: basic
Section: number_theoretical
C-Name: fflog
Prototype: GGDG
Help: fflog(x,g,{o}): return the discrete logarithm of the finite field
element x in base g. If present, o must represents the multiplicative
order of g. If no o is given, assume that g is a primitive root.
Doc: discrete logarithm of the finite field element $x$ in base $g$. If
present, $o$ represents the multiplicative order of $g$, see
\secref{se:DLfun}; the preferred format for
this parameter is \kbd{[ord, factor(ord)]}, where \kbd{ord} is the
order of $g$. It may be set as a side effect of calling \tet{ffprimroot}.
If no $o$ is given, assume that $g$ is a primitive root.
See \tet{znlog} for the limitations of the underlying discrete log algorithms.
\bprog
? t = ffgen(ffinit(7,5));
? o = fforder(t)
%2 = 5602 \\@com \emph{not} a primitive root.
? fflog(t^10,t)
%3 = 11214 \\@com Actually correct modulo o. We are lucky !
? fflog(t^10,t, o)
%4 = 10
? g = ffprimroot(t, &o);
? o \\ order is 16806, bundled with its factorization matrix
%6 = [16806, [2, 1; 3, 1; 2801, 1]]
? fforder(g, o)
%7 = 16806 \\ no surprise there !
? fforder(g^10000, g, o)
? fflog(g^10000, g, o)
%9 = 10000
@eprog
Function: fforder
Class: basic
Section: number_theoretical
C-Name: fforder
Prototype: GDG
Help: fforder(x,{o}): multiplicative order of the finite field element x.
Optional o represents a multiple of the order of the element.
Doc: multiplicative order of the finite field element $x$. If $o$ is
present, it represents a multiple of the order of the element,
see \secref{se:DLfun}; the preferred format for
this parameter is \kbd{[N, factor(N)]}, where \kbd{N} is the cardinality
of the multiplicative group of the underlying finite field.
\bprog
? t = ffgen(ffinit(nextprime(10^8), 5));
? g = ffprimroot(t, &o); \\@com o will be useful !
? fforder(g^1000000, o)
time = 0 ms.
%5 = 5000001750000245000017150000600250008403
? fforder(g^1000000)
time = 16 ms. \\@com noticeably slower, same result of course
%6 = 5000001750000245000017150000600250008403
@eprog
Function: ffprimroot
Class: basic
Section: number_theoretical
C-Name: ffprimroot
Prototype: GD&
Help: ffprimroot(x, {&o}): return a primitive root of the multiplicative group
of the definition field of the finite field element x (not necessarily the
same as the field generated by x). If present, o is set to [ord, fa], where
ord is the order of the group, and fa its factorization
(useful in fflog and fforder).
Doc: return a primitive root of the multiplicative
group of the definition field of the finite field element $x$ (not necessarily
the same as the field generated by $x$). If present, $o$ is set to
a vector \kbd{[ord, fa]}, where \kbd{ord} is the order of the group
and \kbd{fa} its factorisation \kbd{factor(ord)}. This last parameter is
useful in \tet{fflog} and \tet{fforder}, see \secref{se:DLfun}.
\bprog
? t = ffgen(ffinit(nextprime(10^7), 5));
? g = ffprimroot(t, &o);
? o[1]
%3 = 100000950003610006859006516052476098
? o[2]
%4 =
[2 1]
[7 2]
[31 1]
[41 1]
[67 1]
[1523 1]
[10498781 1]
[15992881 1]
[46858913131 1]
? fflog(g^1000000, g, o)
time = 1,312 ms.
%5 = 1000000
@eprog
Function: fibonacci
Class: basic
Section: number_theoretical
C-Name: fibo
Prototype: L
Help: fibonacci(x): fibonacci number of index x (x C-integer).
Doc: $x^{\text{th}}$ Fibonacci number.
Function: floor
Class: basic
Section: conversions
C-Name: gfloor
Prototype: G
Help: floor(x): floor of x = largest integer <= x.
Description:
(small):small:parens $1
(int):int:copy:parens $1
(real):int floorr($1)
(mp):int mpfloor($1)
(gen):gen gfloor($1)
Doc:
floor of $x$. When $x$ is in $\R$, the result is the
largest integer smaller than or equal to $x$. Applied to a rational function,
$\kbd{floor}(x)$ returns the Euclidean quotient of the numerator by the
denominator.
Function: for
Class: basic
Section: programming/control
C-Name: forpari
Prototype: vV=GGI
Help: for(X=a,b,seq): the sequence is evaluated, X going from a up to b.
Doc: evaluates \var{seq}, where
the formal variable $X$ goes from $a$ to $b$. Nothing is done if $a>b$.
$a$ and $b$ must be in $\R$.
Function: fordiv
Class: basic
Section: programming/control
C-Name: fordiv
Prototype: vGVI
Help: fordiv(n,X,seq): the sequence is evaluated, X running over the
divisors of n.
Doc: evaluates \var{seq}, where
the formal variable $X$ ranges through the divisors of $n$
(see \tet{divisors}, which is used as a subroutine). It is assumed that
\kbd{factor} can handle $n$, without negative exponents. Instead of $n$,
it is possible to input a factorization matrix, i.e. the output of
\kbd{factor(n)}.
This routine uses \kbd{divisors} as a subroutine, then loops over the
divisors. In particular, if $n$ is an integer, divisors are sorted by
increasing size.
To avoid storing all divisors, possibly using a lot of memory, the following
(much slower) routine loops over the divisors using essentially constant
space:
\bprog
FORDIV(N)=
{ my(P, E);
P = factor(N); E = P[,2]; P = P[,1];
forvec( v = vector(#E, i, [0,E[i]]),
X = factorback(P, v)
\\ ...
);
}
? for(i=1,10^5, FORDIV(i))
time = 3,445 ms.
? for(i=1,10^5, fordiv(i, d, ))
time = 490 ms.
@eprog
Function: forell
Class: basic
Section: programming/control
C-Name: forell0
Prototype: vVLLI
Help: forell(E,a,b,seq): execute seq for each elliptic curves E of conductor
between a and b in the elldata database.
Wrapper: (,,,vG)
Description:
(,small,small,closure):void forell(${4 cookie}, ${4 wrapper}, $2, $3)
Doc: evaluates \var{seq}, where the formal variable $E$ ranges through all
elliptic curves of conductors from $a$ to $b$. Th \tet{elldata} database must
be installed and contain data for the specified conductors.
\synt{forell}{void *data, long (*call)(void*,GEN), GEN a, GEN b}.
Function: forprime
Class: basic
Section: programming/control
C-Name: forprime
Prototype: vV=GGI
Help: forprime(X=a,b,seq): the sequence is evaluated, X running over the
primes between a and b.
Doc: evaluates \var{seq},
where the formal variable $X$ ranges over the prime numbers between $a$ to
$b$ (including $a$ and $b$ if they are prime). More precisely, the value of
$X$ is incremented to the smallest prime strictly larger than $X$ at the end
of each iteration. Nothing is done if $a>b$. Note that $a$ and $b$ must be in
$\R$.
\bprog
f(N) =
{
forprime(p = 2, N,
print(p);
if (p == 3, p = 6);
)
}
? f(12)
2
3
7
11
@eprog
Function: forstep
Class: basic
Section: programming/control
C-Name: forstep
Prototype: vV=GGGI
Help: forstep(X=a,b,s,seq): the sequence is evaluated, X going from a to b
in steps of s (can be a vector of steps).
Doc: evaluates \var{seq},
where the formal variable $X$ goes from $a$ to $b$, in increments of $s$.
Nothing is done if $s>0$ and $a>b$ or if $s<0$ and $a<b$. $s$ must be in
$\R^*$ or a vector of steps $[s_1,\dots,s_n]$. In the latter case, the
successive steps are used in the order they appear in $s$.
\bprog
? forstep(x=5, 20, [2,4], print(x))
5
7
11
13
17
19
@eprog
Function: forsubgroup
Class: basic
Section: programming/control
C-Name: forsubgroup0
Prototype: vV=GDGI
Help: forsubgroup(H=G,{bound},seq): execute seq for each subgroup H of the
abelian group G (in SNF form), whose index is bounded by bound. H is given
as a left divisor of G in HNF form.
Wrapper: (,,vG)
Description:
(gen,?gen,closure):void forsubgroup(${3 cookie}, ${3 wrapper}, $1, $2)
Doc: evaluates \var{seq} for
each subgroup $H$ of the \emph{abelian} group $G$ (given in
SNF\sidx{Smith normal form} form or as a vector of elementary divisors),
whose index is bounded by $B$. The subgroups are not ordered in any
obvious way, unless $G$ is a $p$-group in which case Birkhoff's algorithm
produces them by decreasing index. A \idx{subgroup} is given as a matrix
whose columns give its generators on the implicit generators of $G$. For
example, the following prints all subgroups of index less than 2 in $G =
\Z/2\Z g_1 \times \Z/2\Z g_2$:
\bprog
? G = [2,2]; forsubgroup(H=G, 2, print(H))
[1; 1]
[1; 2]
[2; 1]
[1, 0; 1, 1]
@eprog\noindent
The last one, for instance is generated by $(g_1, g_1 + g_2)$. This
routine is intended to treat huge groups, when \tet{subgrouplist} is not an
option due to the sheer size of the output.
For maximal speed the subgroups have been left as produced by the algorithm.
To print them in canonical form (as left divisors of $G$ in HNF form), one
can for instance use
\bprog
? G = matdiagonal([2,2]); forsubgroup(H=G, 2, print(mathnf(concat(G,H))))
[2, 1; 0, 1]
[1, 0; 0, 2]
[2, 0; 0, 1]
[1, 0; 0, 1]
@eprog\noindent
Note that in this last representation, the index $[G:H]$ is given by the
determinant. See \tet{galoissubcyclo} and \tet{galoisfixedfield} for
applications to \idx{Galois} theory.
\synt{forsubgroup}{void *data, long (*call)(void*,GEN), GEN G, GEN bound}.
Function: forvec
Class: basic
Section: programming/control
C-Name: forvec
Prototype: vV=GID0,L,
Help: forvec(X=v,seq,{flag=0}): v being a vector of two-component vectors of
length n, the sequence is evaluated with X[i] going from v[i][1] to v[i][2]
for i=n,..,1 if flag is zero or omitted. If flag = 1 (resp. flag = 2),
restrict to increasing (resp. strictly increasing) sequences.
Doc: Let $v$ be an $n$-component
vector (where $n$ is arbitrary) of two-component vectors $[a_i,b_i]$
for $1\le i\le n$. This routine evaluates \var{seq}, where the formal
variables $X[1],\dots, X[n]$ go from $a_1$ to $b_1$,\dots, from $a_n$ to
$b_n$, i.e.~$X$ goes from $[a_1,\dots,a_n]$ to $[b_1,\dots,b_n]$ with respect
to the lexicographic ordering. (The formal variable with the highest index
moves the fastest.) If $\fl=1$, generate only nondecreasing vectors $X$, and
if $\fl=2$, generate only strictly increasing vectors $X$.
The type of $X$ is the same as the type of $v$: \typ{VEC} or \typ{COL}.
Function: frac
Class: basic
Section: conversions
C-Name: gfrac
Prototype: G
Help: frac(x): fractional part of x = x-floor(x).
Doc:
fractional part of $x$. Identical to
$x-\text{floor}(x)$. If $x$ is real, the result is in $[0,1[$.
Function: galoisexport
Class: basic
Section: number_fields
C-Name: galoisexport
Prototype: GD0,L,
Help: galoisexport(gal,{flag}): gal being a Galois group as output by
galoisinit, output a string representing the underlying permutation group in
GAP notation (default) or Magma notation (flag = 1).
Doc: \var{gal} being be a Galois group as output by \tet{galoisinit},
export the underlying permutation group as a string suitable
for (no flags or $\fl=0$) GAP or ($\fl=1$) Magma. The following example
compute the index of the underlying abstract group in the GAP library:
\bprog
? G = galoisinit(x^6+108);
? s = galoisexport(G)
%2 = "Group((1, 2, 3)(4, 5, 6), (1, 4)(2, 6)(3, 5))"
? extern("echo \"IdGroup("s");\" | gap -q")
%3 = [6, 1]
? galoisidentify(G)
%4 = [6, 1]
@eprog\noindent
This command also accepts subgroups returned by \kbd{galoissubgroups}.
To \emph{import} a GAP permutation into gp (for \tet{galoissubfields} for
instance), the following GAP function may be useful :
\bprog
PermToGP := function(p, n)
return Permuted([1..n],p);
end;
gap> p:= (1,26)(2,5)(3,17)(4,32)(6,9)(7,11)(8,24)(10,13)(12,15)(14,27)
(16,22)(18,28)(19,20)(21,29)(23,31)(25,30)
gap> PermToGP(p,32);
[ 26, 5, 17, 32, 2, 9, 11, 24, 6, 13, 7, 15, 10, 27, 12, 22, 3, 28, 20, 19,
29, 16, 31, 8, 30, 1, 14, 18, 21, 25, 23, 4 ]
@eprog
Function: galoisfixedfield
Class: basic
Section: number_fields
C-Name: galoisfixedfield
Prototype: GGD0,L,Dn
Help: galoisfixedfield(gal,perm,{flag},{v=y}): gal being a Galois group as
output by galoisinit and perm a subgroup, an element of gal.group or a vector
of such elements, return [P,x] such that P is a polynomial defining the fixed
field of gal[1] by the subgroup generated by perm, and x is a root of P in gal
expressed as a polmod in gal.pol. If flag is 1 return only P. If flag is 2
return [P,x,F] where F is the factorization of gal.pol over the field
defined by P, where the variable v stands for a root of P.
Description:
(gen, gen, ?small, ?var):vec galoisfixedfield($1, $2, $3, $4)
Doc: \var{gal} being be a Galois group as output by \tet{galoisinit} and
\var{perm} an element of $\var{gal}.group$, a vector of such elements
or a subgroup of \var{gal} as returned by galoissubgroups,
computes the fixed field of \var{gal} by the automorphism defined by the
permutations \var{perm} of the roots $\var{gal}.roots$. $P$ is guaranteed to
be squarefree modulo $\var{gal}.p$.
If no flags or $\fl=0$, output format is the same as for \tet{nfsubfield},
returning $[P,x]$ such that $P$ is a polynomial defining the fixed field, and
$x$ is a root of $P$ expressed as a polmod in $\var{gal}.pol$.
If $\fl=1$ return only the polynomial $P$.
If $\fl=2$ return $[P,x,F]$ where $P$ and $x$ are as above and $F$ is the
factorization of $\var{gal}.pol$ over the field defined by $P$, where
variable $v$ ($y$ by default) stands for a root of $P$. The priority of $v$
must be less than the priority of the variable of $\var{gal}.pol$ (see
\secref{se:priority}). Example:
\bprog
? G = galoisinit(x^4+1);
? galoisfixedfield(G,G.group[2],2)
%2 = [x^2 + 2, Mod(x^3 + x, x^4 + 1), [x^2 - y*x - 1, x^2 + y*x - 1]]
@eprog\noindent
computes the factorization $x^4+1=(x^2-\sqrt{-2}x-1)(x^2+\sqrt{-2}x-1)$
Function: galoisgetpol
Class: basic
Section: number_fields
C-Name: galoisgetpol
Prototype: LD0,L,D1,L,
Help: galoisgetpol(a,{b},{s}): Query the galpol package for a polynomial with
Galois group isomorphic to GAP4(a,b), totally real if s=1 (default) and
totally complex if s=2. The output is a vector [pol, den] where pol is the
polynomial and den is the common denominator of the conjugates expressed
as a polynomial in a root of pol. If b and s are omitted, return the number of
isomorphism classes of groups of order a.
Description:
(small):int galoisnbpol($1)
(small,):int galoisnbpol($1)
(small,,):int galoisnbpol($1)
(small,small,small):vec galoisgetpol($1, $2 ,$3)
Doc: Query the galpol package for a polynomial with Galois group isomorphic to
GAP4(a,b), totally real if $s=1$ (default) and totally complex if $s=2$. The
output is a vector [\kbd{pol}, \kbd{den}] where \kbd{pol} is the polynomial and
\kbd{den} is the common denominator of the conjugates expressed as a
polynomial in a root of \kbd{pol}, which can be passed as an optional argument
to \tet{galoisinit} and \tet{nfgaloisconj} as follows:
\bprog
V=galoisgetpol(8,4,1);
G=galoisinit(V[1], V[2]) \\ passing V[2] speeds up the computation
@eprog
If $b$ and $s$ are omitted, return the number of isomorphic class of groups
of order $a$.
Variant: Also available is \fun{GEN}{galoisnbpol}{long a} when $b$ and $s$
are omitted.
Function: galoisidentify
Class: basic
Section: number_fields
C-Name: galoisidentify
Prototype: G
Help: galoisidentify(gal): gal being a Galois group as output by galoisinit,
output the isomorphism class of the underlying abstract group as a
two-components vector [o,i], where o is the group order, and i is the group
index in the GAP4 small group library.
Doc: \var{gal} being be a Galois group as output by \tet{galoisinit},
output the isomorphism class of the underlying abstract group as a
two-components vector $[o,i]$, where $o$ is the group order, and $i$ is the
group index in the GAP4 Small Group library, by Hans Ulrich Besche, Bettina
Eick and Eamonn O'Brien.
This command also accepts subgroups returned by \kbd{galoissubgroups}.
The current implementation is limited to degree less or equal to $127$.
Some larger ``easy'' orders are also supported.
The output is similar to the output of the function \kbd{IdGroup} in GAP4.
Note that GAP4 \kbd{IdGroup} handles all groups of order less than $2000$
except $1024$, so you can use \tet{galoisexport} and GAP4 to identify large
Galois groups.
Function: galoisinit
Class: basic
Section: number_fields
C-Name: galoisinit
Prototype: GDG
Help: galoisinit(pol,{den}): pol being a polynomial or a number field as
output by nfinit defining a Galois extension of Q, compute the Galois group
and all neccessary informations for computing fixed fields. den is optional
and has the same meaning as in nfgaloisconj(,4)(see manual).
Description:
(gen, ?int):gal galoisinit($1, $2)
Doc: computes the Galois group
and all necessary information for computing the fixed fields of the
Galois extension $K/\Q$ where $K$ is the number field defined by
$\var{pol}$ (monic irreducible polynomial in $\Z[X]$ or
a number field as output by \tet{nfinit}). The extension $K/\Q$ must be
Galois with Galois group ``weakly'' super-solvable, see below;
returns 0 otherwise. Hence this permits to quickly check whether a polynomial
of order strictly less than $36$ is Galois or not.
The algorithm used is an improved version of the paper
``An efficient algorithm for the computation of Galois automorphisms'',
Bill Allombert, Math.~Comp, vol.~73, 245, 2001, pp.~359--375.
A group $G$ is said to be ``weakly'' super-solvable if there exists a
normal series
$\{1\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_{n-1}
\triangleleft H_n$
such that each $H_i$ is normal in $G$ and for $i<n$, each quotient group
$H_{i+1}/H_i$ is cyclic, and either $H_n=G$ (then $G$ is super-solvable) or
$G/H_n$ is isomorphic to either $A_4$ or $S_4$.
In practice, almost all small groups are WKSS, the exceptions having order
36(1 exception), 48(2), 56(1), 60(1), 72(5), 75(1), 80(1), 96(10) and $\geq
108$.
This function is a prerequisite for most of the \kbd{galois}$xxx$ routines.
For instance:
\bprog
P = x^6 + 108;
G = galoisinit(P);
L = galoissubgroups(G);
vector(#L, i, galoisisabelian(L[i],1))
vector(#L, i, galoisidentify(L[i]))
@eprog
The output is an 8-component vector \var{gal}.
$\var{gal}[1]$ contains the polynomial \var{pol}
(\kbd{\var{gal}.pol}).
$\var{gal}[2]$ is a three-components vector $[p,e,q]$ where $p$ is a
prime number (\kbd{\var{gal}.p}) such that \var{pol} totally split
modulo $p$ , $e$ is an integer and $q=p^e$ (\kbd{\var{gal}.mod}) is the
modulus of the roots in \kbd{\var{gal}.roots}.
$\var{gal}[3]$ is a vector $L$ containing the $p$-adic roots of
\var{pol} as integers implicitly modulo \kbd{\var{gal}.mod}.
(\kbd{\var{gal}.roots}).
$\var{gal}[4]$ is the inverse of the Vandermonde matrix of the
$p$-adic roots of \var{pol}, multiplied by $\var{gal}[5]$.
$\var{gal}[5]$ is a multiple of the least common denominator of the
automorphisms expressed as polynomial in a root of \var{pol}.
$\var{gal}[6]$ is the Galois group $G$ expressed as a vector of
permutations of $L$ (\kbd{\var{gal}.group}).
$\var{gal}[7]$ is a generating subset $S=[s_1,\ldots,s_g]$ of $G$
expressed as a vector of permutations of $L$ (\kbd{\var{gal}.gen}).
$\var{gal}[8]$ contains the relative orders $[o_1,\ldots,o_g]$ of
the generators of $S$ (\kbd{\var{gal}.orders}).
Let $H_n$ be as above, we have the following properties:
\quad\item if $G/H_n\simeq A_4$ then $[o_1,\ldots,o_g]$ ends by
$[2,2,3]$.
\quad\item if $G/H_n\simeq S_4$ then $[o_1,\ldots,o_g]$ ends by
$[2,2,3,2]$.
\quad\item for $1\leq i \leq g$ the subgroup of $G$ generated by
$[s_1,\ldots,s_g]$ is normal, with the exception of $i=g-2$ in the
$A_4$ case and of $i=g-3$ in the $S_A$ case.
\quad\item the relative order $o_i$ of $s_i$ is its order in the
quotient group $G/\langle s_1,\ldots,s_{i-1}\rangle$, with the same
exceptions.
\quad\item for any $x\in G$ there exists a unique family
$[e_1,\ldots,e_g]$ such that (no exceptions):
-- for $1\leq i \leq g$ we have $0\leq e_i<o_i$
-- $x=g_1^{e_1}g_2^{e_2}\ldots g_n^{e_n}$
If present $den$ must be a suitable value for $\var{gal}[5]$.
Function: galoisisabelian
Class: basic
Section: number_fields
C-Name: galoisisabelian
Prototype: GD0,L,
Help: galoisisabelian(gal,{flag=0}): gal being as output by galoisinit,
return 0 if gal is not abelian, the HNF matrix of gal over gal.gen if
flag=0, 1 if flag is 1, and the SNF of gal is flag=2.
Doc: \var{gal} being as output by \kbd{galoisinit}, return $0$ if
\var{gal} is not an abelian group, and the HNF matrix of \var{gal} over
\kbd{gal.gen} if $fl=0$, $1$ if $fl=1$.
This command also accepts subgroups returned by \kbd{galoissubgroups}.
Function: galoisisnormal
Class: basic
Section: number_fields
C-Name: galoisisnormal
Prototype: lGG
Help: galoisisnormal(gal,subgrp): gal being as output by galoisinit,
and subgrp a subgroup of gal as output by galoissubgroups,
return 1 if subgrp is a normal subgroup of gal, else return 0.
Doc: \var{gal} being as output by \kbd{galoisinit}, and \var{subgrp} a subgroup
of \var{gal} as output by \kbd{galoissubgroups},return $1$ if \var{subgrp} is a
normal subgroup of \var{gal}, else return 0.
This command also accepts subgroups returned by \kbd{galoissubgroups}.
Function: galoispermtopol
Class: basic
Section: number_fields
C-Name: galoispermtopol
Prototype: GG
Help: galoispermtopol(gal,perm): gal being a Galois group as output by
galoisinit and perm a element of gal.group, return the polynomial defining
the corresponding Galois automorphism.
Doc: \var{gal} being a
Galois group as output by \kbd{galoisinit} and \var{perm} a element of
$\var{gal}.group$, return the polynomial defining the Galois
automorphism, as output by \kbd{nfgaloisconj}, associated with the
permutation \var{perm} of the roots $\var{gal}.roots$. \var{perm} can
also be a vector or matrix, in this case, \kbd{galoispermtopol} is
applied to all components recursively.
\noindent Note that
\bprog
G = galoisinit(pol);
galoispermtopol(G, G[6])~
@eprog\noindent
is equivalent to \kbd{nfgaloisconj(pol)}, if degree of \var{pol} is greater
or equal to $2$.
Function: galoissubcyclo
Class: basic
Section: number_fields
C-Name: galoissubcyclo
Prototype: GDGD0,L,Dn
Help: galoissubcyclo(N,H,{fl=0},{v}):Compute a polynomial (in variable v)
defining the subfield of Q(zeta_n) fixed by the subgroup H of (Z/nZ)*. N can
be an integer n, znstar(n) or bnrinit(bnfinit(y),[n,[1]],1). H can be given
by a generator, a set of generator given by a vector or a HNF matrix (see
manual). If flag is 1, output only the conductor of the abelian extension.
If flag is 2 output [pol,f] where pol is the polynomial and f the conductor.
Doc: computes the subextension
of $\Q(\zeta_n)$ fixed by the subgroup $H \subset (\Z/n\Z)^*$. By the
Kronecker-Weber theorem, all abelian number fields can be generated in this
way (uniquely if $n$ is taken to be minimal).
\noindent The pair $(n, H)$ is deduced from the parameters $(N, H)$ as follows
\item $N$ an integer: then $n = N$; $H$ is a generator, i.e. an
integer or an integer modulo $n$; or a vector of generators.
\item $N$ the output of \kbd{znstar($n$)}. $H$ as in the first case
above, or a matrix, taken to be a HNF left divisor of the SNF for $(\Z/n\Z)^*$
(of type \kbd{$N$.cyc}), giving the generators of $H$ in terms of \kbd{$N$.gen}.
\item $N$ the output of \kbd{bnrinit(bnfinit(y), $m$, 1)} where $m$ is a
module. $H$ as in the first case, or a matrix taken to be a HNF left
divisor of the SNF for the ray class group modulo $m$
(of type \kbd{$N$.cyc}), giving the generators of $H$ in terms of \kbd{$N$.gen}.
In this last case, beware that $H$ is understood relatively to $N$; in
particular, if the infinite place does not divide the module, e.g if $m$ is
an integer, then it is not a subgroup of $(\Z/n\Z)^*$, but of its quotient by
$\{\pm 1\}$.
If $fl=0$, compute a polynomial (in the variable \var{v}) defining the
the subfield of $\Q(\zeta_n)$ fixed by the subgroup \var{H} of $(\Z/n\Z)^*$.
If $fl=1$, compute only the conductor of the abelian extension, as a module.
If $fl=2$, output $[pol, N]$, where $pol$ is the polynomial as output when
$fl=0$ and $N$ the conductor as output when $fl=1$.
The following function can be used to compute all subfields of
$\Q(\zeta_n)$ (of exact degree \kbd{d}, if \kbd{d} is set):
\bprog
polsubcyclo(n, d = -1)=
{ my(bnr,L,IndexBound);
IndexBound = if (d < 0, n, [d]);
bnr = bnrinit(bnfinit(y), [n,[1]], 1);
L = subgrouplist(bnr, IndexBound, 1);
vector(#L,i, galoissubcyclo(bnr,L[i]));
}
@eprog\noindent
Setting \kbd{L = subgrouplist(bnr, IndexBound)} would produce subfields of exact
conductor $n\infty$.
Function: galoissubfields
Class: basic
Section: number_fields
C-Name: galoissubfields
Prototype: GD0,L,Dn
Help: galoissubfields(G,{flags=0},{v}):Output all the subfields of G. flags
have the same meaning as for galoisfixedfield.
Doc: outputs all the subfields of the Galois group \var{G}, as a vector.
This works by applying \kbd{galoisfixedfield} to all subgroups. The meaning of
the flag \var{fl} is the same as for \kbd{galoisfixedfield}.
Function: galoissubgroups
Class: basic
Section: number_fields
C-Name: galoissubgroups
Prototype: G
Help: galoissubgroups(G):Output all the subgroups of G.
Doc: outputs all the subgroups of the Galois group \kbd{gal}. A subgroup is a
vector [\var{gen}, \var{orders}], with the same meaning
as for $\var{gal}.gen$ and $\var{gal}.orders$. Hence \var{gen} is a vector of
permutations generating the subgroup, and \var{orders} is the relatives
orders of the generators. The cardinal of a subgroup is the product of the
relative orders. Such subgroup can be used instead of a Galois group in the
following command: \kbd{galoisisabelian}, \kbd{galoissubgroups},
\kbd{galoisexport} and \kbd{galoisidentify}.
To get the subfield fixed by a subgroup \var{sub} of \var{gal}, use
\bprog
galoisfixedfield(gal,sub[1])
@eprog
Function: gamma
Class: basic
Section: transcendental
C-Name: ggamma
Prototype: Gp
Help: gamma(s): gamma function at x, s a complex or p-adic number.
Doc: For $s$ a complex number, evaluates Euler's gamma
function \sidx{gamma-function}
$$\Gamma(s)=\int_0^\infty t^{s-1}\exp(-t)\,dt.$$
Error if $s$ is a non-positive integer, where $\Gamma$ has a pole.
For $s$ a $p$-adic number, evaluates the Morita gamma function at $s$, that
is the unique continuous $p$-adic function on the $p$-adic integers
extending $\Gamma_p(k)=(-1)^k \prod_{j<k}'j$, where the prime means that $p$
does not divide $j$.
\bprog
? gamma(1/4 + O(5^10))
%1= 1 + 4*5 + 3*5^4 + 5^6 + 5^7 + 4*5^9 + O(5^10)
? algdep(%,4)
%2 = x^4 + 4*x^2 + 5
@eprog
Variant: For a \typ{PADIC} $x$, the function
\fun{GEN}{Qp_gamma}{GEN x} is also available.
Function: gammah
Class: basic
Section: transcendental
C-Name: ggamd
Prototype: Gp
Help: gammah(x): gamma of x+1/2 (x integer).
Doc: gamma function evaluated at the argument $x+1/2$.
Function: gcd
Class: basic
Section: number_theoretical
C-Name: ggcd0
Prototype: GDG
Help: gcd(x,{y}): greatest common divisor of x and y.
Description:
(small, small):small cgcd($1, $2)
(int, int):int gcdii($1, $2)
(gen):gen content($1)
(gen, gen):gen ggcd($1, $2)
Doc: creates the greatest common divisor of $x$ and $y$.
If you also need the $u$ and $v$ such that $x*u + y*v = \gcd(x,y)$,
use the \tet{bezout} function. $x$ and $y$ can have rather quite general
types, for instance both rational numbers. If $y$ is omitted and $x$ is a
vector, returns the $\text{gcd}$ of all components of $x$, i.e.~this is
equivalent to \kbd{content(x)}.
When $x$ and $y$ are both given and one of them is a vector/matrix type,
the GCD is again taken recursively on each component, but in a different way.
If $y$ is a vector, resp.~matrix, then the result has the same type as $y$,
and components equal to \kbd{gcd(x, y[i])}, resp.~\kbd{gcd(x, y[,i])}. Else
if $x$ is a vector/matrix the result has the same type as $x$ and an
analogous definition. Note that for these types, \kbd{gcd} is not
commutative.
The algorithm used is a naive \idx{Euclid} except for the following inputs:
\item integers: use modified right-shift binary (``plus-minus''
variant).
\item univariate polynomials with coefficients in the same number
field (in particular rational): use modular gcd algorithm.
\item general polynomials: use the \idx{subresultant algorithm} if
coefficient explosion is likely (non modular coefficients).
If $u$ and $v$ are polynomials in the same variable with \emph{inexact}
coefficients, their gcd is defined to be scalar, so that
\bprog
? a = x + 0.0; gcd(a,a)
%1 = 1
? b = y*x + O(y); gcd(b,b)
%2 = y
? c = 4*x + O(2^3); gcd(c,c)
%2 = 4
@eprog\noindent A good quantitative check to decide whether such a
gcd ``should be'' non-trivial, is to use \tet{polresultant}: a value
close to $0$ means that a small deformation of the inputs has non-trivial gcd.
You may also use \tet{bezout}, which does try to compute an approximate gcd
$d$ and provides $u$, $v$ to check whether $u x + v y$ is close to $d$.
Variant: Also available are \fun{GEN}{ggcd}{GEN x, GEN y}, if \kbd{y} is not
\kbd{NULL}, and \fun{GEN}{content}{GEN x}, if $\kbd{y} = \kbd{NULL}$.
Function: getheap
Class: basic
Section: programming/specific
C-Name: getheap
Prototype:
Help: getheap(): 2-component vector giving the current number of objects in
the heap and the space they occupy.
Doc: returns a two-component row vector giving the
number of objects on the heap and the amount of memory they occupy in long
words. Useful mainly for debugging purposes.
Function: getrand
Class: basic
Section: programming/specific
C-Name: getrand
Prototype:
Help: getrand(): current value of random number seed.
Doc: returns the current value of the seed used by the
pseudo-random number generator \tet{random}. Useful mainly for debugging
purposes, to reproduce a specific chain of computations. The returned value
is technical (reproduces an internal state array), and can only be used as an
argument to \tet{setrand}.
Function: getstack
Class: basic
Section: programming/specific
C-Name: getstack
Prototype: l
Help: getstack(): current value of stack pointer avma.
Doc: returns the current value of $\kbd{top}-\kbd{avma}$, i.e.~the number of
bytes used up to now on the stack. Useful mainly for debugging purposes.
Function: gettime
Class: basic
Section: programming/specific
C-Name: gettime
Prototype: l
Help: gettime(): time (in milliseconds) since last call to gettime.
Doc: returns the time (in milliseconds) elapsed since either the last call to
\kbd{gettime}, or to the beginning of the containing GP instruction (if
inside \kbd{gp}), whichever came last.
Function: global
Class: basic
Section: programming/specific
Help: global(list of variables): obsolete. Scheduled for deletion.
Doc: obsolete. Scheduled for deletion.
% \syn{NO}
Function: hilbert
Class: basic
Section: number_theoretical
C-Name: hilbert
Prototype: lGGDG
Help: hilbert(x,y,{p}): Hilbert symbol at p of x,y.
Doc: \idx{Hilbert symbol} of $x$ and $y$ modulo the prime $p$, $p=0$ meaning
the place at infinity (the result is undefined if $p\neq 0$ is not prime).
It is possible to omit $p$, in which case we take $p = 0$ if both $x$
and $y$ are rational, or one of them is a real number. And take $p = q$
if one of $x$, $y$ is a \typ{INTMOD} modulo $q$ or a $q$-adic. (Incompatible
types will raise an error.)
Function: hyperu
Class: basic
Section: transcendental
C-Name: hyperu
Prototype: GGGp
Help: hyperu(a,b,x): U-confluent hypergeometric function.
Doc: $U$-confluent hypergeometric function with
parameters $a$ and $b$. The parameters $a$ and $b$ can be complex but
the present implementation requires $x$ to be positive.
Function: idealadd
Class: basic
Section: number_fields
C-Name: idealadd
Prototype: GGG
Help: idealadd(nf,x,y): sum of two ideals x and y in the number field
defined by nf.
Doc: sum of the two ideals $x$ and $y$ in the number field $\var{nf}$. The
result is given in HNF.
\bprog
? K = nfinit(x^2 + 1);
? a = idealadd(K, 2, x + 1) \\ ideal generated by 2 and 1+I
%2 =
[2 1]
[0 1]
? pr = idealprimedec(K, 5)[1]; \\ a prime ideal above 5
? idealadd(K, a, pr) \\ coprime, as expected
%4 =
[1 0]
[0 1]
@eprog\noindent
This function cannot be used to add arbitrary $\Z$-modules, since it assumes
that its arguments are ideals:
\bprog
? b = Mat([1,0]~);
? idealadd(K, b, b) \\ only square t_MATs represent ideals
*** idealadd: non-square t_MAT in idealtyp.
? c = [2, 0; 2, 0]; idealadd(K, c, c) \\ non-sense
%6 =
[2 0]
[0 2]
? d = [1, 0; 0, 2]; idealadd(K, d, d) \\ non-sense
%7 =
[1 0]
[0 1]
@eprog\noindent In the last two examples, we get wrong results since the
matrices $c$ and $d$ do not correspond to an ideal : the $\Z$-span of their
columns (as usual interpreted as coordinates with respect to the integer basis
\kbd{K.zk}) is not an $O_K$-module. To add arbitrary $\Z$-modules generated
by the columns of matrices $A$ and $B$, use \kbd{mathnf(concat(A,B))}.
Function: idealaddtoone
Class: basic
Section: number_fields
C-Name: idealaddtoone0
Prototype: GGDG
Help: idealaddtoone(nf,x,{y}): if y is omitted, when the sum of the ideals
in the number field K defined by nf and given in the vector x is equal to
Z_K, gives a vector of elements of the corresponding ideals who sum to 1.
Otherwise, x and y are ideals, and if they sum up to 1, find one element in
each of them such that the sum is 1.
Doc: $x$ and $y$ being two co-prime
integral ideals (given in any form), this gives a two-component row vector
$[a,b]$ such that $a\in x$, $b\in y$ and $a+b=1$.
The alternative syntax $\kbd{idealaddtoone}(\var{nf},v)$, is supported, where
$v$ is a $k$-component vector of ideals (given in any form) which sum to
$\Z_K$. This outputs a $k$-component vector $e$ such that $e[i]\in x[i]$ for
$1\le i\le k$ and $\sum_{1\le i\le k}e[i]=1$.
Function: idealappr
Class: basic
Section: number_fields
C-Name: idealappr0
Prototype: GGD0,L,
Help: idealappr(nf,x,{flag=0}): x being a fractional ideal, gives an element
b such that v_p(b)=v_p(x) for all prime ideals p dividing x, and v_p(b)>=0
for all other p. If (optional) flag is non-null x must be a prime ideal
factorization with possibly zero exponents.
Doc: if $x$ is a fractional ideal
(given in any form), gives an element $\alpha$ in $\var{nf}$ such that for
all prime ideals $\goth{p}$ such that the valuation of $x$ at $\goth{p}$ is
non-zero, we have $v_{\goth{p}}(\alpha)=v_{\goth{p}}(x)$, and
$v_{\goth{p}}(\alpha)\ge0$ for all other $\goth{p}$.
If $\fl$ is non-zero, $x$ must be given as a prime ideal factorization, as
output by \kbd{idealfactor}, but possibly with zero or negative exponents.
This yields an element $\alpha$ such that for all prime ideals $\goth{p}$
occurring in $x$, $v_{\goth{p}}(\alpha)$ is equal to the exponent of
$\goth{p}$ in $x$, and for all other prime ideals,
$v_{\goth{p}}(\alpha)\ge0$. This generalizes $\kbd{idealappr}(\var{nf},x,0)$
since zero exponents are allowed. Note that the algorithm used is slightly
different, so that
\bprog
idealappr(nf, idealfactor(nf,x))
@eprog\noindent
may not be the same as \kbd{idealappr(nf,x,1)}.
Function: idealchinese
Class: basic
Section: number_fields
C-Name: idealchinese
Prototype: GGG
Help: idealchinese(nf,x,y): x being a prime ideal factorization and y a
vector of elements, gives an element b such that v_p(b-y_p)>=v_p(x) for all
prime ideals p dividing x, and v_p(b)>=0 for all other p.
Doc: $x$ being a prime ideal factorization
(i.e.~a 2 by 2 matrix whose first column contains prime ideals, and the second
column integral exponents), $y$ a vector of elements in $\var{nf}$ indexed by
the ideals in $x$, computes an element $b$ such that
$v_{\goth{p}}(b - y_{\goth{p}}) \geq v_{\goth{p}}(x)$ for all prime ideals
in $x$ and $v_{\goth{p}}(b)\geq 0$ for all other $\goth{p}$.
Function: idealcoprime
Class: basic
Section: number_fields
C-Name: idealcoprime
Prototype: GGG
Help: idealcoprime(nf,x,y): gives an element b in nf such that b. x is an
integral ideal coprime to the integral ideal y.
Doc: given two integral ideals $x$ and $y$
in the number field $\var{nf}$, returns a $\beta$ in the field,
such that $\beta\cdot x$ is an integral ideal coprime to $y$.
Function: idealdiv
Class: basic
Section: number_fields
C-Name: idealdiv0
Prototype: GGGD0,L,
Help: idealdiv(nf,x,y,{flag=0}): quotient x/y of two ideals x and y in HNF
in the number field nf. If (optional) flag is non-null, the quotient is
supposed to be an integral ideal (slightly faster).
Description:
(gen, gen, gen, ?0):gen idealdiv($1, $2, $3)
(gen, gen, gen, 1):gen idealdivexact($1, $2, $3)
(gen, gen, gen, #small):gen $"invalid flag in idealdiv"
(gen, gen, gen, small):gen idealdiv0($1, $2, $3, $4)
Doc: quotient $x\cdot y^{-1}$ of the two ideals $x$ and $y$ in the number
field $\var{nf}$. The result is given in HNF.
If $\fl$ is non-zero, the quotient $x \cdot y^{-1}$ is assumed to be an
integral ideal. This can be much faster when the norm of the quotient is
small even though the norms of $x$ and $y$ are large.
Variant: Also available are \fun{GEN}{idealdiv}{GEN nf, GEN x, GEN y}
($\fl=0$) and \fun{GEN}{idealdivexact}{GEN nf, GEN x, GEN y} ($\fl=1$).
Function: idealfactor
Class: basic
Section: number_fields
C-Name: idealfactor
Prototype: GG
Help: idealfactor(nf,x): factorization of the ideal x given in HNF into
prime ideals in the number field nf.
Doc: factors into prime ideal powers the
ideal $x$ in the number field $\var{nf}$. The output format is similar to the
\kbd{factor} function, and the prime ideals are represented in the form
output by the \kbd{idealprimedec} function, i.e.~as 5-element vectors.
Function: idealfactorback
Class: basic
Section: number_fields
C-Name: idealfactorback
Prototype: GGDGD0,L,
Help: idealfactorback(nf,f,{e},{flag = 0}): given a factorisation f, gives the
ideal product back. If e is present, f has to be a
vector of the same length, and we return the product of the f[i]^e[i]. If
flag is non-zero, perform idealred along the way.
Doc: gives back the ideal corresponding to a factorization. The integer $1$
corresponds to the empty factorization.
If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
integral), and the corresponding factorization is the product of the
$f[i]^{e[i]}$.
If not, and $f$ is vector, it is understood as in the preceding case with $e$
a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
regular factorization, as produced by \kbd{idealfactor}.
\bprog
? nf = nfinit(y^2+1); idealfactor(nf, 4 + 2*y)
%1 =
[[2, [1, 1]~, 2, 1, [1, 1]~] 2]
[[5, [2, 1]~, 1, 1, [-2, 1]~] 1]
? idealfactorback(nf, %)
%2 =
[10 4]
[0 2]
? f = %1[,1]; e = %1[,2]; idealfactorback(nf, f, e)
%3 =
[10 4]
[0 2]
? % == idealhnf(nf, 4 + 2*y)
%4 = 1
@eprog
If \kbd{flag} is non-zero, perform ideal reductions (\tet{idealred}) along the
way. This is most useful if the ideals involved are all \emph{extended}
ideals (for instance with trivial principal part), so that the principal parts
extracted by \kbd{idealred} are not lost. Here is an example:
\bprog
? f = vector(#f, i, [f[i], [;]]); \\ transform to extended ideals
? idealfactorback(nf, f, e, 1)
%6 = [[1, 0; 0, 1], [2, 1; [2, 1]~, 1]]
? nffactorback(nf, %[2])
%7 = [4, 2]~
@eprog
The extended ideal returned in \kbd{\%6} is the trivial ideal $1$, extended
with a principal generator given in factored form. We use \tet{nffactorback}
to recover it in standard form.
Function: idealfrobenius
Class: basic
Section: number_fields
C-Name: idealfrobenius
Prototype: GGG
Help: idealfrobenius(nf,gal,pr): Returns the Frobenius element (pr|nf/Q)
associated with the unramified prime ideal pr in prid format, in the Galois
group gal of the number field nf.
Doc: Let $K$ be the number field defined by $nf$ and assume $K/\Q$ be a
Galois extension with Galois group given \kbd{gal=galoisinit(nf)},
and that $pr$ is the prime ideal $\goth{P}$ in prid format, and that
$\goth{P}$ is unramified.
This function returns a permutation of \kbd{gal.group} which defines the
automorphism $\sigma=\left(\goth{P}\over K/\Q \right)$, i.e the Frobenius
element associated to $\goth{P}$. If $p$ is the unique prime number
in $\goth{P}$, then $\sigma(x)\equiv x^p\mod\P$ for all $x\in\Z_K$.
\bprog
? nf = nfinit(polcyclo(31));
? gal = galoisinit(nf);
? pr = idealprimedec(nf,101)[1];
? g = idealfrobenius(nf,gal,pr);
? galoispermtopol(gal,g)
%5 = x^8
@eprog\noindent This is correct since $101\equiv 8\mod{31}$.
Function: idealhnf
Class: basic
Section: number_fields
C-Name: idealhnf0
Prototype: GGDG
Help: idealhnf(nf,a,{b}): hermite normal form of the ideal a in the number
field nf. If called as idealhnf(nf,a,b), the ideal
is given as aZ_K+bZ_K in the number field K defined by nf.
Doc: gives the \idx{Hermite normal form} of the ideal $a\Z_K+b\Z_K$, where $a$
and $b$ are elements of the number field $K$ defined by \kbd{nf}.
\bprog
? nf = nfinit(y^3 - 2);
? idealhnf(nf, 2, y+1)
%2 =
[1 0 0]
[0 1 0]
[0 0 1]
? idealhnf(nf, y/2, [0,0,1/3]~)
%3 =
[1/3 0 0]
[0 1/6 0]
[0 0 1/6]
@eprog
If $b$ is omitted, returns the HNF of the ideal defined by $a$: $a$ may be an
algebraic number (defining a principal ideal), a maximal ideal (as given by
\kbd{idealprimedec} or \kbd{idealfactor}), or a matrix whose columns give
generators for the ideal. This last format is a little complicated, but
useful to reduce general modules to the canonical form once in a while:
\item if strictly less than $N = [K:\Q]$ generators are given, $a$
is the $\Z_K$-module they generate,
\item if $N$ or more are given, it is \emph{assumed} that they form a
$\Z$-basis (that the matrix has maximal rank $N$). This acts
as \kbd{mathnf} since the $\Z_K$-module structure is (taken for
granted hence) not taken into account in this case.
\bprog
? idealhnf(nf, idealprimedec(nf,2)[1])
%4 =
[2 0 0]
[0 1 0]
[0 0 1]
? idealhnf(nf, [1,2;2,3;3,4])
%5 =
[1 0 0]
[0 1 0]
[0 0 1]
@eprog
Variant: Also available is \fun{GEN}{idealhnf}{GEN nf, GEN a}.
Function: idealintersect
Class: basic
Section: number_fields
C-Name: idealintersect
Prototype: GGG
Help: idealintersect(nf,A,B): intersection of two ideals A and B in the
number field defined by nf.
Doc: intersection of the two ideals
$A$ and $B$ in the number field $\var{nf}$. The result is given in HNF.
\bprog
? nf = nfinit(x^2+1);
? idealintersect(nf, 2, x+1)
%2 =
[2 0]
[0 2]
@eprog
This function does not apply to general $\Z$-modules, e.g.~orders, since its
arguments are replaced by the ideals they generate. The following script
intersects $\Z$-modules $A$ and $B$ given by matrices of compatible
dimensions with integer coefficients:
\bprog
ZM_intersect(A,B) =
{ my(Ker = matkerint(concat(A,B));
mathnf( A * vecextract(Ker, Str("..", #A), "..") )
}
@eprog
Function: idealinv
Class: basic
Section: number_fields
C-Name: idealinv
Prototype: GG
Help: idealinv(nf,x): inverse of the ideal x in the number field nf.
Description:
(gen, gen):gen idealinv($1, $2)
Doc: inverse of the ideal $x$ in the
number field $\var{nf}$, given in HNF. If $x$ is an extended
ideal\sidx{ideal (extended)}, its principal part is suitably
updated: i.e. inverting $[I,t]$, yields $[I^{-1}, 1/t]$.
Function: ideallist
Class: basic
Section: number_fields
C-Name: ideallist0
Prototype: GLD4,L,
Help: ideallist(nf,bound,{flag=4}): vector of vectors L of all idealstar of
all ideals of norm<=bound. If (optional) flag is present, its binary digits
are toggles meaning 1: give generators; 2: add units; 4: give only the
ideals and not the bid.
Doc: computes the list
of all ideals of norm less or equal to \var{bound} in the number field
\var{nf}. The result is a row vector with exactly \var{bound} components.
Each component is itself a row vector containing the information about
ideals of a given norm, in no specific order, depending on the value of
$\fl$:
The possible values of $\fl$ are:
\quad 0: give the \var{bid} associated to the ideals, without generators.
\quad 1: as 0, but include the generators in the \var{bid}.
\quad 2: in this case, \var{nf} must be a \var{bnf} with units. Each
component is of the form $[\var{bid},U]$, where \var{bid} is as case 0
and $U$ is a vector of discrete logarithms of the units. More precisely, it
gives the \kbd{ideallog}s with respect to \var{bid} of \kbd{bnf.tufu}.
This structure is technical, and only meant to be used in conjunction with
\tet{bnrclassnolist} or \tet{bnrdisclist}.
\quad 3: as 2, but include the generators in the \var{bid}.
\quad 4: give only the HNF of the ideal.
\bprog
? nf = nfinit(x^2+1);
? L = ideallist(nf, 100);
? L[1]
%3 = [[1, 0; 0, 1]] \\@com A single ideal of norm 1
? #L[65]
%4 = 4 \\@com There are 4 ideals of norm 4 in $\Z[i]$
@eprog
If one wants more information, one could do instead:
\bprog
? nf = nfinit(x^2+1);
? L = ideallist(nf, 100, 0);
? l = L[25]; vector(#l, i, l[i].clgp)
%3 = [[20, [20]], [16, [4, 4]], [20, [20]]]
? l[1].mod
%4 = [[25, 18; 0, 1], []]
? l[2].mod
%5 = [[5, 0; 0, 5], []]
? l[3].mod
%6 = [[25, 7; 0, 1], []]
@eprog\noindent where we ask for the structures of the $(\Z[i]/I)^*$ for all
three ideals of norm $25$. In fact, for all moduli with finite part of norm
$25$ and trivial Archimedean part, as the last 3 commands show. See
\tet{ideallistarch} to treat general moduli.
Function: ideallistarch
Class: basic
Section: number_fields
C-Name: ideallistarch
Prototype: GGG
Help: ideallistarch(nf,list,arch): list is a vector of vectors of of bid's as
output by ideallist. Return a vector of vectors with the same number of
components as the original list. The leaves give information about
moduli whose finite part is as in original list, in the same order, and
Archimedean part is now arch. The information contained is of the same kind
as was present in the input.
Doc:
\var{list} is a vector of vectors of bid's, as output by \tet{ideallist} with
flag $0$ to $3$. Return a vector of vectors with the same number of
components as the original \var{list}. The leaves give information about
moduli whose finite part is as in original list, in the same order, and
Archimedean part is now \var{arch} (it was originally trivial). The
information contained is of the same kind as was present in the input; see
\tet{ideallist}, in particular the meaning of \fl.
\bprog
? bnf = bnfinit(x^2-2);
? bnf.sign
%2 = [2, 0] \\@com two places at infinity
? L = ideallist(bnf, 100, 0);
? l = L[98]; vector(#l, i, l[i].clgp)
%4 = [[42, [42]], [36, [6, 6]], [42, [42]]]
? La = ideallistarch(bnf, L, [1,1]); \\@com add them to the modulus
? l = La[98]; vector(#l, i, l[i].clgp)
%6 = [[168, [42, 2, 2]], [144, [6, 6, 2, 2]], [168, [42, 2, 2]]]
@eprog
Of course, the results above are obvious: adding $t$ places at infinity will
add $t$ copies of $\Z/2\Z$ to the ray class group. The following application
is more typical:
\bprog
? L = ideallist(bnf, 100, 2); \\@com units are required now
? La = ideallistarch(bnf, L, [1,1]);
? H = bnrclassnolist(bnf, La);
? H[98];
%6 = [2, 12, 2]
@eprog
Function: ideallog
Class: basic
Section: number_fields
C-Name: ideallog
Prototype: GGG
Help: ideallog(nf,x,bid): if bid is a big ideal, as given by
idealstar(nf,I,1) or idealstar(nf,I,2), gives the vector of exponents on the
generators bid[2][3] (even if these generators have not been computed).
Doc: $\var{nf}$ is a number field,
\var{bid} is as output by \kbd{idealstar(nf, D, \dots)} and $x$ a
non-necessarily integral element of \var{nf} which must have valuation
equal to 0 at all prime ideals in the support of $\kbd{D}$. This function
computes the discrete logarithm of $x$ on the generators given in
\kbd{\var{bid}.gen}. In other words, if $g_i$ are these generators, of orders
$d_i$ respectively, the result is a column vector of integers $(x_i)$ such
that $0\le x_i<d_i$ and
$$x \equiv \prod_i g_i^{x_i} \pmod{\ ^*D}\enspace.$$
Note that when the support of \kbd{D} contains places at infinity, this
congruence implies also sign conditions on the associated real embeddings.
See \tet{znlog} for the limitations of the underlying discrete log algorithms.
Function: idealmin
Class: basic
Section: number_fields
C-Name: idealmin
Prototype: GGDG
Help: idealmin(nf,ix,{vdir}): pseudo-minimum of the ideal ix in the direction
vdir in the number field nf.
Doc: \emph{This function is useless and kept for backward compatibility only,
use \kbd{idealred}}. Computes a pseudo-minimum of the ideal $x$ in the
direction \var{vdir} in the number field \var{nf}.
Function: idealmul
Class: basic
Section: number_fields
C-Name: idealmul0
Prototype: GGGD0,L,
Help: idealmul(nf,x,y,{flag=0}): product of the two ideals x and y in the
number field nf. If (optional) flag is non-nul, reduce the result.
Description:
(gen, gen, gen, ?0):gen idealmul($1, $2, $3)
(gen, gen, gen, 1):gen idealmulred($1, $2, $3)
(gen, gen, gen, #small):gen $"invalid flag in idealmul"
(gen, gen, gen, small):gen idealmul0($1, $2, $3, $4)
Doc: ideal multiplication of the ideals $x$ and $y$ in the number field
\var{nf}; the result is the ideal product in HNF. If either $x$ or $y$
are extended ideals\sidx{ideal (extended)}, their principal part is suitably
updated: i.e. multiplying $[I,t]$, $[J,u]$ yields $[IJ, tu]$; multiplying
$I$ and $[J, u]$ yields $[IJ, u]$.
\bprog
? nf = nfinit(x^2 + 1);
? idealmul(nf, 2, x+1)
%2 =
[4 2]
[0 2]
? idealmul(nf, [2, x], x+1) \\ extended ideal * ideal
%4 = [[4, 2; 0, 2], x]
? idealmul(nf, [2, x], [x+1, x]) \\ two extended ideals
%5 = [[4, 2; 0, 2], [-1, 0]~]
@eprog\noindent
If $\fl$ is non-zero, reduce the result using \kbd{idealred}.
Variant:
\noindent See also \fun{GEN}{idealmul}{GEN
nf, GEN x, GEN y} ($\fl=0$) and \fun{GEN}{idealmulred}{GEN nf, GEN x, GEN y}
($\fl\neq0$).
Function: idealnorm
Class: basic
Section: number_fields
C-Name: idealnorm
Prototype: GG
Help: idealnorm(nf,x): norm of the ideal x in the number field nf.
Doc: computes the norm of the ideal~$x$ in the number field~$\var{nf}$.
Function: idealpow
Class: basic
Section: number_fields
C-Name: idealpow0
Prototype: GGGD0,L,
Help: idealpow(nf,x,k,{flag=0}): k-th power of the ideal x in HNF in the
number field nf. If (optional) flag is non-null, reduce the result.
Doc: computes the $k$-th power of
the ideal $x$ in the number field $\var{nf}$; $k\in\Z$.
If $x$ is an extended
ideal\sidx{ideal (extended)}, its principal part is suitably
updated: i.e. raising $[I,t]$ to the $k$-th power, yields $[I^k, t^k]$.
If $\fl$ is non-zero, reduce the result using \kbd{idealred}, \emph{throughout
the (binary) powering process}; in particular, this is \emph{not} the same as
as $\kbd{idealpow}(\var{nf},x,k)$ followed by reduction.
Variant:
\noindent See also
\fun{GEN}{idealpow}{GEN nf, GEN x, GEN k} and
\fun{GEN}{idealpows}{GEN nf, GEN x, long k} ($\fl = 0$).
Corresponding to $\fl=1$ is \fun{GEN}{idealpowred}{GEN nf, GEN vp, GEN k}.
Function: idealprimedec
Class: basic
Section: number_fields
C-Name: idealprimedec
Prototype: GG
Help: idealprimedec(nf,p): prime ideal decomposition of the prime number p
in the number field nf as a vector of 5 component vectors [p,a,e,f,b]
representing the prime ideals pZ_K+a. Z_K, e,f as usual, a as vector of
components on the integral basis, b Lenstra's constant.
Doc: computes the prime ideal
decomposition of the (positive) prime number $p$ in the number field $K$
represented by \var{nf}. If a non-prime $p$ is given the result is undefined.
The result is a vector of \tev{prid} structures, each representing one of the
prime ideals above $p$ in the number field $\var{nf}$. The representation
$\kbd{pr}=[p,a,e,f,b]$ of a prime ideal means the following: $a$ and $b$ are
algebraic integers in the maximal order $\Z_K$; the prime ideal is
equal to $\goth{p} = p\Z_K + a\Z_K$;
$e$ is the ramification index; $f$ is the residual index;
and $b$ is such that $\goth{p}^{-1}=\Z_K+ b/ p\Z_K$, which is used internally
to compute valuations. The algebraic number $a$ is guaranteed to have a
valuation equal to 1 at the prime ideal (this is automatic if $e>1$).
The components of \kbd{pr} should be accessed by member functions: \kbd{pr.p},
\kbd{pr.e}, \kbd{pr.f}, and \kbd{pr.gen} (returns the vector $[p,a]$):
\bprog
? K = nfinit(x^3-2);
? L = idealprimedec(K, 5);
? #L \\ 2 primes above 5 in Q(2^(1/3))
%3 = 2
? p1 = L[1]; p2 = L[2];
? [p1.e, p1.f] \\ the first is unramified of degree 1
%4 = [1, 1]
? [p2.e, p2.f] \\ the second is unramified of degree 2
%5 = [1, 2]
? p1.gen
%6 = [5, [2, 1, 0]~]
? nfbasistoalg(K, %[2]) \\ a uniformizer for p1
%7 = Mod(x + 2, x^3 - 2)
@eprog
Function: idealramgroups
Class: basic
Section: number_fields
C-Name: idealramgroups
Prototype: GGG
Help: idealramgroups(nf,gal,pr): let pr be a prime ideal pr in prid format, in
the Galois group gal of the number field nf, return a vector g such that g[1]
is the decomposition group of pr, g[2] is the inertia group, g[i] is the
(i-2)th ramification group of pr, all trivial subgroups being omitted.
Doc: Let $K$ be the number field defined by $nf$ and assume $K/\Q$ be a
Galois extension with Galois group $G$ given \kbd{gal=galoisinit(nf)},
and that $pr$ is the prime ideal $\goth{P}$ in prid format.
This function returns a vector $g$ of subgroups of \kbd{gal}
as follow:
\item \kbd{g[1]} is the decomposition group of $\goth{P}$,
\item \kbd{g[2]} is $G_0(\goth{P})$, the inertia group of $\goth{P}$,
and for $i\geq 2$,
\item \kbd{g[i]} is $G_{i-2}(\goth{P})$, the $i-2$-th ramification group of
$\goth{P}$.
The length of $g$ is the number of non-trivial groups in the sequence, thus
is $0$ if $e=1$ and $f=1$, and $1$ if $f>1$ and $e=1$.
\bprog
? nf=nfinit(x^6+108);
? gal=galoisinit(nf);
? pr=idealprimedec(nf,2)[1];
? iso=idealramgroups(nf,gal,pr)[2]
%4 = [[Vecsmall([2, 3, 1, 5, 6, 4])], Vecsmall([3])]
? nfdisc(galoisfixedfield(gal,iso,1))
%5 = -3
@eprog\noindent The field fixed by the inertia group of $2$ is not ramified at
$2$.
Function: idealred
Class: basic
Section: number_fields
C-Name: idealred0
Prototype: GGDG
Help: idealred(nf,I,{v=0}): LLL reduction of the ideal I in the number
field nf along direction v, in HNF.
Doc: \idx{LLL} reduction of
the ideal $I$ in the number field \var{nf}, along the direction $v$.
The $v$ parameter is best left omitted, but if it is present, it must
be an $\kbd{nf.r1} + \kbd{nf.r2}$-component vector of \emph{non-negative}
integers. (What counts is the relative magnitude of the entries: if all
entries are equal, the effect is the same as if the vector had been omitted.)
This function finds a ``small'' $a$ in $I$ (see the end for technical details).
The result is the Hermite normal form of
the ``reduced'' ideal $J = r I/a$, where $r$ is the unique rational number such
that $J$ is integral and primitive. (This is usually not a reduced ideal in
the sense of \idx{Buchmann}.)
\bprog
? K = nfinit(y^2+1);
? P = idealprimedec(K,5)[1];
? idealred(K, P)
%3 =
[1 0]
[0 1]
@eprog\noindent More often than not, a \idx{principal ideal} yields the unit
ideal as above. This is a quick and dirty way to check if ideals are principal,
but it is not a necessary condition: a non-trivial result does not prove that
the ideal is non-principal. For guaranteed results, see \kbd{bnfisprincipal},
which requires the computation of a full \kbd{bnf} structure.
If the input is an extended ideal $[I,s]$, the output is $[J,sa/r]$; this way,
one can keep track of the principal ideal part:
\bprog
? idealred(K, [P, 1])
%5 = [[1, 0; 0, 1], [-2, 1]~]
@eprog\noindent
meaning that $P$ is generated by $[-2, 1]~$. The number field element in the
extended part is an algebraic number in any form \emph{or} a factorization
matrix (in terms of number field elements, not ideals!). In the latter case,
elements stay in factored form, which is a convenient way to avoid
coefficient explosion; see also \tet{idealpow}.
\misctitle{Technical note} The routine computes an LLL-reduced
basis for the lattice $I$ equipped with the quadratic form
$$|| x ||_v^2 = \sum_{i=1}^{r_1+r_2} 2^{v_i}\varepsilon_i|\sigma_i(x)|^2,$$
where as usual the $\sigma_i$ are the (real and) complex embeddings and
$\varepsilon_i = 1$, resp.~$2$, for a real, resp.~complex place. The element
$a$ is simply the first vector in the LLL basis. The only reason you may want
to try to change some directions and set some $v_i\neq 0$ is to randomize
the elements found for a fixed ideal, which is heuristically useful in index
calculus algorithms like \tet{bnfinit} and \tet{bnfisprincipal}.
\misctitle{Even more technical note} In fact, the above is a white lie.
We do not use $||\cdot||_v$ exactly but a rescaled rounded variant which
gets us faster and simpler LLLs. There's no harm since we are not using any
theoretical property of $a$ after all, except that it belongs to $I$ and is
``expected to be small''.
Function: idealstar
Class: basic
Section: number_fields
C-Name: idealstar0
Prototype: GGD1,L,
Help: idealstar(nf,I,{flag=1}): gives the structure of (Z_K/I)^*. flag is
optional, and can be 0: simply gives the structure as a 3-component vector v
such that v[1] is the order (i.e. eulerphi(I)), v[2] is a vector of cyclic
components, and v[3] is a vector giving the corresponding generators. If
flag=1 (default), gives idealstarinit, i.e. a 6-component vector
[I,v,fa,f2,U,V] where v is as above without the generators, fa is the prime
ideal factorisation of I and f2, U and V are technical but essential to work
in (Z_K/I)^*. Finally if flag=2, same as with flag=1 except that the
generators are also given.
Doc: outputs a \var{bid} structure,
necessary for computing in the finite abelian group $G = (\Z_K/I)^*$. Here,
\var{nf} is a number field and $I$ is a \var{modulus}: either an ideal in any
form, or a row vector whose first component is an ideal and whose second
component is a row vector of $r_1$ 0 or 1.
This \var{bid} is used in \tet{ideallog} to compute discrete logarithms. It
also contains useful information which can be conveniently retrieved as
\kbd{\var{bid}.mod} (the modulus),
\kbd{\var{bid}.clgp} ($G$ as a finite abelian group),
\kbd{\var{bid}.no} (the cardinality of $G$),
\kbd{\var{bid}.cyc} (elementary divisors) and
\kbd{\var{bid}.gen} (generators).
If $\fl=1$ (default), the result is a \var{bid} structure without
generators.
If $\fl=2$, as $\fl=1$, but including generators, which wastes some time.
If $\fl=0$, only outputs $(\Z_K/I)^*$ as an abelian group,
i.e as a 3-component vector $[h,d,g]$: $h$ is the order, $d$ is the vector of
SNF\sidx{Smith normal form} cyclic components and $g$ the corresponding
generators.
Variant: Instead the above hardcoded numerical flags, one should rather use
\fun{GEN}{Idealstar}{GEN nf, GEN ideal, long flag}, where \kbd{flag} is
an or-ed combination of \tet{nf_GEN} (include generators) and \tet{nf_INIT}
(return a full \kbd{bid}, not a group), possibly $0$. This offers
one more combination: gen, but no init.
Function: idealtwoelt
Class: basic
Section: number_fields
C-Name: idealtwoelt0
Prototype: GGDG
Help: idealtwoelt(nf,x,{a}): two-element representation of an ideal x in the
number field nf. If (optional) a is non-zero, first element will be equal to a.
Doc: computes a two-element
representation of the ideal $x$ in the number field $\var{nf}$, combining a
random search and an explicit approximation theorem. $x$ is an ideal
in any form (possibly an extended ideal, whose principal part is ignored)
and the
result is a row vector $[a,\alpha]$ with two components such that
$x=a\Z_K+\alpha\Z_K$ and $a\in\Z$, where $a$ is the one passed as argument if
any. Unless $x$ was given as a principal ideal, $a$ is chosen to be the
positive generator of $x\cap\Z$.
Note that when an explicit $a$ is given, we must factor it and this may
be costly. When $a$ is omitted, we use a fast lazy factorization of $x\cap
\Z$, yielding an algorithm in randomized polynomial time (and generally
much faster in practice).
Variant: Also available are
\fun{GEN}{idealtwoelt}{GEN nf, GEN x} and
\fun{GEN}{idealtwoelt2}{GEN nf, GEN x, GEN a}.
Function: idealval
Class: basic
Section: number_fields
C-Name: idealval
Prototype: lGGG
Help: idealval(nf,x,pr): valuation at pr given in idealprimedec format of the
ideal x in the number field nf.
Doc: gives the valuation of the ideal $x$ at the prime ideal \var{pr} in the
number field $\var{nf}$, where \var{pr} is in \kbd{idealprimedec} format.
Function: if
Class: basic
Section: programming/control
C-Name: ifpari
Prototype: GDEDE
Help: if(a,{seq1},{seq2}): if a is nonzero, seq1 is evaluated, otherwise seq2.
seq1 and seq2 are optional, and if seq2 is omitted, the preceding comma can
be omitted also.
Doc: evaluates the expression sequence \var{seq1} if $a$ is non-zero, otherwise
the expression \var{seq2}. Of course, \var{seq1} or \var{seq2} may be empty:
\kbd{if ($a$,\var{seq})} evaluates \var{seq} if $a$ is not equal to zero
(you don't have to write the second comma), and does nothing otherwise,
\kbd{if ($a$,,\var{seq})} evaluates \var{seq} if $a$ is equal to zero, and
does nothing otherwise. You could get the same result using the \kbd{!}
(\kbd{not}) operator: \kbd{if (!$a$,\var{seq})}.
Note that the boolean operators \kbd{\&\&} and \kbd{||} are evaluated
according to operator precedence as explained in \secref{se:operators}, but
that, contrary to other operators, the evaluation of the arguments is stopped
as soon as the final truth value has been determined. For instance
\bprog
if (reallydoit && longcomplicatedfunction(), ...)
@eprog
\noindent is a perfectly safe statement.
Recall that functions such as \kbd{break} and \kbd{next} operate on
\emph{loops} (such as \kbd{for$xxx$}, \kbd{while}, \kbd{until}). The \kbd{if}
statement is \emph{not} a loop (obviously!).
Function: imag
Class: basic
Section: conversions
C-Name: gimag
Prototype: G
Help: imag(x): imaginary part of x.
Doc: imaginary part of $x$. When $x$ is a quadratic number, this is the
coefficient of $\omega$ in the ``canonical'' integral basis $(1,\omega)$.
Function: incgam
Class: basic
Section: transcendental
C-Name: incgam0
Prototype: GGDGp
Help: incgam(s,x,{y}): incomplete gamma function. y is optional and is the
precomputed value of gamma(s).
Doc: incomplete gamma function. The argument $x$
and $s$ are complex numbers ($x$ must be a positive real number if $s = 0$).
The result returned is $\int_x^\infty e^{-t}t^{s-1}\,dt$. When $y$ is given,
assume (of course without checking!) that $y=\Gamma(s)$. For small $x$, this
will speed up the computation.
Variant: Also available is \fun{GEN}{incgam}{GEN s, GEN x, long prec}.
Function: incgamc
Class: basic
Section: transcendental
C-Name: incgamc
Prototype: GGp
Help: incgamc(s,x): complementary incomplete gamma function.
Doc: complementary incomplete gamma function.
The arguments $x$ and $s$ are complex numbers such that $s$ is not a pole of
$\Gamma$ and $|x|/(|s|+1)$ is not much larger than 1 (otherwise the
convergence is very slow). The result returned is $\int_0^x
e^{-t}t^{s-1}\,dt$.
Function: input
Class: gp
Section: programming/specific
C-Name: input0
Prototype:
Help: input(): read an expression from the input file or standard input.
Doc: reads a string, interpreted as a GP expression,
from the input file, usually standard input (i.e.~the keyboard). If a
sequence of expressions is given, the result is the result of the last
expression of the sequence. When using this instruction, it is useful to
prompt for the string by using the \kbd{print1} function. Note that in the
present version 2.19 of \kbd{pari.el}, when using \kbd{gp} under GNU Emacs (see
\secref{se:emacs}) one \emph{must} prompt for the string, with a string
which ends with the same prompt as any of the previous ones (a \kbd{"? "}
will do for instance).
Function: install
Class: highlevel
Section: programming/specific
C-Name: gpinstall
Prototype: vrrD"",r,D"",s,
Help: install(name,code,{gpname},{lib}): load from dynamic library 'lib' the
function 'name'. Assign to it the name 'gpname' in this GP session, with
argument code 'code'. If 'lib' is omitted use 'libpari.so'. If 'gpname' is
omitted, use 'name'.
Doc: loads from dynamic library \var{lib} the function \var{name}. Assigns to it
the name \var{gpname} in this \kbd{gp} session, with argument code \var{code}
(see the Libpari Manual for an explanation of those). If \var{lib} is
omitted, uses \kbd{libpari.so}. If \var{gpname} is omitted, uses
\var{name}.
This function is useful for adding custom functions to the \kbd{gp} interpreter,
or picking useful functions from unrelated libraries. For instance, it
makes the function \tet{system} obsolete:
\bprog
? install(system, vs, sys, "libc.so")
? sys("ls gp*")
gp.c gp.h gp_rl.c
@eprog
But it also gives you access to all (non static) functions defined in the
PARI library. For instance, the function \kbd{GEN addii(GEN x, GEN y)} adds
two PARI integers, and is not directly accessible under \kbd{gp} (it is
eventually called by the \kbd{+} operator of course):
\bprog
? install("addii", "GG")
? addii(1, 2)
%1 = 3
@eprog\noindent
Re-installing a function will print a warning and update the prototype code
if needed. However, it will not reload a symbol from the library, even it the
latter has been recompiled.
\misctitle{Caution} This function may not work on all systems, especially
when \kbd{gp} has been compiled statically. In that case, the first use of an
installed function will provoke a Segmentation Fault, i.e.~a major internal
blunder (this should never happen with a dynamically linked executable).
Hence, if you intend to use this function, please check first on some
harmless example such as the ones above that it works properly on your
machine.
Function: intcirc
Class: basic
Section: sums
C-Name: intcirc0
Prototype: V=GGEDGp
Help: intcirc(X=a,R,expr,{tab}): numerical integration of expr on the circle
|z-a|=R, divided by 2*I*Pi. tab is as in intnum.
Wrapper: (,,G)
Description:
(gen,gen,gen,?gen):gen:prec intcirc(${3 cookie}, ${3 wrapper}, $1, $2, $4, prec)
Doc: numerical
integration of $(2i\pi)^{-1}\var{expr}$ with respect to $X$ on the circle
$|X-a| = R$.
In other words, when \var{expr} is a meromorphic
function, sum of the residues in the corresponding disk. \var{tab} is as in
\kbd{intnum}, except that if computed with \kbd{intnuminit} it should be with
the endpoints \kbd{[-1, 1]}.
\bprog
? \p105
? intcirc(s=1, 0.5, zeta(s)) - 1
%1 = -2.398082982 E-104 - 7.94487211 E-107*I
@eprog
\synt{intcirc}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN R,GEN tab, long prec}.
Function: intformal
Class: basic
Section: polynomials
C-Name: integ
Prototype: GDn
Help: intformal(x,{v}): formal integration of x with respect to v, or to the
main variable of x if v is omitted.
Doc: \idx{formal integration} of $x$ with respect to the main variable if $v$
is omitted, with respect to the variable $v$ otherwise. Since PARI does not
know about ``abstract'' logarithms (they are immediately evaluated, if only
to a power series), logarithmic terms in the result will yield an error. $x$
can be of any type. When $x$ is a rational function, it is assumed that the
base ring is an integral domain of characteristic zero.
Function: intfouriercos
Class: basic
Section: sums
C-Name: intfourcos0
Prototype: V=GGGEDGp
Help: intfouriercos(X=a,b,z,expr,{tab}): numerical integration from a to b
of cos(2*Pi*z*X)*expr(X) from a to b, where a, b, and tab are as in intnum.
This is the cosine-Fourier transform if a=-infty and b=+infty.
Wrapper: (,,,G)
Description:
(gen,gen,gen,gen,?gen):gen:prec intfouriercos(${4 cookie}, ${4 wrapper}, $1, $2, $3, $5, prec)
Doc: numerical
integration of $\var{expr}(X)\cos(2\pi zX)$ from $a$ to $b$, in other words
Fourier cosine transform (from $a$ to $b$) of the function represented by
\var{expr}. Endpoints $a$ and $b$ are coded as in \kbd{intnum}, and are not
necessarily at infinity, but if they are, oscillations (i.e. $[[\pm1],\alpha
I]$) are forbidden.
\synt{intfouriercos}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b, GEN z, GEN tab, long prec}.
Function: intfourierexp
Class: basic
Section: sums
C-Name: intfourexp0
Prototype: V=GGGEDGp
Help: intfourierexp(X=a,b,z,expr,{tab}): numerical integration from a to b
of exp(-2*I*Pi*z*X)*expr(X) from a to b, where a, b, and tab are as in intnum.
This is the ordinary Fourier transform if a=-infty and b=+infty. Note the
minus sign.
Wrapper: (,,,G)
Description:
(gen,gen,gen,gen,?gen):gen:prec intfourierexp(${4 cookie}, ${4 wrapper}, $1, $2, $3, $5, prec)
Doc: numerical
integration of $\var{expr}(X)\exp(-2i\pi zX)$ from $a$ to $b$, in other words
Fourier transform (from $a$ to $b$) of the function represented by
\var{expr}. Note the minus sign. Endpoints $a$ and $b$ are coded as in
\kbd{intnum}, and are not necessarily at infinity but if they are,
oscillations (i.e. $[[\pm1],\alpha I]$) are forbidden.
\synt{intfourierexp}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b, GEN z, GEN tab, long prec}.
Function: intfouriersin
Class: basic
Section: sums
C-Name: intfoursin0
Prototype: V=GGGEDGp
Help: intfouriersin(X=a,b,z,expr,{tab}): numerical integration from a to b
of sin(2*Pi*z*X)*expr(X) from a to b, where a, b, and tab are as in intnum.
This is the sine-Fourier transform if a=-infty and b=+infty.
Wrapper: (,,,G)
Description:
(gen,gen,gen,gen,?gen):gen:prec intfouriercos(${4 cookie}, ${4 wrapper}, $1, $2, $3, $5, prec)
Doc: numerical
integration of $\var{expr}(X)\sin(2\pi zX)$ from $a$ to $b$, in other words
Fourier sine transform (from $a$ to $b$) of the function represented by
\var{expr}. Endpoints $a$ and $b$ are coded as in \kbd{intnum}, and are not
necessarily at infinity but if they are, oscillations (i.e. $[[\pm1],\alpha
I]$) are forbidden.
\synt{intfouriersin}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b, GEN z, GEN tab, long prec}.
Function: intfuncinit
Class: basic
Section: sums
C-Name: intfuncinit0
Prototype: V=GGED0,L,D0,L,p
Help: intfuncinit(X=a,b,expr,{flag=0},{m=0}): initialize tables for integrations
from a to b using a weight expr(X). Essential for integral transforms such
as intmellininv, intlaplaceinv and intfourier, since it avoids recomputing
all the time the same quantities. Must then be used with intmellininvshort
(for intmellininv) and directly with intnum and not with the corresponding
integral transforms for the others. See help for intnum for coding of a
and b, and m is as in intnuminit. If flag is nonzero, assumes that
expr(-X)=conj(expr(X)), which is twice faster.
Wrapper: (,,G)
Description:
(gen,gen,gen,?small,?small):gen:prec intfuncinit(${3 cookie}, ${3 wrapper}, $1, $2, $4, $5, prec)
Doc: initialize tables for use with integral transforms such as \kbd{intmellininv},
etc., where $a$ and $b$ are coded as in \kbd{intnum}, $\var{expr}$ is the
function $s(X)$ to which the integral transform is to be applied (which will
multiply the weights of integration) and $m$ is as in \kbd{intnuminit}. If
$\fl$ is nonzero, assumes that $s(-X)=\overline{s(X)}$, which makes the
computation twice as fast. See \kbd{intmellininvshort} for examples of the
use of this function, which is particularly useful when the function $s(X)$
is lengthy to compute, such as a gamma product.
\synt{intfuncinit}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b,long m, long
flag, long prec}. Note that the order of $m$ and $\fl$ are reversed compared
to the \kbd{GP} syntax.
Function: intlaplaceinv
Class: basic
Section: sums
C-Name: intlaplaceinv0
Prototype: V=GGEDGp
Help: intlaplaceinv(X=sig,z,expr,{tab}): numerical integration on the line
real(X) = sig of expr(X)exp(zX)dz/(2*I*Pi), i.e. inverse Laplace transform of
expr at z. tab is as in intnum.
Wrapper: (,,G)
Description:
(gen,gen,gen,?gen):gen:prec intlaplaceinv(${3 cookie}, ${3 wrapper}, $1, $2, $4, prec)
Doc: numerical integration of $(2i\pi)^{-1}\var{expr}(X)e^{Xz}$ with respect
to $X$ on the line $\Re(X)=sig$. In other words, inverse Laplace transform
of the function corresponding to \var{expr} at the value $z$.
$sig$ is coded as follows. Either it is a real number $\sigma$, equal to the
abscissa of integration, and then the integrand is assumed to
be slowly decreasing when the imaginary part of the variable tends to
$\pm\infty$. Or it is a two component vector $[\sigma,\alpha]$, where
$\sigma$ is as before, and either $\alpha=0$ for slowly decreasing functions,
or $\alpha>0$ for functions decreasing like $\exp(-\alpha t)$. Note that it
is not necessary to choose the exact value of $\alpha$. \var{tab} is as in
\kbd{intnum}.
It is often a good idea to use this function with a value of $m$ one or two
higher than the one chosen by default (which can be viewed thanks to the
function \kbd{intnumstep}), or to increase the abscissa of integration
$\sigma$. For example:
\bprog
? \p 105
? intlaplaceinv(x=2, 1, 1/x) - 1
time = 350 ms.
%1 = 7.37... E-55 + 1.72... E-54*I \\@com not so good
? m = intnumstep()
%2 = 7
? intlaplaceinv(x=2, 1, 1/x, m+1) - 1
time = 700 ms.
%3 = 3.95... E-97 + 4.76... E-98*I \\@com better
? intlaplaceinv(x=2, 1, 1/x, m+2) - 1
time = 1400 ms.
%4 = 0.E-105 + 0.E-106*I \\@com perfect but slow.
? intlaplaceinv(x=5, 1, 1/x) - 1
time = 340 ms.
%5 = -5.98... E-85 + 8.08... E-85*I \\@com better than \%1
? intlaplaceinv(x=5, 1, 1/x, m+1) - 1
time = 680 ms.
%6 = -1.09... E-106 + 0.E-104*I \\@com perfect, fast.
? intlaplaceinv(x=10, 1, 1/x) - 1
time = 340 ms.
%7 = -4.36... E-106 + 0.E-102*I \\@com perfect, fastest, but why $sig=10$?
? intlaplaceinv(x=100, 1, 1/x) - 1
time = 330 ms.
%7 = 1.07... E-72 + 3.2... E-72*I \\@com too far now...
@eprog
\synt{intlaplaceinv}{void *E, GEN (*eval)(void*,GEN), GEN sig,GEN z, GEN tab, long prec}.
Function: intmellininv
Class: basic
Section: sums
C-Name: intmellininv0
Prototype: V=GGEDGp
Help: intmellininv(X=sig,z,expr,{tab}): numerical integration on the
line real(X) = sig (or sig[1]) of expr(X)z^(-X)dX/(2*I*Pi), i.e. inverse Mellin
transform of s at x. sig is coded as follows: either it is real, and then
by default assume s(z) decreases like exp(-z). Or sig = [sigR, al], sigR is
the abscissa of integration, and al = 0 for slowly decreasing functions, or
al > 0 if s(z) decreases like exp(-al*z). tab is as in intnum. Use
intmellininvshort if several values must be computed.
Wrapper: (,,G)
Description:
(gen,gen,gen,?gen):gen:prec intmellininv(${3 cookie}, ${3 wrapper}, $1, $2, $4, prec)
Doc: numerical
integration of $(2i\pi)^{-1}\var{expr}(X)z^{-X}$ with respect to $X$ on the
line $\Re(X)=sig$, in other words, inverse Mellin transform of
the function corresponding to \var{expr} at the value $z$.
$sig$ is coded as follows. Either it is a real number $\sigma$, equal to the
abscissa of integration, and then the integrated is assumed to decrease
exponentially fast, of the order of $\exp(-t)$ when the imaginary part of the
variable tends to $\pm\infty$. Or it is a two component vector
$[\sigma,\alpha]$, where $\sigma$ is as before, and either $\alpha=0$ for
slowly decreasing functions, or $\alpha>0$ for functions decreasing like
$\exp(-\alpha t)$, such as gamma products. Note that it is not necessary to
choose the exact value of $\alpha$, and that $\alpha=1$ (equivalent to $sig$
alone) is usually sufficient. \var{tab} is as in \kbd{intnum}.
As all similar functions, this function is provided for the convenience of
the user, who could use \kbd{intnum} directly. However it is in general
better to use \kbd{intmellininvshort}.
\bprog
? \p 105
? intmellininv(s=2,4, gamma(s)^3);
time = 1,190 ms. \\@com reasonable.
? \p 308
? intmellininv(s=2,4, gamma(s)^3);
time = 51,300 ms. \\@com slow because of $\Gamma(s)^3$.
@eprog\noindent
\synt{intmellininv}{void *E, GEN (*eval)(void*,GEN), GEN sig, GEN z, GEN tab, long prec}.
Function: intmellininvshort
Class: basic
Section: sums
C-Name: intmellininvshort
Prototype: GGGp
Help: intmellininvshort(sig,z,tab): numerical integration on the
line real(X) = sig (or sig[1]) of s(X)z^(-X)dX/(2*I*Pi), i.e. inverse Mellin
transform of s at z. sig is coded as follows: either it is real, and then
by default assume s(X) decreases like exp(-X). Or sig = [sigR, al], sigR is
the abscissa of integration, and al = 0 for slowly decreasing functions, or
al > 0 if s(X) decreases like exp(-al*X). Compulsory table tab has been
precomputed using the command intfuncinit(t=[[-1],sig[2]],[[1],sig[2]],s)
(with possibly its two optional additional parameters), where sig[2] = 1
if not given. Orders of magnitude faster than intmellininv.
Doc: numerical integration
of $(2i\pi)^{-1}s(X)z^{-X}$ with respect to $X$ on the line $\Re(X)=sig$.
In other words, inverse Mellin transform of $s(X)$ at the value $z$.
Here $s(X)$ is implicitly contained in \var{tab} in \kbd{intfuncinit} format,
typically
\bprog
tab = intfuncinit(T = [-1], [1], s(sig + I*T))
@eprog\noindent
or similar commands. Take the example of the inverse Mellin transform of
$\Gamma(s)^3$ given in \kbd{intmellininv}:
\bprog
? \p 105
? oo = [1]; \\@com for clarity
? A = intmellininv(s=2,4, gamma(s)^3);
time = 2,500 ms. \\@com not too fast because of $\Gamma(s)^3$.
\\ @com function of real type, decreasing as $\exp(-3\pi/2\cdot |t|)$
? tab = intfuncinit(t=[-oo, 3*Pi/2],[oo, 3*Pi/2], gamma(2+I*t)^3, 1);
time = 1,370 ms.
? intmellininvshort(2,4, tab) - A
time = 50 ms.
%4 = -1.26... - 3.25...E-109*I \\@com 50 times faster than \kbd{A} and perfect.
? tab2 = intfuncinit(t=-oo, oo, gamma(2+I*t)^3, 1);
? intmellininvshort(2,4, tab2)
%6 = -1.2...E-42 - 3.2...E-109*I \\@com 63 digits lost
@eprog\noindent
In the computation of \var{tab}, it was not essential to include the
\emph{exact} exponential decrease of $\Gamma(2+it)^3$. But as the last
example shows, a rough indication \emph{must} be given, otherwise slow
decrease is assumed, resulting in catastrophic loss of accuracy.
Function: intnum
Class: basic
Section: sums
C-Name: intnum0
Prototype: V=GGEDGp
Help: intnum(X=a,b,expr,{tab}): numerical integration of expr from a to b with
respect to X. Plus/minus infinity is coded as [+1]/ [-1]. Finally tab is
either omitted (let the program choose the integration step), a positive
integer m (choose integration step 1/2^m), or data precomputed with intnuminit.
Wrapper: (,,G)
Description:
(gen,gen,gen,?gen):gen:prec intnum(${3 cookie}, ${3 wrapper}, $1, $2, $4, prec)
Doc: numerical integration
of \var{expr} on $]a,b[$ with respect to $X$. The integrand may have values
belonging to a vector space over the real numbers; in particular, it can be
complex-valued or vector-valued. But it is assumed that the function is regular
on $]a,b[$. If the endpoints $a$ and $b$ are finite and the function is regular
there, the situation is simple:
\bprog
? intnum(x = 0,1, x^2)
%1 = 0.3333333333333333333333333333
? intnum(x = 0,Pi/2, [cos(x), sin(x)])
%2 = [1.000000000000000000000000000, 1.000000000000000000000000000]
@eprog\noindent
An endpoint equal to $\pm\infty$ is coded as the single-component vector
$[\pm1]$. You are welcome to set, e.g \kbd{oo = [1]} or \kbd{INFINITY = [1]},
then using \kbd{+oo}, \kbd{-oo}, \kbd{-INFINITY}, etc. will have the expected
behavior.
\bprog
? oo = [1]; \\@com for clarity
? intnum(x = 1,+oo, 1/x^2)
%2 = 1.000000000000000000000000000
@eprog\noindent
In basic usage, it is assumed that the function does not decrease
exponentially fast at infinity:
\bprog
? intnum(x=0,+oo, exp(-x))
*** at top-level: intnum(x=0,+oo,exp(-
*** ^--------------------
*** exp: exponent (expo) overflow
@eprog\noindent
We shall see in a moment how to avoid the last problem, after describing
the last argument \var{tab}, which is both optional and technical. The
routine uses weights, which are mostly independent of the function being
integrated, evaluated at many sampling points. If \var{tab} is
\item a positive integer $m$, we use $2^m$ sampling points, hopefully
increasing accuracy. But note that the running time is roughly proportional
to $2^m$. One may try consecutive values of $m$ until they give the same
value up to an accepted error. If \var{tab} is omitted, the algorithm guesses
a reasonable value for $m$ depending on the current precision only, which
should be sufficient for regular functions. That value may be obtained from
\tet{intnumstep}, and increased in case of difficulties.
\item a set of integration tables as output by \tet{intnuminit},
they are used directly. This is useful if several integrations of the same
type are performed (on the same kind of interval and functions, for a given
accuracy), in particular for multivariate integrals, since we then skip
expensive precomputations.
\misctitle{Specifying the behavior at endpoints}
This is done as follows. An endpoint $a$ is either given as such (a scalar,
real or complex, or $[\pm1]$ for $\pm\infty$), or as a two component vector
$[a,\alpha]$, to indicate the behavior of the integrand in a neighborhood
of $a$.
If $a$ is finite, the code $[a,\alpha]$ means the function has a
singularity of the form $(x-a)^{\alpha}$, up to logarithms. (If $\alpha \ge
0$, we only assume the function is regular, which is the default assumption.)
If a wrong singularity exponent is used, the result will lose a catastrophic
number of decimals:
\bprog
? intnum(x=0, 1, x^(-1/2)) \\@com assume $x^{-1/2}$ is regular at 0
%1 = 1.999999999999999999990291881
? intnum(x=[0,-1/2], 1, x^(-1/2)) \\@com no, it's not
%2 = 2.000000000000000000000000000
? intnum(x=[0,-1/10], 1, x^(-1/2))
%3 = 1.999999999999999999999946438 \\@com using a wrong exponent is bad
@eprog
If $a$ is $\pm\infty$, which is coded as $[\pm 1]$, the situation is more
complicated, and $[[\pm1],\alpha]$ means:
\item $\alpha=0$ (or no $\alpha$ at all, i.e. simply $[\pm1]$) assumes that the
integrand tends to zero, but not exponentially fast, and not
oscillating such as $\sin(x)/x$.
\item $\alpha>0$ assumes that the function tends to zero exponentially fast
approximately as $\exp(-\alpha x)$. This includes oscillating but quickly
decreasing functions such as $\exp(-x)\sin(x)$.
\bprog
? oo = [1];
? intnum(x=0, +oo, exp(-2*x))
*** at top-level: intnum(x=0,+oo,exp(-
*** ^--------------------
*** exp: exponent (expo) overflow
? intnum(x=0, [+oo, 2], exp(-2*x))
%1 = 0.5000000000000000000000000000 \\@com OK!
? intnum(x=0, [+oo, 4], exp(-2*x))
%2 = 0.4999999999999999999961990984 \\@com wrong exponent $\Rightarrow$ imprecise result
? intnum(x=0, [+oo, 20], exp(-2*x))
%2 = 0.4999524997739071283804510227 \\@com disaster
@eprog
\item $\alpha<-1$ assumes that the function tends to $0$ slowly, like
$x^{\alpha}$. Here it is essential to give the correct $\alpha$, if possible,
but on the other hand $\alpha\le -2$ is equivalent to $\alpha=0$, in other
words to no $\alpha$ at all.
\smallskip The last two codes are reserved for oscillating functions.
Let $k > 0$ real, and $g(x)$ a non-oscillating function tending slowly to $0$
(e.g. like a negative power of $x$), then
\item $\alpha=k * I$ assumes that the function behaves like $\cos(kx)g(x)$.
\item $\alpha=-k* I$ assumes that the function behaves like $\sin(kx)g(x)$.
\noindent Here it is critical to give the exact value of $k$. If the
oscillating part is not a pure sine or cosine, one must expand it into a
Fourier series, use the above codings, and sum the resulting contributions.
Otherwise you will get nonsense. Note that $\cos(kx)$, and similarly
$\sin(kx)$, means that very function, and not a translated version such as
$\cos(kx+a)$.
\misctitle{Note} If $f(x)=\cos(kx)g(x)$ where $g(x)$ tends to zero
exponentially fast as $\exp(-\alpha x)$, it is up to the user to choose
between $[[\pm1],\alpha]$ and $[[\pm1],k* I]$, but a good rule of thumb is that
if the oscillations are much weaker than the exponential decrease, choose
$[[\pm1],\alpha]$, otherwise choose $[[\pm1],k* I]$, although the latter can
reasonably be used in all cases, while the former cannot. To take a specific
example, in the inverse Mellin transform, the integrand is almost always a
product of an exponentially decreasing and an oscillating factor. If we
choose the oscillating type of integral we perhaps obtain the best results,
at the expense of having to recompute our functions for a different value of
the variable $z$ giving the transform, preventing us to use a function such
as \kbd{intmellininvshort}. On the other hand using the exponential type of
integral, we obtain less accurate results, but we skip expensive
recomputations. See \kbd{intmellininvshort} and \kbd{intfuncinit} for more
explanations.
\smallskip
We shall now see many examples to get a feeling for what the various
parameters achieve. All examples below assume precision is set to $105$
decimal digits. We first type
\bprog
? \p 105
? oo = [1] \\@com for clarity
@eprog
\misctitle{Apparent singularities} Even if the function $f(x)$ represented
by \var{expr} has no singularities, it may be important to define the
function differently near special points. For instance, if $f(x) = 1
/(\exp(x)-1) - \exp(-x)/x$, then $\int_0^\infty f(x)\,dx=\gamma$, Euler's
constant \kbd{Euler}. But
\bprog
? f(x) = 1/(exp(x)-1) - exp(-x)/x
? intnum(x = 0, [oo,1], f(x)) - Euler
%1 = 6.00... E-67
@eprog\noindent
thus only correct to $67$ decimal digits. This is because close to $0$ the
function $f$ is computed with an enormous loss of accuracy.
A better solution is
\bprog
? f(x) = 1/(exp(x)-1)-exp(-x)/x
? F = truncate( f(t + O(t^7)) ); \\@com expansion around t = 0
? g(x) = if (x > 1e-18, f(x), subst(F,t,x)) \\@com note that $6 \cdot 18 > 105$
? intnum(x = 0, [oo,1], g(x)) - Euler
%2 = 0.E-106 \\@com perfect
@eprog\noindent
It is up to the user to determine constants such as the $10^{-18}$ and $7$
used above.
\misctitle{True singularities} With true singularities the result is worse.
For instance
\bprog
? intnum(x = 0, 1, 1/sqrt(x)) - 2
%1 = -1.92... E-59 \\@com only $59$ correct decimals
? intnum(x = [0,-1/2], 1, 1/sqrt(x)) - 2
%2 = 0.E-105 \\@com better
@eprog
\misctitle{Oscillating functions}
\bprog
? intnum(x = 0, oo, sin(x) / x) - Pi/2
%1 = 20.78.. \\@com nonsense
? intnum(x = 0, [oo,1], sin(x)/x) - Pi/2
%2 = 0.004.. \\@com bad
? intnum(x = 0, [oo,-I], sin(x)/x) - Pi/2
%3 = 0.E-105 \\@com perfect
? intnum(x = 0, [oo,-I], sin(2*x)/x) - Pi/2 \\@com oops, wrong $k$
%4 = 0.07...
? intnum(x = 0, [oo,-2*I], sin(2*x)/x) - Pi/2
%5 = 0.E-105 \\@com perfect
? intnum(x = 0, [oo,-I], sin(x)^3/x) - Pi/4
%6 = 0.0092... \\@com bad
? sin(x)^3 - (3*sin(x)-sin(3*x))/4
%7 = O(x^17)
@eprog\noindent
We may use the above linearization and compute two oscillating integrals with
``infinite endpoints'' \kbd{[oo, -I]} and \kbd{[oo, -3*I]} respectively, or
notice the obvious change of variable, and reduce to the single integral
${1\over 2}\int_0^\infty \sin(x)/x\,dx$. We finish with some more complicated
examples:
\bprog
? intnum(x = 0, [oo,-I], (1-cos(x))/x^2) - Pi/2
%1 = -0.0004... \\@com bad
? intnum(x = 0, 1, (1-cos(x))/x^2) \
+ intnum(x = 1, oo, 1/x^2) - intnum(x = 1, [oo,I], cos(x)/x^2) - Pi/2
%2 = -2.18... E-106 \\@com OK
? intnum(x = 0, [oo, 1], sin(x)^3*exp(-x)) - 0.3
%3 = 5.45... E-107 \\@com OK
? intnum(x = 0, [oo,-I], sin(x)^3*exp(-x)) - 0.3
%4 = -1.33... E-89 \\@com lost 16 decimals. Try higher $m$:
? m = intnumstep()
%5 = 7 \\@com the value of $m$ actually used above.
? tab = intnuminit(0,[oo,-I], m+1); \\@com try $m$ one higher.
? intnum(x = 0, oo, sin(x)^3*exp(-x), tab) - 0.3
%6 = 5.45... E-107 \\@com OK this time.
@eprog
\misctitle{Warning} Like \tet{sumalt}, \kbd{intnum} often assigns a
reasonable value to diverging integrals. Use these values at your own risk!
For example:
\bprog
? intnum(x = 0, [oo, -I], x^2*sin(x))
%1 = -2.0000000000...
@eprog\noindent
Note the formula
$$ \int_0^\infty \sin(x)/x^s\,dx = \cos(\pi s/2) \Gamma(1-s)\;, $$
a priori valid only for $0 < \Re(s) < 2$, but the right hand side provides an
analytic continuation which may be evaluated at $s = -2$\dots
\misctitle{Multivariate integration}
Using successive univariate integration with respect to different formal
parameters, it is immediate to do naive multivariate integration. But it is
important to use a suitable \kbd{intnuminit} to precompute data for the
\emph{internal} integrations at least!
For example, to compute the double integral on the unit disc $x^2+y^2\le1$
of the function $x^2+y^2$, we can write
\bprog
? tab = intnuminit(-1,1);
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab), tab)
@eprog\noindent
The first \var{tab} is essential, the second optional. Compare:
\bprog
? tab = intnuminit(-1,1);
time = 30 ms.
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2));
time = 54,410 ms. \\@com slow
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab), tab);
time = 7,210 ms. \\@com faster
@eprog\noindent
However, the \kbd{intnuminit} program is usually pessimistic when it comes to
choosing the integration step $2^{-m}$. It is often possible to improve the
speed by trial and error. Continuing the above example:
\bprog
? test(M) =
{
tab = intnuminit(-1,1, M);
intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2,tab), tab) - Pi/2
}
? m = intnumstep() \\@com what value of $m$ did it take ?
%1 = 7
? test(m - 1)
time = 1,790 ms.
%2 = -2.05... E-104 \\@com $4 = 2^2$ times faster and still OK.
? test(m - 2)
time = 430 ms.
%3 = -1.11... E-104 \\@com $16 = 2^4$ times faster and still OK.
? test(m - 3)
time = 120 ms.
%3 = -7.23... E-60 \\@com $64 = 2^6$ times faster, lost $45$ decimals.
@eprog
\synt{intnum}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b,GEN tab, long prec},
where an omitted \var{tab} is coded as \kbd{NULL}.
Function: intnuminit
Class: basic
Section: sums
C-Name: intnuminit
Prototype: GGD0,L,p
Help: intnuminit(a,b,{m=0}): initialize tables for integrations from a to b.
See help for intnum for coding of a and b. Possible types: compact interval,
semi-compact (one extremity at + or - infinity) or R, and very slowly, slowly
or exponentially decreasing, or sine or cosine oscillating at infinities.
Doc: initialize tables for integration from
$a$ to $b$, where $a$ and $b$ are coded as in \kbd{intnum}. Only the
compactness, the possible existence of singularities, the speed of decrease
or the oscillations at infinity are taken into account, and not the values.
For instance {\tt intnuminit(-1,1)} is equivalent to {\tt intnuminit(0,Pi)},
and {\tt intnuminit([0,-1/2],[1])} is equivalent to {\tt
intnuminit([-1],[-1,-1/2])}. If $m$ is not given, it is computed according to
the current precision. Otherwise the integration step is $1/2^m$. Reasonable
values of $m$ are $m=6$ or $m=7$ for $100$ decimal digits, and $m=9$ for
$1000$ decimal digits.
The result is technical, but in some cases it is useful to know the output.
Let $x=\phi(t)$ be the change of variable which is used. \var{tab}[1] contains
the integer $m$ as above, either given by the user or computed from the default
precision, and can be recomputed directly using the function \kbd{intnumstep}.
\var{tab}[2] and \var{tab}[3] contain respectively the abscissa and weight
corresponding to $t=0$ ($\phi(0)$ and $\phi'(0)$). \var{tab}[4] and
\var{tab}[5] contain the abscissas and weights corresponding to positive
$t=nh$ for $1\le n\le N$ and $h=1/2^m$ ($\phi(nh)$ and $\phi'(nh)$). Finally
\var{tab}[6] and \var{tab}[7] contain either the abscissas and weights
corresponding to negative $t=nh$ for $-N\le n\le -1$, or may be empty (but
not always) if $\phi(t)$ is an odd function (implicitly we would have
$\var{tab}[6]=-\var{tab}[4]$ and $\var{tab}[7]=\var{tab}[5]$).
Function: intnuminitgen
Class: basic
Section: sums
C-Name: intnuminitgen0
Prototype: VGGED0,L,D0,L,p
Help: intnuminitgen(t,a,b,ph,{m=0},{flag=0}): initialize tables for
integrations from a to b using abscissas ph(t) and weights ph'(t). Note that
there is no equal sign after the variable name t since t always goes from
-infty to +infty, but it is ph(t) which goes from a to b, and this is not
checked. If flag = 1 or 2, multiply the reserved table length by 4^flag, to
avoid corresponding error.
Doc: initialize tables for integrations from $a$ to $b$ using abscissas
$ph(t)$ and weights $ph'(t)$. Note that there is no equal sign after the
variable name $t$ since $t$ always goes from $-\infty$ to $+infty$, but it
is $ph(t)$ which goes from $a$ to $b$, and this is not checked. If \fl = 1
or 2, multiply the reserved table length by $4^{\fl}$, to avoid corresponding
error.
\synt{intnuminitgen}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b, long m, long flag, long prec}
Function: intnumromb
Class: basic
Section: sums
C-Name: intnumromb0
Prototype: V=GGED0,L,p
Help: intnumromb(X=a,b,expr,{flag=0}): numerical integration of expr (smooth in
]a,b[) from a to b with respect to X. flag is optional and mean 0: default.
expr can be evaluated exactly on [a,b]; 1: general function; 2: a or b can be
plus or minus infinity (chosen suitably), but of same sign; 3: expr has only
limits at a or b.
Wrapper: (,,G)
Description:
(gen,gen,gen,?small):gen:prec intnumromb(${3 cookie}, ${3 wrapper}, $1, $2, $4, prec)
Doc: numerical integration of
\var{expr} (smooth in $]a,b[$), with respect to $X$. This function is
deprecated, use \tet{intnum} instead.
Set $\fl=0$ (or omit it altogether) when $a$ and $b$ are not too large, the
function is smooth, and can be evaluated exactly everywhere on the interval
$[a,b]$.
If $\fl=1$, uses a general driver routine for doing numerical integration,
making no particular assumption (slow).
$\fl=2$ is tailored for being used when $a$ or $b$ are infinite. One
\emph{must} have $ab>0$, and in fact if for example $b=+\infty$, then it is
preferable to have $a$ as large as possible, at least $a\ge1$.
If $\fl=3$, the function is allowed to be undefined (but continuous) at $a$
or $b$, for example the function $\sin(x)/x$ at $x=0$.
The user should not require too much accuracy: 18 or 28 decimal digits is OK,
but not much more. In addition, analytical cleanup of the integral must have
been done: there must be no singularities in the interval or at the
boundaries. In practice this can be accomplished with a simple change of
variable. Furthermore, for improper integrals, where one or both of the
limits of integration are plus or minus infinity, the function must decrease
sufficiently rapidly at infinity. This can often be accomplished through
integration by parts. Finally, the function to be integrated should not be
very small (compared to the current precision) on the entire interval. This
can of course be accomplished by just multiplying by an appropriate constant.
Note that \idx{infinity} can be represented with essentially no loss of
accuracy by 1e1000. However beware of real underflow when dealing with
rapidly decreasing functions. For example, if one wants to compute the
$\int_0^\infty e^{-x^2}\,dx$ to 28 decimal digits, then one should set
infinity equal to 10 for example, and certainly not to 1e1000.
\synt{intnumromb}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b, long flag, long prec},
where $\kbd{eval}(x, E)$ returns the value of the function at $x$.
You may store any additional information required by \kbd{eval} in $E$, or set
it to \kbd{NULL}.
Function: intnumstep
Class: basic
Section: sums
C-Name: intnumstep
Prototype: lp
Help: intnumstep(): gives the default value of m used by all intnum and sumnum
routines, such that the integration step is 1/2^m.
Doc: give the value of $m$ used in all the
\kbd{intnum} and \kbd{sumnum} programs, hence such that the integration
step is equal to $1/2^m$.
Function: isfundamental
Class: basic
Section: number_theoretical
C-Name: gisfundamental
Prototype: G
Help: isfundamental(x): true(1) if x is a fundamental discriminant
(including 1), false(0) if not.
Description:
(int):bool Z_isfundamental($1)
(gen):gen gisfundamental($1)
Doc: true (1) if $x$ is equal to 1 or to the discriminant of a quadratic
field, false (0) otherwise.
The function accepts vector/matrices arguments, and is then applied
componentwise.
Function: ispower
Class: basic
Section: number_theoretical
C-Name: ispower
Prototype: lGDGD&
Help: ispower(x,{k},{&n}): if k > 0 is given, return true (1) if x is a k-th
power, false (0) if not. If k is omitted, return the maximal k >= 2 such
that x = n^k is a perfect power, or 0 if no such k exist.
If n is present, and the function returns a non-zero result, set n to the
k-th root of x.
Description:
(int):small Z_isanypower($1, NULL)
(int, &int):small Z_isanypower($1, &$2)
Doc: if $k$ is given, returns true (1) if $x$ is a $k$-th power, false
(0) if not.
If $k$ is omitted, only integers and fractions are allowed for $x$ and the
function returns the maximal $k \geq 2$ such that $x = n^k$ is a perfect
power, or 0 if no such $k$ exist; in particular \kbd{ispower(-1)},
\kbd{ispower(0)}, and \kbd{ispower(1)} all return $0$.
If a third argument $\&n$ is given and $x$ is indeed a $k$-th power, sets
$n$ to a $k$-th root of $x$.
\noindent For a \typ{FFELT} \kbd{x}, instead of omitting \kbd{k} (which is
not allowed for this type), it may be natural to set
\bprog
k = (x.p ^ poldegree(x.pol) - 1) / fforder(x)
@eprog
Variant: Also available is
\fun{long}{gisanypower}{GEN x, GEN *pty} ($k$ omitted).
Function: isprime
Class: basic
Section: number_theoretical
C-Name: gisprime
Prototype: GD0,L,
Help: isprime(x,{flag=0}): true(1) if x is a (proven) prime number, false(0)
if not. If flag is 0 or omitted, use a combination of algorithms. If flag is
1, the primality is certified by the Pocklington-Lehmer Test. If flag is 2,
the primality is certified using the APRCL test.
Description:
(int, ?0):bool isprime($1)
(int, 1):bool plisprime($1, 0)
(int, 2):gen plisprime($1, 1)
(gen, ?small):gen gisprime($1, $2)
Doc: true (1) if $x$ is a prime
number, false (0) otherwise. A prime number is a positive integer having
exactly two distinct divisors among the natural numbers, namely 1 and
itself.
This routine proves or disproves rigorously that a number is prime, which can
be very slow when $x$ is indeed prime and has more than $1000$ digits, say.
Use \tet{ispseudoprime} to quickly check for compositeness. See also
\kbd{factor}. It accepts vector/matrices arguments, and is then applied
componentwise.
If $\fl=0$, use a combination of Baillie-PSW pseudo primality test (see
\tet{ispseudoprime}), Selfridge ``$p-1$'' test if $x-1$ is smooth enough, and
Adleman-Pomerance-Rumely-Cohen-Lenstra (APRCL) for general $x$.
If $\fl=1$, use Selfridge-Pocklington-Lehmer ``$p-1$'' test and output a
primality certificate as follows: return
\item 0 if $x$ is composite,
\item 1 if $x$ is small enough that passing Baillie-PSW test guarantees
its primality (currently $x < 2^{64}$, as checked by Jan Feitsma),
\item $2$ if $x$ is a large prime whose primality could only sensibly be
proven (given the algorithms implemented in PARI) using the APRCL test.
\item Otherwise ($x$ is large and $x-1$ is smooth) output a three column
matrix as a primality certificate. The first column contains prime
divisors $p$ of $x-1$ (such that $\prod p^{v_p(x-1)} > x^{1/3}$), the second
the corresponding elements $a_p$ as in Proposition~8.3.1 in GTM~138 , and the
third the output of isprime(p,1).
The algorithm fails if one of the pseudo-prime factors is not prime, which is
exceedingly unlikely and well worth a bug report. Note that if you monitor
\kbd{isprime} at a high enough debug level, you may see warnings about
untested integers being declared primes. This is normal: we ask for partial
factorisations (sufficient to prove primality if the unfactored part is not
too large), and \kbd{factor} warns us that the cofactor hasn't been tested.
It may or may not be tested later, and may or may not be prime. This does
not affect the validity of the whole \kbd{isprime} procedure.
If $\fl=2$, use APRCL.
Function: ispseudoprime
Class: basic
Section: number_theoretical
C-Name: gispseudoprime
Prototype: GD0,L,
Help: ispseudoprime(x,{flag}): true(1) if x is a strong pseudoprime, false(0)
if not. If flag is 0 or omitted, use BPSW test, otherwise use strong
Rabin-Miller test for flag randomly chosen bases.
Description:
(int,?0):bool BPSW_psp($1)
(int,#small):bool millerrabin($1,$2)
(int,small):bool ispseudoprime($1, $2)
(gen,?small):bool gispseudoprime($1, $2)
Doc: true (1) if $x$ is a strong pseudo
prime (see below), false (0) otherwise. If this function returns false, $x$
is not prime; if, on the other hand it returns true, it is only highly likely
that $x$ is a prime number. Use \tet{isprime} (which is of course much
slower) to prove that $x$ is indeed prime.
The function accepts vector/matrices arguments, and is then applied
componentwise.
If $\fl = 0$, checks whether $x$ is a Baillie-Pomerance-Selfridge-Wagstaff
pseudo prime (strong Rabin-Miller pseudo prime for base $2$, followed by
strong Lucas test for the sequence $(P,-1)$, $P$ smallest positive integer
such that $P^2 - 4$ is not a square mod $x$).
There are no known composite numbers passing this test, although it is
expected that infinitely many such numbers exist. In particular, all
composites $\leq 2^{64}$ are correctly detected (checked using
\kbd{http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html}).
If $\fl > 0$, checks whether $x$ is a strong Miller-Rabin pseudo prime for
$\fl$ randomly chosen bases (with end-matching to catch square roots of $-1$).
Function: issquare
Class: basic
Section: number_theoretical
C-Name: gissquareall
Prototype: GD&
Help: issquare(x,{&n}): true(1) if x is a square, false(0) if not. If n is
given puts the exact square root there if it was computed.
Description:
(int):bool Z_issquare($1)
(mp):int gissquare($1)
(gen):gen gissquare($1)
(int, &int):bool Z_issquarerem($1, &$2)
(gen, &gen):gen gissquareall($1, &$2)
Doc: true (1) if $x$ is a square, false (0)
if not. What ``being a square'' means depends on the type of $x$: all
\typ{COMPLEX} are squares, as well as all non-negative \typ{REAL}; for
exact types such as \typ{INT}, \typ{FRAC} and \typ{INTMOD}, squares are
numbers of the form $s^2$ with $s$ in $\Z$, $\Q$ and $\Z/N\Z$ respectively.
\bprog
? issquare(3) \\ as an integer
%1 = 0
? issquare(3.) \\ as a real number
%2 = 1
? issquare(Mod(7, 8)) \\ in Z/8Z
%3 = 0
? issquare( 5 + O(13^4) ) \\ in Q_13
%4 = 0
@eprog
If $n$ is given, a square root of $x$ is put into $n$.
\bprog
? issquare(4, &n)
%1 = 1
? n
%2 = 2
? issquare([4, x^2], &n)
%3 = [1, 1] \\ both are squares
? n
%4 = [2, x] \\ the square roots
@eprog
For polynomials, either we detect that the characteristic is 2 (and check
directly odd and even-power monomials) or we assume that $2$ is invertible
and check whether squaring the truncated power series for the square root
yields the original input.
The function accepts vector/matrices arguments, and is then applied
componentwise.
Variant: Also available is \fun{GEN}{gissquare}{GEN x}.
Function: issquarefree
Class: basic
Section: number_theoretical
C-Name: gissquarefree
Prototype: G
Help: issquarefree(x): true(1) if x is squarefree, false(0) if not.
Description:
(int):bool issquarefree($1)
(gen):gen gissquarefree($1)
Doc: true (1) if $x$ is squarefree, false (0) if not. Here $x$ can be an
integer or a polynomial.
The function accepts vector/matrices arguments, and is then applied
componentwise.
Variant: For scalar arguments $x$ (\typ{INT} or \typ{POL}), the function
\fun{long}{issquarefree}{GEN x} is easier to use.
Function: kill
Class: basic
Section: programming/specific
C-Name: kill0
Prototype: vr
Help: kill(sym): restores the symbol sym to its ``undefined'' status and kill
associated help messages.
Doc: restores the symbol \kbd{sym} to its ``undefined'' status, and deletes any
help messages associated to \kbd{sym} using \kbd{addhelp}. Variable names
remain known to the interpreter and keep their former priority: you cannot
make a variable ``less important" by killing it!
\bprog
? z = y = 1; y
%1 = 1
? kill(y)
? y \\ restored to ``undefined'' status
%2 = y
? variable()
%3 = [x, y, z] \\ but the variable name y is still known, with y > z !
@eprog\noindent
For the same reason, killing a user function (which is an ordinary
variable holding a \typ{CLOSURE}) does not remove its name from the list of
variable names.
If the symbol is associated to a variable --- user functions being an
important special case ---, one may use the \idx{quote} operator
\kbd{a = 'a} to reset variables to their starting values. However, this
will not delete a help message associated to \kbd{a}, and is also slightly
slower than \kbd{kill(a)}.
\bprog
? x = 1; addhelp(x, "foo"); x
%1 = 1
? x = 'x; x \\ same as 'kill', except we don't delete help.
%2 = x
? ?x
foo
@eprog\noindent
On the other hand, \kbd{kill} is the only way to remove aliases and installed
functions.
\bprog
? alias(fun, sin);
? kill(fun);
? install(addii, GG);
? kill(addii);
@eprog
Function: kronecker
Class: basic
Section: number_theoretical
C-Name: gkronecker
Prototype: GG
Help: kronecker(x,y): kronecker symbol (x/y).
Description:
(small, small):small kross($1, $2)
(int, small):small krois($1, $2)
(small, int):small krosi($1, $2)
(int, int):small kronecker($1, $2)
(gen, gen):gen gkronecker($1, $2)
Doc:
\idx{Kronecker symbol} $(x|y)$, where $x$ and $y$ must be of type integer. By
definition, this is the extension of \idx{Legendre symbol} to $\Z \times \Z$
by total multiplicativity in both arguments with the following special rules
for $y = 0, -1$ or $2$:
\item $(x|0) = 1$ if $|x| = 1$ and $0$ otherwise.
\item $(x|-1) = 1$ if $x \geq 0$ and $-1$ otherwise.
\item $(x|2) = 0$ if $x$ is even and $1$ if $x = 1,-1 \mod 8$ and $-1$
if $x=3,-3 \mod 8$.
Function: lcm
Class: basic
Section: number_theoretical
C-Name: glcm0
Prototype: GDG
Help: lcm(x,{y}): least common multiple of x and y, i.e. x*y / gcd(x,y).
Description:
(int, int):int lcmii($1, $2)
(gen):gen glcm0($1, NULL)
(gen, gen):gen glcm($1, $2)
Doc: least common multiple of $x$ and $y$, i.e.~such
that $\lcm(x,y)*\gcd(x,y) = \text{abs}(x*y)$. If $y$ is omitted and $x$
is a vector, returns the $\text{lcm}$ of all components of $x$.
When $x$ and $y$ are both given and one of them is a vector/matrix type,
the LCM is again taken recursively on each component, but in a different way.
If $y$ is a vector, resp.~matrix, then the result has the same type as $y$,
and components equal to \kbd{lcm(x, y[i])}, resp.~\kbd{lcm(x, y[,i])}. Else
if $x$ is a vector/matrix the result has the same type as $x$ and an
analogous definition. Note that for these types, \kbd{lcm} is not
commutative.
Note that \kbd{lcm(v)} is quite different from
\bprog
l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))
@eprog\noindent
Indeed, \kbd{lcm(v)} is a scalar, but \kbd{l} may not be (if one of
the \kbd{v[i]} is a vector/matrix). The computation uses a divide-conquer tree
and should be much more efficient, especially when using the GMP
multiprecision kernel (and more subquadratic algorithms become available):
\bprog
? v = vector(10^4, i, random);
? lcm(v);
time = 323 ms.
? l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))
time = 833 ms.
@eprog
Function: length
Class: basic
Section: conversions
C-Name: glength
Prototype: lG
Help: length(x): number of non code words in x, number of characters for a
string.
Description:
(vecsmall):lg lg($1)
(vec):lg lg($1)
(pol):small lgpol($1)
(gen):small glength($1)
Doc: length of $x$; \kbd{\#}$x$ is a shortcut for \kbd{length}$(x)$.
This is mostly useful for
\item vectors: dimension (0 for empty vectors),
\item lists: number of entries (0 for empty lists),
\item matrices: number of columns,
\item character strings: number of actual characters (without
trailing \kbd{\bs 0}, should you expect it from $C$ \kbd{char*}).
\bprog
? #"a string"
%1 = 8
? #[3,2,1]
%2 = 3
? #[]
%3 = 0
? #matrix(2,5)
%4 = 5
? L = List([1,2,3,4]); #L
%5 = 4
@eprog
The routine is in fact defined for arbitrary GP types, but is awkward and
useless in other cases: it returns the number of non-code words in $x$, e.g.
the effective length minus 2 for integers since the \typ{INT} type has two code
words.
Function: lex
Class: basic
Section: operators
C-Name: lexcmp
Prototype: iGG
Help: lex(x,y): compare x and y lexicographically (1 if x>y, 0 if x=y, -1 if
x<y)
Doc: gives the result of a lexicographic comparison
between $x$ and $y$ (as $-1$, $0$ or $1$). This is to be interpreted in quite
a wide sense: It is admissible to compare objects of different types
(scalars, vectors, matrices), provided the scalars can be compared, as well
as vectors/matrices of different lengths. The comparison is recursive.
In case all components are equal up to the smallest length of the operands,
the more complex is considered to be larger. More precisely, the longest is
the largest; when lengths are equal, we have matrix $>$ vector $>$ scalar.
For example:
\bprog
? lex([1,3], [1,2,5])
%1 = 1
? lex([1,3], [1,3,-1])
%2 = -1
? lex([1], [[1]])
%3 = -1
? lex([1], [1]~)
%4 = 0
@eprog
Function: lift
Class: basic
Section: conversions
C-Name: lift0
Prototype: GDn
Help: lift(x,{v}): lifts every element of Z/nZ to Z or T[x]/PT[x] to T[x]
for a type T if v is omitted, otherwise lift only polmods with main
variable v. If v does not occur in x, lift only intmods.
Description:
(pol):pol lift($1)
(vec):vec lift($1)
(gen):gen lift($1)
(pol, var):pol lift0($1, $2)
(vec, var):vec lift0($1, $2)
(gen, var):gen lift0($1, $2)
Doc: lifts an element $x=a \bmod n$ of $\Z/n\Z$ to
$a$ in $\Z$, and similarly lifts a polmod to a polynomial if $v$ is omitted.
Otherwise, lifts only polmods whose modulus has main variable $v$ (if $v$
does not occur in $x$, lifts only intmods). If $x$ is of recursive (non
modular) type, the lift is done coefficientwise. For $p$-adics, this routine
acts as \tet{truncate}. It is not allowed to have $x$ of type \typ{REAL}.
\bprog
? lift(Mod(5,3))
%1 = 2
? lift(3 + O(3^9))
%2 = 3
? lift(Mod(x,x^2+1))
%3 = x
? lift(x * Mod(1,3) + Mod(2,3))
%4 = x + 2
? lift(x * Mod(y,y^2+1) + Mod(2,3))
%5 = y*x + Mod(2, 3) \\@com do you understand this one ?
? lift(x * Mod(y,y^2+1) + Mod(2,3), x)
%6 = Mod(y, y^2+1) * x + Mod(2, y^2+1)
@eprog
Variant: Also available is \fun{GEN}{lift}{GEN x} corresponding to
\kbd{lift0(x,-1)}.
Function: lindep
Class: basic
Section: linear_algebra
C-Name: lindep0
Prototype: GD0,L,
Help: lindep(x,{flag=0}): Z-linear dependencies between components of x.
flag is optional, and can be 0: default, uses a standard LLL; -1: uses
Hastad et al; -2: returns a non-trivial kernel vector (not integral in
general); -3: uses PSLQ; or positive, using LLL with 'flag' many digits of
accuracy, which should be less than the input accuracy.
Doc: \sidx{linear dependence}$x$ being a
vector with $p$-adic or real/complex coefficients, finds a small integral
linear combination among these coefficients.
If $x$ is $p$-adic, $\fl$ is meaningless and the algorithm LLL-reduces a
suitable (dual) lattice.
Otherwise, the value of $\fl$ determines the algorithm used; in the current
version of PARI, we suggest to use \emph{non-negative} values, since it is by
far the fastest and most robust implementation. See the detailed example in
\secref{se:algdep} (\kbd{algdep}).
If $\fl\geq 0$, uses a floating point (variable precision) LLL algorithm.
This is in general much faster than the other variants.
If $\fl = 0$ the accuracy is chosen internally using a crude heuristic.
If $\fl > 0$ the computation is done with an accuracy of $\fl$ decimal digits.
To get meaningful results in the latter case, the parameter $\fl$ should be
smaller than the number of correct decimal digits in the input.
If $\fl=-1$, uses a variant of the \idx{LLL} algorithm due to Hastad,
Lagarias and Schnorr (STACS 1986). If the precision is too low, the routine
may enter an infinite loop. Faster than the alternatives if it converges,
especially when the accuracy is much larger than what is really necessary;
usually diverges, though.
If $\fl=-2$, $x$ is allowed to be (and in any case interpreted as) a matrix.
Returns a non trivial element of the kernel of $x$, or $0$ if $x$ has trivial
kernel. The element is defined over the field of coefficients of $x$, and is
in general not integral.
If $\fl=-3$, uses the PSLQ algorithm. This may return a real number $B$,
indicating that the input accuracy was exhausted and that no relation exist
whose sup norm is less than $B$.
If $\fl=-4$, uses an experimental 2-level PSLQ, which does not work at all.
Don't use it!
Variant: Also available are \fun{GEN}{lindep}{GEN x} ($\fl=0$)
\fun{GEN}{lindep2}{GEN x, long bit} ($\fl\geq 0$, bypasses the check for
$p$-adic inputs) and \fun{GEN}{deplin}{GEN x} ($\fl=-2$).
Function: listcreate
Class: basic
Section: linear_algebra
C-Name: listcreate
Prototype: D0,L,
Help: listcreate(): creates an empty list.
Description:
(?gen):list listcreate()
Doc: creates an empty list. This routine used to have a mandatory argument,
which is now ignored (for backward compatibility). In fact, this function
has become redundant and obsolete; it will disappear in future versions of
PARI: just use \kbd{List()}
% \syn{NO}
Function: listinsert
Class: basic
Section: linear_algebra
C-Name: listinsert
Prototype: WGL
Help: listinsert(L,x,n): insert x at index n in list L, shifting the
remaining elements to the right.
Description:
(list, gen, small):gen listinsert($1, $2, $3)
Doc: inserts the object $x$ at
position $n$ in $L$ (which must be of type \typ{LIST}). This has
complexity $O(\#L - n + 1)$: all the
remaining elements of \var{list} (from position $n+1$ onwards) are shifted
to the right.
Function: listkill
Class: basic
Section: linear_algebra
C-Name: listkill
Prototype: vG
Help: listkill(L): obsolete, retained for backward compatibility.
Doc: obsolete, retained for backward compatibility. Just use \kbd{L = List()}
instead of \kbd{listkill(L)}. In most cases, you won't even need that, e.g.
local variables are automatically cleared when a user function returns.
Function: listpop
Class: basic
Section: linear_algebra
C-Name: listpop
Prototype: vWD0,L,
Help: listpop(list,{n}): removes n-th element from list. If n is
omitted or greater than the current list length, removes last element.
Description:
(list, small):void listpop($1, $2)
Doc:
removes the $n$-th element of the list
\var{list} (which must be of type \typ{LIST}). If $n$ is omitted,
or greater than the list current length, removes the last element.
This runs in time $O(\#L - n + 1)$.
Function: listput
Class: basic
Section: linear_algebra
C-Name: listput
Prototype: WGD0,L,
Help: listput(list,x,{n}): sets n-th element of list equal to x. If n is
omitted or greater than the current list length, appends x.
Description:
(list, gen, small):gen listput($1, $2, $3)
Doc:
sets the $n$-th element of the list
\var{list} (which must be of type \typ{LIST}) equal to $x$. If $n$ is omitted,
or greater than the list length, appends $x$.
You may put an element into an occupied cell (not changing the
list length), but it is easier to use the standard \kbd{list[n] = x}
construct. This runs in time $O(\#L)$ in the worst case (when the list must
be reallocated), but in time $O(1)$ on average: any number of successive
\kbd{listput}s run in time $O(\#L)$, where $\#L$ denotes the list
\emph{final} length.
Function: listsort
Class: basic
Section: linear_algebra
C-Name: listsort
Prototype: vWD0,L,
Help: listsort(L,{flag=0}): sort the list L in place. If flag is non-zero,
suppress all but one occurence of each element in list.
Doc: sorts the \typ{LIST} \var{list} in place. If $\fl$ is non-zero,
suppresses all repeated coefficients. This is faster than the \kbd{vecsort}
command since no copy has to be made. No value returned.
Function: lngamma
Class: basic
Section: transcendental
C-Name: glngamma
Prototype: Gp
Help: lngamma(x): logarithm of the gamma function of x.
Doc: principal branch of the logarithm of the gamma
function of $x$. This function is analytic on the complex plane with
non-positive integers removed. Can have much larger arguments than \kbd{gamma}
itself. The $p$-adic \kbd{lngamma} function is not implemented.
Function: local
Class: basic
Section: programming/specific
Help: local(x,...,z): declare x,...,z as (dynamically scoped) local variables.
Function: log
Class: basic
Section: transcendental
C-Name: glog
Prototype: Gp
Help: log(x): natural logarithm of x.
Description:
(gen):gen:prec glog($1, prec)
Doc: principal branch of the natural logarithm of
$x \in \C^*$, i.e.~such that $\text{Im(log}(x))\in{} ]-\pi,\pi]$.
The branch cut lies
along the negative real axis, continuous with quadrant 2, i.e.~such that
$\lim_{b\to 0^+} \log (a+bi) = \log a$ for $a \in\R^*$. The result is complex
(with imaginary part equal to $\pi$) if $x\in \R$ and $x < 0$. In general,
the algorithm uses the formula
$$\log(x) \approx {\pi\over 2\text{agm}(1, 4/s)} - m \log 2, $$
if $s = x 2^m$ is large enough. (The result is exact to $B$ bits provided
$s > 2^{B/2}$.) At low accuracies, the series expansion near $1$ is used.
$p$-adic arguments are also accepted for $x$, with the convention that
$\log(p)=0$. Hence in particular $\exp(\log(x))/x$ is not in general equal to
1 but to a $(p-1)$-th root of unity (or $\pm1$ if $p=2$) times a power of $p$.
Variant: For a \typ{PADIC} $x$, the function
\fun{GEN}{Qp_log}{GEN x} is also available.
Function: matadjoint
Class: basic
Section: linear_algebra
C-Name: matadjoint0
Prototype: GD0,L,
Help: matadjoint(x,{flag=0}): adjoint matrix of x. If flag is 0 or omitted,
n! must be invertible, where n is the dimension of the matrix. If flag is 1,
uses a slower division-free algorithm.
Doc:
\idx{adjoint matrix} of $x$, i.e.~the matrix $y$
of cofactors of $x$, satisfying $x*y=\det(x)*\Id$. $x$ must be a
(non-necessarily invertible) square matrix of dimension $n$.
If $\fl$ is 0 or omitted, use a fast algorithm which assumes that $n!$ is
invertible. If $\fl$ is 1, use a slower division-free algorithm.
\bprog
? a = [1,2,3;3,4,5;6,7,8] * Mod(1,2);
? matadjoint(a)
*** at top-level: matadjoint([1,2,3;3,
*** ^--------------------
*** matadjoint: impossible inverse modulo: Mod(0, 2).
? matadjoint(a, 1) \\ use safe algorithm
%2 =
[Mod(1, 2) Mod(1, 2) Mod(0, 2)]
[Mod(0, 2) Mod(0, 2) Mod(0, 2)]
[Mod(1, 2) Mod(1, 2) Mod(0, 2)]
@eprog\noindent
Both algorithms use $O(n^4)$ operations in the base ring.
Variant: Also available are
\fun{GEN}{adj}{GEN x} (\fl=0) and
\fun{GEN}{adjsafe}{GEN x} (\fl=1).
Function: matalgtobasis
Class: basic
Section: number_fields
C-Name: matalgtobasis
Prototype: GG
Help: matalgtobasis(nf,x): nfalgtobasis applied to every element of the
vector or matrix x.
Doc: $\var{nf}$ being a number field in \kbd{nfinit} format, and $x$ a
(row or column) vector or matrix, apply \tet{nfalgtobasis} to each entry
of $x$.
Function: matbasistoalg
Class: basic
Section: number_fields
C-Name: matbasistoalg
Prototype: GG
Help: matbasistoalg(nf,x): nfbasistoalg applied to every element of the
matrix or vector x.
Doc: $\var{nf}$ being a number field in \kbd{nfinit} format, and $x$ a
(row or column) vector or matrix, apply \tet{nfbasistoalg} to each entry
of $x$.
Function: matcompanion
Class: basic
Section: linear_algebra
C-Name: matcompanion
Prototype: G
Help: matcompanion(x): companion matrix to polynomial x.
Doc:
the left companion matrix to the polynomial $x$.
Function: matdet
Class: basic
Section: linear_algebra
C-Name: det0
Prototype: GD0,L,
Help: matdet(x,{flag=0}): determinant of the matrix x using Gauss-Bareiss.
If (optional) flag is set to 1, use classical Gaussian elimination (slightly
better for integer entries).
Description:
(gen, ?0):gen det($1)
(gen, 1):gen det2($1)
(gen, #small):gen $"incorrect flag in matdet"
(gen, small):gen det0($1, $2)
Doc: determinant of $x$. $x$ must be a square matrix.
If $\fl=0$, uses Gauss-Bareiss.
If $\fl=1$, uses classical Gaussian elimination, which is better when the
entries of the matrix are reals or integers for example, but usually much
worse for more complicated entries like multivariate polynomials.
Variant: Also available are \fun{GEN}{det}{GEN x} ($\fl=0$) and
\fun{GEN}{det2}{GEN x} ($\fl=1$).
Function: matdetint
Class: basic
Section: linear_algebra
C-Name: detint
Prototype: G
Help: matdetint(x): some multiple of the determinant of the lattice
generated by the columns of x (0 if not of maximal rank). Useful with
mathnfmod.
Doc:
$x$ being an $m\times n$ matrix with integer
coefficients, this function computes a non-zero \emph{multiple} of the
determinant of
the lattice generated by the columns of $x$ if it has maximal rank $m$, and
returns zero otherwise, using the Gauss-Bareiss algorithm. When $x$ is square,
the exact determinant is obtained.
This function is useful in conjunction with \kbd{mathnfmod}, which needs to
know such a multiple. If the rank is maximal and the matrix non-square,
you can obtain the exact determinant using
\bprog
matdet( mathnfmod(x, matdetint(x)) )
@eprog\noindent
Note that as soon as one of the dimensions gets large ($m$ or $n$ is larger
than 20, say), it will often be much faster to use \kbd{mathnf(x, 1)} or
\kbd{mathnf(x, 4)} directly.
Function: matdiagonal
Class: basic
Section: linear_algebra
C-Name: diagonal
Prototype: G
Help: matdiagonal(x): creates the diagonal matrix whose diagonal entries are
the entries of the vector x.
Doc: $x$ being a vector, creates the diagonal matrix
whose diagonal entries are those of $x$.
Function: mateigen
Class: basic
Section: linear_algebra
C-Name: eigen
Prototype: Gp
Help: mateigen(x): eigenvectors of the matrix x given as columns of a matrix.
Doc: gives the eigenvectors of $x$ as columns of a matrix.
Function: matfrobenius
Class: basic
Section: linear_algebra
C-Name: matfrobenius
Prototype: GD0,L,Dn
Help: matfrobenius(M,{flag},{v=x}): Return the Frobenius form of the square
matrix M. If flag is 1, return only the elementary divisors as a vector of
polynomials in the variable v. If flag is 2, return a two-components vector
[F,B] where F is the Frobenius form and B is the basis change so that
M=B^-1*F*B.
Doc: returns the Frobenius form of
the square matrix \kbd{M}. If $\fl=1$, returns only the elementary divisors as
a vector of polynomials in the variable \kbd{v}. If $\fl=2$, returns a
two-components vector [F,B] where \kbd{F} is the Frobenius form and \kbd{B} is
the basis change so that $M=B^{-1}FB$.
Function: mathess
Class: basic
Section: linear_algebra
C-Name: hess
Prototype: G
Help: mathess(x): Hessenberg form of x.
Doc: returns a matrix similar to the square matrix $x$, which is in upper Hessenberg
form (zero entries below the first subdiagonal).
Function: mathilbert
Class: basic
Section: linear_algebra
C-Name: mathilbert
Prototype: L
Help: mathilbert(n): Hilbert matrix of order n.
Doc: $x$ being a \kbd{long}, creates the
\idx{Hilbert matrix}of order $x$, i.e.~the matrix whose coefficient
($i$,$j$) is $1/ (i+j-1)$.
Function: mathnf
Class: basic
Section: linear_algebra
C-Name: mathnf0
Prototype: GD0,L,
Help: mathnf(x,{flag=0}): (upper triangular) Hermite normal form of x, basis
for the lattice formed by the columns of x. flag is optional whose value
range from 0 to 4 (0 if omitted), meaning : 0: naive algorithm. 1: as 0, but
output 2-component vector [H,U] such that H is the HNF of
x, and U is a unimodular matrix such that XU=H. 3: Batut's algorithm:
output [H,U,P] where P is a permutation matrix such that P x U = H. 4:
as 1, using a heuristic variant of LLL reduction along the way.
Doc: if $x$ is a (not necessarily square)
matrix with integer entries, finds the \emph{upper triangular}
\idx{Hermite normal form} of $x$. If the rank of $x$ is equal to its number
of rows, the result is a square matrix. In general, the columns of the result
form a basis of the lattice spanned by the columns of $x$.
If $\fl=0$, uses the naive algorithm. This is in general fastest but may
require too much memory as the dimension gets large (bigger than 100, say),
in which case you may try \kbd{mathnfmod(x, matdetint(x))} when $x$ has
maximal rank, and \kbd{mathnf(x, 4)} otherwise.
If $\fl=1$, outputs a two-component row vector $[H,U]$, where $H$ is the
Hermite normal form of $x$ defined as above, and $U$ is the
unimodular transformation matrix such that $xU=[0|H]$. When the kernel is
large, $U$ has in general huge coefficients. In the worst case, the
running time is exponential with respect to the dimension, but the
routine behaves well in small dimension (less than 50 or 100, say).
If $\fl=3$, uses Batut's algorithm and output $[H,U,P]$, such that $H$ and
$U$ are as before and $P$ is a permutation of the rows such that $P$ applied
to $xU$ gives $H$. This is in general slower than $\fl=1$ but the matrix $U$
is smaller; it may still be large.
If $\fl=4$, as in case 1 above, but uses a variant of \idx{LLL}
reduction along the way. The matrix $U$ is in general close to optimal (in
terms of smallest $L_2$ norm), but the reduction is in general slow,
although provably polynomial-time.
Variant: Also available are \fun{GEN}{hnf}{GEN x} ($\fl=0$) and
\fun{GEN}{hnfall}{GEN x} ($\fl=1$). To reduce \emph{huge} (say $400 \times
400$ and more) relation matrices (sparse with small entries), you can use
the pair \kbd{hnfspec} / \kbd{hnfadd}. Since this is quite technical and
the calling interface may change, they are not documented yet. Look at the
code in \kbd{basemath/alglin1.c}.
Function: mathnfmod
Class: basic
Section: linear_algebra
C-Name: hnfmod
Prototype: GG
Help: mathnfmod(x,d): (upper triangular) Hermite normal form of x, basis for
the lattice formed by the columns of x, where d is a multiple of the
non-zero determinant of this lattice.
Doc: if $x$ is a (not necessarily square) matrix of
maximal rank with integer entries, and $d$ is a multiple of the (non-zero)
determinant of the lattice spanned by the columns of $x$, finds the
\emph{upper triangular} \idx{Hermite normal form} of $x$.
If the rank of $x$ is equal to its number of rows, the result is a square
matrix. In general, the columns of the result form a basis of the lattice
spanned by the columns of $x$. Even when $d$ is known, this is in general
slower than \kbd{mathnf} but uses much less memory.
Function: mathnfmodid
Class: basic
Section: linear_algebra
C-Name: hnfmodid
Prototype: GG
Help: mathnfmodid(x,d): (upper triangular) Hermite normal form of x
concatenated with d times the identity matrix.
Doc: outputs the (upper triangular)
\idx{Hermite normal form} of $x$ concatenated with $d$ times
the identity matrix. Assumes that $x$ has integer entries.
Function: matid
Class: basic
Section: linear_algebra
C-Name: matid
Prototype: L
Help: matid(n): identity matrix of order n.
Description:
(small):vec matid($1)
Doc: creates the $n\times n$ identity matrix.
Function: matimage
Class: basic
Section: linear_algebra
C-Name: matimage0
Prototype: GD0,L,
Help: matimage(x,{flag=0}): basis of the image of the matrix x. flag is
optional and can be set to 0 or 1, corresponding to two different algorithms.
Doc: gives a basis for the image of the
matrix $x$ as columns of a matrix. A priori the matrix can have entries of
any type. If $\fl=0$, use standard Gauss pivot. If $\fl=1$, use
\kbd{matsupplement} (much slower: keep the default flag!).
Variant: Also available is \fun{GEN}{image}{GEN x} ($\fl=0$).
Function: matimagecompl
Class: basic
Section: linear_algebra
C-Name: imagecompl
Prototype: G
Help: matimagecompl(x): vector of column indices not corresponding to the
indices given by the function matimage.
Doc: gives the vector of the column indices which
are not extracted by the function \kbd{matimage}. Hence the number of
components of \kbd{matimagecompl(x)} plus the number of columns of
\kbd{matimage(x)} is equal to the number of columns of the matrix $x$.
Function: matindexrank
Class: basic
Section: linear_algebra
C-Name: indexrank
Prototype: G
Help: matindexrank(x): gives two extraction vectors (rows and columns) for
the matrix x such that the extracted matrix is square of maximal rank.
Doc: $x$ being a matrix of rank $r$, returns a vector with two
\typ{VECSMALL} components $y$ and $z$ of length $r$ giving a list of rows
and columns respectively (starting from 1) such that the extracted matrix
obtained from these two vectors using $\tet{vecextract}(x,y,z)$ is
invertible.
Function: matintersect
Class: basic
Section: linear_algebra
C-Name: intersect
Prototype: GG
Help: matintersect(x,y): intersection of the vector spaces whose bases are
the columns of x and y.
Doc: $x$ and $y$ being two matrices with the same
number of rows each of whose columns are independent, finds a basis of the
$\Q$-vector space equal to the intersection of the spaces spanned by the
columns of $x$ and $y$ respectively. The faster function
\tet{idealintersect} can be used to intersect fractional ideals (projective
$\Z_K$ modules of rank $1$); the slower but much more general function
\tet{nfhnf} can be used to intersect general $\Z_K$-modules.
Function: matinverseimage
Class: basic
Section: linear_algebra
C-Name: inverseimage
Prototype: GG
Help: matinverseimage(x,y): an element of the inverse image of the vector y
by the matrix x if one exists, the empty vector otherwise.
Doc: given a matrix $x$ and
a column vector or matrix $y$, returns a preimage $z$ of $y$ by $x$ if one
exists (i.e such that $x z = y$), an empty vector or matrix otherwise. The
complete inverse image is $z + \text{Ker} x$, where a basis of the kernel of
$x$ may be obtained by \kbd{matker}.
\bprog
? M = [1,2;2,4];
? matinverseimage(M, [1,2]~)
%2 = [1, 0]~
? matinverseimage(M, [3,4]~)
%3 = []~ \\@com no solution
? matinverseimage(M, [1,3,6;2,6,12])
%4 =
[1 3 6]
[0 0 0]
? matinverseimage(M, [1,2;3,4])
%5 = [;] \\@com no solution
? K = matker(M)
%6 =
[-2]
[1]
@eprog
Function: matisdiagonal
Class: basic
Section: linear_algebra
C-Name: isdiagonal
Prototype: iG
Help: matisdiagonal(x): true(1) if x is a diagonal matrix, false(0)
otherwise.
Doc: returns true (1) if $x$ is a diagonal matrix, false (0) if not.
Function: matker
Class: basic
Section: linear_algebra
C-Name: matker0
Prototype: GD0,L,
Help: matker(x,{flag=0}): basis of the kernel of the matrix x. flag is
optional, and may be set to 0: default; non-zero: x is known to have
integral entries.
Doc: gives a basis for the kernel of the matrix $x$ as columns of a matrix.
The matrix can have entries of any type, provided they are compatible with
the generic arithmetic operations ($+$, $\times$ and $/$).
If $x$ is known to have integral entries, set $\fl=1$.
Variant: Also available are \fun{GEN}{ker}{GEN x} ($\fl=0$),
\fun{GEN}{keri}{GEN x} ($\fl=1$).
Function: matkerint
Class: basic
Section: linear_algebra
C-Name: matkerint0
Prototype: GD0,L,
Help: matkerint(x,{flag=0}): LLL-reduced Z-basis of the kernel of the matrix
x with integral entries. flag is optional, and may be set to 0: default,
uses LLL, 1: uses matrixqz (much slower).
Doc: gives an \idx{LLL}-reduced $\Z$-basis
for the lattice equal to the kernel of the matrix $x$ as columns of the
matrix $x$ with integer entries (rational entries are not permitted).
If $\fl=0$, uses an integer LLL algorithm.
If $\fl=1$, uses $\kbd{matrixqz}(x,-2)$. Many orders of magnitude slower
than the default: never use this.
Variant: See also \fun{GEN}{kerint}{GEN x} ($\fl=0$), which is a trivial
wrapper around
\bprog
ZM_lll(ZM_lll(x, 0.99, LLL_KER), 0.99, LLL_INPLACE);
@eprog\noindent Remove the outermost \kbd{ZM\_lll} if LLL-reduction is not
desired (saves time).
Function: matmuldiagonal
Class: basic
Section: linear_algebra
C-Name: matmuldiagonal
Prototype: GG
Help: matmuldiagonal(x,d): product of matrix x by diagonal matrix whose
diagonal coefficients are those of the vector d, equivalent but faster than
x*matdiagonal(d).
Doc: product of the matrix $x$ by the diagonal
matrix whose diagonal entries are those of the vector $d$. Equivalent to,
but much faster than $x*\kbd{matdiagonal}(d)$.
Function: matmultodiagonal
Class: basic
Section: linear_algebra
C-Name: matmultodiagonal
Prototype: GG
Help: matmultodiagonal(x,y): product of matrices x and y, knowing that the
result will be a diagonal matrix. Much faster than general multiplication in
that case.
Doc: product of the matrices $x$ and $y$ assuming that the result is a
diagonal matrix. Much faster than $x*y$ in that case. The result is
undefined if $x*y$ is not diagonal.
Function: matpascal
Class: basic
Section: linear_algebra
C-Name: matqpascal
Prototype: LDG
Help: matpascal(n,{q}): Pascal triangle of order n if q is omited. q-Pascal
triangle otherwise.
Doc: creates as a matrix the lower triangular
\idx{Pascal triangle} of order $x+1$ (i.e.~with binomial coefficients
up to $x$). If $q$ is given, compute the $q$-Pascal triangle (i.e.~using
$q$-binomial coefficients).
Variant: Also available is \fun{GEN}{matpascal}{GEN x}.
Function: matrank
Class: basic
Section: linear_algebra
C-Name: rank
Prototype: lG
Help: matrank(x): rank of the matrix x.
Doc: rank of the matrix $x$.
Function: matrix
Class: basic
Section: linear_algebra
C-Name: matrice
Prototype: GGDVDVDE
Help: matrix(m,n,{X},{Y},{expr=0}): mXn matrix of expression expr, the row
variable X going from 1 to m and the column variable Y going from 1 to n. By
default, fill with 0s.
Doc: creation of the
$m\times n$ matrix whose coefficients are given by the expression
\var{expr}. There are two formal parameters in \var{expr}, the first one
($X$) corresponding to the rows, the second ($Y$) to the columns, and $X$
goes from 1 to $m$, $Y$ goes from 1 to $n$. If one of the last 3 parameters
is omitted, fill the matrix with zeroes.
%\syn{NO}
Function: matrixqz
Class: basic
Section: linear_algebra
C-Name: matrixqz0
Prototype: GDG
Help: matrixqz(A,{p=0}): if p>=0, transforms the rational or integral mxn (m>=n)
matrix A into an integral matrix with gcd of maximal determinants coprime to
p. If p=-1, finds a basis of the intersection with Z^n of the lattice spanned
by the columns of A. If p=-2, finds a basis of the intersection with Z^n of
the Q-vector space spanned by the columns of A.
Doc: $A$ being an $m\times n$ matrix in $M_{m,n}(\Q)$, let
$\text{Im}_\Q A$ (resp.~$\text{Im}_\Z A$) the $\Q$-vector space
(resp.~the $\Z$-module) spanned by the columns of $A$. This function has
varying behavior depending on the sign of $p$:
If $p \geq 0$, $A$ is assumed to have maximal rank $n\leq m$. The function
returns a matrix $B\in M_{m,n}(\Z)$, with $\text{Im}_\Q B = \text{Im}_\Q A$,
such that the GCD of all its $n\times n$ minors is coprime to
$p$; in particular, if $p = 0$ (default), this GCD is $1$.
\bprog
? minors(x) = vector(#x[,1], i, matdet( vecextract(x, Str("^",i), "..") ));
? A = [3,1/7; 5,3/7; 7,5/7]; minors(A)
%1 = [4/7, 8/7, 4/7] \\ determinants of all 2x2 minors
? B = matrixqz(A)
%2 =
[3 1]
[5 2]
[7 3]
? minors(%)
%3 = [1, 2, 1] \\ B integral with coprime minors
@eprog
If $p=-1$, returns the HNF basis of the lattice $\Z^n \cap \text{Im}_\Z A$.
If $p=-2$, returns the HNF basis of the lattice $\Z^n \cap \text{Im}_\Q A$.
\bprog
? matrixqz(A,-1)
%4 =
[8 5]
[4 3]
[0 1]
? matrixqz(A,-2)
%5 =
[2 -1]
[1 0]
[0 1]
@eprog
Function: matsize
Class: basic
Section: linear_algebra
C-Name: matsize
Prototype: G
Help: matsize(x): number of rows and columns of the vector/matrix x as a
2-vector.
Doc: $x$ being a vector or matrix, returns a row vector
with two components, the first being the number of rows (1 for a row vector),
the second the number of columns (1 for a column vector).
Function: matsnf
Class: basic
Section: linear_algebra
C-Name: matsnf0
Prototype: GD0,L,
Help: matsnf(X,{flag=0}): Smith normal form (i.e. elementary divisors) of
the matrix X, expressed as a vector d. Binary digits of flag mean 1: returns
[u,v,d] where d=u*X*v, otherwise only the diagonal d is returned, 2: allow
polynomial entries, otherwise assume X is integral, 4: removes all
information corresponding to entries equal to 1 in d.
Doc: if $X$ is a (singular or non-singular) matrix outputs the vector of
\idx{elementary divisors} of $X$, i.e.~the diagonal of the
\idx{Smith normal form} of $X$, normalized so that $d_n \mid d_{n-1} \mid
\ldots \mid d_1$.
The binary digits of \fl\ mean:
1 (complete output): if set, outputs $[U,V,D]$, where $U$ and $V$ are two
unimodular matrices such that $UXV$ is the diagonal matrix $D$. Otherwise
output only the diagonal of $D$. If $X$ is not a square matrix, then $D$
will be a square diagonal matrix padded with zeros on the left or the top.
2 (generic input): if set, allows polynomial entries, in which case the
input matrix must be square. Otherwise, assume that $X$ has integer
coefficients with arbitrary shape.
4 (cleanup): if set, cleans up the output. This means that elementary
divisors equal to $1$ will be deleted, i.e.~outputs a shortened vector $D'$
instead of $D$. If complete output was required, returns $[U',V',D']$ so
that $U'XV' = D'$ holds. If this flag is set, $X$ is allowed to be of the
form `vector of elementary divisors' or $[U,V,D]$ as would normally be output with the cleanup flag
unset.
Function: matsolve
Class: basic
Section: linear_algebra
C-Name: gauss
Prototype: GG
Help: matsolve(M,B): Gaussian solution of MX=B (M matrix, B column vector).
Doc: $M$ being an invertible matrix and $B$ a column
vector, finds the solution $X$ of $MX=B$, using Gaussian elimination. This
has the same effect as, but is a bit faster, than $M^{-1}*B$.
Function: matsolvemod
Class: basic
Section: linear_algebra
C-Name: matsolvemod0
Prototype: GGGD0,L,
Help: matsolvemod(M,D,B,{flag=0}): one solution of system of congruences
MX=B mod D (M matrix, B and D column vectors). If (optional) flag is
non-null return all solutions.
Doc: $M$ being any integral matrix,
$D$ a column vector of non-negative integer moduli, and $B$ an integral
column vector, gives a small integer solution to the system of congruences
$\sum_i m_{i,j}x_j\equiv b_i\pmod{d_i}$ if one exists, otherwise returns
zero. Shorthand notation: $B$ (resp.~$D$) can be given as a single integer,
in which case all the $b_i$ (resp.~$d_i$) above are taken to be equal to $B$
(resp.~$D$).
\bprog
? M = [1,2;3,4];
? matsolvemod(M, [3,4]~, [1,2]~)
%2 = [-2, 0]~
? matsolvemod(M, 3, 1) \\ M X = [1,1]~ over F_3
%3 = [-1, 1]~
? matsolvemod(M, [3,0]~, [1,2]~) \\ x + 2y = 1 (mod 3), 3x + 4y = 2 (in Z)
%4 = [6, -4]~
@eprog
If $\fl=1$, all solutions are returned in the form of a two-component row
vector $[x,u]$, where $x$ is a small integer solution to the system of
congruences and $u$ is a matrix whose columns give a basis of the homogeneous
system (so that all solutions can be obtained by adding $x$ to any linear
combination of columns of $u$). If no solution exists, returns zero.
Variant: Also available are \fun{GEN}{gaussmodulo}{GEN M, GEN D, GEN B}
($\fl=0$) and \fun{GEN}{gaussmodulo2}{GEN M, GEN D, GEN B} ($\fl=1$).
Function: matsupplement
Class: basic
Section: linear_algebra
C-Name: suppl
Prototype: G
Help: matsupplement(x): supplement the columns of the matrix x to an
invertible matrix.
Doc: assuming that the columns of the matrix $x$
are linearly independent (if they are not, an error message is issued), finds
a square invertible matrix whose first columns are the columns of $x$,
i.e.~supplement the columns of $x$ to a basis of the whole space.
Function: mattranspose
Class: basic
Section: linear_algebra
C-Name: gtrans
Prototype: G
Help: mattranspose(x): x~ = transpose of x.
Doc: transpose of $x$ (also $x\til$).
This has an effect only on vectors and matrices.
Function: max
Class: basic
Section: operators
C-Name: gmax
Prototype: GG
Help: max(x,y): maximum of x and y
Description:
(small, small):small maxss($1, $2)
(small, int):int gmaxsg($1, $2)
(int, small):int gmaxgs($1, $2)
(int, int):int gmax($1, $2)
(small, mp):mp gmaxsg($1, $2)
(mp, small):mp gmaxgs($1, $2)
(mp, mp):mp gmax($1, $2)
(small, gen):gen gmaxsg($1, $2)
(gen, small):gen gmaxgs($1, $2)
(gen, gen):gen gmax($1, $2)
Doc: creates the maximum of $x$ and $y$ when they can be compared.
Function: min
Class: basic
Section: operators
C-Name: gmin
Prototype: GG
Help: min(x,y): minimum of x and y
Description:
(small, small):small minss($1, $2)
(small, int):int gminsg($1, $2)
(int, small):int gmings($1, $2)
(int, int):int gmin($1, $2)
(small, mp):mp gminsg($1, $2)
(mp, small):mp gmings($1, $2)
(mp, mp):mp gmin($1, $2)
(small, gen):gen gminsg($1, $2)
(gen, small):gen gmings($1, $2)
(gen, gen):gen gmin($1, $2)
Doc: creates the minimum of $x$ and $y$ when they can be compared.
Function: minpoly
Class: basic
Section: linear_algebra
C-Name: minpoly
Prototype: GDn
Help: minpoly(A,{v=x}): minimal polynomial of the matrix or polmod A.
Doc: \idx{minimal polynomial}
of $A$ with respect to the variable $v$., i.e. the monic polynomial $P$
of minimal degree (in the variable $v$) such that $P(A) = 0$.
Function: modreverse
Class: basic
Section: number_fields
C-Name: modreverse
Prototype: G
Help: modreverse(z): reverse polmod of the polmod z, if it exists.
Doc: let $z = \kbd{Mod(A, T)}$ be a polmod, and $Q$ be its minimal
polynomial, which must satisfy $\text{deg}(Q) = \text{deg}(T)$.
Returns a ``reverse polmod'' \kbd{Mod(B, Q)}, which is a root of $T$.
This is quite useful when one changes the generating element in algebraic
extensions:
\bprog
? u = Mod(x, x^3 - x -1); v = u^5;
? w = modreverse(v)
%2 = Mod(x^2 - 4*x + 1, x^3 - 5*x^2 + 4*x - 1)
@eprog\noindent
which means that $x^3 - 5x^2 + 4x -1$ is another defining polynomial for the
cubic field
$$\Q(u) = \Q[x]/(x^3 - x - 1) = \Q[x]/(x^3 - 5x^2 + 4x - 1) = \Q(v),$$
and that $u \to v^2 - 4v + 1$ gives an explicit isomorphism. From this, it is
easy to convert elements between the $A(u)\in \Q(u)$ and $B(v)\in \Q(v)$
representations:
\bprog
? A = u^2 + 2*u + 3; subst(lift(A), 'x, w)
%3 = Mod(x^2 - 3*x + 3, x^3 - 5*x^2 + 4*x - 1)
? B = v^2 + v + 1; subst(lift(B), 'x, v)
%4 = Mod(26*x^2 + 31*x + 26, x^3 - x - 1)
@eprog
If the minimal polynomial of $z$ has lower degree than expected, the routine
fails
\bprog
? u = Mod(-x^3 + 9*x, x^4 - 10*x^2 + 1)
? modreverse(u)
*** at top-level: modreverse(u)
*** ^-------------
*** modreverse: reverse polmod does not exist: Mod(-x^3+9*x, x^4-10*x^2+1).
? minpoly(u)
%6 = x^2 - 8
@eprog
Function: moebius
Class: basic
Section: number_theoretical
C-Name: gmoebius
Prototype: G
Help: moebius(x): Moebius function of x.
Description:
(int):small moebius($1)
(gen):gen gmoebius($1)
Doc: \idx{Moebius} $\mu$-function of $|x|$. $x$ must be of type integer.
The function accepts vector/matrices arguments, and is then applied
componentwise.
Variant: For a \typ{INT} $x$, the variant
\fun{long}{moebius}{GEN n} is generally easier to use.
Function: my
Class: basic
Section: programming/specific
Help: my(x,...,z): declare x,...,z as lexically-scoped local variables.
Function: newtonpoly
Class: basic
Section: number_fields
C-Name: newtonpoly
Prototype: GG
Help: newtonpoly(x,p): Newton polygon of polynomial x with respect to the
prime p.
Doc: gives the vector of the slopes of the Newton
polygon of the polynomial $x$ with respect to the prime number $p$. The $n$
components of the vector are in decreasing order, where $n$ is equal to the
degree of $x$. Vertical slopes occur iff the constant coefficient of $x$ is
zero and are denoted by \tet{LONG_MAX}, the biggest single precision
integer representable on the machine ($2^{31}-1$ (resp.~$2^{63}-1$) on 32-bit
(resp.~64-bit) machines), see \secref{se:valuation}.
Function: next
Class: basic
Section: programming/control
C-Name: next0
Prototype: D1,L,
Help: next({n=1}): interrupt execution of current instruction sequence, and
start another iteration from the n-th innermost enclosing loops.
Doc: interrupts execution of current $seq$,
resume the next iteration of the innermost enclosing loop, within the
current function call (or top level loop). If $n$ is specified, resume at
the $n$-th enclosing loop. If $n$ is bigger than the number of enclosing
loops, all enclosing loops are exited.
Function: nextprime
Class: basic
Section: number_theoretical
C-Name: gnextprime
Prototype: G
Help: nextprime(x): smallest pseudoprime >= x.
Description:
(int):int nextprime($1)
(gen):gen gnextprime($1)
Doc: finds the smallest pseudoprime (see
\tet{ispseudoprime}) greater than or equal to $x$. $x$ can be of any real
type. Note that if $x$ is a pseudoprime, this function returns $x$ and not
the smallest pseudoprime strictly larger than $x$. To rigorously prove that
the result is prime, use \kbd{isprime}.
The function accepts vector/matrices arguments, and is then applied
componentwise.
Variant: For a scalar $x$,
\fun{long}{nextprime}{GEN n} is also available.
Function: nfalgtobasis
Class: basic
Section: number_fields
C-Name: algtobasis
Prototype: GG
Help: nfalgtobasis(nf,x): transforms the algebraic number x into a column
vector on the integral basis nf.zk.
Doc: Given an algebraic number $x$ in the number field $\var{nf}$,
transforms it to a column vector on the integral basis \kbd{\var{nf}.zk}.
\bprog
? nf = nfinit(y^2 + 4);
? nf.zk
%2 = [1, 1/2*y]
? nfalgtobasis(nf, [1,1]~)
%3 = [1, 1]~
? nfalgtobasis(nf, y)
%4 = [0, 2]~
? nfalgtobasis(nf, Mod(y, y^2+4))
%4 = [0, 2]~
@eprog
This is the inverse function of \kbd{nfbasistoalg}.
Function: nfbasis
Class: basic
Section: number_fields
C-Name: nfbasis0
Prototype: GD0,L,DG
Help: nfbasis(x,{flag=0},{fa}): integral basis of the field Q[a], where a is
a root of the polynomial x, using the round 4 algorithm. Second and third
args are optional. Binary digits of flag mean 1: assume that no square of a
prime>primelimit divides the discriminant of x, 2: use round 2 algorithm
instead. If present, fa provides the matrix of a partial factorization of the
discriminant of x, useful if one wants only an order maximal at certain
primes only.
Doc: \idx{integral basis} of the number
field defined by the irreducible, preferably monic, polynomial $x$, using a
modified version of the \idx{round 4} algorithm by default, due to David
\idx{Ford}, Sebastian \idx{Pauli} and Xavier \idx{Roblot}. The binary digits
of $\fl$ have the following meaning:
1: assume that no square of a prime greater than the default \kbd{primelimit}
divides the discriminant of $x$, i.e.~that the index of $x$ has only small
prime divisors.
2: use \idx{round 2} algorithm. For small degrees and coefficient size, this
is sometimes a little faster. (This program is the translation into C of a
program written by David \idx{Ford} in Algeb.)
Thus for instance, if $\fl=3$, this uses the round 2 algorithm and outputs
an order which will be maximal at all the small primes.
If \var{fa} is present, we assume (without checking!) that it is the two-column
matrix of the factorization of the discriminant of the polynomial $x$. Note
that it does \emph{not} have to be a complete factorization. This is
especially useful if only a local integral basis for some small set of places
is desired: only factors with exponents greater or equal to 2 will be
considered.
Variant: An extended version is
\fun{GEN}{nfbasis}{GEN x, GEN *d, long flag, GEN fa = NULL}, where \kbd{*d}
receives the discriminant of the number field
(\emph{not} of the polynomial $x$).
Function: nfbasistoalg
Class: basic
Section: number_fields
C-Name: basistoalg
Prototype: GG
Help: nfbasistoalg(nf,x): transforms the column vector x on the integral
basis into an algebraic number.
Doc: Given an algebraic number $x$ in the number field \kbd{nf}, transforms it
into \typ{POLMOD} form.
\bprog
? nf = nfinit(y^2 + 4);
? nf.zk
%2 = [1, 1/2*y]
? nfbasistoalg(nf, [1,1]~)
%3 = Mod(1/2*y + 1, y^2 + 4)
? nfbasistoalg(nf, y)
%4 = Mod(y, y^2 + 4)
? nfbasistoalg(nf, Mod(y, y^2+4))
%4 = Mod(y, y^2 + 4)
@eprog
This is the inverse function of \kbd{nfalgtobasis}.
Function: nfdetint
Class: basic
Section: number_fields
C-Name: nfdetint
Prototype: GG
Help: nfdetint(nf,x): multiple of the ideal determinant of the pseudo
generating set x.
Doc: given a pseudo-matrix $x$, computes a
non-zero ideal contained in (i.e.~multiple of) the determinant of $x$. This
is particularly useful in conjunction with \kbd{nfhnfmod}.
Function: nfdisc
Class: basic
Section: number_fields
C-Name: nfdisc0
Prototype: GD0,L,DG
Help: nfdisc(x,{flag=0},{fa}): discriminant of the number field defined by
the polynomial x using round 4. Optional args flag and fa are as in nfbasis.
Doc: \idx{field discriminant} of the number field defined by the integral,
preferably monic, irreducible polynomial $x$. $\fl$ and $fa$ are exactly as
in \kbd{nfbasis}. That is, $fa$ provides the matrix of a partial
factorization of the discriminant of $x$, and binary digits of $\fl$ are as
follows:
1: assume that no square of a prime greater than \kbd{primelimit}
divides the discriminant.
2: use the round 2 algorithm, instead of the default \idx{round 4}. This
should be slower except maybe for polynomials of small degree and
coefficients.
Variant: Also available is \fun{GEN}{nfdisc}{GEN x} ($\fl=0$).
Function: nfeltadd
Class: basic
Section: number_fields
C-Name: nfadd
Prototype: GGG
Help: nfadd(nf,x,y): element x+y in nf.
Doc:
given two elements $x$ and $y$ in
\var{nf}, computes their sum $x+y$ in the number field $\var{nf}$.
Function: nfeltdiv
Class: basic
Section: number_fields
C-Name: nfdiv
Prototype: GGG
Help: nfdiv(nf,x,y): element x/y in nf.
Doc: given two elements $x$ and $y$ in
\var{nf}, computes their quotient $x/y$ in the number field $\var{nf}$.
Function: nfeltdiveuc
Class: basic
Section: number_fields
C-Name: nfdiveuc
Prototype: GGG
Help: nfdiveuc(nf,x,y): gives algebraic integer q such that x-by is small.
Doc: given two elements $x$ and $y$ in
\var{nf}, computes an algebraic integer $q$ in the number field $\var{nf}$
such that the components of $x-qy$ are reasonably small. In fact, this is
functionally identical to \kbd{round(nfdiv(\var{nf},x,y))}.
Function: nfeltdivmodpr
Class: basic
Section: number_fields
C-Name: nfdivmodpr
Prototype: GGGG
Help: nfeltdivmodpr(nf,x,y,pr): element x/y modulo pr in nf, where pr is in
modpr format (see nfmodprinit).
Doc: given two elements $x$
and $y$ in \var{nf} and \var{pr} a prime ideal in \kbd{modpr} format (see
\tet{nfmodprinit}), computes their quotient $x / y$ modulo the prime ideal
\var{pr}.
Variant: This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.
Function: nfeltdivrem
Class: basic
Section: number_fields
C-Name: nfdivrem
Prototype: GGG
Help: nfeltdivrem(nf,x,y): gives [q,r] such that r=x-by is small.
Doc: given two elements $x$ and $y$ in
\var{nf}, gives a two-element row vector $[q,r]$ such that $x=qy+r$, $q$ is
an algebraic integer in $\var{nf}$, and the components of $r$ are
reasonably small.
Function: nfeltmod
Class: basic
Section: number_fields
C-Name: nfmod
Prototype: GGG
Help: nfeltmod(nf,x,y): gives r such that r=x-by is small with q algebraic
integer.
Doc:
given two elements $x$ and $y$ in
\var{nf}, computes an element $r$ of $\var{nf}$ of the form $r=x-qy$ with
$q$ and algebraic integer, and such that $r$ is small. This is functionally
identical to
$$\kbd{x - nfmul(\var{nf},round(nfdiv(\var{nf},x,y)),y)}.$$
Function: nfeltmul
Class: basic
Section: number_fields
C-Name: nfmul
Prototype: GGG
Help: nfmul(nf,x,y): element x.y in nf.
Doc:
given two elements $x$ and $y$ in
\var{nf}, computes their product $x*y$ in the number field $\var{nf}$.
Function: nfeltmulmodpr
Class: basic
Section: number_fields
C-Name: nfmulmodpr
Prototype: GGGG
Help: nfeltmulmodpr(nf,x,y,pr): element x.y modulo pr in nf, where pr is in
modpr format (see nfmodprinit).
Doc: given two elements $x$ and
$y$ in \var{nf} and \var{pr} a prime ideal in \kbd{modpr} format (see
\tet{nfmodprinit}), computes their product $x*y$ modulo the prime ideal
\var{pr}.
Variant: This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.
Function: nfeltnorm
Class: basic
Section: number_fields
C-Name: nfnorm
Prototype: GG
Help: nfeltnorm(nf,x): norm of x.
Doc: returns the absolute norm of $x$.
Function: nfeltpow
Class: basic
Section: number_fields
C-Name: nfpow
Prototype: GGG
Help: nfeltpow(nf,x,k): element x^k in nf.
Doc: given an element $x$ in \var{nf}, and a positive or negative integer $k$,
computes $x^k$ in the number field $\var{nf}$.
Variant: \fun{GEN}{nfinv}{GEN nf, GEN x} correspond to $k = -1$, and
\fun{GEN}{nfsqr}{GEN nf,GEN x} to $k = 2$.
Function: nfeltpowmodpr
Class: basic
Section: number_fields
C-Name: nfpowmodpr
Prototype: GGGG
Help: nfeltpowmodpr(nf,x,k,pr): element x^k modulo pr in nf, where pr is in
modpr format (see nfmodprinit).
Doc: given an element $x$ in \var{nf}, an integer $k$ and a prime ideal
\var{pr} in \kbd{modpr} format
(see \tet{nfmodprinit}), computes $x^k$ modulo the prime ideal \var{pr}.
Variant: This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.
Function: nfeltreduce
Class: basic
Section: number_fields
C-Name: nfreduce
Prototype: GGG
Help: nfeltreduce(nf,a,id): gives r such that a-r is in the ideal id and r
is small.
Doc: given an ideal \var{id} in
Hermite normal form and an element $a$ of the number field $\var{nf}$,
finds an element $r$ in $\var{nf}$ such that $a-r$ belongs to the ideal
and $r$ is small.
Function: nfeltreducemodpr
Class: basic
Section: number_fields
C-Name: nfreducemodpr
Prototype: GGG
Help: nfeltreducemodpr(nf,x,pr): element x modulo pr in nf, where pr is in
modpr format (see nfmodprinit).
Doc: given an element $x$ of the number field $\var{nf}$ and a prime ideal
\var{pr} in \kbd{modpr} format compute a canonical representative for the
class of $x$ modulo \var{pr}.
Variant: This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.
Function: nfelttrace
Class: basic
Section: number_fields
C-Name: nftrace
Prototype: GG
Help: nfelttrace(nf,x): trace of x.
Doc: returns the absolute trace of $x$.
Function: nfeltval
Class: basic
Section: number_fields
C-Name: nfval
Prototype: lGGG
Help: nfeltval(nf,x,pr): valuation of element x at the prime pr as output by
idealprimedec.
Doc: given an element $x$ in
\var{nf} and a prime ideal \var{pr} in the format output by
\kbd{idealprimedec}, computes their the valuation at \var{pr} of the
element $x$. The same result could be obtained using
\kbd{idealval(\var{nf},x,\var{pr})} (since $x$ would then be converted to a
principal ideal), but it would be less efficient.
Function: nffactor
Class: basic
Section: number_fields
C-Name: nffactor
Prototype: GG
Help: nffactor(nf,x): factor polynomial x in number field nf.
Doc: factorization of the univariate
polynomial $x$ over the number field $\var{nf}$ given by \kbd{nfinit}. $x$
has coefficients in $\var{nf}$ (i.e.~either scalar, polmod, polynomial or
column vector). The main variable of $\var{nf}$ must be of \emph{lower}
priority than that of $x$ (see \secref{se:priority}). However if
the polynomial defining the number field occurs explicitly in the
coefficients of $x$ (as modulus of a \typ{POLMOD}), its main variable must be
\emph{the same} as the main variable of $x$. For example,
\bprog
? nf = nfinit(y^2 + 1);
? nffactor(nf, x^2 + y); \\@com OK
? nffactor(nf, x^2 + Mod(y, y^2+1)); \\ @com OK
? nffactor(nf, x^2 + Mod(z, z^2+1)); \\ @com WRONG
@eprog\noindent It is possible to input a defining polynomial for \var{nf}
instead, but this is in general less efficient since parts of an \kbd{nf}
structure will be computed internally. This is useful in two situations: when
you don't need the \kbd{nf}, or when you can't compute its discriminant due
to integer factorization difficulties. In the latter case, \tet{addprimes} is
a possibility but a dangerous one: factors will probably be missed if the
(true) field discriminant and an \kbd{addprimes} entry are strictly divisible
by some prime. If you have such an unsafe \var{nf}, it is safer to input
\kbd{nf.pol}.
Function: nffactorback
Class: basic
Section: number_fields
C-Name: nffactorback
Prototype: GGDG
Help: nffactorback(nf,f,{e}): given a factorisation f, returns
the factored object back as an nf element.
Doc: gives back the \kbd{nf} element corresponding to a factorization.
The integer $1$ corresponds to the empty factorization.
If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
integral), and the corresponding factorization is the product of the
$f[i]^{e[i]}$.
If not, and $f$ is vector, it is understood as in the preceding case with $e$
a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
regular factorization matrix.
\bprog
? nf = nfinit(y^2+1);
? nffactorback(nf, [3, y+1, [1,2]~], [1, 2, 3])
%2 = [12, -66]~
? 3 * (I+1)^2 * (1+2*I)^3
%3 = 12 - 66*I
@eprog
Function: nffactormod
Class: basic
Section: number_fields
C-Name: nffactormod
Prototype: GGG
Help: nffactormod(nf,pol,pr): factorize polynomial pol modulo prime ideal pr
in number field nf.
Doc: factorization of the
univariate polynomial $x$ modulo the prime ideal \var{pr} in the number
field $\var{nf}$. $x$ can have coefficients in the number field (scalar,
polmod, polynomial, column vector) or modulo the prime ideal (intmod
modulo the rational prime under \var{pr}, polmod or polynomial with
intmod coefficients, column vector of intmod). The prime ideal
\var{pr} \emph{must} be in the format output by \kbd{idealprimedec}. The
main variable of $\var{nf}$ must be of lower priority than that of $x$
(see \secref{se:priority}). However if the coefficients of the number
field occur explicitly (as polmods) as coefficients of $x$, the variable of
these polmods \emph{must} be the same as the main variable of $t$ (see
\kbd{nffactor}).
Function: nfgaloisapply
Class: basic
Section: number_fields
C-Name: galoisapply
Prototype: GGG
Help: nfgaloisapply(nf,aut,x): Apply the Galois automorphism aut to the object
x (element or ideal) in the number field nf.
Doc: let $\var{nf}$ be a
number field as output by \kbd{nfinit}, and let \var{aut} be a \idx{Galois}
automorphism of $\var{nf}$ expressed by its image on the field generator
(such automorphisms can be found using \kbd{nfgaloisconj}). The function
computes the action of the automorphism \var{aut} on the object $x$ in the
number field; $x$ can be a number field element, or an ideal (possibly
extended). Because of possible confusion with elements and ideals, other
vector or matrix arguments are forbidden.
\bprog
? nf = nfinit(x^2+1);
? L = nfgaloisconj(nf)
%2 = [-x, x]~
? aut = L[1]; /* the non-trivial automorphism */
? nfgaloisapply(nf, aut, x)
%4 = Mod(-x, x^2 + 1)
? P = idealprimedec(nf,5); /* prime ideals above 5 */
? nfgaloisapply(nf, aut, P[2]) == P[1]
%7 = 0 \\ !!!!
? idealval(nf, nfgaloisapply(nf, aut, P[2]), P[1])
%8 = 1
@eprog\noindent The surprising failure of the equality test (\kbd{\%7}) is
due to the fact that although the corresponding prime ideals are equal, their
representations are not. (A prime ideal is specificed by a uniformizer, and
there is no guarantee that applying automorphisms yields the same elements
as a direct \kbd{idealprimedec} call.)
The automorphism can also be given as a column vector, representing the
image of \kbd{Mod(x, nf.pol)} as an algebraic number. This last
representation is more efficient and should be preferred if a given
automorphism must be used in many such calls.
\bprog
? nf = nfinit(x^3 - 37*x^2 + 74*x - 37);
? l = nfgaloisconj(nf); aut = l[2] \\ @com automorphisms in basistoalg form
%2 = -31/11*x^2 + 1109/11*x - 925/11
? L = matalgtobasis(nf, l); AUT = L[2] \\ @com same in algtobasis form
%3 = [16, -6, 5]~
? v = [1, 2, 3]~; nfgaloisapply(nf, aut, v) == nfgaloisapply(nf, AUT, v)
%4 = 1 \\ @com same result...
? for (i=1,10^5, nfgaloisapply(nf, aut, v))
time = 1,451 ms.
? for (i=1,10^5, nfgaloisapply(nf, AUT, v))
time = 1,045 ms. \\ @com but the latter is faster
@eprog
Function: nfgaloisconj
Class: basic
Section: number_fields
C-Name: galoisconj0
Prototype: GD0,L,DGp
Help: nfgaloisconj(nf,{flag=0},{d}): list of conjugates of a root of the
polynomial x=nf.pol in the same number field. flag is optional (set to 0 by
default), meaning 0: use combination of flag 4 and 1, always complete; 1:
use nfroots; 2 : use complex numbers, LLL on integral basis (not always
complete); 4: use Allombert's algorithm, complete if the field is Galois of
degree <= 35 (see manual for details). nf can be simply a polynomial.
Doc: $\var{nf}$ being a number field as output by \kbd{nfinit}, computes the
conjugates of a root $r$ of the non-constant polynomial $x=\var{nf}[1]$
expressed as polynomials in $r$. This also makes sense when the number field
is not \idx{Galois} since some conjugates may lie in the field.
$\var{nf}$ can simply be a polynomial.
If no flags or $\fl=0$, use a combination of flag $4$ and $1$ and the result
is always complete. There is no point whatsoever in using the other flags.
If $\fl=1$, use \kbd{nfroots}: a little slow, but guaranteed to work in
polynomial time.
If $\fl=2$ (OBSOLETE), use complex approximations to the roots and an integral
\idx{LLL}. The result is not guaranteed to be complete: some
conjugates may be missing (a warning is issued if the result is not proved
complete), especially so if the corresponding polynomial has a huge index,
and increasing the default precision may help. This variant is slow and
unreliable: don't use it.
If $\fl=4$, use \kbd{galoisinit}: very fast, but only applies to (most) Galois
fields. If the field is Galois with weakly
super-solvable Galois group (see \tet{galoisinit}), return the complete list
of automorphisms, else only the identity element. If present, $d$ is assumed to
be a multiple of the least common denominator of the conjugates expressed as
polynomial in a root of \var{pol}.
This routine can only compute $\Q$-automorphisms, but it may be used to get
$K$-automorphism for any base field $K$ as follows:
\bprog
rnfgaloisconj(nfK, R) = \\ K-automorphisms of L = K[X] / (R)
{ my(polabs, N);
R *= Mod(1, nfK.pol); \\ convert coeffs to polmod elts of K
polabs = rnfequation(nfK, R);
N = nfgaloisconj(polabs) % R; \\ Q-automorphisms of L
\\ select the ones that fix K
select(s->subst(R, variable(R), Mod(s,R)) == 0, N);
}
K = nfinit(y^2 + 7);
rnfgaloisconj(K, x^4 - y*x^3 - 3*x^2 + y*x + 1) \\ K-automorphisms of L
@eprog
Variant: Use directly
\fun{GEN}{galoisconj}{GEN nf, GEN d}, corresponding to $\fl = 0$, the others
only have historical interest.
Function: nfhilbert
Class: basic
Section: number_fields
C-Name: nfhilbert0
Prototype: lGGGDG
Help: nfhilbert(nf,a,b,{pr}): if pr is omitted, global Hilbert symbol (a,b) in
nf, that is 1 if X^2-aY^2-bZ^2 has a non-trivial solution (X,Y,Z) in nf, -1
otherwise. Otherwise compute the local symbol modulo the prime ideal pr.
Doc: if \var{pr} is omitted,
compute the global quadratic \idx{Hilbert symbol} $(a,b)$ in $\var{nf}$, that
is $1$ if $x^2 - a y^2 - b z^2$ has a non trivial solution $(x,y,z)$ in
$\var{nf}$, and $-1$ otherwise. Otherwise compute the local symbol modulo
the prime ideal \var{pr}, as output by \kbd{idealprimedec}.
Variant:
Also available is \fun{long}{nfhilbert}{GEN bnf,GEN a,GEN b} (global
quadratic Hilbert symbol).
Function: nfhnf
Class: basic
Section: number_fields
C-Name: nfhnf
Prototype: GG
Help: nfhnf(nf,x): if x=[A,I], gives a pseudo-basis of the module sum A_jI_j
Doc: given a pseudo-matrix $(A,I)$, finds a
pseudo-basis in \idx{Hermite normal form} of the module it generates.
Variant: Also available:
\fun{GEN}{rnfsimplifybasis}{GEN bnf, GEN x} simplifies the pseudo-basis
given by $x = (A,I)$. The ideals in the list $I$ are integral, primitive and
either trivial (equal to the full ring of integer) or non-principal.
Function: nfhnfmod
Class: basic
Section: number_fields
C-Name: nfhnfmod
Prototype: GGG
Help: nfhnfmod(nf,x,detx): if x=[A,I], and detx is a multiple of the ideal
determinant of x, gives a pseudo-basis of the module sum A_jI_j.
Doc: given a pseudo-matrix $(A,I)$
and an ideal \var{detx} which is contained in (read integral multiple of) the
determinant of $(A,I)$, finds a pseudo-basis in \idx{Hermite normal form}
of the module generated by $(A,I)$. This avoids coefficient explosion.
\var{detx} can be computed using the function \kbd{nfdetint}.
Function: nfinit
Class: basic
Section: number_fields
C-Name: nfinit0
Prototype: GD0,L,p
Help: nfinit(pol,{flag=0}): pol being a nonconstant irreducible polynomial,
gives the vector: [pol,[r1,r2],discf,index,[M,MC,T2,T,different] (see
manual),r1+r2 first roots, integral basis, matrix of power basis in terms of
integral basis, multiplication table of basis]. flag is optional and can be
set to 0: default; 1: do not compute different; 2: first use polred to find
a simpler polynomial; 3: outputs a two-element vector [nf,Mod(a,P)], where
nf is as in 2 and Mod(a,P) is a polmod equal to Mod(x,pol) and P=nf.pol.
Description:
(gen, ?0):nf:prec nfinit0($1, 0, prec)
(gen, 1):nf:prec nfinit0($1, 1, prec)
(gen, 2):nf:prec nfinit0($1, 2, prec)
(gen, 3):gen:prec nfinit0($1, 3, prec)
(gen, 4):nf:prec nfinit0($1, 4, prec)
(gen, 5):gen:prec nfinit0($1, 5, prec)
(gen, #small):void $"incorrect flag in nfinit"
(gen, small):gen:prec nfinit0($1, $2, prec)
Doc: \var{pol} being a non-constant,
preferably monic, irreducible polynomial in $\Z[X]$, initializes a
\emph{number field} structure (\kbd{nf}) associated to the field $K$ defined
by \var{pol}. As such, it's a technical object passed as the first argument
to most \kbd{nf}\var{xxx} functions, but it contains some information which
may be directly useful. Access to this information via \emph{member
functions} is preferred since the specific data organization specified below
may change in the future. Currently, \kbd{nf} is a row vector with 9
components:
$\var{nf}[1]$ contains the polynomial \var{pol} (\kbd{\var{nf}.pol}).
$\var{nf}[2]$ contains $[r1,r2]$ (\kbd{\var{nf}.sign}, \kbd{\var{nf}.r1},
\kbd{\var{nf}.r2}), the number of real and complex places of $K$.
$\var{nf}[3]$ contains the discriminant $d(K)$ (\kbd{\var{nf}.disc}) of $K$.
$\var{nf}[4]$ contains the index of $\var{nf}[1]$ (\kbd{\var{nf}.index}),
i.e.~$[\Z_K : \Z[\theta]]$, where $\theta$ is any root of $\var{nf}[1]$.
$\var{nf}[5]$ is a vector containing 7 matrices $M$, $G$, \var{roundG}, $T$,
$MD$, $TI$, $MDI$ useful for certain computations in the number field $K$.
\quad\item $M$ is the $(r1+r2)\times n$ matrix whose columns represent
the numerical values of the conjugates of the elements of the integral
basis.
\quad\item $G$ is an $n\times n$ matrix such that $T2 = {}^t G G$,
where $T2$ is the quadratic form $T_2(x) = \sum |\sigma(x)|^2$, $\sigma$
running over the embeddings of $K$ into $\C$.
\quad\item \var{roundG} is a rescaled copy of $G$, rounded to nearest
integers.
\quad\item $T$ is the $n\times n$ matrix whose coefficients are
$\text{Tr}(\omega_i\omega_j)$ where the $\omega_i$ are the elements of the
integral basis. Note also that $\det(T)$ is equal to the discriminant of the
field $K$. Also, when understood as an ideal, the matrix $T^{-1}$
generates the codifferent ideal.
\quad\item The columns of $MD$ (\kbd{\var{nf}.diff}) express a $\Z$-basis
of the different of $K$ on the integral basis.
\quad\item $TI$ is equal to the primitive part of $T^{-1}$, which has integral
coefficients.
\quad\item Finally, $MDI$ is a two-element representation (for faster
ideal product) of $d(K)$ times the codifferent ideal
(\kbd{\var{nf}.disc$*$\var{nf}.codiff}, which is an integral ideal). $MDI$
is only used in \tet{idealinv}.
$\var{nf}[6]$ is the vector containing the $r1+r2$ roots
(\kbd{\var{nf}.roots}) of $\var{nf}[1]$ corresponding to the $r1+r2$
embeddings of the number field into $\C$ (the first $r1$ components are real,
the next $r2$ have positive imaginary part).
$\var{nf}[7]$ is an integral basis for $\Z_K$ (\kbd{\var{nf}.zk}) expressed
on the powers of~$\theta$. Its first element is guaranteed to be $1$. This
basis is LLL-reduced with respect to $T_2$ (strictly speaking, it is a
permutation of such a basis, due to the condition that the first element be
$1$).
$\var{nf}[8]$ is the $n\times n$ integral matrix expressing the power
basis in terms of the integral basis, and finally
$\var{nf}[9]$ is the $n\times n^2$ matrix giving the multiplication table
of the integral basis.
If a non monic polynomial is input, \kbd{nfinit} will transform it into a
monic one, then reduce it (see $\fl=3$). It is allowed, though not very
useful given the existence of \tet{nfnewprec}, to input a \kbd{nf} or a
\kbd{bnf} instead of a polynomial.
\bprog
? nf = nfinit(x^3 - 12); \\ initialize number field Q[X] / (X^3 - 12)
? nf.pol \\ defining polynomial
%2 = x^3 - 12
? nf.disc \\ field discriminant
%3 = -972
? nf.index \\ index of power basis order in maximal order
%4 = 2
? nf.zk \\ integer basis, lifted to Q[X]
%5 = [1, x, 1/2*x^2]
? nf.sign \\ signature
%6 = [1, 1]
? factor(abs(nf.disc )) \\ determines ramified primes
%7 =
[2 2]
[3 5]
? idealfactor(nf, 2)
%8 =
[[2, [0, 0, -1]~, 3, 1, [0, 1, 0]~] 3] \\ @com $\goth{p}_2^3$
@eprog
In case \var{pol} has a huge discriminant which is difficult to factor,
the special input format $[\var{pol},B]$ is also accepted where \var{pol} is a
polynomial as above and $B$ is the integer basis, as would be computed by
\tet{nfbasis}. This is useful if the integer basis is known in advance,
or was computed conditionally.
\bprog
? pol = polcompositum(x^5 - 101, polcyclo(7))[1];
? B = nfbasis(pol, 1); \\ faster than nfbasis(pol), but conditional
? nf = nfinit( [pol, B] );
? factor( abs(nf.disc) )
[5 18]
[7 25]
[101 24]
@eprog
\kbd{B} is conditional when its discriminant, which is \kbd{nf.disc}, can't be
factored. In this example, the above factorization proves the correctness of
the computation.
\medskip
If $\fl=2$: \var{pol} is changed into another polynomial $P$ defining the same
number field, which is as simple as can easily be found using the \kbd{polred}
algorithm, and all the subsequent computations are done using this new
polynomial. In particular, the first component of the result is the modified
polynomial.
If $\fl=3$, does a \kbd{polred} as in case 2, but outputs
$[\var{nf},\kbd{Mod}(a,P)]$, where $\var{nf}$ is as before and
$\kbd{Mod}(a,P)=\kbd{Mod}(x,\var{pol})$ gives the change of
variables. This is implicit when \var{pol} is not monic: first a linear change
of variables is performed, to get a monic polynomial, then a \kbd{polred}
reduction.
Variant: Also available are
\fun{GEN}{nfinit}{GEN x, long prec} ($\fl = 0$),
\fun{GEN}{nfinitred}{GEN x, long prec} ($\fl = 2$),
\fun{GEN}{nfinitred2}{GEN x, long prec} ($\fl = 3$).
Instead of the above hardcoded numerical flags in \kbd{nfinit0}, one should
rather use
\fun{GEN}{nfinitall}{GEN x, long flag, long prec}, where \fl\ is an
or-ed combination of
\item \tet{nf_RED}: find a simpler defining polynomial,
\item \tet{nf_ORIG}: if \tet{nf_RED} set, also return the change of variable,
\item \tet{nf_ROUND2}: slow down the routine by using an obsolete
normalization algorithm (do not use this one!),
\item \tet{nf_PARTIALFACT}: lazy factorization of the polynomial discriminant.
Result is conditional unless the \emph{field} discriminant obtained
is fully factored by
\bprog
Z_factor_limit(disc, 0)
@eprog\noindent Namely the ``maximal order'' may not be maximal at any prime
bigger than \kbd{primelimit} dividing the field discriminant.
Function: nfisideal
Class: basic
Section: number_fields
C-Name: isideal
Prototype: lGG
Help: nfisideal(nf,x): true(1) if x is an ideal in the number field nf,
false(0) if not.
Doc: returns 1 if $x$ is an ideal in the number field $\var{nf}$, 0 otherwise.
Function: nfisincl
Class: basic
Section: number_fields
C-Name: nfisincl
Prototype: GG
Help: nfisincl(x,y): tests whether the number field x is isomorphic to a
subfield of y (where x and y are either polynomials or number fields as
output by nfinit). Return 0 if not, and otherwise all the isomorphisms. If y
is a number field, a faster algorithm is used.
Doc: tests whether the number field $K$ defined
by the polynomial $x$ is conjugate to a subfield of the field $L$ defined
by $y$ (where $x$ and $y$ must be in $\Q[X]$). If they are not, the output
is the number 0. If they are, the output is a vector of polynomials, each
polynomial $a$ representing an embedding of $K$ into $L$, i.e.~being such
that $y\mid x\circ a$.
If $y$ is a number field (\var{nf}), a much faster algorithm is used
(factoring $x$ over $y$ using \tet{nffactor}). Before version 2.0.14, this
wasn't guaranteed to return all the embeddings, hence was triggered by a
special flag. This is no more the case.
Function: nfisisom
Class: basic
Section: number_fields
C-Name: nfisisom
Prototype: GG
Help: nfisisom(x,y): as nfisincl but tests whether x is isomorphic to y.
Doc: as \tet{nfisincl}, but tests for isomorphism. If either $x$ or $y$ is a
number field, a much faster algorithm will be used.
Function: nfkermodpr
Class: basic
Section: number_fields
C-Name: nfkermodpr
Prototype: GGG
Help: nfkermodpr(nf,x,pr): kernel of the matrix x in Z_K/pr, where pr is in
modpr format (see nfmodprinit).
Doc: kernel of the matrix $a$ in $\Z_K/\var{pr}$, where \var{pr} is in
\key{modpr} format (see \kbd{nfmodprinit}).
Variant: This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nfM\_to\_FqM}, then work there.
Function: nfmodprinit
Class: basic
Section: number_fields
C-Name: nfmodprinit
Prototype: GG
Help: nfmodprinit(nf,pr): transform the 5 element row vector pr representing
a prime ideal into modpr format necessary for all operations mod pr in the
number field nf (see manual for details about the format).
Doc: transforms the prime ideal \var{pr} into \tet{modpr} format necessary
for all operations modulo \var{pr} in the number field \var{nf}.
Function: nfnewprec
Class: basic
Section: number_fields
C-Name: nfnewprec
Prototype: Gp
Help: nfnewprec(nf): transform the number field data nf into new data using
the current (usually larger) precision.
Doc: transforms the number field $\var{nf}$
into the corresponding data using current (usually larger) precision. This
function works as expected if $\var{nf}$ is in fact a $\var{bnf}$ (update
$\var{bnf}$ to current precision) but may be quite slow (many generators of
principal ideals have to be computed).
Variant: See also \fun{GEN}{bnfnewprec}{GEN bnf, long prec}
and \fun{GEN}{bnrnewprec}{GEN bnr, long prec}.
Function: nfroots
Class: basic
Section: number_fields
C-Name: nfroots
Prototype: DGG
Help: nfroots({nf},x): roots of polynomial x belonging to nf (Q if
omitted) without multiplicity.
Doc: roots of the polynomial $x$ in the
number field $\var{nf}$ given by \kbd{nfinit} without multiplicity (in $\Q$
if $\var{nf}$ is omitted). $x$ has coefficients in the number field (scalar,
polmod, polynomial, column vector). The main variable of $\var{nf}$ must be
of lower priority than that of $x$ (see \secref{se:priority}). However if the
coefficients of the number field occur explicitly (as polmods) as
coefficients of $x$, the variable of these polmods \emph{must} be the same as
the main variable of $t$ (see \kbd{nffactor}).
It is possible to input a defining polynomial for \var{nf}
instead, but this is in general less efficient since parts of an \kbd{nf}
structure will be computed internally. This is useful in two situations: when
you don't need the \kbd{nf}, or when you can't compute its discriminant due
to integer factorization difficulties. In the latter case, \tet{addprimes} is
a possibility but a dangerous one: roots will probably be missed if the
(true) field discriminant and an \kbd{addprimes} entry are strictly divisible
by some prime. If you have such an unsafe \var{nf}, it is safer to input
\kbd{nf.pol}.
Variant: See also \fun{GEN}{nfrootsQ}{GEN x},
corresponding to $\kbd{nf} = \kbd{NULL}$.
Function: nfrootsof1
Class: basic
Section: number_fields
C-Name: rootsof1
Prototype: G
Help: nfrootsof1(nf): number of roots of unity and primitive root of unity
in the number field nf.
Doc: Returns a two-component vector $[w,z]$ where $w$ is the number of roots of
unity in the number field \var{nf}, and $z$ is a primitive $w$-th root
of unity.
\bprog
? K = nfinit(polcyclo(11));
? nfrootsof1(K)
%2 = [22, [0, 0, 0, 0, 0, -1, 0, 0, 0, 0]~]
? z = nfbasistoalg(K, %[2]) \\ in algebraic form
%3 = Mod(-x^5, x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
? [lift(z^11), lift(z^2)] \\ proves that the order of z is 22
%4 = [-1, -x^9 - x^8 - x^7 - x^6 - x^5 - x^4 - x^3 - x^2 - x - 1]
@eprog
This function guesses the number $w$ as the gcd of the $\#k(v)^*$ for
unramified $v$ above odd primes, then computes the roots in \var{nf}
of the $w$-th cyclotomic polynomial: the algorithm is polynomial time with
respect to the field degree and the bitsize of the multiplication table in
\var{nf} (both of them polynomially bounded in terms of the size of the
discriminant). Fields of degree up to $100$ or so should require less than
one minute.
Variant: Also available is \fun{GEN}{rootsof1_kannan}{GEN nf}, that computes
all algebraic integers of $T_2$ norm equal to the field degree
(all roots of $1$, by Kronecker's theorem). This is in general a little
faster than the default when there \emph{are} roots of $1$ in the field
(say twice faster), but can be much slower (say, \emph{days} slower), since
the algorithm is a priori exponential in the field degree.
Function: nfsnf
Class: basic
Section: number_fields
C-Name: nfsnf
Prototype: GG
Help: nfsnf(nf,x): if x=[A,I,J], outputs [c_1,...c_n] Smith normal form of x.
Doc: given a $\Z_K$-module $x$ associated to the integral pseudo-matrix
$(A,I,J)$, returns an ideal list $d_1,\dots,d_n$ which is the \idx{Smith
normal form} of $x$. In other words, $x$ is isomorphic to
$\Z_K/d_1\oplus\cdots\oplus\Z_K/d_n$ and $d_i$ divides $d_{i-1}$ for $i\ge2$.
See \secref{se:ZKmodules} for the definition of integral pseudo-matrix;
briefly, it is input as a 3-component row vector $[A,I,J]$ where
$I = [b_1,\dots,b_n]$ and $J = [a_1,\dots,a_n]$ are two ideal lists,
and $A$ is a square $n\times n$ matrix with columns $(A_1,\dots,A_n)$,
seen as elements in $K^n$ (with canonical basis $(e_1,\dots,e_n)$).
This data defines the $\Z_K$ module $x$ given by
$$ (b_1e_1\oplus\cdots\oplus b_ne_n) / (a_1A_1\oplus\cdots\oplus a_nA_n)
\enspace, $$
The integrality condition is $a_{i,j} \in b_i a_j^{-1}$ for all $i,j$. If it
is not satisfied, then the $d_i$ will not be integral. Note that every
finitely generated torsion module is isomorphic to a module of this form and
even with $b_i=Z_K$ for all $i$.
Function: nfsolvemodpr
Class: basic
Section: number_fields
C-Name: nfsolvemodpr
Prototype: GGGG
Help: nfsolvemodpr(nf,a,b,pr): solution of a*x=b in Z_K/pr, where a is a
matrix and b a column vector, and where pr is in modpr format (see
nfmodprinit).
Doc: solution of $a\cdot x = b$
in $\Z_K/\var{pr}$, where $a$ is a matrix and $b$ a column vector, and where
\var{pr} is in \key{modpr} format (see \kbd{nfmodprinit}).
Variant: This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nfM\_to\_FqM}, then work there.
Function: nfsubfields
Class: basic
Section: number_fields
C-Name: nfsubfields
Prototype: GD0,L,
Help: nfsubfields(pol,{d=0}): find all subfields of degree d of number field
defined by pol (all subfields if d is null or omitted). Result is a vector of
subfields, each being given by [g,h], where g is an absolute equation and h
expresses one of the roots of g in terms of the root x of the polynomial
defining nf.
Doc: finds all subfields of degree
$d$ of the number field defined by the (monic, integral) polynomial
\var{pol} (all subfields if $d$ is null or omitted). The result is a vector
of subfields, each being given by $[g,h]$, where $g$ is an absolute equation
and $h$ expresses one of the roots of $g$ in terms of the root $x$ of the
polynomial defining $\var{nf}$. This routine uses J.~Kl\"uners's algorithm
in the general case, and B.~Allombert's \tet{galoissubfields} when \var{nf}
is Galois (with weakly supersolvable Galois group).\sidx{Galois}\sidx{subfield}
Function: norm
Class: basic
Section: conversions
C-Name: gnorm
Prototype: G
Help: norm(x): norm of x.
Doc:
algebraic norm of $x$, i.e.~the product of $x$ with
its conjugate (no square roots are taken), or conjugates for polmods. For
vectors and matrices, the norm is taken componentwise and hence is not the
$L^2$-norm (see \kbd{norml2}). Note that the norm of an element of
$\R$ is its square, so as to be compatible with the complex norm.
Function: norml2
Class: basic
Section: conversions
C-Name: gnorml2
Prototype: G
Help: norml2(x): square of the L2-norm of the vector x.
Doc:
square of the $L^2$-norm of $x$. More precisely,
if $x$ is a scalar, $\kbd{norml2}(x)$ is defined to be \kbd{$x$ * conj($x$)}.
If $x$ is a polynomial, a (row or column) vector or a matrix, \kbd{norml2($x$)} is
defined recursively as $\sum_i \kbd{norml2}(x_i)$, where $(x_i)$ run through
the components of $x$. In particular, this yields the usual $\sum |x_i|^2$
(resp.~$\sum |x_{i,j}|^2$) if $x$ is a polynomial or vector (resp.~matrix) with
complex components.
\bprog
? norml2( [ 1, 2, 3 ] ) \\ vector
%1 = 14
? norml2( [ 1, 2; 3, 4] ) \\ matrix
%2 = 30
? norml2( 2*I + x )
%3 = 5
? norml2( [ [1,2], [3,4], 5, 6 ] ) \\ recursively defined
%4 = 91
@eprog
Function: numbpart
Class: basic
Section: number_theoretical
C-Name: numbpart
Prototype: G
Help: numbpart(n): number of partitions of n.
Doc: gives the number of unrestricted partitions of
$n$, usually called $p(n)$ in the literature; in other words the number of
nonnegative integer solutions to $a+2b+3c+\cdots=n$. $n$ must be of type
integer and $n<10^{15}$ (with trivial values $p(n) = 0$ for $n < 0$ and
$p(0) = 1$). The algorithm uses the Hardy-Ramanujan-Rademacher formula.
To explicitly enumerate them, see \tet{partitions}.
Function: numdiv
Class: basic
Section: number_theoretical
C-Name: gnumbdiv
Prototype: G
Help: numdiv(x): number of divisors of x.
Description:
(int):int numbdiv($1)
(gen):gen gnumbdiv($1)
Doc: number of divisors of $|x|$. $x$ must be of type integer.
The function accepts vector/matrices arguments, and is then applied
componentwise.
Variant: If $x$ is a \typ{INT}, one may use \fun{GEN}{numbdiv}{GEN n} directly.
Function: numerator
Class: basic
Section: conversions
C-Name: numer
Prototype: G
Help: numerator(x): numerator of x.
Doc:
numerator of $x$. The meaning of this
is clear when $x$ is a rational number or function. If $x$ is an integer
or a polynomial, it is treated as a rational number or function,
respectively, and the result is $x$ itself. For polynomials, you
probably want to use
\bprog
numerator( content(x) )
@eprog\noindent
instead.
In other cases, \kbd{numerator(x)} is defined to be
\kbd{denominator(x)*x}. This is the case when $x$ is a vector or a
matrix, but also for \typ{COMPLEX} or \typ{QUAD}. In particular since a
\typ{PADIC} or \typ{INTMOD} has denominator $1$, its numerator is
itself.
\misctitle{Warning} Multivariate objects are created according to variable
priorities, with possibly surprising side effects ($x/y$ is a polynomial, but
$y/x$ is a rational function). See \secref{se:priority}.
Function: numtoperm
Class: basic
Section: conversions
C-Name: numtoperm
Prototype: LG
Help: numtoperm(n,k): permutation number k (mod n!) of n letters (n
C-integer).
Doc: generates the $k$-th permutation (as a row vector of length $n$) of the
numbers $1$ to $n$. The number $k$ is taken modulo $n!\,$, i.e.~inverse
function of \tet{permtonum}.
Function: omega
Class: basic
Section: number_theoretical
C-Name: gomega
Prototype: G
Help: omega(x): number of distinct prime divisors of x.
Description:
(int):small omega($1)
(gen):gen gomega($1)
Doc: number of distinct prime divisors of $|x|$. $x$ must be of type integer.
\bprog
? factor(392)
%1 =
[2 3]
[7 2]
? omega(392)
%2 = 2; \\ without multiplicity
? bigomega(392)
%3 = 5; \\ = 3+2, with multiplicity
@eprog
The function accepts vector/matrices arguments, and is then applied
componentwise.
Variant: For a \typ{INT} $x$, the variant
\fun{long}{omega}{GEN n} is generally easier to use.
Function: padicappr
Class: basic
Section: polynomials
C-Name: padicappr
Prototype: GG
Help: padicappr(pol,a): p-adic roots of the polynomial pol congruent to a mod p.
Doc: vector of $p$-adic roots of the
polynomial $pol$ congruent to the $p$-adic number $a$ modulo $p$, and with
the same $p$-adic precision as $a$. The number $a$ can be an ordinary
$p$-adic number (type \typ{PADIC}, i.e.~an element of $\Z_p$) or can be an
integral element of a finite extension of $\Q_p$, given as a \typ{POLMOD}
at least one of whose coefficients is a \typ{PADIC}. In this case, the result
is the vector of roots belonging to the same extension of $\Q_p$ as $a$.
Function: padicfields
Class: basic
Section: polynomials
C-Name: padicfields0
Prototype: GGD0,L,
Help: padicfields(p, N, {flag=0}): returns polynomials generating all
the extensions of degree N of the field of p-adic rational numbers; N is
allowed to be a 2-component vector [n,d], in which case, returns the
extensions of degree n and discriminant p^d. flag is optional,
and can be 0: default, 1: return also the ramification index, the residual
degree, the valuation of the discriminant and the number of conjugate fields,
or 2: return only the number of extensions in a fixed algebraic closure.
Doc: returns a vector of polynomials generating all the extensions of degree
$N$ of the field $\Q_p$ of $p$-adic rational numbers; $N$ is
allowed to be a 2-component vector $[n,d]$, in which case we return the
extensions of degree $n$ and discriminant $p^d$.
The list is minimal in the sense that two different polynomials generate
non-isomorphic extensions; in particular, the number of polynomials is the
number of classes of isomorphic extensions. If $P$ is a polynomial in this
list, $\alpha$ is any root of $P$ and $K = \Q_p(\alpha)$, then $\alpha$
is the sum of a uniformizer and a (lift of a) generator of the residue field
of $K$; in particular, the powers of $\alpha$ generate the ring of $p$-adic
integers of $K$.
If $\fl = 1$, replace each polynomial $P$ by a vector $[P, e, f, d, c]$
where $e$ is the ramification index, $f$ the residual degree, $d$ the
valuation of the discriminant, and $c$ the number of conjugate fields.
If $\fl = 2$, only return the \emph{number} of extensions in a fixed
algebraic closure (Krasner's formula), which is much faster.
Variant: Also available is \fun{GEN}{padicfields}{GEN p, long n,
long d, long flag}, which computes extensions of $\Q_p$ of degree $n$ and
discriminant $p^d$.
Function: padicprec
Class: basic
Section: conversions
C-Name: padicprec
Prototype: lGG
Help: padicprec(x,p): absolute p-adic precision of object x.
Doc: absolute $p$-adic precision of the object $x$. This is the minimum
precision of the components of $x$. The result is \tet{LONG_MAX}
($2^{31}-1$ for 32-bit machines or $2^{63}-1$ for 64-bit machines) if $x$ is
an exact object.
Function: partitions
Class: basic
Section: number_theoretical
C-Name: partitions
Prototype: LD0,L,
Help: partitions(n,{restr=0}): return vector of partitions of n, a positive
integer. The second optional argument may be set to a number smaller than n
to restrict the value of each element in the partitions to that value. The
default of 0 means that this maximum is n itself.
Doc: returns vector of partitions of the integer $n$ (negative values return
\kbd{[]}, $n = 0$ returns the trivial partition of the empty set).
The second optional argument may be set to a non-negative number smaller than
$n$ to restrict the value of each element in the partitions to that value.
The default of 0 means that this maximum is $n$ itself.
A partition is given by a \typ{VECSMALL}:
\bprog
? partitions(4, 2)
%1 = [Vecsmall([2, 2]), Vecsmall([1, 1, 2]), Vecsmall([1, 1, 1, 1])]
@eprog\noindent
correspond to $2+2$, $1+1+2$, $1+1+1+1$.
Function: permtonum
Class: basic
Section: conversions
C-Name: permtonum
Prototype: G
Help: permtonum(x): ordinal (between 1 and n!) of permutation x.
Doc: given a permutation $x$ on $n$ elements, gives the number $k$ such that
$x=\kbd{numtoperm(n,k)}$, i.e.~inverse function of \tet{numtoperm}.
Function: plot
Class: highlevel
Section: graphic
C-Name: plot
Prototype: vV=GGEDGDGp
Help: plot(X=a,b,expr,{Ymin},{Ymax}): crude plot of expression expr, X goes
from a to b, with Y ranging from Ymin to Ymax. If Ymin (resp. Ymax) is not
given, the minima (resp. the maxima) of the expression is used instead.
Doc: crude ASCII plot of the function represented by expression \var{expr}
from $a$ to $b$, with \var{Y} ranging from \var{Ymin} to \var{Ymax}. If
\var{Ymin} (resp. \var{Ymax}) is not given, the minima (resp. the maxima) of
the computed values of the expression is used instead.
Function: plotbox
Class: highlevel
Section: graphic
C-Name: rectbox
Prototype: vLGG
Help: plotbox(w,x2,y2): if the cursor is at position (x1,y1), draw a box
with diagonal (x1,y1) and (x2,y2) in rectwindow w (cursor does not move).
Doc: let $(x1,y1)$ be the current position of the virtual cursor. Draw in the
rectwindow $w$ the outline of the rectangle which is such that the points
$(x1,y1)$ and $(x2,y2)$ are opposite corners. Only the part of the rectangle
which is in $w$ is drawn. The virtual cursor does \emph{not} move.
Function: plotclip
Class: highlevel
Section: graphic
C-Name: rectclip
Prototype: vL
Help: plotclip(w): clip the contents of the rectwindow to the bounding box
(except strings).
Doc: `clips' the content of rectwindow $w$, i.e remove all parts of the
drawing that would not be visible on the screen. Together with
\tet{plotcopy} this function enables you to draw on a scratchpad before
committing the part you're interested in to the final picture.
Function: plotcolor
Class: highlevel
Section: graphic
C-Name: rectcolor
Prototype: vLL
Help: plotcolor(w,c): in rectwindow w, set default color to c. Possible
values for c are given by the graphcolormap default: factory settings
are 1=black, 2=blue, 3=sienna, 4=red, 5=green, 6=grey, 7=gainsborough.
Doc: set default color to $c$ in rectwindow $w$.
This is only implemented for the X-windows, fltk and Qt graphing engines.
Possible values for $c$ are given by the \tet{graphcolormap} default,
factory setting are
1=black, 2=blue, 3=violetred, 4=red, 5=green, 6=grey, 7=gainsborough.
but this can be considerably extended.
Function: plotcopy
Class: highlevel
Section: graphic
C-Name: rectcopy_gen
Prototype: vLLGGD0,L,
Help: plotcopy(sourcew,destw,dx,dy,{flag=0}): copy the contents of
rectwindow sourcew to rectwindow destw with offset (dx,dy). If flag's bit 1
is set, dx and dy express fractions of the size of the current output
device, otherwise dx and dy are in pixels. dx and dy are relative positions
of northwest corners if other bits of flag vanish, otherwise of: 2:
southwest, 4: southeast, 6: northeast corners.
Doc: copy the contents of rectwindow \var{sourcew} to rectwindow \var{destw}
with offset (dx,dy). If flag's bit 1 is set, dx and dy express fractions of
the size of the current output device, otherwise dx and dy are in pixels. dx
and dy are relative positions of northwest corners if other bits of flag
vanish, otherwise of: 2: southwest, 4: southeast, 6: northeast corners
Function: plotcursor
Class: highlevel
Section: graphic
C-Name: rectcursor
Prototype: L
Help: plotcursor(w): current position of cursor in rectwindow w.
Doc: give as a 2-component vector the current
(scaled) position of the virtual cursor corresponding to the rectwindow $w$.
Function: plotdraw
Class: highlevel
Section: graphic
C-Name: rectdraw_flag
Prototype: vGD0,L,
Help: plotdraw(list, {flag=0}): draw vector of rectwindows list at indicated
x,y positions; list is a vector w1,x1,y1,w2,x2,y2,etc. If flag!=0, x1, y1
etc. express fractions of the size of the current output device.
Doc: physically draw the rectwindows given in $list$
which must be a vector whose number of components is divisible by 3. If
$list=[w1,x1,y1,w2,x2,y2,\dots]$, the windows $w1$, $w2$, etc.~are
physically placed with their upper left corner at physical position
$(x1,y1)$, $(x2,y2)$,\dots\ respectively, and are then drawn together.
Overlapping regions will thus be drawn twice, and the windows are considered
transparent. Then display the whole drawing in a special window on your
screen. If $\fl \neq 0$, x1, y1 etc. express fractions of the size of the
current output device
Function: ploth
Class: highlevel
Section: graphic
C-Name: ploth
Prototype: V=GGEpD0,M,D0,L,\nParametric|1; Recursive|2; no_Rescale|4; no_X_axis|8; no_Y_axis|16; no_Frame|32; no_Lines|64; Points_too|128; Splines|256; no_X_ticks|512; no_Y_ticks|1024; Same_ticks|2048; Complex|4096
Help: ploth(X=a,b,expr,{flags=0},{n=0}): plot of expression expr, X goes
from a to b in high resolution. Both flags and n are optional. Binary digits
of flags mean: 1=Parametric, 2=Recursive, 4=no_Rescale, 8=no_X_axis,
16=no_Y_axis, 32=no_Frame, 64=no_Lines (do not join points), 128=Points_too
(plot both lines and points), 256=Splines (use cubic splines),
512=no_X_ticks, 1024= no_Y_ticks, 2048=Same_ticks (plot all ticks with the
same length), 4096=Complex (the two coordinates of each points are encoded
as a complex number). n specifies number of reference points on the graph
(0=use default value). Returns a vector for the bounding box.
Doc: high precision plot of the function $y=f(x)$ represented by the expression
\var{expr}, $x$ going from $a$ to $b$. This opens a specific window (which is
killed whenever you click on it), and returns a four-component vector giving
the coordinates of the bounding box in the form
$[\var{xmin},\var{xmax},\var{ymin},\var{ymax}]$.
\misctitle{Important note}: \kbd{ploth} may evaluate \kbd{expr} thousands of
times; given the relatively low resolution of plotting devices, few
significant digits of the result will be meaningful. Hence you should keep
the current precision to a minimum (e.g.~9) before calling this function.
$n$ specifies the number of reference point on the graph, where a value of 0
means we use the hardwired default values (1000 for general plot, 1500 for
parametric plot, and 15 for recursive plot).
If no $\fl$ is given, \var{expr} is either a scalar expression $f(X)$, in which
case the plane curve $y=f(X)$ will be drawn, or a vector
$[f_1(X),\dots,f_k(X)]$, and then all the curves $y=f_i(X)$ will be drawn in
the same window.
\noindent The binary digits of $\fl$ mean:
\item $1 = \kbd{Parametric}$: \tev{parametric plot}. Here \var{expr} must
be a vector with an even number of components. Successive pairs are then
understood as the parametric coordinates of a plane curve. Each of these are
then drawn.
For instance:
\bprog
ploth(X=0,2*Pi,[sin(X),cos(X)], "Parametric")
ploth(X=0,2*Pi,[sin(X),cos(X)])
ploth(X=0,2*Pi,[X,X,sin(X),cos(X)], "Parametric")
@eprog\noindent draw successively a circle, two entwined sinusoidal curves
and a circle cut by the line $y=x$.
\item $2 = \kbd{Recursive}$: \tev{recursive plot}. If this flag is set,
only \emph{one} curve can be drawn at a time, i.e.~\var{expr} must be either a
two-component vector (for a single parametric curve, and the parametric flag
\emph{has} to be set), or a scalar function. The idea is to choose pairs of
successive reference points, and if their middle point is not too far away
from the segment joining them, draw this as a local approximation to the
curve. Otherwise, add the middle point to the reference points. This is
fast, and usually more precise than usual plot. Compare the results of
\bprog
ploth(X=-1,1, sin(1/X), "Recursive")
ploth(X=-1,1, sin(1/X))
@eprog\noindent
for instance. But beware that if you are extremely unlucky, or choose too few
reference points, you may draw some nice polygon bearing little resemblance
to the original curve. For instance you should \emph{never} plot recursively
an odd function in a symmetric interval around 0. Try
\bprog
ploth(x = -20, 20, sin(x), "Recursive")
@eprog\noindent
to see why. Hence, it's usually a good idea to try and plot the same curve
with slightly different parameters.
The other values toggle various display options:
\item $4 = \kbd{no\_Rescale}$: do not rescale plot according to the
computed extrema. This is used in conjunction with \tet{plotscale} when
graphing multiple functions on a rectwindow (as a \tet{plotrecth} call):
\bprog
s = plothsizes();
plotinit(0, s[2]-1, s[2]-1);
plotscale(0, -1,1, -1,1);
plotrecth(0, t=0,2*Pi, [cos(t),sin(t)], "Parametric|no_Rescale")
plotdraw([0, -1,1]);
@eprog\noindent
This way we get a proper circle instead of the distorted ellipse produced by
\bprog
ploth(t=0,2*Pi, [cos(t),sin(t)], "Parametric")
@eprog
\item $8 = \kbd{no\_X\_axis}$: do not print the $x$-axis.
\item $16 = \kbd{no\_Y\_axis}$: do not print the $y$-axis.
\item $32 = \kbd{no\_Frame}$: do not print frame.
\item $64 = \kbd{no\_Lines}$: only plot reference points, do not join them.
\item $128 = \kbd{Points\_too}$: plot both lines and points.
\item $256 = \kbd{Splines}$: use splines to interpolate the points.
\item $512 = \kbd{no\_X\_ticks}$: plot no $x$-ticks.
\item $1024 = \kbd{no\_Y\_ticks}$: plot no $y$-ticks.
\item $2048 = \kbd{Same\_ticks}$: plot all ticks with the same length.
\item $4096 = \kbd{Complex}$: is a parametric plot but where each member of
\kbd{expr} is considered a complex number encoding the two coordinates of a
point. For instance:
\bprog
ploth(X=0,2*Pi,exp(I*X), "Complex")
ploth(X=0,2*Pi,[(1+I)*X,exp(I*X)], "Complex")
@eprog\noindent will draw respectively a circle and a circle cut by the line
$y=x$.
Function: plothraw
Class: highlevel
Section: graphic
C-Name: plothraw
Prototype: GGD0,L,
Help: plothraw(listx,listy,{flag=0}): plot in high resolution points whose x
(resp. y) coordinates are in listx (resp. listy). If flag is 1, join points,
other non-0 flags should be combinations of bits 8,16,32,64,128,256 meaning
the same as for ploth().
Doc: given \var{listx} and \var{listy} two vectors of equal length, plots (in
high precision) the points whose $(x,y)$-coordinates are given in
\var{listx} and \var{listy}. Automatic positioning and scaling is done, but
with the same scaling factor on $x$ and $y$. If $\fl$ is 1, join points,
other non-0 flags toggle display options and should be combinations of bits
$2^k$, $k \geq 3$ as in \kbd{ploth}.
Function: plothsizes
Class: highlevel
Section: graphic
C-Name: plothsizes_flag
Prototype: D0,L,
Help: plothsizes({flag=0}): returns array of 6 elements: terminal width and
height, sizes for ticks in horizontal and vertical directions, width and
height of characters. If flag=0, sizes of ticks and characters are in
pixels, otherwise are fractions of the screen size.
Doc: return data corresponding to the output window
in the form of a 6-component vector: window width and height, sizes for ticks
in horizontal and vertical directions (this is intended for the \kbd{gnuplot}
interface and is currently not significant), width and height of characters.
If $\fl = 0$, sizes of ticks and characters are in
pixels, otherwise are fractions of the screen size
Function: plotinit
Class: highlevel
Section: graphic
C-Name: initrect_gen
Prototype: vLDGDGD0,L,
Help: plotinit(w,{x},{y},{flag=0}): initialize rectwindow w to size x,y.
If flag!=0, x and y express fractions of the size of the current output
device. Omitting x or y means use the full size of the device.
Doc: initialize the rectwindow $w$,
destroying any rect objects you may have already drawn in $w$. The virtual
cursor is set to $(0,0)$. The rectwindow size is set to width $x$ and height
$y$; omitting either $x$ or $y$ means we use the full size of the device
in that direction.
If $\fl=0$, $x$ and $y$ represent pixel units. Otherwise, $x$ and $y$
are understood as fractions of the size of the current output device (hence
must be between $0$ and $1$) and internally converted to pixels.
The plotting device imposes an upper bound for $x$ and $y$, for instance the
number of pixels for screen output. These bounds are available through the
\tet{plothsizes} function. The following sequence initializes in a portable
way (i.e independent of the output device) a window of maximal size, accessed
through coordinates in the $[0,1000] \times [0,1000]$ range:
\bprog
s = plothsizes();
plotinit(0, s[1]-1, s[2]-1);
plotscale(0, 0,1000, 0,1000);
@eprog
Function: plotkill
Class: highlevel
Section: graphic
C-Name: killrect
Prototype: vL
Help: plotkill(w): erase the rectwindow w.
Doc: erase rectwindow $w$ and free the corresponding memory. Note that if you
want to use the rectwindow $w$ again, you have to use \kbd{plotinit} first
to specify the new size. So it's better in this case to use \kbd{plotinit}
directly as this throws away any previous work in the given rectwindow.
Function: plotlines
Class: highlevel
Section: graphic
C-Name: rectlines
Prototype: vLGGD0,L,
Help: plotlines(w,X,Y,{flag=0}): draws an open polygon in rectwindow
w where X and Y contain the x (resp. y) coordinates of the vertices.
If X and Y are both single values (i.e not vectors), draw the
corresponding line (and move cursor). If (optional) flag is non-zero, close
the polygon.
Doc: draw on the rectwindow $w$
the polygon such that the (x,y)-coordinates of the vertices are in the
vectors of equal length $X$ and $Y$. For simplicity, the whole
polygon is drawn, not only the part of the polygon which is inside the
rectwindow. If $\fl$ is non-zero, close the polygon. In any case, the
virtual cursor does not move.
$X$ and $Y$ are allowed to be scalars (in this case, both have to).
There, a single segment will be drawn, between the virtual cursor current
position and the point $(X,Y)$. And only the part thereof which
actually lies within the boundary of $w$. Then \emph{move} the virtual cursor
to $(X,Y)$, even if it is outside the window. If you want to draw a
line from $(x1,y1)$ to $(x2,y2)$ where $(x1,y1)$ is not necessarily the
position of the virtual cursor, use \kbd{plotmove(w,x1,y1)} before using this
function.
Function: plotlinetype
Class: highlevel
Section: graphic
C-Name: rectlinetype
Prototype: vLL
Help: plotlinetype(w,type): change the type of following lines in rectwindow
w. type -2 corresponds to frames, -1 to axes, larger values may correspond
to something else. w=-1 changes highlevel plotting.
Doc: change the type of lines subsequently plotted in rectwindow $w$.
\var{type} $-2$ corresponds to frames, $-1$ to axes, larger values may
correspond to something else. $w = -1$ changes highlevel plotting. This is
only taken into account by the \kbd{gnuplot} interface.
Function: plotmove
Class: highlevel
Section: graphic
C-Name: rectmove
Prototype: vLGG
Help: plotmove(w,x,y): move cursor to position x,y in rectwindow w.
Doc: move the virtual cursor of the rectwindow $w$ to position $(x,y)$.
Function: plotpoints
Class: highlevel
Section: graphic
C-Name: rectpoints
Prototype: vLGG
Help: plotpoints(w,X,Y): draws in rectwindow w the points whose x
(resp y) coordinates are in X (resp Y). If X and Y are both
single values (i.e not vectors), draw the corresponding point (and move
cursor).
Doc: draw on the rectwindow $w$ the
points whose $(x,y)$-coordinates are in the vectors of equal length $X$ and
$Y$ and which are inside $w$. The virtual cursor does \emph{not} move. This
is basically the same function as \kbd{plothraw}, but either with no scaling
factor or with a scale chosen using the function \kbd{plotscale}.
As was the case with the \kbd{plotlines} function, $X$ and $Y$ are allowed to
be (simultaneously) scalar. In this case, draw the single point $(X,Y)$ on
the rectwindow $w$ (if it is actually inside $w$), and in any case
\emph{move} the virtual cursor to position $(x,y)$.
Function: plotpointsize
Class: highlevel
Section: graphic
C-Name: rectpointsize
Prototype: vLG
Help: plotpointsize(w,size): change the "size" of following points in
rectwindow w. w=-1 changes global value.
Doc: changes the ``size'' of following points in rectwindow $w$. If $w = -1$,
change it in all rectwindows. This only works in the \kbd{gnuplot} interface.
Function: plotpointtype
Class: highlevel
Section: graphic
C-Name: rectpointtype
Prototype: vLL
Help: plotpointtype(w,type): change the type of following points in
rectwindow w. type -1 corresponds to a dot, larger values may correspond to
something else. w=-1 changes highlevel plotting.
Doc: change the type of points subsequently plotted in rectwindow $w$.
$\var{type} = -1$ corresponds to a dot, larger values may correspond to
something else. $w = -1$ changes highlevel plotting. This is only taken into
account by the \kbd{gnuplot} interface.
Function: plotrbox
Class: highlevel
Section: graphic
C-Name: rectrbox
Prototype: vLGG
Help: plotrbox(w,dx,dy): if the cursor is at (x1,y1), draw a box with
diagonal (x1,y1)-(x1+dx,y1+dy) in rectwindow w (cursor does not move).
Doc: draw in the rectwindow $w$ the outline of the rectangle which is such
that the points $(x1,y1)$ and $(x1+dx,y1+dy)$ are opposite corners, where
$(x1,y1)$ is the current position of the cursor. Only the part of the
rectangle which is in $w$ is drawn. The virtual cursor does \emph{not} move.
Function: plotrecth
Class: highlevel
Section: graphic
C-Name: rectploth
Prototype: LV=GGEpD0,M,D0,L,\nParametric|1; Recursive|2; no_Rescale|4; no_X_axis|8; no_Y_axis|16; no_Frame|32; no_Lines|64; Points_too|128; Splines|256; no_X_ticks|512; no_Y_ticks|1024; Same_ticks|2048; Complex|4096
Help: plotrecth(w,X=a,b,expr,{flag=0},{n=0}):
writes to rectwindow w the curve output of
ploth(w,X=a,b,expr,flag,n). Returns a vector for the bounding box.
Doc: writes to rectwindow $w$ the curve output of
\kbd{ploth}$(w,X=a,b,\var{expr},\fl,n)$. Returns a vector for the bounding box.
Function: plotrecthraw
Class: highlevel
Section: graphic
C-Name: rectplothraw
Prototype: LGD0,L,
Help: plotrecthraw(w,data,{flags=0}): plot graph(s) for data in rectwindow
w, where data is a vector of vectors. If plot is parametric, length of data
should be even, and pairs of entries give curves to plot. If not, first
entry gives x-coordinate, and the other ones y-coordinates. Admits the same
optional flags as plotrecth, save that recursive plot is meaningless.
Doc: plot graph(s) for
\var{data} in rectwindow $w$. $\fl$ has the same significance here as in
\kbd{ploth}, though recursive plot is no more significant.
\var{data} is a vector of vectors, each corresponding to a list a coordinates.
If parametric plot is set, there must be an even number of vectors, each
successive pair corresponding to a curve. Otherwise, the first one contains
the $x$ coordinates, and the other ones contain the $y$-coordinates
of curves to plot.
Function: plotrline
Class: highlevel
Section: graphic
C-Name: rectrline
Prototype: vLGG
Help: plotrline(w,dx,dy): if the cursor is at (x1,y1), draw a line from
(x1,y1) to (x1+dx,y1+dy) (and move the cursor) in the rectwindow w.
Doc: draw in the rectwindow $w$ the part of the segment
$(x1,y1)-(x1+dx,y1+dy)$ which is inside $w$, where $(x1,y1)$ is the current
position of the virtual cursor, and move the virtual cursor to
$(x1+dx,y1+dy)$ (even if it is outside the window).
Function: plotrmove
Class: highlevel
Section: graphic
C-Name: rectrmove
Prototype: vLGG
Help: plotrmove(w,dx,dy): move cursor to position (dx,dy) relative to the
present position in the rectwindow w.
Doc: move the virtual cursor of the rectwindow $w$ to position
$(x1+dx,y1+dy)$, where $(x1,y1)$ is the initial position of the cursor
(i.e.~to position $(dx,dy)$ relative to the initial cursor).
Function: plotrpoint
Class: highlevel
Section: graphic
C-Name: rectrpoint
Prototype: vLGG
Help: plotrpoint(w,dx,dy): draw a point (and move cursor) at position dx,dy
relative to present position of the cursor in rectwindow w.
Doc: draw the point $(x1+dx,y1+dy)$ on the rectwindow $w$ (if it is inside
$w$), where $(x1,y1)$ is the current position of the cursor, and in any case
move the virtual cursor to position $(x1+dx,y1+dy)$.
Function: plotscale
Class: highlevel
Section: graphic
C-Name: rectscale
Prototype: vLGGGG
Help: plotscale(w,x1,x2,y1,y2): scale the coordinates in rectwindow w so
that x goes from x1 to x2 and y from y1 to y2 (y2<y1 is allowed).
Doc: scale the local coordinates of the rectwindow $w$ so that $x$ goes from
$x1$ to $x2$ and $y$ goes from $y1$ to $y2$ ($x2<x1$ and $y2<y1$ being
allowed). Initially, after the initialization of the rectwindow $w$ using
the function \kbd{plotinit}, the default scaling is the graphic pixel count,
and in particular the $y$ axis is oriented downwards since the origin is at
the upper left. The function \kbd{plotscale} allows to change all these
defaults and should be used whenever functions are graphed.
Function: plotstring
Class: highlevel
Section: graphic
C-Name: rectstring3
Prototype: vLsD0,L,
Help: plotstring(w,x,{flags=0}): draw in rectwindow w the string
corresponding to x. Bits 1 and 2 of flag regulate horizontal alignment: left
if 0, right if 2, center if 1. Bits 4 and 8 regulate vertical alignment:
bottom if 0, top if 8, v-center if 4. Can insert additional gap between
point and string: horizontal if bit 16 is set, vertical if bit 32 is set.
Doc: draw on the rectwindow $w$ the String $x$ (see \secref{se:strings}), at
the current position of the cursor.
\fl\ is used for justification: bits 1 and 2 regulate horizontal alignment:
left if 0, right if 2, center if 1. Bits 4 and 8 regulate vertical
alignment: bottom if 0, top if 8, v-center if 4. Can insert additional small
gap between point and string: horizontal if bit 16 is set, vertical if bit
32 is set (see the tutorial for an example).
Function: polchebyshev
Class: basic
Section: polynomials
C-Name: polchebyshev_eval
Prototype: LD1,L,DG
Help: polchebyshev(n,{flag=1},{a='x}): Chebychev polynomial of the first (flag
= 1) or second (flag = 2) kind, of degree n, evaluated at a.
Description:
(small,?1,?var):gen polchebyshev1($1,$3)
(small,2,?var):gen polchebyshev2($1,$3)
(small,small,?var):gen polchebyshev($1,$2,$3)
Doc: returns the $n^{\text{th}}$
\idx{Chebyshev} polynomial of the first kind $T_n$ ($\fl=1$) or the second
kind $U_n$ ($\fl=2$), evaluated at $a$ (\kbd{'x} by default). Both series of
polynomials satisfy the 3-term relation
$$ P_{n+1} = 2xP_n - P_{n-1}, $$
and are determined by the initial conditions $U_0 = T_0 = 1$, $T_1 = x$,
$U_1 = 2x$. In fact $T_n' = n U_{n-1}$ and, for all complex numbers $z$, we
have $T_n(\cos z) = \cos (nz)$ and $U_{n-1}(\cos z) = \sin(nz)/\sin z$.
If $n \geq 0$, then these polynomials have degree $n$. For $n < 0$,
$T_n$ is equal to $T_{-n}$ and $U_n$ is equal to $-U_{-2-n}$.
In particular, $U_{-1} = 0$.
Variant: Also available are \fun{GEN}{polchebyshev1}{long n, long v} and
\fun{GEN}{polchebyshev2}{long n, long v} for $T_n$ and $U_n$ respectively.
Function: polcoeff
Class: basic
Section: polynomials
C-Name: polcoeff0
Prototype: GLDn
Help: polcoeff(x,n,{v}): coefficient of degree n of x, or the n-th component
for vectors or matrices (for which it is simpler to use x[]). With respect
to the main variable if v is omitted, with respect to the variable v
otherwise.
Description:
(pol, 0):gen:copy constant_term($1)
(gen, small, ?var):gen polcoeff0($1, $2, $3)
Doc: coefficient of degree $n$ of the polynomial $x$, with respect to the
main variable if $v$ is omitted, with respect to $v$ otherwise. If $n$
is greater than the degree, the result is zero.
Naturally applies to scalars (polynomial of degree $0$), as well as to
rational functions whose denominator is a monomial.
It also applies to power series: if $n$ is less than the valuation, the result
is zero. If it is greater than the largest significant degree, then an error
message is issued.
For greater flexibility, vector or matrix types are also accepted for $x$,
and the meaning is then identical with that of \kbd{component(x,n)}.
Function: polcompositum
Class: basic
Section: number_fields
C-Name: polcompositum0
Prototype: GGD0,L,
Help: polcompositum(P,Q,{flag=0}): vector of all possible compositums
of the number fields defined by the polynomials P and Q. If (optional)
flag is set (i.e non-null), output for each compositum, not only the
compositum polynomial pol, but a vector [R,a,b,k] where a (resp. b) is a root
of P (resp. Q) expressed as a polynomial modulo R,
and a small integer k such that al2+k*al1 is the chosen root of R.
Doc: \sidx{compositum} $P$ and $Q$
being squarefree polynomials in $\Z[X]$ in the same variable, outputs
the simple factors of the \'etale $\Q$-algebra $A = \Q(X, Y) / (P(X), Q(Y))$.
The factors are given by a list of polynomials $R$ in $\Z[X]$, associated to
the number field $\Q(X)/ (R)$, and sorted by increasing degree (with respect
to lexicographic ordering for factors of equal degrees). Returns an error if
one of the polynomials is not squarefree.
Note that it is more efficient to reduce to the case where $P$ and $Q$ are
irreducible first. The routine will not perform this for you, since it may be
expensive, and the inputs are irreducible in most applications anyway.
Assuming $P$ is irreducible (of smaller degree than $Q$ for efficiency), it
is in general \emph{much} faster to proceed as follows
\bprog
nf = nfinit(P); L = nffactor(nf, Q)[,1];
vector(#L, i, rnfequation(nf, L[i]))
@eprog\noindent
to obtain the same result. If you are only interested in the degrees of the
simple factors, the \kbd{rnfequation} instruction can be replaced by a
trivial \kbd{poldegree(P) * poldegree(L[i])}.
If $\fl=1$, outputs a vector of 4-component vectors $[R,a,b,k]$, where $R$
ranges through the list of all possible compositums as above, and $a$
(resp. $b$) expresses the root of $P$ (resp. $Q$) as an element of
$\Q(X)/(R)$. Finally, $k$ is a small integer such that $b + ka = X$ modulo
$R$.
A compositum is quite often defined by a complicated polynomial, which it is
advisable to reduce before further work. Here is a simple example involving
the field $\Q(\zeta_5, 5^{1/5})$:
\bprog
? z = polcompositum(x^5 - 5, polcyclo(5), 1)[1];
? pol = z[1] \\@com \kbd{pol} defines the compositum
%2 = x^20 + 5*x^19 + 15*x^18 + 35*x^17 + 70*x^16 + 141*x^15 + 260*x^14 \
+ 355*x^13 + 95*x^12 - 1460*x^11 - 3279*x^10 - 3660*x^9 - 2005*x^8 \
+ 705*x^7 + 9210*x^6 + 13506*x^5 + 7145*x^4 - 2740*x^3 + 1040*x^2 \
- 320*x + 256
? a = z[2]; a^5 - 5 \\@com \kbd{a} is a fifth root of $5$
%3 = 0
? z = polredabs(pol, 1); \\@com look for a simpler polynomial
? pol = z[1]
%5 = x^20 + 25*x^10 + 5
? a = subst(a.pol, x, z[2]) \\@com \kbd{a} in the new coordinates
%6 = Mod(-5/22*x^19 + 1/22*x^14 - 123/22*x^9 + 9/11*x^4, x^20 + 25*x^10 + 5)
@eprog
Variant: Also available are
\fun{GEN}{compositum}{GEN P, GEN Q} ($\fl = 0$) and
\fun{GEN}{compositum2}{GEN P, GEN Q} ($\fl = 1$).
Function: polcyclo
Class: basic
Section: polynomials
C-Name: polcyclo_eval
Prototype: LDG
Help: polcyclo(n,{a = 'x}): n-th cyclotomic polynomial evaluated at a.
Description:
(small,?var):gen polcyclo($1,$2)
(small,gen):gen polcyclo_eval($1,$2)
Doc: $n$-th cyclotomic polynomial, evaluated at $a$ (\kbd{'x} by default). The
integer $n$ must be positive.
Algorithm used: reduce to the case where $n$ is squarefree; to compute the
cyclotomic polynomial, use $\Phi_{np}(x)=\Phi_n(x^p)/\Phi(x)$; to compute
it evaluated, use $\Phi_n(x) = \prod_{d\mid n} (x^d-1)^{\mu(n/d)}$. In the
evaluated case, the algorithm can deal with all rational values $a$;
otherwise it assumes that $a^d - 1$ is invertible for all $d\mid n$. If this
is not the case, use \kbd{subst(polcyclo(n),x,a)}.
Variant: The variant \fun{GEN}{polcyclo}{long n, long v} returns the $n$-th
cyclotomic polynomial in variable $v$.
Function: poldegree
Class: basic
Section: polynomials
C-Name: poldegree
Prototype: lGDn
Help: poldegree(x,{v}): degree of the polynomial or rational function x with
respect to main variable if v is omitted, with respect to v otherwise.
For scalar x, return 0 is x is non-zero and a negative number otherwise.
Description:
(pol):small degpol($1)
(gen):small degree($1)
(gen, var):small poldegree($1, $2)
Doc: degree of the polynomial $x$ in the main variable if $v$ is omitted, in
the variable $v$ otherwise.
The degree of $0$ is a fixed negative number, whose exact value should not
be used. The degree of a non-zero scalar is $0$. Finally, when $x$ is a
non-zero polynomial or rational function, returns the ordinary degree of
$x$. Raise an error otherwise.
Function: poldisc
Class: basic
Section: polynomials
C-Name: poldisc0
Prototype: GDn
Help: poldisc(pol,{v}): discriminant of the polynomial pol, with respect to main
variable if v is omitted, with respect to v otherwise.
Description:
(pol):gen discsr($1)
(gen):gen poldisc0($1, -1)
(gen, var):gen poldisc0($1, $2)
Doc: discriminant of the polynomial
\var{pol} in the main variable if $v$ is omitted, in $v$ otherwise. The
algorithm used is the \idx{subresultant algorithm}.
Function: poldiscreduced
Class: basic
Section: polynomials
C-Name: reduceddiscsmith
Prototype: G
Help: poldiscreduced(f): vector of elementary divisors of Z[a]/f'(a)Z[a],
where a is a root of the polynomial f.
Doc: reduced discriminant vector of the
(integral, monic) polynomial $f$. This is the vector of elementary divisors
of $\Z[\alpha]/f'(\alpha)\Z[\alpha]$, where $\alpha$ is a root of the
polynomial $f$. The components of the result are all positive, and their
product is equal to the absolute value of the discriminant of~$f$.
Function: polgalois
Class: basic
Section: number_fields
C-Name: polgalois
Prototype: Gp
Help: polgalois(x): Galois group of the polynomial x (see manual for group
coding). Return [n, s, k, name] where n is the order, s the signature, k the
index and name is the GAP4 name of the transitive group.
Doc: \idx{Galois} group of the non-constant
polynomial $x\in\Q[X]$. In the present version \vers, $x$ must be irreducible
and the degree of $x$ must be less than or equal to 7. On certain versions for
which the data file of Galois resolvents has been installed (available in the
Unix distribution as a separate package), degrees 8, 9, 10 and 11 are also
implemented.
The output is a 4-component vector $[n,s,k,name]$ with the
following meaning: $n$ is the cardinality of the group, $s$ is its signature
($s=1$ if the group is a subgroup of the alternating group $A_n$, $s=-1$
otherwise) and name is a character string containing name of the transitive
group according to the GAP 4 transitive groups library by Alexander Hulpke.
$k$ is more arbitrary and the choice made up to version~2.2.3 of PARI is rather
unfortunate: for $n > 7$, $k$ is the numbering of the group among all
transitive subgroups of $S_n$, as given in ``The transitive groups of degree up
to eleven'', G.~Butler and J.~McKay, \emph{Communications in Algebra}, vol.~11,
1983,
pp.~863--911 (group $k$ is denoted $T_k$ there). And for $n \leq 7$, it was ad
hoc, so as to ensure that a given triple would design a unique group.
Specifically, for polynomials of degree $\leq 7$, the groups are coded as
follows, using standard notations
\smallskip
In degree 1: $S_1=[1,1,1]$.
\smallskip
In degree 2: $S_2=[2,-1,1]$.
\smallskip
In degree 3: $A_3=C_3=[3,1,1]$, $S_3=[6,-1,1]$.
\smallskip
In degree 4: $C_4=[4,-1,1]$, $V_4=[4,1,1]$, $D_4=[8,-1,1]$, $A_4=[12,1,1]$,
$S_4=[24,-1,1]$.
\smallskip
In degree 5: $C_5=[5,1,1]$, $D_5=[10,1,1]$, $M_{20}=[20,-1,1]$,
$A_5=[60,1,1]$, $S_5=[120,-1,1]$.
\smallskip
In degree 6: $C_6=[6,-1,1]$, $S_3=[6,-1,2]$, $D_6=[12,-1,1]$, $A_4=[12,1,1]$,
$G_{18}=[18,-1,1]$, $S_4^-=[24,-1,1]$, $A_4\times C_2=[24,-1,2]$,
$S_4^+=[24,1,1]$, $G_{36}^-=[36,-1,1]$, $G_{36}^+=[36,1,1]$,
$S_4\times C_2=[48,-1,1]$, $A_5=PSL_2(5)=[60,1,1]$, $G_{72}=[72,-1,1]$,
$S_5=PGL_2(5)=[120,-1,1]$, $A_6=[360,1,1]$, $S_6=[720,-1,1]$.
\smallskip
In degree 7: $C_7=[7,1,1]$, $D_7=[14,-1,1]$, $M_{21}=[21,1,1]$,
$M_{42}=[42,-1,1]$, $PSL_2(7)=PSL_3(2)=[168,1,1]$, $A_7=[2520,1,1]$,
$S_7=[5040,-1,1]$.
\smallskip
This is deprecated and obsolete, but for reasons of backward compatibility,
we cannot change this behavior yet. So you can use the default
\tet{new_galois_format} to switch to a consistent naming scheme, namely $k$ is
always the standard numbering of the group among all transitive subgroups of
$S_n$. If this default is in effect, the above groups will be coded as:
\smallskip
In degree 1: $S_1=[1,1,1]$.
\smallskip
In degree 2: $S_2=[2,-1,1]$.
\smallskip
In degree 3: $A_3=C_3=[3,1,1]$, $S_3=[6,-1,2]$.
\smallskip
In degree 4: $C_4=[4,-1,1]$, $V_4=[4,1,2]$, $D_4=[8,-1,3]$, $A_4=[12,1,4]$,
$S_4=[24,-1,5]$.
\smallskip
In degree 5: $C_5=[5,1,1]$, $D_5=[10,1,2]$, $M_{20}=[20,-1,3]$,
$A_5=[60,1,4]$, $S_5=[120,-1,5]$.
\smallskip
In degree 6: $C_6=[6,-1,1]$, $S_3=[6,-1,2]$, $D_6=[12,-1,3]$, $A_4=[12,1,4]$,
$G_{18}=[18,-1,5]$, $A_4\times C_2=[24,-1,6]$, $S_4^+=[24,1,7]$,
$S_4^-=[24,-1,8]$, $G_{36}^-=[36,-1,9]$, $G_{36}^+=[36,1,10]$,
$S_4\times C_2=[48,-1,11]$, $A_5=PSL_2(5)=[60,1,12]$, $G_{72}=[72,-1,13]$,
$S_5=PGL_2(5)=[120,-1,14]$, $A_6=[360,1,15]$, $S_6=[720,-1,16]$.
\smallskip
In degree 7: $C_7=[7,1,1]$, $D_7=[14,-1,2]$, $M_{21}=[21,1,3]$,
$M_{42}=[42,-1,4]$, $PSL_2(7)=PSL_3(2)=[168,1,5]$, $A_7=[2520,1,6]$,
$S_7=[5040,-1,7]$.
\smallskip
\misctitle{Warning} The method used is that of resolvent polynomials and is
sensitive to the current precision. The precision is updated internally but,
in very rare cases, a wrong result may be returned if the initial precision
was not sufficient.
Variant: To enable the new format in library mode,
set the global variable \tet{new_galois_format} to $1$.
Function: polhensellift
Class: basic
Section: polynomials
C-Name: polhensellift
Prototype: GGGL
Help: polhensellift(A, B, p, e): lift the factorization B of A modulo p to a
factorization modulo p^e using Hensel lift. The factors in B must be
pairwise relatively prime modulo p.
Doc: given a prime $p$, an integral polynomial $A$ whose leading coefficient
is a $p$-unit, a vector $B$ of integral polynomials that are monic and
pairwise relatively prime modulo $p$, and whose product is congruent to
$A/\text{lc}(A)$ modulo $p$, lift the elements of $B$ to polynomials whose
product is congruent to $A$ modulo $p^e$.
More generally, if $T$ is an integral polynomial irreducible mod $p$, and
$B$ is a factorization of $A$ over the finite field $\F_p[t]/(T)$, you can
lift it to $\Z_p[t]/(T, p^e)$ by replacing the $p$ argument with $[p,T]$:
\bprog
? { T = t^3 - 2; p = 7; A = x^2 + t + 1;
B = [x + (3*t^2 + t + 1), x + (4*t^2 + 6*t + 6)];
r = polhensellift(A, B, [p, T], 6) }
%1 = [x + (20191*t^2 + 50604*t + 75783), x + (97458*t^2 + 67045*t + 41866)]
? lift(lift( r[1] * r[2] * Mod(Mod(1,p^6),T) ))
%2 = x^2 + (t + 1)
@eprog
Function: polhermite
Class: basic
Section: polynomials
C-Name: polhermite_eval
Prototype: LDG
Help: polhermite(n,{a='x}): Hermite polynomial H(n,v) of degree n, evaluated
at a.
Description:
(small,?var):gen polhermite($1,$2)
(small,gen):gen polhermite_eval($1,$2)
Doc: $n^{\text{th}}$ \idx{Hermite} polynomial $H_n$ evaluated at $a$
(\kbd{'x} by default), i.e.
$$ H_n(x) = (-1)^n\*e^{x^2} \dfrac{d^n}{dx^n}e^{-x^2}.$$
Variant: The variant \fun{GEN}{polhermite}{long n, long v} returns the $n$-th
Hermite polynomial in variable $v$.
Function: polinterpolate
Class: basic
Section: polynomials
C-Name: polint
Prototype: GDGDGD&
Help: polinterpolate(X,{Y},{x},{&e}): polynomial interpolation at x
according to data vectors X, Y (ie return P such that P(X[i]) = Y[i] for
all i). If Y is omitted, return P such that P(i) = X[i]. If present, e
will contain an error estimate on the returned value.
Doc: given the data vectors
$X$ and $Y$ of the same length $n$ ($X$ containing the $x$-coordinates,
and $Y$ the corresponding $y$-coordinates), this function finds the
\idx{interpolating polynomial} passing through these points and evaluates it
at~$x$. If $Y$ is omitted, return the polynomial interpolating the
$(i,X[i])$. If present, $e$ will contain an error estimate on the returned
value.
Function: polisirreducible
Class: basic
Section: polynomials
C-Name: gisirreducible
Prototype: G
Help: polisirreducible(pol): true(1) if pol is an irreducible non-constant
polynomial, false(0) if pol is reducible or constant.
Doc: \var{pol} being a polynomial (univariate in the present version \vers),
returns 1 if \var{pol} is non-constant and irreducible, 0 otherwise.
Irreducibility is checked over the smallest base field over which \var{pol}
seems to be defined.
Function: pollead
Class: basic
Section: polynomials
C-Name: pollead
Prototype: GDn
Help: pollead(x,{v}): leading coefficient of polynomial or series x, or x
itself if x is a scalar. Error otherwise. With respect to the main variable
of x if v is omitted, with respect to the variable v otherwise.
Description:
(pol):gen:copy leading_term($1)
(gen):gen pollead($1, -1)
(gen, var):gen pollead($1, $2)
Doc: leading coefficient of the polynomial or power series $x$. This is
computed with respect to the main variable of $x$ if $v$ is omitted, with
respect to the variable $v$ otherwise.
Function: pollegendre
Class: basic
Section: polynomials
C-Name: pollegendre_eval
Prototype: LDG
Help: pollegendre(n,{a='x}): legendre polynomial of degree n evaluated at a.
Description:
(small,?var):gen pollegendre($1,$2)
(small,gen):gen pollegendre_eval($1,$2)
Doc: $n^{\text{th}}$ \idx{Legendre polynomial} evaluated at $a$ (\kbd{'x} by
default).
Variant: To obtain the $n$-th Legendre polynomial in variable $v$,
use \fun{GEN}{pollegendre}{long n, long v}.
Function: polrecip
Class: basic
Section: polynomials
C-Name: polrecip
Prototype: G
Help: polrecip(pol): reciprocal polynomial of pol.
Doc: reciprocal polynomial of \var{pol}, i.e.~the coefficients are in
reverse order. \var{pol} must be a polynomial.
Function: polred
Class: basic
Section: number_fields
C-Name: polred0
Prototype: GD0,L,DG
Help: polred(x,{flag=0},{fa}): reduction of the polynomial x (gives minimal
polynomials only). Second and third args are optional. The following binary
digits of flag are significant 1: partial reduction, 2: gives also elements.
fa, if present, contains the factorization matrix of the discriminant.
Doc: finds polynomials with reasonably
small coefficients defining subfields of the number field defined by $x$.
One of the polynomials always defines $\Q$ (hence is equal to $x-1$),
and another always defines the same number field as $x$ if $x$ is irreducible.
All $x$ accepted by \tet{nfinit} are also allowed here (e.g. non-monic
polynomials, \kbd{nf}, \kbd{bnf}, \kbd{[x,Z\_K\_basis]}).
The following binary digits of $\fl$ are significant:
1: possibly use a suborder of the maximal order. The primes dividing the
index of the order chosen are larger than \tet{primelimit} or divide integers
stored in the \tet{addprimes} table.
2: gives also elements. The result is a two-column matrix, the first column
giving primitive elements defining these subfields, the second giving the
corresponding minimal polynomials.
\bprog
? M = polred(x^4 + 8, 2)
%1 =
[1 x - 1]
[1/2*x^2 x^2 + 2]
[1/4*x^3 x^4 + 2]
[x x^4 + 8]
? minpoly(Mod(M[2,1], x^4+8))
%2 = x^2 + 2
@eprog\noindent
If $fa$ is given, it is assumed that it is the two-column matrix of the
factorization of the discriminant of the polynomial $x$.
Variant: Also available is \fun{GEN}{polred}{GEN x} ($\fl = 0$). The function
\kbd{polred0} is provided for backward compatibility; instead of the above
hardcoded numerical flags (which happen to be inconsistent), one should use
\fun{GEN}{Polred}{GEN x, long flag, GEN fa} where flag is an or-ed
combination of \tet{nf_PARTIALFACT} (partial factorization of the
discriminant) and \tet{nf_ORIG} (give also elements).
Function: polredabs
Class: basic
Section: number_fields
C-Name: polredabs0
Prototype: GD0,L,
Help: polredabs(T,{flag=0}): a smallest generating polynomial of the number
field for the T2 norm on the roots, with smallest index for the minimal T2
norm. flag is optional, whose binary digit mean 1: give the element whose
characteristic polynomial is the given polynomial. 4: give all polynomials
of minimal T2 norm (give only one of P(x) and P(-x)). 16: partial reduction.
Doc: returns a canonical defining polynomial $P$ for the same number field
defined by $T$, such that the sum of the squares of the modulus of the
roots (i.e.~the $T_2$-norm) is minimal. Different $T$ defining isomorphic
number fields will yield the same $P$.
All $T$ accepted by \tet{nfinit} are also allowed here: non-monic
polynomials, \kbd{nf}, \kbd{bnf}, \kbd{[T, Z\_K\_basis]}.
\misctitle{Warning} This routine uses an exponential-time algorithm to
enumerate all potential generators, and may be exceedingly slow when the
number field has many subfields, hence a lot of elements of small $T_2$-norm.
E.g. do not try it on the compositum of many quadratic fields; in that case,
use \tet{polred} instead.
The binary digits of $\fl$ mean
1: outputs a two-component row vector $[P,a]$, where $P$ is the default
output and \kbd{Mod(a, P)} is a root of the original $T$.
4: gives \emph{all} polynomials of minimal $T_2$ norm; of the two polynomials
$P(x)$ and $\pm P(-x)$, only one is given.
16: possibly use a suborder of the maximal order. The primes dividing the
index of the order chosen are larger than \tet{primelimit} or divide integers
stored in the \tet{addprimes} table. In that case the polynomial $P$ is
no longer canonical, and it may happen that it does not have minimal
$T_2$ norm. You should always include this flag; without it, the routine
will often spend infinite time trying to factor the discriminant of $T$. As
long as the discriminant of the \emph{field} $\Q[X]/(T)$ is easy to factor
(has at most one large prime factor not in the \kbd{addprimes} table), the
result is the same.
Variant: Instead of the above hardcoded numerical flags, one should use an
or-ed combination of
\item \tet{nf_PARTIALFACT}: partial factorization of the discriminant,
possibly work in a non-maximal order. You should always include this.
\item \tet{nf_ORIG}: return $[P, a]$, where \kbd{Mod(a, P)} is a root of $T$.
\item \tet{nf_RAW}: return $[P, b]$, where \kbd{Mod(b, T)} is a root of $P$.
The algebraic integer $b$ is the raw result produced by the small vectors
enumeration in the maximal order; $P$ was computed as the characteristic
polynomial of \kbd{Mod(b, T)}. \kbd{Mod(a, P)} as in \tet{nf_ORIG}
is obtained with \tet{modreverse}.
\item \tet{nf_ADDZK}: if $r$ is the result produced with some of the above
flags (of the form $P$ or $[P,c]$), return \kbd{[r,zk]}, where \kbd{zk} is a
$\Z$-basis for the maximal order of $\Q[X]/(P)$.
\item \tet{nf_ALL}: return a vector of results of the above form, for all
polynomials of minimal $T_2$-norm.
Function: polredord
Class: basic
Section: number_fields
C-Name: ordred
Prototype: G
Help: polredord(x): reduction of the polynomial x, staying in the same order.
Doc: finds polynomials with reasonably small
coefficients and of the same degree as that of $x$ defining suborders of the
order defined by $x$. One of the polynomials always defines $\Q$ (hence
is equal to $(x-1)^n$, where $n$ is the degree), and another always defines
the same order as $x$ if $x$ is irreducible. Useless function: try
\kbd{polred(,1)} or \kbd{polredabs(,16)}.
Function: polresultant
Class: basic
Section: polynomials
C-Name: polresultant0
Prototype: GGDnD0,L,
Help: polresultant(x,y,{v},{flag=0}): resultant of the polynomials x and y,
with respect to the main variables of x and y if v is omitted, with respect
to the variable v otherwise. flag is optional, and can be 0: default,
uses either the subresultant algorithm, a modular algorithm or Sylvester's
matrix, depending on the inputs; 1 uses Sylvester's matrix (should always be
slower than the default).
Doc: resultant of the two
polynomials $x$ and $y$ with exact entries, with respect to the main
variables of $x$ and $y$ if $v$ is omitted, with respect to the variable $v$
otherwise. The algorithm assumes the base ring is a domain. If you also need
the $u$ and $v$ such that $x*u + y*v = res(x,y)$, use the \tet{bezoutres}
function.
If $\fl=0$ (default), uses the the algorithm best suited to the inputs,
either the \idx{subresultant algorithm} (Lazard/Ducos variant, generic case),
a modular algorithm (inputs in $\Q[X]$) or Sylvester's matrix (inexact
inputs).
If $\fl=1$, uses the determinant of Sylvester's matrix instead; this should
always be slower than the default.
Function: polroots
Class: basic
Section: polynomials
C-Name: roots0
Prototype: GD0,L,p
Help: polroots(x,{flag=0}): complex roots of the polynomial x. flag is
optional, and can be 0: default, uses Schonhage's method modified by
Gourdon, or 1: uses a modified Newton method.
Doc: complex roots of the polynomial
\var{pol}, given as a column vector where each root is repeated according to
its multiplicity. The precision is given as for transcendental functions: in
GP it is kept in the variable \kbd{realprecision} and is transparent to the
user, but it must be explicitly given as a second argument in library mode.
The algorithm used is a modification of A.~Sch\"onhage\sidx{Sch\"onage}'s
root-finding algorithm, due to and implemented by X.~Gourdon. Barring bugs, it
is guaranteed to converge and to give the roots to the required accuracy.
If $\fl=1$, use a variant of the Newton-Raphson method, which is \emph{not}
guaranteed to converge, nor to give accurate results, but is rather
fast when it does. If you get the messages ``too many iterations in roots''
or ``INTERNAL ERROR: incorrect result in roots'', use the default algorithm.
Variant: Also available is \fun{GEN}{roots}{GEN x, long prec}, as well as
\fun{GEN}{cleanroots}{GEN x, long prec} which ensures that real roots of
real polynomials are returned as \typ{REAL} (instead of \typ{COMPLEX}s with
0 imaginary part).
Function: polrootsff
Class: basic
Section: number_theoretical
C-Name: polrootsff
Prototype: GDGDG
Help: polrootsff(x,{p},{a}): returns the roots of the polynomial x in the finite
field F_p[X]/a(X)F_p[X]. a or p can be omitted if x has t_FFELT coefficients.
Doc: returns the vector of distinct roots of the polynomial $x$ in the field
$\F_q$ defined by the irreducible polynomial $a$ over $\F_p$. The
coefficients of $x$ must be operation-compatible with $\Z/p\Z$.
Either $a$ or $p$ can omitted (in which case both are ignored) if x has
\typ{FFELT} coefficients:
\bprog
? polrootsff(x^2 + 1, 5, y^2+3) \\ over F_5[y]/(y^2+3) ~ F_25
%1 = [Mod(Mod(3, 5), Mod(1, 5)*y^2 + Mod(3, 5)),
Mod(Mod(2, 5), Mod(1, 5)*y^2 + Mod(3, 5))]
? t = ffgen(y^2 + Mod(3,5), 't); \\ a generator for F_25 as a t_FFELT
? polrootsff(x^2 + 1) \\ not enough information to determine the base field
*** at top-level: polrootsff(x^2+1)
*** ^-----------------
*** polrootsff: incorrect type in factorff.
? polrootsff(x^2 + t^0) \\ make sure one coeff. is a t_FFELT
%3 = [3, 2]
? polrootsff(x^2 + t + 1)
%4 = [2*t + 1, 3*t + 4]
@eprog\noindent
Notice that the second syntax is easier to use and much more readable.
Function: polrootsmod
Class: basic
Section: polynomials
C-Name: rootmod0
Prototype: GGD0,L,
Help: polrootsmod(pol,p,{flag=0}): roots mod the prime p of the polynomial pol. flag is
optional, and can be 0: default, or 1: use a naive search, useful for small p.
Description:
(pol, int, ?0):vec rootmod($1, $2)
(pol, int, 1):vec rootmod2($1, $2)
(pol, int, #small):vec $"Bad flag in polrootsmod"
(pol, int, small):vec rootmod0($1, $2, $3)
Doc: row vector of roots modulo $p$ of the polynomial \var{pol}. The
particular non-prime value $p=4$ is accepted, mainly for $2$-adic
computations. Multiple roots are \emph{not} repeated.
\bprog
? polrootsmod(x^2-1,2)
%1 = [Mod(1, 2)]~
? polrootsmod(x^2-1,4)
%2 = [Mod(1, 4), Mod(3, 4)]~
@eprog\noindent
If $p$ is very small, you may set $\fl=1$, which uses a naive search.
Function: polrootspadic
Class: basic
Section: polynomials
C-Name: rootpadic
Prototype: GGL
Help: polrootspadic(x,p,r): p-adic roots of the polynomial x to precision r.
Doc: row vector of $p$-adic roots of
the polynomial \var{pol}, given to $p$-adic precision $r$. Multiple roots are
\emph{not} repeated. $p$ is assumed to be a prime, and \var{pol} to be
non-zero modulo $p$. Note that this is not the same as the roots in
$\Z/p^r\Z$, rather it gives approximations in $\Z/p^r\Z$ of the true
roots living in $\Q_p$.
If \var{pol} has inexact \typ{PADIC} coefficients, this is not always
well-defined; in this case, the equation is first made integral, then lifted
to $\Z$. Hence the roots given are approximations of the roots of a
polynomial which is $p$-adically close to the input.
Function: polsturm
Class: basic
Section: polynomials
C-Name: sturmpart
Prototype: lGDGDG
Help: polsturm(pol,{a},{b}): number of real roots of the squarefree polynomial
pol in the interval ]a,b] (which are respectively taken to be -oo or +oo when
omitted).
Doc: number of real roots of the real squarefree polynomial \var{pol} in the
interval $]a,b]$, using Sturm's algorithm. $a$ (resp.~$b$) is taken to be
$-\infty$ (resp.~$+\infty$) if omitted.
Variant: Also available is \fun{long}{sturm}{GEN pol} (total number of real
roots).
Function: polsubcyclo
Class: basic
Section: polynomials
C-Name: polsubcyclo
Prototype: LLDn
Help: polsubcyclo(n,d,{v=x}): finds an equation (in variable v) for the d-th
degree subfields of Q(zeta_n). Output is a polynomial or a vector of
polynomials is there are several such fields, or none.
Doc: gives polynomials (in variable
$v$) defining the sub-Abelian extensions of degree $d$ of the cyclotomic
field $\Q(\zeta_n)$, where $d\mid \phi(n)$.
If there is exactly one such extension the output is a polynomial, else it is
a vector of polynomials, possibly empty. To get a vector in all cases,
use \kbd{concat([], polsubcyclo(n,d))}
The function \tet{galoissubcyclo} allows to specify more closely which
sub-Abelian extension should be computed.
Function: polsylvestermatrix
Class: basic
Section: polynomials
C-Name: sylvestermatrix
Prototype: GG
Help: polsylvestermatrix(x,y): forms the sylvester matrix associated to the
two polynomials x and y. Warning: the polynomial coefficients are in
columns, not in rows.
Doc: forms the Sylvester matrix
corresponding to the two polynomials $x$ and $y$, where the coefficients of
the polynomials are put in the columns of the matrix (which is the natural
direction for solving equations afterwards). The use of this matrix can be
essential when dealing with polynomials with inexact entries, since
polynomial Euclidean division doesn't make much sense in this case.
Function: polsym
Class: basic
Section: polynomials
C-Name: polsym
Prototype: GL
Help: polsym(x,n): column vector of symmetric powers of the roots of x up to n.
Doc: creates the column vector of the \idx{symmetric powers} of the roots of the
polynomial $x$ up to power $n$, using Newton's formula.
Function: poltchebi
Class: basic
Section: polynomials
C-Name: polchebyshev1
Prototype: LDn
Help: poltchebi(n,{v=x}): Tchebitcheff polynomial of degree n, in variable v.
(For backward compatibility.)
Doc: creates the $n^{\text{th}}$ \idx{Chebyshev} polynomial~$T_n$ of the
first kind in variable $v$. This function is retained for backward
compatibility only. Use \tet{polchebyshev}.
Function: poltschirnhaus
Class: basic
Section: number_fields
C-Name: tschirnhaus
Prototype: G
Help: poltschirnhaus(x): random Tschirnhausen transformation of the
polynomial x.
Doc: applies a random Tschirnhausen
transformation to the polynomial $x$, which is assumed to be non-constant
and separable, so as to obtain a new equation for the \'etale algebra
defined by $x$. This is for instance useful when computing resolvents,
hence is used by the \kbd{polgalois} function.
Function: polylog
Class: basic
Section: transcendental
C-Name: polylog0
Prototype: LGD0,L,p
Help: polylog(m,x,{flag=0}): m-th polylogarithm of x. flag is optional, and
can be 0: default, 1: D_m~-modified m-th polylog of x, 2: D_m-modified m-th
polylog of x, 3: P_m-modified m-th polylog of x.
Doc: one of the different polylogarithms, depending on \fl:
If $\fl=0$ or is omitted: $m^\text{th}$ polylogarithm of $x$, i.e.~analytic
continuation of the power series $\text{Li}_m(x)=\sum_{n\ge1}x^n/n^m$
($x < 1$). Uses the functional equation linking the values at $x$ and $1/x$
to restrict to the case $|x|\leq 1$, then the power series when
$|x|^2\le1/2$, and the power series expansion in $\log(x)$ otherwise.
Using $\fl$, computes a modified $m^\text{th}$ polylogarithm of $x$.
We use Zagier's notations; let $\Re_m$ denote $\Re$ or $\Im$ depending
on whether $m$ is odd or even:
If $\fl=1$: compute $\tilde D_m(x)$, defined for $|x|\le1$ by
$$\Re_m\left(\sum_{k=0}^{m-1} \dfrac{(-\log|x|)^k}{k!}\text{Li}_{m-k}(x)
+\dfrac{(-\log|x|)^{m-1}}{m!}\log|1-x|\right).$$
If $\fl=2$: compute $D_m(x)$, defined for $|x|\le1$ by
$$\Re_m\left(\sum_{k=0}^{m-1}\dfrac{(-\log|x|)^k}{k!}\text{Li}_{m-k}(x)
-\dfrac{1}{2}\dfrac{(-\log|x|)^m}{m!}\right).$$
If $\fl=3$: compute $P_m(x)$, defined for $|x|\le1$ by
$$\Re_m\left(\sum_{k=0}^{m-1}\dfrac{2^kB_k}{k!}(\log|x|)^k\text{Li}_{m-k}(x)
-\dfrac{2^{m-1}B_m}{m!}(\log|x|)^m\right).$$
These three functions satisfy the functional equation
$f_m(1/x) = (-1)^{m-1}f_m(x)$.
Variant: Also available is
\fun{GEN}{gpolylog}{long m, GEN x, long prec} (\fl = 0).
Function: polzagier
Class: basic
Section: polynomials
C-Name: polzag
Prototype: LL
Help: polzagier(n,m): Zagier's polynomials of index n,m.
Doc: creates Zagier's polynomial $P_n^{(m)}$ used in
the functions \kbd{sumalt} and \kbd{sumpos} (with $\fl=1$). One must have $m\le
n$. The exact definition can be found in ``Convergence acceleration of
alternating series'', Cohen et al., Experiment.~Math., vol.~9, 2000, pp.~3--12.
%@article {MR2001m:11222,
% AUTHOR = {Cohen, Henri and Rodriguez Villegas, Fernando and Zagier, Don},
% TITLE = {Convergence acceleration of alternating series},
% JOURNAL = {Experiment. Math.},
% VOLUME = {9},
% YEAR = {2000},
% NUMBER = {1},
% PAGES = {3--12},
%}
Function: precision
Class: basic
Section: conversions
C-Name: precision0
Prototype: GD0,L,
Help: precision(x,{n}): change the precision of x to be n. If n is omitted,
output real precision of object x.
Description:
(real):small prec2ndec(gprecision($1))
(gen):int precision0($1, 0)
(real,0):small prec2ndec(gprecision($1))
(gen,0):int precision0($1, 0)
(real,#small):real rtor($1, ndec2prec($2))
(gen,#small):gen gprec($1, $2)
(real,small):real precision0($1, $2)
(gen,small):gen precision0($1, $2)
Doc: gives the precision in decimal digits of the PARI object $x$. If $x$ is
an exact object, the largest single precision integer is returned.
\bprog
? precision(exp(1e-100))
%1 = 134 \\ 134 significant decimal digits
? precision(2 + x)
%2 = 2147483647 \\ exact object
? precision(0.5 + O(x))
%3 = 28 \\ floating point accuracy, NOT series precision
? precision( [ exp(1e-100), 0.5 ] )
%4 = 28 \\ minimal accuracy among components
@eprog\noindent
The return value for exact objects is meaningless since it is not even the
same on 32 and 64-bit machines. The proper way to test whether an object is
exact is
\bprog
? isexact(x) = precision(x) == precision(0)
@eprog
If $n$ is not omitted, creates a new object equal to $x$ with a new
``precision'' $n$. (This never changes the type of the result. In particular
it is not possible to use it to obtain a polynomial from a power series; tor
that, see \tet{truncate}.) Now the meaning of precision is different from the
above (floating point accuracy), and depends on the type of $x$:
For exact types, no change. For $x$ a vector or a matrix, the operation is
done componentwise.
For real $x$, $n$ is the number of desired significant \emph{decimal}
digits. If $n$ is smaller than the precision of $x$, $x$ is truncated,
otherwise $x$ is extended with zeros.
For $x$ a $p$-adic or a power series, $n$ is the desired number of
\emph{significant} $p$-adic or $X$-adic digits, where $X$ is the main
variable of $x$. (Note: yes, this is inconsistent.)
Note that the precision is a priori distinct from the exponent $k$ appearing
in $O(*^k)$; it is indeed equal to $k$ if and only if $x$ is a $p$-adic
or $X$-adic \emph{unit}.
\bprog
? precision(1 + O(x), 10)
%1 = 1 + O(x^10)
? precision(x^2 + O(x^10), 3)
%2 = x^2 + O(x^5)
? precision(7^2 + O(7^10), 3)
%3 = 7^2 + O(7^5)
@eprog\noindent
For the last two examples, note that $x^2 + O(x^5) = x^2(1 + O(x^3))$
indeed has 3 significant coefficients
Variant: Also available are \fun{GEN}{gprec}{GEN x, long n} and
\fun{long}{precision}{GEN x}. In both, the accuracy is expressed in
\emph{words} (32-bit or 64-bit depending on the architecture).
Function: precprime
Class: basic
Section: number_theoretical
C-Name: gprecprime
Prototype: G
Help: precprime(x): largest pseudoprime <= x, 0 if x<=1.
Description:
(int):int precprime($1)
(gen):gen gprecprime($1)
Doc: finds the largest pseudoprime (see
\tet{ispseudoprime}) less than or equal to $x$. $x$ can be of any real type.
Returns 0 if $x\le1$. Note that if $x$ is a prime, this function returns $x$
and not the largest prime strictly smaller than $x$. To rigorously prove that
the result is prime, use \kbd{isprime}.
The function accepts vector/matrices arguments, and is then applied
componentwise.
Variant: For a scalar $x$, \fun{long}{precprime}{GEN n} is also available.
Function: prime
Class: basic
Section: number_theoretical
C-Name: prime
Prototype: L
Help: prime(n): returns the n-th prime (n C-integer).
Doc: the $x^{\text{th}}$ prime number, which must be among
the precalculated primes.
Function: primepi
Class: basic
Section: number_theoretical
C-Name: primepi
Prototype: G
Help: primepi(x): the prime counting function pi(x) = #{p <= x, p prime}.
Description:
(gen):int primepi($1)
Doc: the prime counting function. Returns the number of
primes $p$, $p \leq x$. Uses a naive algorithm so that $x$ must be less than
\kbd{primelimit}.
Function: primes
Class: basic
Section: number_theoretical
C-Name: primes
Prototype: L
Help: primes(x): returns the vector of the first x primes.
Doc: creates a row vector whose components
are the first $x$ prime numbers, which must be among the precalculated primes.
\bprog
? primes(10) \\ the first 10 primes
%1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
? primes(primepi(10)) \\ the primes up to 10
%2 = [2, 3, 5, 7]
@eprog
Function: print
Class: basic
Section: programming/specific
C-Name: print
Prototype: vs*
Help: print({str}*): outputs its string arguments (in raw format) ending with
a newline.
Description:
(?gen,...):void pari_printf("${2 format_string}\n"${2 format_args})
Doc: outputs its (string) arguments in raw format, ending with a newline.
%\syn{NO}
Function: print1
Class: basic
Section: programming/specific
C-Name: print1
Prototype: vs*
Help: print1({str}*): outputs its string arguments (in raw format) without
ending with newline.
Description:
(?gen,...):void pari_printf("${2 format_string}"${2 format_args})
Doc: outputs its (string) arguments in raw
format, without ending with a newline. Note that you can still embed newlines
within your strings, using the \b{n} notation~!
%\syn{NO}
Function: printf
Class: basic
Section: programming/specific
C-Name: printf0
Prototype: vss*
Help: printf(fmt,{x}*): prints its arguments according to the format fmt.
Doc: This function is based on the C library command of the same name.
It prints its arguments according to the format \var{fmt}, which specifies how
subsequent arguments are converted for output. The format is a
character string composed of zero or more directives:
\item ordinary characters (not \kbd{\%}), printed unchanged,
\item conversions specifications (\kbd{\%} followed by some characters)
which fetch one argument from the list and prints it according to the
specification.
More precisely, a conversion specification consists in a \kbd{\%}, one or more
optional flags (among \kbd{\#}, \kbd{0}, \kbd{-}, \kbd{+}, ` '), an optional
decimal digit string specifying a minimal field width, an optional precision
in the form of a period (`\kbd{.}') followed by a decimal digit string, and
the conversion specifier (among \kbd{d},\kbd{i}, \kbd{o}, \kbd{u},
\kbd{x},\kbd{X}, \kbd{p}, \kbd{e},\kbd{E}, \kbd{f}, \kbd{g},\kbd{G}, \kbd{s}).
\misctitle{The flag characters} The character \kbd{\%} is followed by zero or
more of the following flags:
\item \kbd{\#}: The value is converted to an ``alternate form''. For
\kbd{o} conversion (octal), a \kbd{0} is prefixed to the string. For \kbd{x}
and \kbd{X} conversions (hexa), respectively \kbd{0x} and \kbd{0X} are
prepended. For other conversions, the flag is ignored.
\item \kbd{0}: The value should be zero padded. For
\kbd{d},
\kbd{i},
\kbd{o},
\kbd{u},
\kbd{x},
\kbd{X}
\kbd{e},
\kbd{E},
\kbd{f},
\kbd{F},
\kbd{g}, and
\kbd{G} conversions, the value is padded on the left with zeros rather than
blanks. (If the \kbd{0} and \kbd{-} flags both appear, the \kbd{0} flag is
ignored.)
\item \kbd{-}: The value is left adjusted on the field boundary. (The
default is right justification.) The value is padded on the right with
blanks, rather than on the left with blanks or zeros. A \kbd{-} overrides a
\kbd{0} if both are given.
\item \kbd{` '} (a space): A blank is left before a positive number
produced by a signed conversion.
\item \kbd{+}: A sign (+ or -) is placed before a number produced by a
signed conversion. A \kbd{+} overrides a space if both are used.
\misctitle{The field width} An optional decimal digit string (whose first
digit is non-zero) specifying a \emph{minimum} field width. If the value has
fewer characters than the field width, it is padded with spaces on the left
(or right, if the left-adjustment flag has been given). In no case does a
small field width cause truncation of a field; if the value is wider than
the field width, the field is expanded to contain the conversion result.
Instead of a decimal digit string, one may write \kbd{*} to specify that the
field width is given in the next argument.
\misctitle{The precision} An optional precision in the form of a period
(`\kbd{.}') followed by a decimal digit string. This gives
the number of digits to appear after the radix character for \kbd{e},
\kbd{E}, \kbd{f}, and \kbd{F} conversions, the maximum number of significant
digits for \kbd{g} and \kbd{G} conversions, and the maximum number of
characters to be printed from an \kbd{s} conversion.
Instead of a decimal digit string, one may write \kbd{*} to specify that the
field width is given in the next argument.
\misctitle{The length modifier} This is ignored under \kbd{gp}, but
necessary for \kbd{libpari} programming. Description given here for
completeness:
\item \kbd{l}: argument is a \kbd{long} integer.
\item \kbd{P}: argument is a \kbd{GEN}.
\misctitle{The conversion specifier} A character that specifies the type of
conversion to be applied.
\item \kbd{d}, \kbd{i}: A signed integer.
\item \kbd{o}, \kbd{u}, \kbd{x}, \kbd{X}: An unsigned integer, converted
to unsigned octal (\kbd{o}), decimal (\kbd{u}) or hexadecimal (\kbd{x} or
\kbd{X}) notation. The letters \kbd{abcdef} are used for \kbd{x}
conversions; the letters \kbd{ABCDEF} are used for \kbd{X} conversions.
\item \kbd{e}, \kbd{E}: The (real) argument is converted in the style
\kbd{[ -]d.ddd e[ -]dd}, where there is one digit before the decimal point,
and the number of digits after it is equal to the precision; if the
precision is missing, use the current \kbd{realprecision} for the total
number of printed digits. If the precision is explicitly 0, no decimal-point
character appears. An \kbd{E} conversion uses the letter \kbd{E} rather
than \kbd{e} to introduce the exponent.
\item \kbd{f}, \kbd{F}: The (real) argument is converted in the style
\kbd{[ -]ddd.ddd}, where the number of digits after the decimal point
is equal to the precision; if the precision is missing, use the current
\kbd{realprecision} for the total number of printed digits. If the precision
is explicitly 0, no decimal-point character appears. If a decimal point
appears, at least one digit appears before it.
\item \kbd{g}, \kbd{G}: The (real) argument is converted in style
\kbd{e} or \kbd{f} (or \kbd{E} or \kbd{F} for \kbd{G} conversions)
\kbd{[ -]ddd.ddd}, where the total number of digits printed
is equal to the precision; if the precision is missing, use the current
\kbd{realprecision}. If the precision is explicitly 0, it is treated as 1.
Style \kbd{e} is used when
the decimal exponent is $< -4$, to print \kbd{0.}, or when the integer
part cannot be decided given the known significant digits, and the \kbd{f}
format otherwise.
\item \kbd{c}: The integer argument is converted to an unsigned char, and the
resulting character is written.
\item \kbd{s}: Convert to a character string. If a precision is given, no
more than the specified number of characters are written.
\item \kbd{p}: Print the address of the argument in hexadecimal (as if by
\kbd{\%\#x}).
\item \kbd{\%}: A \kbd{\%} is written. No argument is converted. The complete
conversion specification is \kbd{\%\%}.
\noindent Examples:
\bprog
? printf("floor: %d, field width 3: %3d, with sign: %+3d\n", Pi, 1, 2);
floor: 3, field width 3: 1, with sign: +2
? printf("%.5g %.5g %.5g\n",123,123/456,123456789);
123.00 0.26974 1.2346 e8
? printf("%-2.5s:%2.5s:%2.5s\n", "P", "PARI", "PARIGP");
P :PARI:PARIG
\\ min field width and precision given by arguments
? x = 23; y=-1/x; printf("x=%+06.2f y=%+0*.*f\n", x, 6, 2, y);
x=+23.00 y=-00.04
\\ minimum fields width 5, pad left with zeroes
? for (i = 2, 5, printf("%05d\n", 10^i))
00100
01000
10000
100000 \\@com don't truncate fields whose length is larger than the minimum width
? printf("%.2f |%06.2f|", Pi,Pi)
3.14 | 3.14|
@eprog\noindent All numerical conversions apply recursively to the entries
of vectors and matrices:
\bprog
? printf("%4d", [1,2,3]);
[ 1, 2, 3]
? printf("%5.2f", mathilbert(3));
[ 1.00 0.50 0.33]
[ 0.50 0.33 0.25]
[ 0.33 0.25 0.20]
@eprog
\misctitle{Technical note} Our implementation of \tet{printf}
deviates from the C89 and C99 standards in a few places:
\item whenever a precision is missing, the current \kbd{realprecision} is
used to determine the number of printed digits (C89: use 6 decimals after
the radix character).
\item in conversion style \kbd{e}, we do not impose that the
exponent has at least two digits; we never write a \kbd{+} sign in the
exponent; 0 is printed in a special way, always as \kbd{0.E\var{exp}}.
\item in conversion style \kbd{f}, we switch to style \kbd{e} if the
exponent is greater or equal to the precision.
\item in conversion \kbd{g} and \kbd{G}, we do not remove trailing zeros
from the fractional part of the result; nor a trailing decimal point;
0 is printed in a special way, always as \kbd{0.E\var{exp}}.
%\syn{NO}
Function: printtex
Class: basic
Section: programming/specific
C-Name: printtex
Prototype: vs*
Help: printtex({str}*): outputs its string arguments in TeX format.
Doc: outputs its (string) arguments in \TeX\ format. This output can then be
used in a \TeX\ manuscript.
The printing is done on the standard output. If you want to print it to a
file you should use \kbd{writetex} (see there).
Another possibility is to enable the \tet{log} default
(see~\secref{se:defaults}).
You could for instance do:\sidx{logfile}
%
\bprog
default(logfile, "new.tex");
default(log, 1);
printtex(result);
@eprog
%\syn{NO}
Function: prod
Class: basic
Section: sums
C-Name: produit
Prototype: V=GGEDG
Help: prod(X=a,b,expr,{x=1}): x times the product (X runs from a to b) of
expression.
Doc: product of expression
\var{expr}, initialized at $x$, the formal parameter $X$ going from $a$ to
$b$. As for \kbd{sum}, the main purpose of the initialization parameter $x$
is to force the type of the operations being performed. For example if it is
set equal to the integer 1, operations will start being done exactly. If it
is set equal to the real $1.$, they will be done using real numbers having
the default precision. If it is set equal to the power series $1+O(X^k)$ for
a certain $k$, they will be done using power series of precision at most $k$.
These are the three most common initializations.
\noindent As an extreme example, compare
\bprog
? prod(i=1, 100, 1 - X^i); \\@com this has degree $5050$ !!
time = 128 ms.
? prod(i=1, 100, 1 - X^i, 1 + O(X^101))
time = 8 ms.
%2 = 1 - X - X^2 + X^5 + X^7 - X^12 - X^15 + X^22 + X^26 - X^35 - X^40 + \
X^51 + X^57 - X^70 - X^77 + X^92 + X^100 + O(X^101)
@eprog\noindent
Of course, in this specific case, it is faster to use \tet{eta},
which is computed using Euler's formula.
\bprog
? prod(i=1, 1000, 1 - X^i, 1 + O(X^1001));
time = 589 ms.
? \ps1000
seriesprecision = 1000 significant terms
? eta(X) - %
time = 8ms.
%4 = O(X^1001)
@eprog
\synt{produit}{GEN a, GEN b, char *expr, GEN x}.
Function: prodeuler
Class: basic
Section: sums
C-Name: prodeuler0
Prototype: V=GGEp
Help: prodeuler(X=a,b,expr): Euler product (X runs over the primes between a
and b) of real or complex expression.
Doc: product of expression \var{expr},
initialized at 1. (i.e.~to a \emph{real} number equal to 1 to the current
\kbd{realprecision}), the formal parameter $X$ ranging over the prime numbers
between $a$ and $b$.\sidx{Euler product}
\synt{prodeuler}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b, long prec}.
Function: prodinf
Class: basic
Section: sums
C-Name: prodinf0
Prototype: V=GED0,L,p
Help: prodinf(X=a,expr,{flag=0}): infinite product (X goes from a to
infinity) of real or complex expression. flag can be 0 (default) or 1, in
which case compute the product of the 1+expr instead.
Wrapper: (,G)
Description:
(gen,gen,?small):gen:prec prodinf(${2 cookie}, ${2 wrapper}, $1, $3, prec)
Doc: \idx{infinite product} of
expression \var{expr}, the formal parameter $X$ starting at $a$. The evaluation
stops when the relative error of the expression minus 1 is less than the
default precision. In particular, non-convergent products result in infinite
loops. The expressions must always evaluate to an element of $\C$.
If $\fl=1$, do the product of the ($1+\var{expr}$) instead.
\synt{prodinf}{void *E, GEN (*eval)(void*,GEN), GEN a, long prec}
($\fl=0$), or \tet{prodinf1} with the same arguments ($\fl=1$).
Function: psdraw
Class: highlevel
Section: graphic
C-Name: postdraw_flag
Prototype: vGD0,L,
Help: psdraw(list, {flag=0}): same as plotdraw, except that the output is a
PostScript program in psfile (pari.ps by default), and flag!=0 scales the
plot from size of the current output device to the standard PostScript
plotting size.
Doc: same as \kbd{plotdraw}, except that the output is a PostScript program
appended to the \kbd{psfile}, and flag!=0 scales the plot from size of the
current output device to the standard PostScript plotting size
Function: psi
Class: basic
Section: transcendental
C-Name: gpsi
Prototype: Gp
Help: psi(x): psi-function at x.
Doc: the $\psi$-function of $x$, i.e.~the
logarithmic derivative $\Gamma'(x)/\Gamma(x)$.
Function: psploth
Class: highlevel
Section: graphic
C-Name: postploth
Prototype: V=GGEpD0,L,D0,L,
Help: psploth(X=a,b,expr,{flags=0},{n=0}): same as ploth, except that the
output is a PostScript program in psfile (pari.ps by default).
Doc: same as \kbd{ploth}, except that the output is a PostScript program
appended to the \kbd{psfile}.
Function: psplothraw
Class: highlevel
Section: graphic
C-Name: postplothraw
Prototype: GGD0,L,
Help: psplothraw(listx,listy,{flag=0}): same as plothraw, except that the
output is a postscript program in psfile (pari.ps by default).
Doc: same as \kbd{plothraw}, except that the output is a PostScript program
appended to the \kbd{psfile}.
Function: qfbclassno
Class: basic
Section: number_theoretical
C-Name: qfbclassno0
Prototype: GD0,L,
Help: qfbclassno(D,{flag=0}): class number of discriminant D using Shanks's
method by default. If (optional) flag is set to 1, use Euler products.
Doc: ordinary class number of the quadratic
order of discriminant $D$. In the present version \vers, a $O(D^{1/2})$
algorithm is used for $D > 0$ (using Euler product and the functional
equation) so $D$ should not be too large, say $D < 10^8$, for the time to be
reasonable. On the other hand, for $D < 0$ one can reasonably compute
\kbd{qfbclassno($D$)} for $|D|<10^{25}$, since the routine uses
\idx{Shanks}'s method which is in $O(|D|^{1/4})$. For larger values of $|D|$,
see \kbd{quadclassunit}.
If $\fl=1$, compute the class number using \idx{Euler product}s and the
functional equation. However, it is in $O(|D|^{1/2})$.
\misctitle{Important warning} For $D < 0$, this function may give incorrect
results when the class group has many cyclic factors,
because implementing \idx{Shanks}'s method in full generality slows it down
immensely. It is therefore strongly recommended to double-check results using
either the version with $\fl = 1$ or the function \kbd{quadclassunit}.
\misctitle{Warning} Contrary to what its name implies, this routine does not
compute the number of classes of binary primitive forms of discriminant $D$,
which is equal to the \emph{narrow} class number. The two notions are the same
when $D < 0$ or the fundamental unit $\varepsilon$ has negative norm; when $D
> 0$ and $N\varepsilon > 0$, the number of classes of forms is twice the
ordinary class number. This is a problem which we cannot fix for backward
compatibility reasons. Use the following routine if you are only interested
in the number of classes of forms:
\bprog
QFBclassno(D) =
qfbclassno(D) * if (D < 0 || norm(quadunit(D)) < 0, 1, 2)
@eprog\noindent
Here are a few examples:
\bprog
? qfbclassno(400000028)
time = 3,140 ms.
%1 = 1
? quadclassunit(400000028).no
time = 20 ms. \\@com{ much faster}
%2 = 1
? qfbclassno(-400000028)
time = 0 ms.
%3 = 7253 \\@com{ correct, and fast enough}
? quadclassunit(-400000028).no
time = 0 ms.
%4 = 7253
@eprog\noindent
See also \kbd{qfbhclassno}.
Variant: The following functions are also available:
\fun{GEN}{classno}{GEN D} ($\fl = 0$)
\fun{GEN}{classno2}{GEN D} ($\fl = 1$).
\noindent Finally
\fun{GEN}{hclassno}{GEN D} computes the class number of an imaginary
quadratic field by counting reduced forms, an $O(|D|)$ algorithm.
Function: qfbcompraw
Class: basic
Section: number_theoretical
C-Name: qfbcompraw
Prototype: GG
Help: qfbcompraw(x,y): Gaussian composition without reduction of the binary
quadratic forms x and y.
Doc: \idx{composition} of the binary quadratic forms
$x$ and $y$, without \idx{reduction} of the result. This is useful e.g.~to
compute a generating element of an ideal.
Function: qfbhclassno
Class: basic
Section: number_theoretical
C-Name: hclassno
Prototype: G
Help: qfbhclassno(x): Hurwitz-Kronecker class number of x>0.
Doc: \idx{Hurwitz class number} of $x$, where
$x$ is non-negative and congruent to 0 or 3 modulo 4. For $x > 5\cdot
10^5$, we assume the GRH, and use \kbd{quadclassunit} with default
parameters.
Function: qfbnucomp
Class: basic
Section: number_theoretical
C-Name: nucomp
Prototype: GGG
Help: qfbnucomp(x,y,L): composite of primitive positive definite quadratic
forms x and y using nucomp and nudupl, where L=[|D/4|^(1/4)] is precomputed.
Doc: \idx{composition} of the primitive positive
definite binary quadratic forms $x$ and $y$ (type \typ{QFI}) using the NUCOMP
and NUDUPL algorithms of \idx{Shanks}, \`a la Atkin. $L$ is any positive
constant, but for optimal speed, one should take $L=|D|^{1/4}$, where $D$ is
the common discriminant of $x$ and $y$. When $x$ and $y$ do not have the same
discriminant, the result is undefined.
The current implementation is straightforward and in general \emph{slower}
than the generic routine (since the latter takes advantage of asymptotically
fast operations and careful optimizations).
Variant: Also available is \fun{GEN}{nudupl}{GEN x, GEN L} when $x=y$.
Function: qfbnupow
Class: basic
Section: number_theoretical
C-Name: nupow
Prototype: GG
Help: qfbnupow(x,n): n-th power of primitive positive definite quadratic
form x using nucomp and nudupl.
Doc: $n$-th power of the primitive positive definite
binary quadratic form $x$ using \idx{Shanks}'s NUCOMP and NUDUPL algorithms
(see \kbd{qfbnucomp}, in particular the final warning).
Function: qfbpowraw
Class: basic
Section: number_theoretical
C-Name: qfbpowraw
Prototype: GL
Help: qfbpowraw(x,n): n-th power without reduction of the binary quadratic
form x.
Doc: $n$-th power of the binary quadratic form
$x$, computed without doing any \idx{reduction} (i.e.~using \kbd{qfbcompraw}).
Here $n$ must be non-negative and $n<2^{31}$.
Function: qfbprimeform
Class: basic
Section: number_theoretical
C-Name: primeform
Prototype: GGp
Help: qfbprimeform(x,p): returns the prime form of discriminant x, whose
first coefficient is p.
Doc: prime binary quadratic form of discriminant
$x$ whose first coefficient is $p$, where $|p|$ is a prime number.
By abuse of notation,
$p = \pm 1$ is also valid and returns the unit form. Returns an
error if $x$ is not a quadratic residue mod $p$, or if $x < 0$ and $p < 0$.
(Negative definite \typ{QFI} are not implemented.) In the case where $x>0$,
the ``distance'' component of the form is set equal to zero according to the
current precision.
Function: qfbred
Class: basic
Section: number_theoretical
C-Name: qfbred0
Prototype: GD0,L,DGDGDG
Help: qfbred(x,{flag=0},{d},{isd},{sd}): reduction of the binary
quadratic form x. All other args. are optional. The arguments d, isd and
sd, if
present, supply the values of the discriminant, floor(sqrt(d)) and sqrt(d)
respectively. If d<0, its value is not used and all references to Shanks's
distance hereafter are meaningless. flag can be any of 0: default, uses
Shanks's distance function d; 1: use d, do a single reduction step; 2: do
not use d; 3: do not use d, single reduction step.
Doc: reduces the binary quadratic form $x$ (updating Shanks's distance function
if $x$ is indefinite). The binary digits of $\fl$ are toggles meaning
\quad 1: perform a single \idx{reduction} step
\quad 2: don't update \idx{Shanks}'s distance
The arguments $d$, \var{isd}, \var{sd}, if present, supply the values of the
discriminant, $\floor{\sqrt{d}}$, and $\sqrt{d}$ respectively
(no checking is done of these facts). If $d<0$ these values are useless,
and all references to Shanks's distance are irrelevant.
Variant: Also available are
\fun{GEN}{redimag}{GEN x} (for definite $x$),
\noindent and for indefinite forms:
\fun{GEN}{redreal}{GEN x}
\fun{GEN}{rhoreal}{GEN x} (= \kbd{qfbred(x,1)}),
\fun{GEN}{redrealnod}{GEN x, GEN isd} (= \kbd{qfbred(x,2,,isd)}),
\fun{GEN}{rhorealnod}{GEN x, GEN isd} (= \kbd{qfbred(x,3,,isd)}).
Function: qfbsolve
Class: basic
Section: number_theoretical
C-Name: qfbsolve
Prototype: GG
Help: qfbsolve(Q,p): Return [x,y] so that Q(x,y)=p where Q is a binary
quadratic form and p a prime number, or 0 if there is no solution.
Doc: Solve the equation $Q(x,y)=p$ over the integers,
where $Q$ is a binary quadratic form and $p$ a prime number.
Return $[x,y]$ as a two-components vector, or zero if there is no solution.
Note that this function returns only one solution and not all the solutions.
Let $D = \disc Q$. The algorithm used runs in probabilistic polynomial time
in $p$ (through the computation of a square root of $D$ modulo $p$); it is
polynomial time in $D$ if $Q$ is imaginary, but exponential time if $Q$ is
real (through the computation of a full cycle of reduced forms). In the
latter case, note that \tet{bnfisprincipal} provides a solution in heuristic
subexponential time in $D$ assuming the GRH.
Function: qfgaussred
Class: basic
Section: linear_algebra
C-Name: qfgaussred
Prototype: G
Help: qfgaussred(q): square reduction of the (symmetric) matrix q (returns a
square matrix whose i-th diagonal term is the coefficient of the i-th square
in which the coefficient of the i-th variable is 1).
Doc:
\idx{decomposition into squares} of the
quadratic form represented by the symmetric matrix $q$. The result is a
matrix whose diagonal entries are the coefficients of the squares, and the
off-diagonal entries on each line represent the bilinear forms. More
precisely, if $(a_{ij})$ denotes the output, one has
$$ q(x) = \sum_i a_{ii} (x_i + \sum_{j \neq i} a_{ij} x_j)^2 $$
\bprog
? qfgaussred([0,1;1,0])
%1 =
[1/2 1]
[-1 -1/2]
@eprog\noindent This means that $2xy = (1/2)(x+y)^2 - (1/2)(x-y)^2$.
Variant: \fun{GEN}{qfgaussred_positive}{GEN q} assumes that $q$ is
positive definite and is a little faster; returns \kbd{NULL} if a vector
with negative norm occurs (non positive matrix or too many rounding errors).
Function: qfjacobi
Class: basic
Section: linear_algebra
C-Name: jacobi
Prototype: Gp
Help: qfjacobi(x): eigenvalues and orthogonal matrix of eigenvectors of the
real symmetric matrix x.
Doc: $x$ being a real symmetric matrix, this gives a
vector having two components: the first one is the vector of (real)
eigenvalues of $x$, sorted in increasing order, the second is the
corresponding orthogonal matrix of eigenvectors of $x$. The method used is
Jacobi's method for symmetric matrices.
Function: qflll
Class: basic
Section: linear_algebra
C-Name: qflll0
Prototype: GD0,L,
Help: qflll(x,{flag=0}): LLL reduction of the vectors forming the matrix x
(gives the unimodular transformation matrix T such that x*T is LLL-reduced). flag is
optional, and can be 0: default, 1: assumes x is integral, 2: assumes x is
integral, returns a partially reduced basis,
4: assumes x is integral, returns [K,T] where K is the integer kernel of x
and T the LLL reduced image, 5: same as 4 but x may have polynomial
coefficients, 8: same as 0 but x may have polynomial coefficients.
Description:
(vec, ?0):vec lll($1)
(vec, 1):vec lllint($1)
(vec, 2):vec lllintpartial($1)
(vec, 4):vec lllkerim($1)
(vec, 5):vec lllkerimgen($1)
(vec, 8):vec lllgen($1)
(vec, #small):vec $"Bad flag in qflll"
(vec, small):vec qflll0($1, $2)
Doc: \idx{LLL} algorithm applied to the
\emph{columns} of the matrix $x$. The columns of $x$ may be linearly
dependent. The result is a unimodular transformation matrix $T$ such that $x
\cdot T$ is an LLL-reduced basis of the lattice generated by the column
vectors of $x$. Note that if $x$ is not of maximal rank $T$ will not be
square. The LLL parameters are $(0.51,0.99)$, meaning that the Gram-Schmidt
coefficients for the final basis satisfy $\mu_{i,j} \leq |0.51|$, and the
Lov\'{a}sz's constant is $0.99$.
If $\fl=0$ (default), assume that $x$ has either exact (integral or
rational) or real floating point entries. The matrix is rescaled, converted
to integers and the behavior is then as in $\fl = 1$.
If $\fl=1$, assume that $x$ is integral. Computations involving Gram-Schmidt
vectors are approximate, with precision varying as needed (Lehmer's trick,
as generalized by Schnorr). Adapted from Nguyen and Stehl\'e's algorithm
and Stehl\'e's code (\kbd{fplll-1.3}).
If $\fl=2$, $x$ should be an integer matrix whose columns are linearly
independent. Returns a partially reduced basis for $x$, using an unpublished
algorithm by Peter Montgomery: a basis is said to be \emph{partially reduced}
if $|v_i \pm v_j| \geq |v_i|$ for any two distinct basis vectors $v_i, \,
v_j$.
This is faster than $\fl=1$, esp. when one row is huge compared
to the other rows (knapsack-style), and should quickly produce relatively
short vectors. The resulting basis is \emph{not} LLL-reduced in general.
If LLL reduction is eventually desired, avoid this partial reduction:
applying LLL to the partially reduced matrix is significantly \emph{slower}
than starting from a knapsack-type lattice.
If $\fl=4$, as $\fl=1$, returning a vector $[K, T]$ of matrices: the
columns of $K$ represent a basis of the integer kernel of $x$
(not LLL-reduced in general) and $T$ is the transformation
matrix such that $x\cdot T$ is an LLL-reduced $\Z$-basis of the image
of the matrix $x$.
If $\fl=5$, case as case $4$, but $x$ may have polynomial coefficients.
If $\fl=8$, same as case $0$, but $x$ may have polynomial coefficients.
Variant: Also available are \fun{GEN}{lll}{GEN x} ($\fl=0$),
\fun{GEN}{lllint}{GEN x} ($\fl=1$), and \fun{GEN}{lllkerim}{GEN x} ($\fl=4$).
Function: qflllgram
Class: basic
Section: linear_algebra
C-Name: qflllgram0
Prototype: GD0,L,
Help: qflllgram(G,{flag=0}): LLL reduction of the lattice whose gram matrix
is G (gives the unimodular transformation matrix). flag is optional and can
be 0: default,1: assumes x is integral, 4: assumes x is integral,
returns [K,T], where K is the integer kernel of x
and T the LLL reduced image, 5: same as 4 but x may have polynomial
coefficients, 8: same as 0 but x may have polynomial coefficients.
Doc: same as \kbd{qflll}, except that the
matrix $G = \kbd{x\til * x}$ is the Gram matrix of some lattice vectors $x$,
and not the coordinates of the vectors themselves. In particular, $G$ must
now be a square symmetric real matrix, corresponding to a positive
quadratic form (not necessarily definite: $x$ needs not have maximal rank).
The result is a unimodular
transformation matrix $T$ such that $x \cdot T$ is an LLL-reduced basis of
the lattice generated by the column vectors of $x$. See \tet{qflll} for
further details about the LLL implementation.
If $\fl=0$ (default), assume that $G$ has either exact (integral or
rational) or real floating point entries. The matrix is rescaled, converted
to integers and the behavior is then as in $\fl = 1$.
If $\fl=1$, assume that $G$ is integral. Computations involving Gram-Schmidt
vectors are approximate, with precision varying as needed (Lehmer's trick,
as generalized by Schnorr). Adapted from Nguyen and Stehl\'e's algorithm
and Stehl\'e's code (\kbd{fplll-1.3}).
$\fl=4$: $G$ has integer entries, gives the kernel and reduced image of $x$.
$\fl=5$: same as $4$, but $G$ may have polynomial coefficients.
Variant: Also available are \fun{GEN}{lllgram}{GEN G} ($\fl=0$),
\fun{GEN}{lllgramint}{GEN G} ($\fl=1$), and \fun{GEN}{lllgramkerim}{GEN G}
($\fl=4$).
Function: qfminim
Class: basic
Section: linear_algebra
C-Name: qfminim0
Prototype: GDGDGD0,L,p
Help: qfminim(x,{b},{m},{flag=0}): x being a square and symmetric
matrix representing a positive definite quadratic form, this function
deals with the vectors of x whose norm is less than or equal to b,
enumerated using the Fincke-Pohst algorithm, storing at most m vectors (no
limit if m is omitted). The function searches for
the minimal non-zero vectors if b is omitted. The precise behavior
depends on flag. 0: seeks at most 2m vectors (unless m omitted), returns
[N,M,mat] where N is the number of vectors found, M the maximum norm among
these, and mat lists half the vectors (the other half is given by -mat). 1:
ignores m and returns the first vector whose norm is less than b. 2: as 0
but uses a more robust, slower implementation, valid for non integral
quadratic forms.
Doc: $x$ being a square and symmetric matrix representing a positive definite
quadratic form, this function deals with the vectors of $x$ whose norm is
less than or equal to $b$, enumerated using the Fincke-Pohst algorithm,
storing at most $m$ vectors (no limit if $m$ is omitted). The function
searches for the minimal non-zero vectors if $b$ is omitted. The behavior is
undefined if $x$ is not positive definite (a ``precision too low'' error is
most likely, although more precise error messages are possible). The precise
behavior depends on $\fl$.
If $\fl=0$ (default), seeks at most $2m$ vectors. The result is a
three-component vector, the first component being the number of vectors
found, the second being the maximum norm found, and the last vector is a
matrix whose columns are the vectors found, only one being given for each
pair $\pm v$ (at most $m$ such pairs, unless $m$ was omitted). The vectors
are returned in no particular order.
If $\fl=1$, ignores $m$ and returns the first vector whose norm is less
than $b$. In this variant, an explicit $b$ must be provided.
In these two cases, $x$ must have \emph{integral} entries. The
implementation uses low precision floating point computations for maximal
speed, which gives incorrect result when $x$ has large entries. (The
condition is checked in the code and the routine raises an error if
large rounding errors occur.) A more robust, but much slower,
implementation is chosen if the following flag is used:
If $\fl=2$, $x$ can have non integral real entries. In this case, if $b$
is omitted, the ``minimal'' vectors only have approximately the same norm.
If $b$ is omitted, $m$ is an upper bound for the number of vectors that
will be stored and returned, but all minimal vectors are nevertheless
enumerated. If $m$ is omitted, all vectors found are stored and returned;
note that this may be a huge vector!
\bprog
? x = matid(2);
? qfminim(x) \\@com 4 minimal vectors of norm 1: $\pm[0,1]$, $\pm[1,0]$
%2 = [4, 1, [0, 1; 1, 0]]
? { x =
[4, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1, 0,-1, 0, 0, 0,-2;
2, 4,-2,-2, 0,-2, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1, 0, 1,-1,-1;
0,-2, 4, 0,-2, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 0, 1,-1,-1, 0, 0;
0,-2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1,-1, 0, 1,-1, 1, 0;
0, 0,-2, 0, 4, 0, 0, 0, 1,-1, 0, 0, 1, 0, 0, 0,-2, 0, 0,-1, 1, 1, 0, 0;
-2, -2,0, 0, 0, 4,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,-1, 1, 1;
0, 0, 0, 0, 0,-2, 4,-2, 0, 0, 0, 0, 0, 1, 0, 0, 0,-1, 0, 0, 0, 1,-1, 0;
0, 0, 0, 0, 0, 0,-2, 4, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1,-1,-1, 0, 1, 0;
0, 0, 0, 0, 1,-1, 0, 0, 4, 0,-2, 0, 1, 1, 0,-1, 0, 1, 0, 0, 0, 0, 0, 0;
0, 0, 0, 0,-1, 0, 0, 0, 0, 4, 0, 0, 1, 1,-1, 1, 0, 0, 0, 1, 0, 0, 1, 0;
0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 4,-2, 0,-1, 0, 0, 0,-1, 0,-1, 0, 0, 0, 0;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 4,-1, 1, 0, 0,-1, 1, 0, 1, 1, 1,-1, 0;
1, 0,-1, 1, 1, 0, 0,-1, 1, 1, 0,-1, 4, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1,-1;
-1,-1, 1,-1, 0, 0, 1, 0, 1, 1,-1, 1, 0, 4, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0;
0, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 1, 0, 4, 0, 0, 0, 0, 1, 1, 0, 0;
0, 0, 1, 0,-2, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 4, 1, 1, 1, 0, 0, 1, 1;
1, 0, 0, 1, 0, 0,-1, 0, 1, 0,-1, 1, 1, 0, 0, 0, 1, 4, 0, 1, 1, 0, 1, 0;
0, 0, 0,-1, 0, 1, 0,-1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 4, 0, 1, 1, 0, 1;
-1, -1,1, 0,-1, 1, 0,-1, 0, 1,-1, 1, 0, 1, 0, 0, 1, 1, 0, 4, 0, 0, 1, 1;
0, 0,-1, 1, 1, 0, 0,-1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 4, 1, 0, 1;
0, 1,-1,-1, 1,-1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 4, 0, 1;
0,-1, 0, 1, 0, 1,-1, 1, 0, 1, 0,-1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 4, 1;
-2,-1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 4]; }
? qfminim(x,,0) \\ the Leech lattice has 196560 minimal vectors of norm 4
time = 648 ms.
%4 = [196560, 4, [;]]
? qfminim(x,,0,2); \\ safe algorithm. Slower and unnecessary here.
time = 18,161 ms.
%5 = [196560, 4.000061035156250000, [;]]
@eprog\noindent\sidx{Leech lattice}\sidx{minimal vector}
In the last example, we store 0 vectors to limit memory use. All minimal
vectors are nevertheless enumerated. Provided \kbd{parisize} is about 50MB,
\kbd{qfminim(x)} succeeds in 2.5 seconds.
Variant: Also available are
\fun{GEN}{minim}{GEN x, GEN b = NULL, GEN m = NULL} ($\fl=0$),
\fun{GEN}{minim2}{GEN x, GEN b = NULL, GEN m = NULL} ($\fl=1$).
Function: qfperfection
Class: basic
Section: linear_algebra
C-Name: perf
Prototype: G
Help: qfperfection(G): rank of matrix of xx~ for x minimal vectors of a gram
matrix G.
Doc:
$G$ being a square and symmetric matrix with
integer entries representing a positive definite quadratic form, outputs the
perfection rank of the form. That is, gives the rank of the family of the $s$
symmetric matrices $v_iv_i^t$, where $s$ is half the number of minimal
vectors and the $v_i$ ($1\le i\le s$) are the minimal vectors.
Since this requires computing the minimal vectors, the computations can
become very lengthy as the dimension of $x$ grows.
Function: qfrep
Class: basic
Section: linear_algebra
C-Name: qfrep0
Prototype: GGD0,L,
Help: qfrep(q,B,{flag=0}): vector of (half) the number of vectors of norms
from 1 to B for the integral and definite quadratic form q. Binary digits of
flag mean 1: count vectors of even norm from 1 to 2B, 2: return a t_VECSMALL
instead of a t_VEC.
Doc:
$q$ being a square and symmetric
matrix with integer entries representing a positive definite quadratic form,
outputs the vector whose $i$-th entry, $1 \leq i \leq B$ is half the number
of vectors $v$ such that $q(v) = i$. This routine uses a naive algorithm
based on \tet{qfminim}, and will fail if any entry becomes larger than
$2^{31}$.
\noindent The binary digits of \fl\ mean:
\item 1: count vectors of even norm from $1$ to $2B$.
\item 2: return a \typ{VECSMALL} instead of a \typ{VEC}
Function: qfsign
Class: basic
Section: linear_algebra
C-Name: qfsign
Prototype: G
Help: qfsign(x): signature of the symmetric matrix x.
Doc:
returns $[p,m]$ the signature of the quadratic form represented by the
symmetric matrix $x$. Namely, $p$ (resp.~$m$) is the number of positive
(resp.~negative) eigenvalues of $x$.The result is computed using Gaussian
reduction.
Function: quadclassunit
Class: basic
Section: number_theoretical
C-Name: quadclassunit0
Prototype: GD0,L,DGp
Help: quadclassunit(D,{flag=0},{tech=[]}): compute the structure of the
class group and the regulator of the quadratic field of discriminant D.
See manual for the optional technical parameters.
Doc: \idx{Buchmann-McCurley}'s sub-exponential algorithm for computing the
class group of a quadratic order of discriminant $D$.
This function should be used instead of \tet{qfbclassno} or \tet{quadregula}
when $D<-10^{25}$, $D>10^{10}$, or when the \emph{structure} is wanted. It
is a special case of \tet{bnfinit}, which is slower, but more robust.
The result is a vector $v$ whose components should be accessed using member
functions:
\item \kbd{$v$.no}: the class number
\item \kbd{$v$.cyc}: a vector giving the structure of the class group as a
product of cyclic groups;
\item \kbd{$v$.gen}: a vector giving generators of those cyclic groups (as
binary quadratic forms).
\item \kbd{$v$.reg}: the regulator, computed to an accuracy which is the
maximum of an internal accuracy determined by the program and the current
default (note that once the regulator is known to a small accuracy it is
trivial to compute it to very high accuracy, see the tutorial).
The $\fl$ is obsolete and should be left alone. In older versions,
it supposedly computed the narrow class group when $D>0$, but this did not
work at all; use the general function \tet{bnfnarrow}.
Optional parameter \var{tech} is a row vector of the form $[c_1, c_2]$,
where $c_1 \leq c_2$ are positive real numbers which control the execution
time and the stack size, see \ref{se:GRHbnf}. The parameter is used as a
threshold to balance the relation finding phase against the final linear
algebra. Increasing the default $c_1 = 0.2$ means that relations are easier
to find, but more relations are needed and the linear algebra will be
harder. The parameter $c_2$ is mostly obsolete and should not be changed,
but we still document it for completeness: we compute a tentative class
group by generators and relations using a factorbase of prime ideals $\leq
c_1 (\log |D|)^2$, then prove that ideals of norm $\leq c_2 (\log |D|)^2$ do
not generate a larger group. By default an optimal $c_2$ is chosen, so that
the result is provably correct under the GRH --- a famous result of Bach
states that $c_2 = 6$ is fine, but it is possible to improve on this
algorithmically. You may provide a smaller $c_2$, it will be ignored
(we use the provably correct
one); you may provide a larger $c_2$ than the default value, which results
in longer computing times for equally correct outputs (under GRH).
Variant: If you really need to experiment with the \var{tech} parameter, it is
usually more convenient to use
\fun{GEN}{Buchquad}{GEN D, double c1, double c2, long prec}
Function: quaddisc
Class: basic
Section: number_theoretical
C-Name: quaddisc
Prototype: G
Help: quaddisc(x): discriminant of the quadratic field Q(sqrt(x)).
Doc: discriminant of the quadratic field $\Q(\sqrt{x})$, where $x\in\Q$.
Function: quadgen
Class: basic
Section: number_theoretical
C-Name: quadgen
Prototype: G
Help: quadgen(D): standard generator of quadratic order of discriminant D.
Doc: creates the quadratic
number\sidx{omega} $\omega=(a+\sqrt{D})/2$ where $a=0$ if $D\equiv0\mod4$,
$a=1$ if $D\equiv1\mod4$, so that $(1,\omega)$ is an integral basis for the
quadratic order of discriminant $D$. $D$ must be an integer congruent to 0 or
1 modulo 4, which is not a square.
Function: quadhilbert
Class: basic
Section: number_theoretical
C-Name: quadhilbert
Prototype: Gp
Help: quadhilbert(D): relative equation for the Hilbert class field
of the quadratic field of discriminant D (which can also be a bnf).
Doc: relative equation defining the
\idx{Hilbert class field} of the quadratic field of discriminant $D$.
If $D < 0$, uses complex multiplication (\idx{Schertz}'s variant).
If $D > 0$ \idx{Stark units} are used and (in rare cases) a
vector of extensions may be returned whose compositum is the requested class
field. See \kbd{bnrstark} for details.
Function: quadpoly
Class: basic
Section: number_theoretical
C-Name: quadpoly0
Prototype: GDn
Help: quadpoly(D,{v=x}): quadratic polynomial corresponding to the
discriminant D, in variable v.
Doc: creates the ``canonical'' quadratic
polynomial (in the variable $v$) corresponding to the discriminant $D$,
i.e.~the minimal polynomial of $\kbd{quadgen}(D)$. $D$ must be an integer
congruent to 0 or 1 modulo 4, which is not a square.
Function: quadray
Class: basic
Section: number_theoretical
C-Name: quadray
Prototype: GGp
Help: quadray(D,f): relative equation for the ray class field of
conductor f for the quadratic field of discriminant D (which can also be a
bnf).
Doc: relative equation for the ray
class field of conductor $f$ for the quadratic field of discriminant $D$
using analytic methods. A \kbd{bnf} for $x^2 - D$ is also accepted in place
of $D$.
For $D < 0$, uses the $\sigma$ function and Schertz's method.
For $D>0$, uses Stark's conjecture, and a vector of relative equations may be
returned. See \tet{bnrstark} for more details.
Function: quadregulator
Class: basic
Section: number_theoretical
C-Name: quadregulator
Prototype: Gp
Help: quadregulator(x): regulator of the real quadratic field of
discriminant x.
Doc: regulator of the quadratic field of positive discriminant $x$. Returns
an error if $x$ is not a discriminant (fundamental or not) or if $x$ is a
square. See also \kbd{quadclassunit} if $x$ is large.
Function: quadunit
Class: basic
Section: number_theoretical
C-Name: quadunit
Prototype: G
Help: quadunit(D): fundamental unit of the quadratic field of discriminant D
where D must be positive.
Doc: fundamental unit\sidx{fundamental units} of the
real quadratic field $\Q(\sqrt D)$ where $D$ is the positive discriminant
of the field. If $D$ is not a fundamental discriminant, this probably gives
the fundamental unit of the corresponding order. $D$ must be an integer
congruent to 0 or 1 modulo 4, which is not a square; the result is a
quadratic number (see \secref{se:quadgen}).
Function: quit
Class: gp
Section: programming/specific
C-Name: gp_quit
Prototype: vD0,L,
Help: quit({status = 0}): quit, return to the system with exit status
'status'.
Doc: exits \kbd{gp} and return to the system with exit status
\kbd{status}, a small integer. A non-zero exit status normally indicates
abnormal termination. (Note: the system actually sees only
\kbd{status} mod $256$, see your man pages for \kbd{exit(3)} or \kbd{wait(2)}).
Function: random
Class: basic
Section: conversions
C-Name: genrand
Prototype: DG
Help: random({N=2^31}): random object, depending on the type of N.
Integer between 0 and N-1 (t_INT), int mod N (t_INTMOD), element in a finite
field (t_FFELT), point on an elliptic curve (ellinit mod p or over a finite
field).
Doc:
returns a random element in various natural sets depending on the
argument $N$.
\item \typ{INT}: returns an integer
uniformly distributed between $0$ and $N-1$. Omitting the argument
is equivalent to \kbd{random(2\pow31)}.
\item \typ{REAL}: returns a real number in $[0,1[$ with the same accuracy as
$N$ (whose mantissa has the same number of significant words).
\item \typ{INTMOD}: returns a random intmod for the same modulus.
\item \typ{FFELT}: returns a random element in the same finite field.
\item \typ{VEC} generated by \kbd{ellinit} over a finite field $k$
(coefficients are \typ{INTMOD}s modulo a prime or \typ{FFELT}s): returns a
random $k$-rational \emph{affine} point on the curve. More precisely an
abscissa is drawn uniformly at random until \tet{ellordinate} succeeds.
In particular, the curves over $\F_2$ with a single point (at infinity!)
will trigger an infinite loop. Note that this is definitely not a uniform
distribution over $E(k)$.
\item \typ{POL} return a random polynomial of degree at most the degree of $N$.
The coefficients are drawn by applying \kbd{random} to the leading
coefficient of $N$.
\bprog
? random(10)
%1 = 9
? random(Mod(0,7))
%2 = Mod(1, 7)
? a = ffgen(ffinit(3,7), 'a); random(a)
%3 = a^6 + 2*a^5 + a^4 + a^3 + a^2 + 2*a
? E = ellinit([0,0,0,3,7]*Mod(1,109)); random(E)
%4 = [Mod(103, 109), Mod(10, 109)]
? E = ellinit([0,0,0,1,7]*a^0); random(E)
%5 = [a^6 + a^5 + 2*a^4 + 2*a^2, 2*a^6 + 2*a^4 + 2*a^3 + a^2 + 2*a]
? random(Mod(1,7)*x^4)
%6 = Mod(5, 7)*x^4 + Mod(6, 7)*x^3 + Mod(2, 7)*x^2 + Mod(2, 7)*x + Mod(5, 7)
@eprog
These variants all depend on a single internal generator, and are
independent from the system's random number generator.
A random seed may be obtained via \tet{getrand}, and reset
using \tet{setrand}: from a given seed, and given sequence of \kbd{random}s,
the exact same values will be generated. The same seed is used at each
startup, reseed the generator yourself if this is a problem.
\misctitle{Technical note}
Up to
version 2.4 included, the internal generator produced pseudo-random numbers
by means of linear congruences, which were not well distributed in arithmetic
progressions. We now
use Brent's XORGEN algorithm, based on Feedback Shift Registers, see
\kbd{http://wwwmaths.anu.edu.au/\til{}brent/random.html}. The generator has period
$2^{4096}-1$, passes the Crush battery of statistical tests of L'Ecuyer and
Simard, but is not suitable for cryptographic purposes: one can reconstruct
the state vector from a small sample of consecutive values, thus predicting
the entire sequence.
Variant:
Also available: \fun{GEN}{ellrandom}{GEN E} and \fun{GEN}{ffrandom}{GEN a}.
Function: read
Class: gp
Section: programming/specific
C-Name: read0
Prototype: D"",s,
Help: read({filename}): read from the input file filename. If filename is
omitted, reread last input file, be it from read() or \r.
Description:
(str):gen gp_read_file($1)
Doc: reads in the file
\var{filename} (subject to string expansion). If \var{filename} is
omitted, re-reads the last file that was fed into \kbd{gp}. The return
value is the result of the last expression evaluated.
If a GP \tet{binary file} is read using this command (see
\secref{se:writebin}), the file is loaded and the last object in the file
is returned.
In case the file you read in contains an \tet{allocatemem} statement (to be
generally avoided), you should leave \kbd{read} instructions by themselves,
and not part of larger instruction sequences.
Function: readvec
Class: basic
Section: programming/specific
C-Name: gp_readvec_file
Prototype: D"",s,
Help: readvec({filename}): create a vector whose components are the evaluation
of all the expressions found in the input file filename.
Description:
(str):gen gp_readvec_file($1)
Doc: reads in the file
\var{filename} (subject to string expansion). If \var{filename} is
omitted, re-reads the last file that was fed into \kbd{gp}. The return
value is a vector whose components are the evaluation of all sequences
of instructions contained in the file. For instance, if \var{file} contains
\bprog
1
2
3
@eprog\noindent
then we will get:
\bprog
? \r a
%1 = 1
%2 = 2
%3 = 3
? read(a)
%4 = 3
? readvec(a)
%5 = [1, 2, 3]
@eprog
In general a sequence is just a single line, but as usual braces and
\kbd{\bs} may be used to enter multiline sequences.
Variant: The underlying library function
\fun{GEN}{gp_readvec_stream}{FILE *f} is usually more flexible.
Function: real
Class: basic
Section: conversions
C-Name: greal
Prototype: G
Help: real(x): real part of x.
Doc: real part of $x$. In the case where $x$ is a quadratic number, this is the
coefficient of $1$ in the ``canonical'' integral basis $(1,\omega)$.
Function: removeprimes
Class: basic
Section: number_theoretical
C-Name: removeprimes
Prototype: DG
Help: removeprimes({x=[]}): remove primes in the vector x from the prime table.
x can also be a single integer. List the current extra primes if x is omitted.
Doc: removes the primes listed in $x$ from
the prime number table. In particular \kbd{removeprimes(addprimes())} empties
the extra prime table. $x$ can also be a single integer. List the current
extra primes if $x$ is omitted.
Function: return
Class: basic
Section: programming/control
C-Name: return0
Prototype: DG
Help: return({x=0}): return from current subroutine with result x.
Doc: returns from current subroutine, with
result $x$. If $x$ is omitted, return the \kbd{(void)} value (return no
result, like \kbd{print}).
Function: rnfalgtobasis
Class: basic
Section: number_fields
C-Name: rnfalgtobasis
Prototype: GG
Help: rnfalgtobasis(rnf,x): relative version of nfalgtobasis, where rnf is a
relative numberfield.
Doc: expresses $x$ on the relative
integral basis. Here, $\var{rnf}$ is a relative number field extension $L/K$
as output by \kbd{rnfinit}, and $x$ an element of $L$ in absolute form, i.e.
expressed as a polynomial or polmod with polmod coefficients, \emph{not} on
the relative integral basis.
Function: rnfbasis
Class: basic
Section: number_fields
C-Name: rnfbasis
Prototype: GG
Help: rnfbasis(bnf,M): given a projective Z_K-module M as output by
rnfpseudobasis or rnfsteinitz, gives either a basis of M if it is free, or an
n+1-element generating set.
Doc: let $K$ the field represented by
\var{bnf}, as output by \kbd{bnfinit}. $M$ is a projective $\Z_K$-module
of rank $n$ ($M\otimes K$ is an $n$-dimensional $K$-vector space), given by a
pseudo-basis of size $n$. The routine returns either a true $\Z_K$-basis of
$M$ (of size $n$) if it exists, or an $n+1$-element generating set of $M$ if
not.
It is allowed to use an irreducible polynomial $P$ in $K[X]$ instead of $M$,
in which case, $M$ is defined as the ring of integers of $K[X]/(P)$, viewed
as a $\Z_K$-module.
Function: rnfbasistoalg
Class: basic
Section: number_fields
C-Name: rnfbasistoalg
Prototype: GG
Help: rnfbasistoalg(rnf,x): relative version of nfbasistoalg, where rnf is a
relative numberfield.
Doc: computes the representation of $x$
as a polmod with polmods coefficients. Here, $\var{rnf}$ is a relative number
field extension $L/K$ as output by \kbd{rnfinit}, and $x$ an element of
$L$ expressed on the relative integral basis.
Function: rnfcharpoly
Class: basic
Section: number_fields
C-Name: rnfcharpoly
Prototype: GGGDn
Help: rnfcharpoly(nf,T,a,{var=x}): characteristic polynomial of a
over nf, where a belongs to the algebra defined by T over nf. Returns a
polynomial in variable var (x by default).
Doc: characteristic polynomial of
$a$ over $\var{nf}$, where $a$ belongs to the algebra defined by $T$ over
$\var{nf}$, i.e.~$\var{nf}[X]/(T)$. Returns a polynomial in variable $v$
($x$ by default).
\bprog
? nf = nfinit(y^2+1);
? rnfcharpoly(nf, x^2+y*x+1, x+y)
%2 = x^2 + Mod(-y, y^2 + 1)*x + 1
@eprog
Function: rnfconductor
Class: basic
Section: number_fields
C-Name: rnfconductor
Prototype: GGD0,L,
Help: rnfconductor(bnf,pol): conductor of the Abelian extension
of bnf defined by pol. The result is [conductor,rayclassgroup,subgroup],
where conductor is the conductor itself, rayclassgroup the structure of the
corresponding full ray class group, and subgroup the HNF defining the norm
group (Artin or Takagi group) on the given generators rayclassgroup[3].
Doc: given $\var{bnf}$
as output by \kbd{bnfinit}, and \var{pol} a relative polynomial defining an
\idx{Abelian extension}, computes the class field theory conductor of this
Abelian extension. The result is a 3-component vector
$[\var{conductor},\var{rayclgp},\var{subgroup}]$, where \var{conductor} is
the conductor of the extension given as a 2-component row vector
$[f_0,f_\infty]$, \var{rayclgp} is the full ray class group corresponding to
the conductor given as a 3-component vector [h,cyc,gen] as usual for a group,
and \var{subgroup} is a matrix in HNF defining the subgroup of the ray class
group on the given generators gen.
Function: rnfdedekind
Class: basic
Section: number_fields
C-Name: rnfdedekind
Prototype: GGDGD0,L,
Help: rnfdedekind(nf,pol,{pr},{flag=0}): relative Dedekind criterion over the
number field K, represented by nf, applied to the order O_K[X]/(P),
modulo the prime ideal pr (at all primes if pr omitted, in which case
flag is automatically set to 1).
P is assumed to be monic, irreducible, in O_K[X].
Returns [max,basis,v], where basis is a pseudo-basis of the
enlarged order, max is 1 iff this order is pr-maximal, and v is the
valuation at pr of the order discriminant. If flag is set, just return 1 if
the order is maximal, and 0 if not.
Doc: given a number field $K$ coded by $\var{nf}$ and a monic
polynomial $P\in \Z_K[X]$, irreducible over $K$ and thus defining a relative
extension $L$ of $K$, applies \idx{Dedekind}'s criterion to the order
$\Z_K[X]/(P)$, at the prime ideal \var{pr}. It is possible to set \var{pr}
to a vector of prime ideals (test maximality at all primes in the vector),
or to omit altogether, in which case maximality at \emph{all} primes is tested;
in this situation \fl\ is automatically set to $1$.
The default historic behavior (\fl\ is 0 or omitted and \var{pr} is a
single prime ideal) is not so useful since
\kbd{rnfpseudobasis} gives more information and is generally not that
much slower. It returns a 3-component vector $[\var{max}, \var{basis}, v]$:
\item \var{basis} is a pseudo-basis of an enlarged order $O$ produced by
Dedekind's criterion, containing the original order $\Z_K[X]/(P)$
with index a power of \var{pr}. Possibly equal to the original order.
\item \var{max} is a flag equal to 1 if the enlarged order $O$
could be proven to be \var{pr}-maximal and to 0 otherwise; it may still be
maximal in the latter case if \var{pr} is ramified in $L$,
\item $v$ is the valuation at \var{pr} of the order discriminant.
If \fl\ is non-zero, on the other hand, we just return $1$ if the order
$\Z_K[X]/(P)$ is \var{pr}-maximal (resp.~maximal at all relevant primes, as
described above), and $0$ if not. This is much faster than the default,
since the enlarged order is not computed.
\bprog
? nf = nfinit(y^2-3); P = x^3 - 2*y;
? pr3 = idealprimedec(nf,3)[1];
? rnfdedekind(nf, P, pr3)
%2 = [1, [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, 1]], 8]
? rnfdedekind(nf, P, pr3, 1)
%3 = 1
@eprog\noindent In this example, \kbd{pr3} is the ramified ideal above $3$,
and the order generated by the cube roots of $y$ is already
\kbd{pr3}-maximal. The order-discriminant has valuation $8$. On the other
hand, the order is not maximal at the prime above 2:
\bprog
? pr2 = idealprimedec(nf,2)[1];
? rnfdedekind(nf, P, pr2, 1)
%5 = 0
? rnfdedekind(nf, P, pr2)
%6 = [0, [[2, 0, 0; 0, 1, 0; 0, 0, 1], [[1, 0; 0, 1], [1, 0; 0, 1],
[1, 1/2; 0, 1/2]]], 2]
@eprog
The enlarged order is not proven to be \kbd{pr2}-maximal yet. In fact, it
is; it is in fact the maximal order:
\bprog
? B = rnfpseudobasis(nf, P)
%7 = [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, [1, 1/2; 0, 1/2]],
[162, 0; 0, 162], -1]
? idealval(nf,B[3], pr2)
%4 = 2
@eprog\noindent
It is possible to use this routine with non-monic
$P = \sum_{i\leq n} a_i X^i \in \Z_K[X]$ if $\fl = 1$;
in this case, we test maximality of Dedekind's order generated by
$$1, a_n \alpha, a_n\alpha^2 + a_{n-1}\alpha, \dots,
a_n\alpha^{n-1} + a_{n-1}\alpha^{n-2} + \cdots + a_1\alpha.$$
The routine will fail if $P$ is $0$ on the projective line over the residue
field $\Z_K/\kbd{pr}$ (FIXME).
Function: rnfdet
Class: basic
Section: number_fields
C-Name: rnfdet
Prototype: GG
Help: rnfdet(nf,M): given a pseudo-matrix M, compute its determinant.
Doc: given a pseudo-matrix $M$ over the maximal
order of $\var{nf}$, computes its determinant.
Function: rnfdisc
Class: basic
Section: number_fields
C-Name: rnfdiscf
Prototype: GG
Help: rnfdisc(nf,pol): given a pol with coefficients in nf, gives a
2-component vector [D,d], where D is the relative ideal discriminant, and d
is the relative discriminant in nf^*/nf*^2.
Doc: given a number field $\var{nf}$ as
output by \kbd{nfinit} and a polynomial \var{pol} with coefficients in
$\var{nf}$ defining a relative extension $L$ of $\var{nf}$, computes the
relative discriminant of $L$. This is a two-element row vector $[D,d]$, where
$D$ is the relative ideal discriminant and $d$ is the relative discriminant
considered as an element of $\var{nf}^*/{\var{nf}^*}^2$. The main variable of
$\var{nf}$ \emph{must} be of lower priority than that of \var{pol}, see
\secref{se:priority}.
Function: rnfeltabstorel
Class: basic
Section: number_fields
C-Name: rnfelementabstorel
Prototype: GG
Help: rnfeltabstorel(rnf,x): transforms the element x from absolute to
relative representation.
Doc: $\var{rnf}$ being a relative
number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an
element of $L$ expressed as a polynomial modulo the absolute equation
\kbd{\var{rnf}.pol}, computes $x$ as an element of the relative extension
$L/K$ as a polmod with polmod coefficients.
Function: rnfeltdown
Class: basic
Section: number_fields
C-Name: rnfelementdown
Prototype: GG
Help: rnfeltdown(rnf,x): expresses x on the base field if possible; returns
an error otherwise.
Doc: $\var{rnf}$ being a relative number
field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an element of
$L$ expressed as a polynomial or polmod with polmod coefficients, computes
$x$ as an element of $K$ as a polmod, assuming $x$ is in $K$ (otherwise an
error will occur). If $x$ is given on the relative integral basis, apply
\kbd{rnfbasistoalg} first, otherwise PARI will believe you are dealing with a
vector.
Function: rnfeltreltoabs
Class: basic
Section: number_fields
C-Name: rnfelementreltoabs
Prototype: GG
Help: rnfeltreltoabs(rnf,x): transforms the element x from relative to
absolute representation.
Doc: $\var{rnf}$ being a relative
number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an
element of $L$ expressed as a polynomial or polmod with polmod
coefficients, computes $x$ as an element of the absolute extension $L/\Q$ as
a polynomial modulo the absolute equation \kbd{\var{rnf}.pol}. If $x$ is
given on the relative integral basis, apply \kbd{rnfbasistoalg} first,
otherwise PARI will believe you are dealing with a vector.
Function: rnfeltup
Class: basic
Section: number_fields
C-Name: rnfelementup
Prototype: GG
Help: rnfeltup(rnf,x): expresses x (belonging to the base field) on the
relative field.
Doc: $\var{rnf}$ being a relative number
field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an element of
$K$ expressed as a polynomial or polmod, computes $x$ as an element of the
absolute extension $L/\Q$ as a polynomial modulo the absolute equation
\kbd{\var{rnf}.pol}. If $x$ is given on the integral basis of $K$, apply
\kbd{nfbasistoalg} first, otherwise PARI will believe you are dealing with a
vector.
Function: rnfequation
Class: basic
Section: number_fields
C-Name: rnfequation0
Prototype: GGD0,L,
Help: rnfequation(nf,pol,{flag=0}): given a pol with coefficients in nf,
gives the absolute equation apol of the number field defined by pol. flag is
optional, and can be 0: default, or non-zero, gives [apol,th], where th
expresses the root of nf.pol in terms of the root of apol.
Doc: given a number field
$\var{nf}$ as output by \kbd{nfinit} (or simply a polynomial) and a
polynomial \var{pol} with coefficients in $\var{nf}$ defining a relative
extension $L$ of $\var{nf}$, computes the absolute equation of $L$ over
$\Q$.
If $\fl$ is non-zero, outputs a 3-component row vector $[z,a,k]$, where
$z$ is the absolute equation of $L$ over $\Q$, as in the default behavior,
$a$ expresses as an element of $L$ a root $\alpha$ of the polynomial
defining the base field $\var{nf}$, and $k$ is a small integer such that
$\theta = \beta+k\alpha$ where $\theta$ is a root of $z$ and $\beta$ a root
of $\var{pol}$.
The main variable of $\var{nf}$ \emph{must} be of lower priority than that
of \var{pol} (see \secref{se:priority}). Note that for efficiency, this does
not check whether the relative equation is irreducible over $\var{nf}$, but
only if it is squarefree. If it is reducible but squarefree, the result will
be the absolute equation of the \'etale algebra defined by \var{pol}. If
\var{pol} is not squarefree, an error message will be issued.
Variant: Also available are
\fun{GEN}{rnfequation}{GEN nf, GEN pol} ($\fl = 0$) and
\fun{GEN}{rnfequation2}{GEN nf, GEN pol} ($\fl = 1$).
Function: rnfhnfbasis
Class: basic
Section: number_fields
C-Name: rnfhnfbasis
Prototype: GG
Help: rnfhnfbasis(bnf,x): given an order x as output by rnfpseudobasis,
gives either a true HNF basis of the order if it exists, zero otherwise.
Doc: given $\var{bnf}$ as output by
\kbd{bnfinit}, and either a polynomial $x$ with coefficients in $\var{bnf}$
defining a relative extension $L$ of $\var{bnf}$, or a pseudo-basis $x$ of
such an extension, gives either a true $\var{bnf}$-basis of $L$ in upper
triangular Hermite normal form, if it exists, and returns $0$ otherwise.
Function: rnfidealabstorel
Class: basic
Section: number_fields
C-Name: rnfidealabstorel
Prototype: GG
Help: rnfidealabstorel(rnf,x): transforms the ideal x from absolute to
relative representation.
Doc: let $\var{rnf}$ be a relative
number field extension $L/K$ as output by \kbd{rnfinit}, and $x$ an ideal of
the absolute extension $L/\Q$ given by a $\Z$-basis of elements of $L$.
Returns the relative pseudo-matrix in HNF giving the ideal $x$ considered as
an ideal of the relative extension $L/K$.
If $x$ is an ideal in HNF form, associated to an \var{nf} structure, for
instance as output by $\tet{idealhnf}(\var{nf},\dots)$,
use \kbd{rnfidealabstorel(rnf, nf.zk * x)} to convert it to a relative ideal.
Function: rnfidealdown
Class: basic
Section: number_fields
C-Name: rnfidealdown
Prototype: GG
Help: rnfidealdown(rnf,x): finds the intersection of the ideal x with the
base field.
Doc: let $\var{rnf}$ be a relative number
field extension $L/K$ as output by \kbd{rnfinit}, and $x$ an ideal of
$L$, given either in relative form or by a $\Z$-basis of elements of $L$
(see \secref{se:rnfidealabstorel}), returns the ideal of $K$ below $x$,
i.e.~the intersection of $x$ with $K$.
Function: rnfidealhnf
Class: basic
Section: number_fields
C-Name: rnfidealhermite
Prototype: GG
Help: rnfidealhnf(rnf,x): relative version of idealhnf, where rnf is a
relative numberfield.
Doc: $\var{rnf}$ being a relative number
field extension $L/K$ as output by \kbd{rnfinit} and $x$ being a relative
ideal (which can be, as in the absolute case, of many different types,
including of course elements), computes the HNF pseudo-matrix associated to
$x$, viewed as a $\Z_K$-module.
Function: rnfidealmul
Class: basic
Section: number_fields
C-Name: rnfidealmul
Prototype: GGG
Help: rnfidealmul(rnf,x,y): relative version of idealmul, where rnf is a
relative numberfield.
Doc: $\var{rnf}$ being a relative number
field extension $L/K$ as output by \kbd{rnfinit} and $x$ and $y$ being ideals
of the relative extension $L/K$ given by pseudo-matrices, outputs the ideal
product, again as a relative ideal.
Function: rnfidealnormabs
Class: basic
Section: number_fields
C-Name: rnfidealnormabs
Prototype: GG
Help: rnfidealnormabs(rnf,x): absolute norm of the ideal x.
Doc: $\var{rnf}$ being a relative
number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being a
relative ideal (which can be, as in the absolute case, of many different
types, including of course elements), computes the norm of the ideal $x$
considered as an ideal of the absolute extension $L/\Q$. This is identical to
\kbd{idealnorm(rnfidealnormrel(\var{rnf},x))}, but faster.
Function: rnfidealnormrel
Class: basic
Section: number_fields
C-Name: rnfidealnormrel
Prototype: GG
Help: rnfidealnormrel(rnf,x): relative norm of the ideal x.
Doc: $\var{rnf}$ being a relative
number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being a
relative ideal (which can be, as in the absolute case, of many different
types, including of course elements), computes the relative norm of $x$ as a
ideal of $K$ in HNF.
Function: rnfidealreltoabs
Class: basic
Section: number_fields
C-Name: rnfidealreltoabs
Prototype: GG
Help: rnfidealreltoabs(rnf,x): transforms the ideal x from relative to
absolute representation.
Doc: $\var{rnf}$ being a relative
number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being a
relative ideal, gives the ideal $x\Z_L$ as an absolute ideal of $L/\Q$, in
the form of a $\Z$-basis, given by a vector of polynomials (modulo
\kbd{rnf.pol}).
The following routine might be useful:
\bprog
\\ return y = rnfidealreltoabs(rnf,...) as an ideal in HNF form
\\ associated to nf = nfinit( rnf.pol );
idealgentoHNF(nf, y) = mathnf( Mat( nfalgtobasis(nf, y) ) );
@eprog
Function: rnfidealtwoelt
Class: basic
Section: number_fields
C-Name: rnfidealtwoelement
Prototype: GG
Help: rnfidealtwoelt(rnf,x): relative version of idealtwoelt, where rnf
is a relative numberfield.
Doc: $\var{rnf}$ being a relative
number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an
ideal of the relative extension $L/K$ given by a pseudo-matrix, gives a
vector of two generators of $x$ over $\Z_L$ expressed as polmods with polmod
coefficients.
Function: rnfidealup
Class: basic
Section: number_fields
C-Name: rnfidealup
Prototype: GG
Help: rnfidealup(rnf,x): lifts the ideal x (of the base field) to the
relative field.
Doc: $\var{rnf}$ being a relative number
field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an ideal of
$K$, gives the ideal $x\Z_L$ as an absolute ideal of $L/\Q$, in the form of a
$\Z$-basis, given by a vector of polynomials (modulo \kbd{rnf.pol}).
The following routine might be useful:
\bprog
\\ return y = rnfidealup(rnf,...) as an ideal in HNF form
\\ associated to nf = nfinit( rnf.pol );
idealgentoHNF(nf, y) = mathnf( Mat( matalgtobasis(nf, y) ) );
@eprog
Function: rnfinit
Class: basic
Section: number_fields
C-Name: rnfinit
Prototype: GG
Help: rnfinit(nf,pol): pol being a non constant irreducible polynomial
defined over the number field nf, initializes a vector of data necessary for
working in relative number fields (rnf functions). See manual for technical
details.
Doc: $\var{nf}$ being a number field in \kbd{nfinit}
format considered as base field, and \var{pol} a polynomial defining a relative
extension over $\var{nf}$, this computes all the necessary data to work in the
relative extension. The main variable of \var{pol} must be of higher priority
(see \secref{se:priority}) than that of $\var{nf}$, and the coefficients of
\var{pol} must be in $\var{nf}$.
The result is a row vector, whose components are technical. In the following
description, we let $K$ be the base field defined by $\var{nf}$, $m$ the
degree of the base field, $n$ the relative degree, $L$ the large field (of
relative degree $n$ or absolute degree $nm$), $r_1$ and $r_2$ the number of
real and complex places of $K$.
$\var{rnf}[1]$ contains the relative polynomial \var{pol}.
$\var{rnf}[2]$ is currently unused.
$\var{rnf}[3]$ is a two-component row vector $[\goth{d}(L/K),s]$ where
$\goth{d}(L/K)$ is the relative ideal discriminant of $L/K$ and $s$ is the
discriminant of $L/K$ viewed as an element of $K^*/(K^*)^2$, in other words
it is the output of \kbd{rnfdisc}.
$\var{rnf}[4]$ is the ideal index $\goth{f}$, i.e.~such that
$d(pol)\Z_K=\goth{f}^2\goth{d}(L/K)$.
$\var{rnf}[5]$ is currently unused.
$\var{rnf}[6]$ is currently unused.
$\var{rnf}[7]$ is a two-component row vector, where the first component is
the relative integral pseudo basis expressed as polynomials (in the variable of
$pol$) with polmod coefficients in $\var{nf}$, and the second component is the
ideal list of the pseudobasis in HNF.
$\var{rnf}[8]$ is the inverse matrix of the integral basis matrix, with
coefficients polmods in $\var{nf}$.
$\var{rnf}[9]$ is currently unused.
$\var{rnf}[10]$ is $\var{nf}$.
$\var{rnf}[11]$ is the output of \kbd{rnfequation(nf, pol, 1)}. Namely, a
vector \var{vabs} with 3 entries describing the \emph{absolute} extension
$L/\Q$. $\var{vabs}[1]$ is an absolute equation, more conveniently obtained
as \kbd{rnf.pol}. $\var{vabs}[2]$ expresses the generator $\alpha$ of the
number field $\var{nf}$ as a polynomial modulo the absolute equation
$\var{vabs}[1]$. $\var{vabs}[3]$ is a small integer $k$ such that, if $\beta$
is an abstract root of \var{pol} and $\alpha$ the generator of $\var{nf}$,
the generator whose root is \var{vabs} will be
$\beta + k \alpha$. Note that one must be very careful if $k\neq0$ when
dealing simultaneously with absolute and relative quantities since the
generator chosen for the absolute extension is not the same as for the
relative one. If this happens, one can of course go on working, but we
strongly advise to change the relative polynomial so that its root will be
$\beta + k \alpha$. Typically, the GP instruction would be
\kbd{pol = subst(pol, x, x - k*Mod(y,\var{nf}.pol))}
$\var{rnf}[12]$ is by default unused and set equal to 0. This
field is used to store further information about the field as it becomes
available (which is rarely needed, hence would be too expensive to compute
during the initial \kbd{rnfinit} call).
Function: rnfisabelian
Class: basic
Section: number_fields
C-Name: rnfisabelian
Prototype: lGG
Help: rnfisabelian(nf,T): T being a relative polynomial with coefficients
in nf, return 1 if it defines an abelian extension, and 0 otherwise.
Doc: $T$ being a relative polynomial with coefficients
in \var{nf}, return 1 if it defines an abelian extension, and 0 otherwise.
\bprog
? K = nfinit(y^2 + 23);
? rnfisabelian(K, x^3 - 3*x - y)
%2 = 1
@eprog
Function: rnfisfree
Class: basic
Section: number_fields
C-Name: rnfisfree
Prototype: lGG
Help: rnfisfree(bnf,x): given an order x as output by rnfpseudobasis or
rnfsteinitz, outputs true (1) or false (0) according to whether the order is
free or not.
Doc: given $\var{bnf}$ as output by
\kbd{bnfinit}, and either a polynomial $x$ with coefficients in $\var{bnf}$
defining a relative extension $L$ of $\var{bnf}$, or a pseudo-basis $x$ of
such an extension, returns true (1) if $L/\var{bnf}$ is free, false (0) if
not.
Function: rnfisnorm
Class: basic
Section: number_fields
C-Name: rnfisnorm
Prototype: GGD0,L,
Help: rnfisnorm(T,a,{flag=0}): T is as output by rnfisnorminit applied to
L/K. Tries to tell whether a is a norm from L/K. Returns a vector [x,q]
where a=Norm(x)*q. Looks for a solution which is a S-integer, with S a list
of places in K containing the ramified primes, generators of the class group
of ext, as well as those primes dividing a. If L/K is Galois, omit flag,
otherwise it is used to add more places to S: all the places above the
primes p <= flag (resp. p | flag) if flag > 0 (resp. flag < 0). The answer
is guaranteed (i.e a is a norm iff q=1) if L/K is Galois or, under GRH, if S
contains all primes less than 12.log(disc(M))^2, where M is the normal
closure of L/K.
Doc: similar to
\kbd{bnfisnorm} but in the relative case. $T$ is as output by
\tet{rnfisnorminit} applied to the extension $L/K$. This tries to decide
whether the element $a$ in $K$ is the norm of some $x$ in the extension
$L/K$.
The output is a vector $[x,q]$, where $a = \Norm(x)*q$. The
algorithm looks for a solution $x$ which is an $S$-integer, with $S$ a list
of places of $K$ containing at least the ramified primes, the generators of
the class group of $L$, as well as those primes dividing $a$. If $L/K$ is
Galois, then this is enough; otherwise, $\fl$ is used to add more primes to
$S$: all the places above the primes $p \leq \fl$ (resp.~$p|\fl$) if $\fl>0$
(resp.~$\fl<0$).
The answer is guaranteed (i.e.~$a$ is a norm iff $q = 1$) if the field is
Galois, or, under \idx{GRH}, if $S$ contains all primes less than
$12\log^2\left|\disc(M)\right|$, where $M$ is the normal
closure of $L/K$.
If \tet{rnfisnorminit} has determined (or was told) that $L/K$ is
\idx{Galois}, and $\fl \neq 0$, a Warning is issued (so that you can set
$\fl = 1$ to check whether $L/K$ is known to be Galois, according to $T$).
Example:
\bprog
bnf = bnfinit(y^3 + y^2 - 2*y - 1);
p = x^2 + Mod(y^2 + 2*y + 1, bnf.pol);
T = rnfisnorminit(bnf, p);
rnfisnorm(T, 17)
@eprog\noindent
checks whether $17$ is a norm in the Galois extension $\Q(\beta) /
\Q(\alpha)$, where $\alpha^3 + \alpha^2 - 2\alpha - 1 = 0$ and $\beta^2 +
\alpha^2 + 2\alpha + 1 = 0$ (it is).
Function: rnfisnorminit
Class: basic
Section: number_fields
C-Name: rnfisnorminit
Prototype: GGD2,L,
Help: rnfisnorminit(pol,polrel,{flag=2}): let K be defined by a root of pol,
L/K the extension defined by polrel. Compute technical data needed by
rnfisnorm to solve norm equations Nx = a, for x in L, and a in K. If flag=0,
do not care whether L/K is Galois or not; if flag = 1, assume L/K is Galois;
if flag = 2, determine whether L/K is Galois.
Doc: let $K$ be defined by a root of \var{pol}, and $L/K$ the extension defined
by the polynomial \var{polrel}. As usual, \var{pol} can in fact be an \var{nf},
or \var{bnf}, etc; if \var{pol} has degree $1$ (the base field is $\Q$),
polrel is also allowed to be an \var{nf}, etc. Computes technical data needed
by \tet{rnfisnorm} to solve norm equations $Nx = a$, for $x$ in $L$, and $a$
in $K$.
If $\fl = 0$, do not care whether $L/K$ is Galois or not.
If $\fl = 1$, $L/K$ is assumed to be Galois (unchecked), which speeds up
\tet{rnfisnorm}.
If $\fl = 2$, let the routine determine whether $L/K$ is Galois.
Function: rnfkummer
Class: basic
Section: number_fields
C-Name: rnfkummer
Prototype: GDGD0,L,p
Help: rnfkummer(bnr,{subgp},{d=0}): bnr being as output by bnrinit,
finds a relative equation for the class field corresponding to the module in
bnr and the given congruence subgroup (the ray class field if subgp is
omitted). d can be zero (default), or positive, and in this case the
output is the list of all relative equations of degree d for the given bnr,
with the same conductor as (bnr, subgp).
Doc: \var{bnr}
being as output by \kbd{bnrinit}, finds a relative equation for the
class field corresponding to the module in \var{bnr} and the given
congruence subgroup (the full ray class field if \var{subgp} is omitted).
If $d$ is positive, outputs the list of all relative equations of
degree $d$ contained in the ray class field defined by \var{bnr}, with
the \emph{same} conductor as $(\var{bnr}, \var{subgp})$.
\misctitle{Warning} This routine only works for subgroups of prime index. It
uses Kummer theory, adjoining necessary roots of unity (it needs to compute a
tough \kbd{bnfinit} here), and finds a generator via Hecke's characterization
of ramification in Kummer extensions of prime degree. If your extension does
not have prime degree, for the time being, you have to split it by hand as a
tower / compositum of such extensions.
Function: rnflllgram
Class: basic
Section: number_fields
C-Name: rnflllgram
Prototype: GGGp
Help: rnflllgram(nf,pol,order): given a pol with coefficients in nf and an
order as output by rnfpseudobasis or similar, gives [[neworder],U], where
neworder is a reduced order and U is the unimodular transformation matrix.
Doc: given a polynomial
\var{pol} with coefficients in \var{nf} defining a relative extension $L$ and
a suborder \var{order} of $L$ (of maximal rank), as output by
\kbd{rnfpseudobasis}$(\var{nf},\var{pol})$ or similar, gives
$[[\var{neworder}],U]$, where \var{neworder} is a reduced order and $U$ is
the unimodular transformation matrix.
Function: rnfnormgroup
Class: basic
Section: number_fields
C-Name: rnfnormgroup
Prototype: GG
Help: rnfnormgroup(bnr,pol): norm group (or Artin or Takagi group)
corresponding to the Abelian extension of bnr.bnf defined by pol, where
the module corresponding to bnr is assumed to be a multiple of the
conductor. The result is the HNF defining the norm group on the
generators in bnr.gen.
Doc:
\var{bnr} being a big ray
class field as output by \kbd{bnrinit} and \var{pol} a relative polynomial
defining an \idx{Abelian extension}, computes the norm group (alias Artin
or Takagi group) corresponding to the Abelian extension of
$\var{bnf}=$\kbd{bnr.bnf}
defined by \var{pol}, where the module corresponding to \var{bnr} is assumed
to be a multiple of the conductor (i.e.~\var{pol} defines a subextension of
bnr). The result is the HNF defining the norm group on the given generators
of \kbd{bnr.gen}. Note that neither the fact that \var{pol} defines an
Abelian extension nor the fact that the module is a multiple of the conductor
is checked. The result is undefined if the assumption is not correct.
Function: rnfpolred
Class: basic
Section: number_fields
C-Name: rnfpolred
Prototype: GGp
Help: rnfpolred(nf,pol): given a pol with coefficients in nf, finds a list
of relative polynomials defining some subfields, hopefully simpler.
Doc: relative version of \kbd{polred}.
Given a monic polynomial \var{pol} with coefficients in $\var{nf}$, finds a
list of relative polynomials defining some subfields, hopefully simpler and
containing the original field. In the present version \vers, this is slower
and less efficient than \kbd{rnfpolredabs}.
Function: rnfpolredabs
Class: basic
Section: number_fields
C-Name: rnfpolredabs
Prototype: GGD0,L,
Help: rnfpolredabs(nf,pol,{flag=0}): given a pol with coefficients in nf,
finds a relative simpler polynomial defining the same field. Binary digits
of flag mean: 1: return also the element whose characteristic polynomial is
the given polynomial, 2: return an absolute polynomial, 16: partial
reduction.
Doc: relative version of
\kbd{polredabs}. Given a monic polynomial \var{pol} with coefficients in
$\var{nf}$, finds a simpler relative polynomial defining the same field. The
binary digits of $\fl$ mean
1: returns $[P,a]$ where $P$ is the default output and $a$ is an
element expressed on a root of $P$ whose characteristic polynomial is
\var{pol}
2: returns an absolute polynomial (same as
{\tt rnfequation(\var{nf},rnfpolredabs(\var{nf},\var{pol}))}
but faster).
16: possibly use a suborder of the maximal order. This is slower than the
default when the relative discriminant is smooth, and much faster otherwise.
See \secref{se:polredabs}.
\misctitle{Remark} In the present implementation, this is both faster and
much more efficient than \kbd{rnfpolred}, the difference being more
dramatic than in the absolute case. This is because the implementation of
\kbd{rnfpolred} is based on (a partial implementation of) an incomplete
reduction theory of lattices over number fields, the function
\kbd{rnflllgram}, which deserves to be improved.
Function: rnfpseudobasis
Class: basic
Section: number_fields
C-Name: rnfpseudobasis
Prototype: GG
Help: rnfpseudobasis(nf,pol): given a pol with coefficients in nf, gives a
4-component vector [A,I,D,d] where [A,I] is a pseudo basis of the maximal
order in HNF on the power basis, D is the relative ideal discriminant, and d
is the relative discriminant in nf^*/nf*^2.
Doc: given a number field
$\var{nf}$ as output by \kbd{nfinit} and a polynomial \var{pol} with
coefficients in $\var{nf}$ defining a relative extension $L$ of $\var{nf}$,
computes a pseudo-basis $(A,I)$ for the maximal order $\Z_L$ viewed as a
$\Z_K$-module, and the relative discriminant of $L$. This is output as a
four-element row vector $[A,I,D,d]$, where $D$ is the relative ideal
discriminant and $d$ is the relative discriminant considered as an element of
$\var{nf}^*/{\var{nf}^*}^2$.
Function: rnfsteinitz
Class: basic
Section: number_fields
C-Name: rnfsteinitz
Prototype: GG
Help: rnfsteinitz(nf,x): given an order x as output by rnfpseudobasis,
gives [A,I,D,d] where (A,I) is a pseudo basis where all the ideals except
perhaps the last are trivial.
Doc: given a number field $\var{nf}$ as
output by \kbd{nfinit} and either a polynomial $x$ with coefficients in
$\var{nf}$ defining a relative extension $L$ of $\var{nf}$, or a pseudo-basis
$x$ of such an extension as output for example by \kbd{rnfpseudobasis},
computes another pseudo-basis $(A,I)$ (not in HNF in general) such that all
the ideals of $I$ except perhaps the last one are equal to the ring of
integers of $\var{nf}$, and outputs the four-component row vector $[A,I,D,d]$
as in \kbd{rnfpseudobasis}. The name of this function comes from the fact
that the ideal class of the last ideal of $I$, which is well defined, is the
\idx{Steinitz class} of the $\Z_K$-module $\Z_L$ (its image in $SK_0(\Z_K)$).
Function: round
Class: basic
Section: conversions
C-Name: round0
Prototype: GD&
Help: round(x,{&e}): take the nearest integer to all the coefficients of x.
If e is present, do not take into account loss of integer part precision,
and set e = error estimate in bits.
Description:
(small):small:parens $1
(int):int:copy:parens $1
(real):int roundr($1)
(mp):int mpround($1)
(mp, &small):int grndtoi($1, &$2)
(mp, &int):int round0($1, &$2)
(gen):gen ground($1)
(gen, &small):gen grndtoi($1, &$2)
(gen, &int):gen round0($1, &$2)
Doc: If $x$ is in $\R$, rounds $x$ to the nearest integer (rounding to
$+\infty$ in case of ties), then and sets $e$ to the number of error bits,
that is the binary exponent of the difference between the original and the
rounded value (the ``fractional part''). If the exponent of $x$ is too large
compared to its precision (i.e.~$e>0$), the result is undefined and an error
occurs if $e$ was not given.
\misctitle{Important remark} Contrary to the other truncation functions,
this function operates on every coefficient at every level of a PARI object.
For example
$$\text{truncate}\left(\dfrac{2.4*X^2-1.7}{X}\right)=2.4*X,$$
whereas
$$\text{round}\left(\dfrac{2.4*X^2-1.7}{X}\right)=\dfrac{2*X^2-2}{X}.$$
An important use of \kbd{round} is to get exact results after an approximate
computation, when theory tells you that the coefficients must be integers.
Variant: Also available are \fun{GEN}{grndtoi}{GEN x, long *e} and
\fun{GEN}{ground}{GEN x}.
Function: select
Class: basic
Section: programming/specific
C-Name: select0
Prototype: GG
Help: select(f, A): selects elements of A according to the selection function f.
Wrapper: (bG)
Description:
(gen,gen):gen genselect(${1 cookie}, ${1 wrapper}, $2)
Doc: Given a vector, list or matrix \kbd{A} and a \typ{CLOSURE} \kbd{f},
returns the elements $x$ of \kbd{A} such that $f(x)$ is non-zero. In other
words, \kbd{f} is seen as a selection function returning a boolean value.
\bprog
? select(x->isprime(x), vector(50,i,i^2+1))
%1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
? select(x->(x<100), %)
%2 = [2, 5, 17, 37]
@eprog\noindent returns the primes of the form $i^2+1$ for some $i\leq 50$,
then the elements less than 100 in the preceding result. The following
function lists the elements in $(\Z/N\Z)^*$:
\bprog
? invertibles(N) = select(x->gcd(x,N) == 1, vector(N,i,i))
@eprog
\noindent Finally
\bprog
? select(x->x, M)
@eprog\noindent selects the non-0 entries in \kbd{M}. If the latter is a
\typ{MAT}, we extract the matrix of non-0 columns. Note that \emph{removing}
entries instead of selecting them just involves replacing the selection
function \kbd{f} with its negation:
\bprog
? select(x->!isprime(x), vector(50,i,i^2+1))
@eprog
\synt{genselect}{void *E, long (*fun)(void*,GEN), GEN a}.
Function: serconvol
Class: basic
Section: polynomials
C-Name: convol
Prototype: GG
Help: serconvol(x,y): convolution (or Hadamard product) of two power series.
Doc: convolution (or \idx{Hadamard product}) of the
two power series $x$ and $y$; in other words if $x=\sum a_k*X^k$ and $y=\sum
b_k*X^k$ then $\kbd{serconvol}(x,y)=\sum a_k*b_k*X^k$.
Function: serlaplace
Class: basic
Section: polynomials
C-Name: laplace
Prototype: G
Help: serlaplace(x): replaces the power series sum of a_n*x^n/n! by sum of
a_n*x^n. For the reverse operation, use serconvol(x,exp(X)).
Doc: $x$ must be a power series with non-negative
exponents. If $x=\sum (a_k/k!)*X^k$ then the result is $\sum a_k*X^k$.
Function: serreverse
Class: basic
Section: polynomials
C-Name: recip
Prototype: G
Help: serreverse(x): reversion of the power series x.
Doc: reverse power series (i.e.~$x^{-1}$, not $1/x$)
of $x$. $x$ must be a power series whose valuation is exactly equal to one.
Function: setintersect
Class: basic
Section: linear_algebra
C-Name: setintersect
Prototype: GG
Help: setintersect(x,y): intersection of the sets x and y.
Description:
(vec, vec):vec setintersect($1, $2)
Doc: intersection of the two sets $x$ and $y$ (see \kbd{setisset}).
The function also works if both $x$ and $y$ are vectors of strictly increasing
entries, according to \kbd{<}); in that case we return a vector of strictly
increasing entries, not a set. Otherwise, the result is undefined.
Function: setisset
Class: basic
Section: linear_algebra
C-Name: setisset
Prototype: lG
Help: setisset(x): true(1) if x is a set (row vector with strictly
increasing entries), false(0) if not.
Doc:
returns true (1) if $x$ is a set, false (0) if
not. In PARI, a set is a row vector whose entries are strictly
increasing \typ{STR}s. To convert any object into a set (this is most useful for
vectors, of course), use the function \kbd{Set}.
\bprog
? a = [3, 1, 1, 2];
? setisset(a)
%2 = 0
? Set(a)
%3 = ["1", "2", "3"]
@eprog
Function: setminus
Class: basic
Section: linear_algebra
C-Name: setminus
Prototype: GG
Help: setminus(x,y): set of elements of x not belonging to y.
Description:
(vec, vec):vec setminus($1, $2)
Doc: difference of the two sets $x$ and $y$ (see \kbd{setisset}),
i.e.~set of elements of $x$ which do not belong to $y$.
The function also works if both $x$ and $y$ are vectors of strictly increasing
entries, according to \kbd{<}); in that case we return a vector of strictly
increasing entries, not a set. Otherwise, the result is undefined.
Function: setrand
Class: basic
Section: programming/specific
C-Name: setrand
Prototype: vG
Help: setrand(n): reset the seed of the random number generator to n.
Doc: reseeds the random number generator using the seed $n$. No value is
returned. The seed is either a technical array output by \kbd{getrand}, or a
small positive integer, used to generate deterministically a suitable state
array. For instance, running a randomized computation starting by
\kbd{setrand(1)} twice will generate the exact same output.
Function: setsearch
Class: basic
Section: linear_algebra
C-Name: setsearch
Prototype: lGGD0,L,
Help: setsearch(S,x,{flag=0}): looks if x belongs to the set S. If flag is 0
or omitted, returns 0 if it is not, otherwise returns the index j such that
x==S[j]. If flag is non-zero, return 0 if x belongs to S, otherwise the
index j where it should be inserted.
Doc: searches if $x$ belongs to the set $S$ (see \kbd{setisset}).
A set is a vector of \typ{STR}, but this function
works also if $S$ is a arbitrary \emph{sorted} vector or list (see
\kbd{listsort}): if $x$ is not a \typ{STR}, we first
replace it by \kbd{Str}$(x)$ \emph{unless} the first element of $S$ is also
not a \typ{STR}.
If $x$ belongs to the set and $\fl$ is zero or omitted, returns the
index $j$ such that $S[j]=x$, otherwise returns 0. If $\fl$ is non-zero
returns the index $j$ where $x$ should be inserted, and $0$ if it already
belongs to $S$ (this is meant to be used in conjunction with
\kbd{listinsert}, see below).
\bprog
? T = [2,3,5,7]; S = Set(T);
? setsearch(S, 2) \\ search in a true set, t_INT 2 converted to string
%2 = 1
? setsearch(S, Str(2)) \\ search in a true set, no need for conversion
%3 = 1
? setsearch(T, 2) \\ search in a sorted vector, no need for conversion
%4 = 1
? setsearch(T, Str(2)) \\ search in a sorted vector, t_STR "2" not found
%5 = 0
? setsearch(S, 4) \\ not found
%6 = 0
? setsearch(S, 4, 1) \\ should have been inserted at index 3
%7 = 3
@eprog
Function: setunion
Class: basic
Section: linear_algebra
C-Name: setunion
Prototype: GG
Help: setunion(x,y): union of the sets x and y.
Description:
(vec, vec):vec setunion($1, $2)
Doc: union of the two sets $x$ and $y$ (see \kbd{setisset}).
The function also works if both $x$ and $y$ are vectors of strictly increasing
entries, according to \kbd{<}); in that case we return a vector of strictly
increasing entries, not a set. Otherwise, the result is undefined.
Function: shift
Class: basic
Section: operators
C-Name: gshift
Prototype: GL
Help: shift(x,n): shift x left n bits if n>=0, right -n bits if
n<0.
Doc: shifts $x$ componentwise left by $n$ bits if $n\ge0$ and right by $|n|$
bits if $n<0$. May be abbreviated as $x$ \kbd{<<} $n$ or $x$ \kbd{>>} $(-n)$.
A left shift by $n$ corresponds to multiplication by $2^n$. A right shift of an
integer $x$ by $|n|$ corresponds to a Euclidean division of $x$ by $2^{|n|}$
with a remainder of the same sign as $x$, hence is not the same (in general) as
$x \kbd{\bs} 2^n$.
Function: shiftmul
Class: basic
Section: operators
C-Name: gmul2n
Prototype: GL
Help: shiftmul(x,n): multiply x by 2^n (n>=0 or n<0)
Doc: multiplies $x$ by $2^n$. The difference with
\kbd{shift} is that when $n<0$, ordinary division takes place, hence for
example if $x$ is an integer the result may be a fraction, while for shifts
Euclidean division takes place when $n<0$ hence if $x$ is an integer the result
is still an integer.
Function: sigma
Class: basic
Section: number_theoretical
C-Name: gsumdivk
Prototype: GD1,L,
Help: sigma(x,{k=1}): sum of the k-th powers of the divisors of x. k is
optional and if omitted is assumed to be equal to 1.
Description:
(int, ?1):int sumdiv($1)
(int, 0):int numbdiv($1)
(gen, ?1):gen gsumdiv($1)
(gen, 0):gen gnumbdiv($1)
(int, small):int sumdivk($1, $2)
(gen, small):gen gsumdivk($1, $2)
Doc: sum of the $k^{\text{th}}$ powers of the positive divisors of $|x|$. $x$
and $k$ must be of type integer.
The function accepts vector/matrices arguments for $x$, and is then applied
componentwise.
Variant: Also available are
\fun{GEN}{gsumdiv}{GEN n} ($k = 1$), \fun{GEN}{sumdivk}{GEN n,long k}
($n$ a \typ{INT}) and \fun{GEN}{sumdiv}{GEN n} ($k = 1$, $n$ a \typ{INT})
Function: sign
Class: basic
Section: operators
C-Name: gsigne
Prototype: iG
Help: sign(x): sign of x, of type integer, real or fraction
Description:
(mp):small signe($1)
(gen):small gsigne($1)
Doc: \idx{sign} ($0$, $1$ or $-1$) of $x$, which must be of
type integer, real or fraction.
Function: simplify
Class: basic
Section: conversions
C-Name: simplify
Prototype: G
Help: simplify(x): simplify the object x as much as possible.
Doc:
this function simplifies $x$ as much as it can. Specifically, a complex or
quadratic number whose imaginary part is the integer 0 (i.e.~not \kbd{Mod(0,2)}
or \kbd{0.E-28}) is converted to its real part, and a polynomial of degree $0$
is converted to its constant term. Simplifications occur recursively.
This function is especially useful before using arithmetic functions,
which expect integer arguments:
\bprog
? x = 2 + y - y
%1 = 2
? isprime(x)
*** at top-level: isprime(x)
*** ^----------
*** isprime: not an integer argument in an arithmetic function
? type(x)
%2 = "t_POL"
? type(simplify(x))
%3 = "t_INT"
@eprog
Note that GP results are simplified as above before they are stored in the
history. (Unless you disable automatic simplification with \b{y}, that is.)
In particular
\bprog
? type(%1)
%4 = "t_INT"
@eprog
Function: sin
Class: basic
Section: transcendental
C-Name: gsin
Prototype: Gp
Help: sin(x): sine of x.
Doc: sine of $x$.
Function: sinh
Class: basic
Section: transcendental
C-Name: gsh
Prototype: Gp
Help: sinh(x): hyperbolic sine of x.
Doc: hyperbolic sine of $x$.
Function: sizebyte
Class: basic
Section: conversions
C-Name: gsizebyte
Prototype: lG
Help: sizebyte(x): number of bytes occupied by the complete tree of the
object x.
Doc: outputs the total number of bytes occupied by the tree representing the
PARI object $x$.
Variant: Also available is \fun{long}{gsizeword}{GEN x} returning a
number of \emph{words}.
Function: sizedigit
Class: basic
Section: conversions
C-Name: sizedigit
Prototype: lG
Help: sizedigit(x): maximum number of decimal digits minus one of (the
coefficients of) x.
Doc:
outputs a quick bound for the number of decimal
digits of (the components of) $x$, off by at most $1$. If you want the
exact value, you can use \kbd{\#Str(x)}, which is slower.
Function: solve
Class: basic
Section: sums
C-Name: zbrent0
Prototype: V=GGEp
Help: solve(X=a,b,expr): real root of expression expr (X between a and b),
where expr(a)*expr(b)<=0.
Wrapper: (,,G)
Description:
(gen,gen,gen):gen:prec zbrent(${3 cookie}, ${3 wrapper}, $1, $2, prec)
Doc: find a real root of expression
\var{expr} between $a$ and $b$, under the condition
$\var{expr}(X=a) * \var{expr}(X=b) \le 0$. (You will get an error message
\kbd{roots must be bracketed in solve} if this does not hold.)
This routine uses Brent's method and can fail miserably if \var{expr} is
not defined in the whole of $[a,b]$ (try \kbd{solve(x=1, 2, tan(x))}).
\synt{zbrent}{void *E,GEN (*eval)(void*,GEN),GEN a,GEN b,long prec}.
Function: sqr
Class: basic
Section: transcendental
C-Name: gsqr
Prototype: G
Help: sqr(x): square of x. NOT identical to x*x.
Description:
(int):int sqri($1)
(mp):mp gsqr($1)
(gen):gen gsqr($1)
Doc: square of $x$. This operation is not completely
straightforward, i.e.~identical to $x * x$, since it can usually be
computed more efficiently (roughly one-half of the elementary
multiplications can be saved). Also, squaring a $2$-adic number increases
its precision. For example,
\bprog
? (1 + O(2^4))^2
%1 = 1 + O(2^5)
? (1 + O(2^4)) * (1 + O(2^4))
%2 = 1 + O(2^4)
@eprog\noindent
Note that this function is also called whenever one multiplies two objects
which are known to be \emph{identical}, e.g.~they are the value of the same
variable, or we are computing a power.
\bprog
? x = (1 + O(2^4)); x * x
%3 = 1 + O(2^5)
? (1 + O(2^4))^4
%4 = 1 + O(2^6)
@eprog\noindent
(note the difference between \kbd{\%2} and \kbd{\%3} above).
Function: sqrt
Class: basic
Section: transcendental
C-Name: gsqrt
Prototype: Gp
Help: sqrt(x): square root of x.
Description:
(real):gen sqrtr($1)
(gen):gen:prec gsqrt($1, prec)
Doc: principal branch of the square root of $x$, defined as $\sqrt{x} =
\exp(\log x / 2)$. In particular, we have
$\text{Arg}(\text{sqrt}(x))\in{} ]-\pi/2, \pi/2]$, and if $x\in \R$ and $x<0$,
then the result is complex with positive imaginary part.
Intmod a prime $p$ and $p$-adics are allowed as arguments. In that case,
the square root (if it exists) which is returned is the one whose
first $p$-adic digit is in the interval $[0,p/2]$. When the argument is an
intmod a non-prime (or a non-prime-adic), the result is undefined.
Variant: For a \typ{PADIC} $x$, the function
\fun{GEN}{Qp_sqrt}{GEN x} is also available.
Function: sqrtint
Class: basic
Section: number_theoretical
C-Name: sqrtint
Prototype: G
Help: sqrtint(x): integer square root of x (x integer).
Description:
(gen):int sqrtint($1)
Doc: integer square root of $x$, which must be a non-negative integer. The
result is non-negative and rounded towards zero.
Function: sqrtn
Class: basic
Section: transcendental
C-Name: gsqrtn
Prototype: GGD&p
Help: sqrtn(x,n,{&z}): nth-root of x, n must be integer. If present, z is
set to a suitable root of unity to recover all solutions. If it was not
possible, z is set to zero.
Doc: principal branch of the $n$th root of $x$,
i.e.~such that $\text{Arg}(\text{sqrt}(x))\in{} ]-\pi/n, \pi/n]$. Intmod
a prime and $p$-adics are allowed as arguments.
If $z$ is present, it is set to a suitable root of unity allowing to
recover all the other roots. If it was not possible, z is
set to zero. In the case this argument is present and no square root exist,
$0$ is returned instead or raising an error.
\bprog
? sqrtn(Mod(2,7), 2)
%1 = Mod(4, 7)
? sqrtn(Mod(2,7), 2, &z); z
%2 = Mod(6, 7)
? sqrtn(Mod(2,7), 3)
*** at top-level: sqrtn(Mod(2,7),3)
*** ^-----------------
*** sqrtn: nth-root does not exist in gsqrtn.
? sqrtn(Mod(2,7), 3, &z)
%2 = 0
? z
%3 = 0
@eprog
The following script computes all roots in all possible cases:
\bprog
sqrtnall(x,n)=
{ my(V,r,z,r2);
r = sqrtn(x,n, &z);
if (!z, error("Impossible case in sqrtn"));
if (type(x) == "t_INTMOD" || type(x)=="t_PADIC" ,
r2 = r*z; n = 1;
while (r2!=r, r2*=z;n++));
V = vector(n); V[1] = r;
for(i=2, n, V[i] = V[i-1]*z);
V
}
addhelp(sqrtnall,"sqrtnall(x,n):compute the vector of nth-roots of x");
@eprog\noindent
Variant: If $x$ is a \typ{PADIC}, the function
\fun{GEN}{Qp_sqrt}{GEN x, GEN n, GEN *z} is also available.
Function: stirling
Class: basic
Section: number_theoretical
C-Name: stirling
Prototype: LLD1,L,
Help: stirling(n,k,{flag=1}): If flag=1 (default) return the Stirling number
of the first kind s(n,k), if flag=2, return the Stirling number of the second
kind S(n,k).
Doc: \idx{Stirling number} of the first kind $s(n,k)$ ($\fl=1$, default) or
of the second kind $S(n,k)$ (\fl=2), where $n$, $k$ are non-negative
integers. The former is $(-1)^{n-k}$ times the
number of permutations of $n$ symbols with exactly $k$ cycles; the latter is
the number of ways of partitioning a set of $n$ elements into $k$ non-empty
subsets. Note that if all $s(n,k)$ are needed, it is much faster to compute
$$\sum_k s(n,k) x^k = x(x-1)\dots(x-n+1).$$
Similarly, if a large number of $S(n,k)$ are needed for the same $k$,
one should use
$$\sum_n S(n,k) x^n = \dfrac{x^k}{(1-x)\dots(1-kx)}.$$
(Should be implemented using a divide and conquer product.) Here are
simple variants for $n$ fixed:
\bprog
/* list of s(n,k), k = 1..n */
vecstirling(n) = Vec( factorback(vector(n-1,i,1-i*'x)) )
/* list of S(n,k), k = 1..n */
vecstirling2(n) =
{ my(Q = x^(n-1), t);
vector(n, i, t = divrem(Q, x-i); Q=t[1]; t[2]);
}
@eprog
Variant: Also available are \fun{GEN}{stirling1}{ulong n, ulong k}
($\fl=1$) and \fun{GEN}{stirling2}{ulong n, ulong k} ($\fl=2$).
Function: subgrouplist
Class: basic
Section: number_fields
C-Name: subgrouplist0
Prototype: GDGD0,L,
Help: subgrouplist(bnr,{bound},{flag=0}): bnr being as output by bnrinit or
a list of cyclic components of a finite Abelian group G, outputs the list of
subgroups of G (of index bounded by bound, if not omitted), given as HNF
left divisors of the SNF matrix corresponding to G. If flag=0 (default) and
bnr is as output by bnrinit, gives only the subgroups for which the modulus
is the conductor.
Doc: \var{bnr} being as output by \kbd{bnrinit} or a list of cyclic components
of a finite Abelian group $G$, outputs the list of subgroups of $G$. Subgroups
are given as HNF left divisors of the SNF matrix corresponding to $G$.
If $\fl=0$ (default) and \var{bnr} is as output by \kbd{bnrinit}, gives
only the subgroups whose modulus is the conductor. Otherwise, the modulus is
not taken into account.
If \var{bound} is present, and is a positive integer, restrict the output to
subgroups of index less than \var{bound}. If \var{bound} is a vector
containing a single positive integer $B$, then only subgroups of index
exactly equal to $B$ are computed. For instance
\bprog
? subgrouplist([6,2])
%1 = [[6, 0; 0, 2], [2, 0; 0, 2], [6, 3; 0, 1], [2, 1; 0, 1], [3, 0; 0, 2],
[1, 0; 0, 2], [6, 0; 0, 1], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
? subgrouplist([6,2],3) \\@com index less than 3
%2 = [[2, 1; 0, 1], [1, 0; 0, 2], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
? subgrouplist([6,2],[3]) \\@com index 3
%3 = [[3, 0; 0, 1]]
? bnr = bnrinit(bnfinit(x), [120,[1]], 1);
? L = subgrouplist(bnr, [8]);
@eprog\noindent
In the last example, $L$ corresponds to the 24 subfields of
$\Q(\zeta_{120})$, of degree $8$ and conductor $120\infty$ (by setting \fl,
we see there are a total of $43$ subgroups of degree $8$).
\bprog
? vector(#L, i, galoissubcyclo(bnr, L[i]))
@eprog\noindent
will produce their equations. (For a general base field, you would
have to rely on \tet{bnrstark}, or \tet{rnfkummer}.)
Function: subst
Class: basic
Section: polynomials
C-Name: gsubst
Prototype: GnG
Help: subst(x,y,z): in expression x, replace the variable y by the
expression z.
Doc: replace the simple variable $y$ by the argument $z$ in the ``polynomial''
expression $x$. Every type is allowed for $x$, but if it is not a genuine
polynomial (or power series, or rational function), the substitution will be
done as if the scalar components were polynomials of degree zero. In
particular, beware that:
\bprog
? subst(1, x, [1,2; 3,4])
%1 =
[1 0]
[0 1]
? subst(1, x, Mat([0,1]))
*** at top-level: subst(1,x,Mat([0,1])
*** ^--------------------
*** subst: forbidden substitution by a non square matrix.
@eprog\noindent
If $x$ is a power series, $z$ must be either a polynomial, a power
series, or a rational function. Finally, if $x$ is a vector,
matrix or list, the substitution is applied to each individual entry.
Use the function \kbd{substvec} to replace several variables at once,
or the function \kbd{substpol} to replace a polynomial expression.
Function: substpol
Class: basic
Section: polynomials
C-Name: gsubstpol
Prototype: GGG
Help: substpol(x,y,z): in expression x, replace the polynomial y by the
expression z, using remainder decomposition of x.
Doc: replace the ``variable'' $y$ by the argument $z$ in the ``polynomial''
expression $x$. Every type is allowed for $x$, but the same behavior
as \kbd{subst} above apply.
The difference with \kbd{subst} is that $y$ is allowed to be any polynomial
here. The substitution is done moding out all components of $x$
(recursively) by $y - t$, where $t$ is a new free variable of lowest
priority. Then substituting $t$ by $z$ in the resulting expression. For
instance
\bprog
? substpol(x^4 + x^2 + 1, x^2, y)
%1 = y^2 + y + 1
? substpol(x^4 + x^2 + 1, x^3, y)
%2 = x^2 + y*x + 1
? substpol(x^4 + x^2 + 1, (x+1)^2, y)
%3 = (-4*y - 6)*x + (y^2 + 3*y - 3)
@eprog
Variant: Further, \fun{GEN}{gdeflate}{GEN T, long v, long d} attempts to
write $T(x)$ in the form $t(x^d)$, where $x=$\kbd{pol\_x}$(v)$, and returns
\kbd{NULL} if the substitution fails (for instance in the example \kbd{\%2}
above).
Function: substvec
Class: basic
Section: polynomials
C-Name: gsubstvec
Prototype: GGG
Help: substvec(x,v,w): in expression x, make a best effort to replace the
variables v1,...,vn by the expression w1,...,wn.
Doc: $v$ being a vector of monomials of degree 1 (variables),
$w$ a vector of expressions of the same length, replace in the expression
$x$ all occurrences of $v_i$ by $w_i$. The substitutions are done
simultaneously; more precisely, the $v_i$ are first replaced by new
variables in $x$, then these are replaced by the $w_i$:
\bprog
? substvec([x,y], [x,y], [y,x])
%1 = [y, x]
? substvec([x,y], [x,y], [y,x+y])
%2 = [y, x + y] \\ not [y, 2*y]
@eprog
Function: sum
Class: basic
Section: sums
C-Name: somme
Prototype: V=GGEDG
Help: sum(X=a,b,expr,{x=0}): x plus the sum (X goes from a to b) of
expression expr.
Doc: sum of expression \var{expr},
initialized at $x$, the formal parameter going from $a$ to $b$. As for
\kbd{prod}, the initialization parameter $x$ may be given to force the type
of the operations being performed.
\noindent As an extreme example, compare
\bprog
? sum(i=1, 10^4, 1/i); \\@com rational number: denominator has $4345$ digits.
time = 236 ms.
? sum(i=1, 5000, 1/i, 0.)
time = 8 ms.
%2 = 9.787606036044382264178477904
@eprog
\synt{somme}{GEN a, GEN b, char *expr, GEN x}.
Function: sumalt
Class: basic
Section: sums
C-Name: sumalt0
Prototype: V=GED0,L,p
Help: sumalt(X=a,expr,{flag=0}): Cohen-Villegas-Zagier's acceleration of
alternating series expr, X starting at a. flag is optional, and can be 0:
default, or 1: uses a slightly different method using Zagier's polynomials.
Wrapper: (,G)
Description:
(gen,gen,?0):gen:prec sumalt(${2 cookie}, ${2 wrapper}, $1, prec)
(gen,gen,1):gen:prec sumalt2(${2 cookie}, ${2 wrapper}, $1, prec)
Doc: numerical summation of the series \var{expr}, which should be an
\idx{alternating series}, the formal variable $X$ starting at $a$. Use an
algorithm of Cohen, Villegas and Zagier (\emph{Experiment. Math.} {\bf 9}
(2000), no.~1, 3--12).
If $\fl=1$, use a variant with slightly different polynomials. Sometimes
faster.
The routine is heuristic and a rigorous proof assumes that the values of
\var{expr} are the moments of a positive measure on $[0,1]$. Divergent
alternating series can sometimes be summed by this method, as well as series
which are not exactly alternating (see for example
\secref{se:user_defined}). It should be used to try and guess the value of
an infinite sum. (However, see the example at the end of
\secref{se:userfundef}.)
If the series already converges geometrically,
\tet{suminf} is often a better choice:
\bprog
? \p28
? sumalt(i = 1, -(-1)^i / i) - log(2)
time = 0 ms.
%1 = -2.524354897 E-29
? suminf(i = 1, -(-1)^i / i) \\@com Had to hit <C-C>
*** at top-level: suminf(i=1,-(-1)^i/i)
*** ^------
*** suminf: user interrupt after 10min, 20,100 ms.
? \p1000
? sumalt(i = 1, -(-1)^i / i) - log(2)
time = 90 ms.
%2 = 4.459597722 E-1002
? sumalt(i = 0, (-1)^i / i!) - exp(-1)
time = 670 ms.
%3 = -4.03698781490633483156497361352190615794353338591897830587 E-944
? suminf(i = 0, (-1)^i / i!) - exp(-1)
time = 110 ms.
%4 = -8.39147638 E-1000 \\ @com faster and more accurate
@eprog
\synt{sumalt}{void *E, GEN (*eval)(void*,GEN),GEN a,long prec}. Also
available is \tet{sumalt2} with the same arguments ($\fl = 1$).
Function: sumdedekind
Class: basic
Section: number_theoretical
C-Name: sumdedekind
Prototype: GG
Help: sumdedekind(h,k): Dedekind sum associated to h,k
Doc: returns the \idx{Dedekind sum} associated to the integers $h$ and $k$,
corresponding to a fast implementation of
\bprog
s(h,k) = sum(n = 1, k-1, (n/k)*(frac(h*n/k) - 1/2))
@eprog
Function: sumdiv
Class: basic
Section: sums
C-Name: divsum
Prototype: GVE
Help: sumdiv(n,X,expr): sum of expression expr, X running over the divisors
of n.
Doc: sum of expression \var{expr} over the positive divisors of $n$.
This function is a trivial wrapper essentially equivalent to
\bprog
D = divisors(n);
for (i = 1, #D, X = D[i]; eval(expr))
@eprog\noindent (except that \kbd{X} is lexically scoped to the \kbd{sumdiv}
loop).
Arithmetic functions like \tet{sigma} use the multiplicativity of the
underlying expression to speed up the computation. Since there is no way to
indicate that \var{expr} is multiplicative in $n$, specialized functions
should always be preferred.
%\syn{NO}
Function: suminf
Class: basic
Section: sums
C-Name: suminf0
Prototype: V=GEp
Help: suminf(X=a,expr): infinite sum (X goes from a to infinity) of real or
complex expression expr.
Wrapper: (,G)
Description:
(gen,gen):gen:prec suminf(${2 cookie}, ${2 wrapper}, $1, prec)
Doc: \idx{infinite sum} of expression
\var{expr}, the formal parameter $X$ starting at $a$. The evaluation stops
when the relative error of the expression is less than the default precision
for 3 consecutive evaluations. The expressions must always evaluate to a
complex number.
If the series converges slowly, make sure \kbd{realprecision} is low (even 28
digits may be too much). In this case, if the series is alternating or the
terms have a constant sign, \tet{sumalt} and \tet{sumpos} should be used
instead.
\bprog
? \p28
? suminf(i = 1, -(-1)^i / i) \\@com Had to hit <C-C>
*** at top-level: suminf(i=1,-(-1)^i/i)
*** ^------
*** suminf: user interrupt after 10min, 20,100 ms.
? sumalt(i = 1, -(-1)^i / i) - log(2)
time = 0 ms.
%1 = -2.524354897 E-29
@eprog
\synt{suminf}{void *E, GEN (*eval)(void*,GEN), GEN a, long prec}.
Function: sumnum
Class: basic
Section: sums
C-Name: sumnum0
Prototype: V=GGEDGD0,L,p
Help: sumnum(X=a,sig,expr,{tab},{flag=0}): numerical summation of expr from
X = ceiling(a) to +infinity. sig is either a scalar or a two-component vector
coding the function's decrease rate at infinity. It is assumed that the
scalar part of sig is to the right of all poles of expr. If present, tab
must be initialized by sumnuminit. If flag is nonzero, assumes that
conj(expr(z)) = expr(conj(z)).
Wrapper: (,,G)
Description:
(gen,gen,gen,?gen,?small):gen:prec sumnum(${3 cookie}, ${3 wrapper}, $1, $2, $4, $5, prec)
Doc: numerical summation of \var{expr}, the variable $X$ taking integer values
from ceiling of $a$ to $+\infty$, where \var{expr} is assumed to be a
holomorphic function $f(X)$ for $\Re(X)\ge \sigma$.
The parameter $\sigma\in\R$ is coded in the argument \kbd{sig} as follows: it
is either
\item a real number $\sigma$. Then the function $f$ is assumed to
decrease at least as $1/X^2$ at infinity, but not exponentially;
\item a two-component vector $[\sigma,\alpha]$, where $\sigma$ is as
before, $\alpha < -1$. The function $f$ is assumed to decrease like
$X^{\alpha}$. In particular, $\alpha\le-2$ is equivalent to no $\alpha$ at all.
\item a two-component vector $[\sigma,\alpha]$, where $\sigma$ is as
before, $\alpha > 0$. The function $f$ is assumed to decrease like
$\exp(-\alpha X)$. In this case it is essential that $\alpha$ be exactly the
rate of exponential decrease, and it is usually a good idea to increase
the default value of $m$ used for the integration step. In practice, if
the function is exponentially decreasing \kbd{sumnum} is slower and less
accurate than \kbd{sumpos} or \kbd{suminf}, so should not be used.
The function uses the \tet{intnum} routines and integration on the line
$\Re(s) = \sigma$. The optional argument \var{tab} is as in intnum, except it
must be initialized with \kbd{sumnuminit} instead of \kbd{intnuminit}.
When \var{tab} is not precomputed, \kbd{sumnum} can be slower than
\kbd{sumpos}, when the latter is applicable. It is in general faster for
slowly decreasing functions.
Finally, if $\fl$ is nonzero, we assume that the function $f$ to be summed is
of real type, i.e. satisfies $\overline{f(z)}=f(\overline{z})$, which
speeds up the computation.
\bprog
? \p 308
? a = sumpos(n=1, 1/(n^3+n+1));
time = 1,410 ms.
? tab = sumnuminit(2);
time = 1,620 ms. \\@com slower but done once and for all.
? b = sumnum(n=1, 2, 1/(n^3+n+1), tab);
time = 460 ms. \\@com 3 times as fast as \kbd{sumpos}
? a - b
%4 = -1.0... E-306 + 0.E-320*I \\@com perfect.
? sumnum(n=1, 2, 1/(n^3+n+1), tab, 1) - a; \\@com function of real type
time = 240 ms.
%2 = -1.0... E-306 \\@com twice as fast, no imaginary part.
? c = sumnum(n=1, 2, 1/(n^2+1), tab, 1);
time = 170 ms. \\@com fast
? d = sumpos(n=1, 1 / (n^2+1));
time = 2,700 ms. \\@com slow.
? d - c
time = 0 ms.
%5 = 1.97... E-306 \\@com perfect.
@eprog
For slowly decreasing function, we must indicate singularities:
\bprog
? \p 308
? a = sumnum(n=1, 2, n^(-4/3));
time = 9,930 ms. \\@com slow because of the computation of $n^{-4/3}$.
? a - zeta(4/3)
time = 110 ms.
%1 = -2.42... E-107 \\@com lost 200 decimals because of singularity at $\infty$
? b = sumnum(n=1, [2,-4/3], n^(-4/3), /*omitted*/, 1); \\@com of real type
time = 12,210 ms.
? b - zeta(4/3)
%3 = 1.05... E-300 \\@com better
@eprog
Since the \emph{complex} values of the function are used, beware of
determination problems. For instance:
\bprog
? \p 308
? tab = sumnuminit([2,-3/2]);
time = 1,870 ms.
? sumnum(n=1,[2,-3/2], 1/(n*sqrt(n)), tab,1) - zeta(3/2)
time = 690 ms.
%1 = -1.19... E-305 \\@com fast and correct
? sumnum(n=1,[2,-3/2], 1/sqrt(n^3), tab,1) - zeta(3/2)
time = 730 ms.
%2 = -1.55... \\@com nonsense. However
? sumnum(n=1,[2,-3/2], 1/n^(3/2), tab,1) - zeta(3/2)
time = 8,990 ms.
%3 = -1.19... E-305 \\@com perfect, as $1/(n*\sqrt{n})$ above but much slower
@eprog
For exponentially decreasing functions, \kbd{sumnum} is given for
completeness, but one of \tet{suminf} or \tet{sumpos} should always be
preferred. If you experiment with such functions and \kbd{sumnum} anyway,
indicate the exact rate of decrease and increase $m$ by $1$ or $2$:
\bprog
? suminf(n=1, 2^(-n)) - 1
time = 10 ms.
%1 = -1.11... E-308 \\@com fast and perfect
? sumpos(n=1, 2^(-n)) - 1
time = 10 ms.
%2 = -2.78... E-308 \\@com also fast and perfect
? sumnum(n=1,2, 2^(-n)) - 1
%3 = -1.321115060 E320 + 0.E311*I \\@com nonsense
? sumnum(n=1, [2,log(2)], 2^(-n), /*omitted*/, 1) - 1 \\@com of real type
time = 5,860 ms.
%4 = -1.5... E-236 \\@com slow and lost $70$ decimals
? m = intnumstep()
%5 = 9
? sumnum(n=1,[2,log(2)], 2^(-n), m+1, 1) - 1
time = 11,770 ms.
%6 = -1.9... E-305 \\@com now perfect, but slow.
@eprog
\synt{sumnum}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN sig,GEN tab,long flag, long prec}.
Function: sumnumalt
Class: basic
Section: sums
C-Name: sumnumalt0
Prototype: V=GGEDGD0,L,p
Help: sumnumalt(X=a,sig,expr,{tab},{flag=0}): numerical summation of (-1)^X
expr(X)
from X = ceiling(a) to +infinity. Note that the (-1)^X must not be included.
sig is either a scalar or a two-component vector coded as in intnum, and the
scalar part is larger than all the real parts of the poles of expr. Uses intnum,
hence tab is as in intnum. If flag is nonzero, assumes that the function to
be summed satisfies conj(f(z))=f(conj(z)), and then up to twice faster.
Wrapper: (,,G)
Description:
(gen,gen,gen,?gen,?small):gen:prec sumnumalt(${3 cookie}, ${3 wrapper}, $1, $2, $4, $5, prec)
Doc: numerical
summation of $(-1)^X\var{expr}(X)$, the variable $X$ taking integer values from
ceiling of $a$ to $+\infty$, where \var{expr} is assumed to be a holomorphic
function for $\Re(X)\ge sig$ (or $sig[1]$).
\misctitle{Warning} This function uses the \kbd{intnum} routines and is
orders of magnitude slower than \kbd{sumalt}. It is only given for
completeness and should not be used in practice.
\misctitle{Warning 2} The expression \var{expr} must \emph{not} include the
$(-1)^X$ coefficient. Thus $\kbd{sumalt}(n=a,(-1)^nf(n))$ is (approximately)
equal to $\kbd{sumnumalt}(n=a,sig,f(n))$.
$sig$ is coded as in \kbd{sumnum}. However for slowly decreasing functions
(where $sig$ is coded as $[\sigma,\alpha]$ with $\alpha<-1$), it is not
really important to indicate $\alpha$. In fact, as for \kbd{sumalt}, the
program will often give meaningful results (usually analytic continuations)
even for divergent series. On the other hand the exponential decrease must be
indicated.
\var{tab} is as in \kbd{intnum}, but if used must be initialized with
\kbd{sumnuminit}. If $\fl$ is nonzero, assumes that the function $f$ to be
summed is of real type, i.e. satisfies $\overline{f(z)}=f(\overline{z})$, and
then twice faster when \var{tab} is precomputed.
\bprog
? \p 308
? tab = sumnuminit(2, /*omitted*/, -1); \\@com abscissa $\sigma=2$, alternating sums.
time = 1,620 ms. \\@com slow, but done once and for all.
? a = sumnumalt(n=1, 2, 1/(n^3+n+1), tab, 1);
time = 230 ms. \\@com similar speed to \kbd{sumnum}
? b = sumalt(n=1, (-1)^n/(n^3+n+1));
time = 0 ms. \\@com infinitely faster!
? a - b
time = 0 ms.
%1 = -1.66... E-308 \\@com perfect
@eprog
\synt{sumnumalt}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN sig, GEN tab, long flag, long prec}.
Function: sumnuminit
Class: basic
Section: sums
C-Name: sumnuminit
Prototype: GD0,L,D1,L,p
Help: sumnuminit(sig, {m=0}, {sgn=1}): initialize tables for numerical
summation. sgn is 1 (in fact >= 0), the default, for sumnum (ordinary sums)
or -1 (in fact < 0) for sumnumalt (alternating sums). sig is as in sumnum and
m is as in intnuminit.
Doc: initialize tables for numerical summation using \kbd{sumnum} (with
$\var{sgn}=1$) or \kbd{sumnumalt} (with $\var{sgn}=-1$), $sig$ is the
abscissa of integration coded as in \kbd{sumnum}, and $m$ is as in
\kbd{intnuminit}.
Function: sumpos
Class: basic
Section: sums
C-Name: sumpos0
Prototype: V=GED0,L,p
Help: sumpos(X=a,expr,{flag=0}): sum of positive (or negative) series expr,
the formal
variable X starting at a. flag is optional, and can be 0: default, or 1:
uses a slightly different method using Zagier's polynomials.
Wrapper: (,G)
Description:
(gen,gen,?0):gen:prec sumpos(${2 cookie}, ${2 wrapper}, $1, prec)
(gen,gen,1):gen:prec sumpos2(${2 cookie}, ${2 wrapper}, $1, prec)
Doc: numerical summation of the series \var{expr}, which must be a series of
terms having the same sign, the formal variable $X$ starting at $a$. The
algorithm used is Van Wijngaarden's trick for converting such a series into
an alternating one, then we use \tet{sumalt}. For regular functions, the
function \kbd{sumnum} is in general much faster once the initializations
have been made using \kbd{sumnuminit}.
The routine is heuristic and assumes that \var{expr} is more or less a
decreasing function of $X$. In particular, the result will be completely
wrong if \var{expr} is 0 too often. We do not check either that all terms
have the same sign. As \tet{sumalt}, this function should be used to
try and guess the value of an infinite sum.
If $\fl=1$, use slightly different polynomials. Sometimes faster.
\synt{sumpos}{void *E, GEN (*eval)(void*,GEN),GEN a,long prec}. Also
available is \tet{sumpos2} with the same arguments ($\fl = 1$).
Function: system
Class: gp
Section: programming/specific
C-Name: system0
Prototype: vs
Help: system(str): str being a string, execute the system command str.
Doc: \var{str} is a string representing a system command. This command is
executed, its output written to the standard output (this won't get into your
logfile), and control returns to the PARI system. This simply calls the C
\kbd{system} command.
Function: tan
Class: basic
Section: transcendental
C-Name: gtan
Prototype: Gp
Help: tan(x): tangent of x.
Doc: tangent of $x$.
Function: tanh
Class: basic
Section: transcendental
C-Name: gth
Prototype: Gp
Help: tanh(x): hyperbolic tangent of x.
Doc: hyperbolic tangent of $x$.
Function: taylor
Class: basic
Section: polynomials
C-Name: tayl
Prototype: GnDP
Help: taylor(x,t,{d=seriesprecision}): taylor expansion of x with respect to
t, adding O(t^d) to all components of x.
Doc: Taylor expansion around $0$ of $x$ with respect to
the simple variable $t$. $x$ can be of any reasonable type, for example a
rational function. Contrary to \tet{Ser}, which takes the valuation into
account, this function adds $O(t^d)$ to all components of $x$.
\bprog
? taylor(x/(1+y), y, 5)
%1 = (y^4 - y^3 + y^2 - y + 1)*x + O(y^5)
? Ser(x/(1+y), y, 5)
*** at top-level: Ser(x/(1+y),y,5)
*** ^----------------
*** Ser: main variable must have higher priority in gtoser.
@eprog
Function: teichmuller
Class: basic
Section: transcendental
C-Name: teich
Prototype: G
Help: teichmuller(x): teichmuller character of p-adic number x.
Doc: Teichm\"uller character of the $p$-adic number $x$, i.e. the unique
$(p-1)$-th root of unity congruent to $x / p^{v_p(x)}$ modulo $p$.
Function: theta
Class: basic
Section: transcendental
C-Name: theta
Prototype: GGp
Help: theta(q,z): Jacobi sine theta-function.
Doc: Jacobi sine theta-function
$$ \theta_1(z, q) = 2q^{1/4} \sum_{n\geq 0} (-1)^n q^{n(n+1)} \sin((2n+1)z).$$
Function: thetanullk
Class: basic
Section: transcendental
C-Name: thetanullk
Prototype: GLp
Help: thetanullk(q,k): k'th derivative at z=0 of theta(q,z).
Doc: $k$-th derivative at $z=0$ of $\kbd{theta}(q,z)$.
Variant:
\fun{GEN}{vecthetanullk}{GEN q, long k, long prec} returns the vector
of all $\dfrac{d^i\theta}{dz^i}(q,0)$ for all odd $i = 1, 3, \dots, 2k-1$.
Function: thue
Class: basic
Section: polynomials
C-Name: thue
Prototype: GGDG
Help: thue(tnf,a,{sol}): solve the equation P(x,y)=a, where tnf was created
with thueinit(P), and sol, if present, contains the solutions of Norm(x)=a
modulo units in the number field defined by P. If tnf was computed without
assuming GRH (flag 1 in thueinit), the result is unconditional.
Doc: returns all solutions of the equation
$P(x,y)=a$ in integers $x$ and $y$, where \var{tnf} was created with
$\kbd{thueinit}(P)$. If present, \var{sol} must contain the solutions of
$\Norm(x)=a$ modulo units of positive norm in the number field
defined by $P$ (as computed by \kbd{bnfisintnorm}). If there are infinitely
many solutions, an error will be issued.
If \var{tnf} was computed without assuming GRH (flag $1$ in \tet{thueinit}),
then the result is unconditional. Otherwise, it depends in principle of the
truth of the GRH, but may still be unconditionally correct in some
favourable cases. The result is conditional on the GRH if
$a\neq \pm 1$ and, $P$ has a single irreducible rational factor, whose
associated tentative class number $h$ and regulator $R$ (as computed
assuming the GRH) satisfy
\item $h > 1$,
\item $R/0.2 > 1.5$.
Here's how to solve the Thue equation $x^{13} - 5y^{13} = - 4$:
\bprog
? tnf = thueinit(x^13 - 5);
? thue(tnf, -4)
%1 = [[1, 1]]
@eprog
Hence, the only solution is $(x,y) = (1,1)$, and the result is
unconditional. On the other hand:
\bprog
? P = x^3-2*x^2+3*x-17; tnf = thueinit(P);
? thue(tnf, -15)
%2 = [[1, 1]] \\ a priori conditional on the GRH.
? K = bnfinit(P); K.no
%3 = 3
? K.ref
%4 = 2.8682185139262873674706034475498755834
@eprog
This time the result is conditional. All results computed using this
particular \var{tnf} are likewise conditional, \emph{except} for a right-hand
side of $\pm 1$.
The above result is in fact correct, so we did not just disprove the GRH:
\bprog
? tnf = thueinit(x^3-2*x^2+3*x-17, 1 /*unconditional*/);
? thue(tnf, -15)
%4 = [[1, 1]]
@eprog
Note that reducible or non-monic polynomials are allowed:
\bprog
? tnf = thueinit((2*x+1)^5 * (4*x^3-2*x^2+3*x-17), 1);
? thue(tnf, 128)
%2 = [[-1, 0], [1, 0]]
@eprog\noindent Reducible polynomials are in fact much easier to handle.
Function: thueinit
Class: basic
Section: polynomials
C-Name: thueinit
Prototype: GD0,L,p
Help: thueinit(P,{flag=0}): initialize the tnf corresponding to P, that will
be used to solve Thue equations P(x,y) = some-integer. If flag is non-zero,
certify the result unconditionnaly. Otherwise, assume GRH (much faster of
course).
Doc: initializes the \var{tnf} corresponding to $P$, a univariate polynomial
with integer coefficients. The result is meant to be used in conjunction with
\tet{thue} to solve Thue equations $P(X / Y)Y^{\deg P} = a$, where $a$ is an
integer.
If $\fl$ is non-zero, certify results unconditionally. Otherwise, assume
\idx{GRH}, this being much faster of course. In the latter case, the result
may still be unconditionally correct, see \tet{thue}. For instance in most
cases where $P$ is reducible (not a pure power of an irreducible), \emph{or}
conditional computed class groups are trivial \emph{or} the right hand side
is $\pm1$, then results are always unconditional.
Function: trace
Class: basic
Section: linear_algebra
C-Name: gtrace
Prototype: G
Help: trace(x): trace of x.
Doc: this applies to quite general $x$. If $x$ is not a
matrix, it is equal to the sum of $x$ and its conjugate, except for polmods
where it is the trace as an algebraic number.
For $x$ a square matrix, it is the ordinary trace. If $x$ is a
non-square matrix (but not a vector), an error occurs.
Function: trap
Class: basic
Section: programming/specific
C-Name: trap0
Prototype: DrDEDE
Help: trap({e}, {rec}, seq): try to execute seq, trapping runtime error e (all
of them if e ommitted); sequence rec is executed if the error occurs and
is the result of the command.
Wrapper: (,_,_)
Description:
(?str,?closure,?closure):gen trap0($1, $2, $3)
Doc: tries to
evaluate \var{seq}, trapping runtime error $e$, that is effectively preventing
it from aborting computations in the usual way; the recovery sequence
\var{rec} is executed if the error occurs and the evaluation of \var{rec}
becomes the result of the command. If $e$ is omitted, all exceptions are
trapped. See \secref{se:errorrec} for an introduction to error recovery
under \kbd{gp}.
\bprog
? \\@com trap division by 0
? inv(x) = trap (gdiver, INFINITY, 1/x)
? inv(2)
%1 = 1/2
? inv(0)
%2 = INFINITY
@eprog\noindent
Note that \var{seq} is effectively evaluated up to the point that produced
the error, and the recovery sequence is evaluated starting from that same
context, it does not "undo" whatever happened in the other branch (restore
the evaluation context):
\bprog
? x = 1; trap (, /* recover: */ x, /* try: */ x = 0; 1/x)
%1 = 0
@eprog
\misctitle{Note} The interface is currently not adequate for trapping
individual exceptions. In the current version \vers, the following keywords
are recognized, but the name list will be expanded and changed in the
future (all library mode errors can be trapped: it's a matter of defining
the keywords to \kbd{gp}):
\kbd{alarmer}: alarm time-out
\kbd{archer}: not available on this architecture or operating system
\kbd{errpile}: the PARI stack overflows
\kbd{gdiver}: division by 0
\kbd{impl}: not yet implemented
\kbd{invmoder}: impossible inverse modulo
\kbd{overflower}: all forms of arithmetic overflow, including length
or exponent overflow (when a larger value is supplied than the
implementation can handle).
\kbd{syntaxer}: syntax error
\kbd{talker}: miscellaneous error
\kbd{typeer}: wrong type
\kbd{user}: user error (from the \kbd{error} function)
Function: truncate
Class: basic
Section: conversions
C-Name: trunc0
Prototype: GD&
Help: truncate(x,{&e}): truncation of x; when x is a power series,take away
the O(X^). If e is present, do not take into account loss of integer part
precision, and set e = error estimate in bits.
Description:
(small):small:parens $1
(int):int:copy:parens $1
(real):int truncr($1)
(mp):int mptrunc($1)
(mp, &small):int gcvtoi($1, &$2)
(mp, &int):int trunc0($1, &$2)
(gen):gen gtrunc($1)
(gen, &small):gen gcvtoi($1, &$2)
(gen, &int):gen trunc0($1, &$2)
Doc: truncates $x$ and sets $e$ to the number of
error bits. When $x$ is in $\R$, this means that the part after the decimal
point is chopped away, $e$ is the binary exponent of the difference between
the original and the truncated value (the ``fractional part''). If the
exponent of $x$ is too large compared to its precision (i.e.~$e>0$), the
result is undefined and an error occurs if $e$ was not given. The function
applies componentwise on vector / matrices; $e$ is then the maximal number of
error bits. If $x$ is a rational function, the result is the ``integer part''
(Euclidean quotient of numerator by denominator) and $e$ is not set.
Note a very special use of \kbd{truncate}: when applied to a power series, it
transforms it into a polynomial or a rational function with denominator
a power of $X$, by chopping away the $O(X^k)$. Similarly, when applied to
a $p$-adic number, it transforms it into an integer or a rational number
by chopping away the $O(p^k)$.
Variant: The following functions are also available: \fun{GEN}{gtrunc}{GEN x}
and \fun{GEN}{gcvtoi}{GEN x, long *e}.
Function: type
Class: basic
Section: programming/specific
C-Name: type0
Prototype: G
Help: type(x): return the type of the GEN x.
Description:
(gen):typ typ($1)
Doc: this is useful only under \kbd{gp}. Returns the internal type name of
the PARI object $x$ as a string. Check out existing type names with the
metacommand \b{t}. For example \kbd{type(1)} will return "\typ{INT}".
Variant: The macro \kbd{typ} is usually simpler to use since it returns a
\kbd{long} that can easily be matched with the symbols \typ{*}. The name
\kbd{type} was avoided since it is a reserved identifier for some compilers.
Function: unclone
Class: gp2c
Description:
(small):void (void)0 /*unclone*/
(gen):void gunclone($1)
Function: until
Class: basic
Section: programming/control
C-Name: untilpari
Prototype: vEI
Help: until(a,seq): evaluate the expression sequence seq until a is nonzero.
Doc: evaluates \var{seq} until $a$ is not
equal to 0 (i.e.~until $a$ is true). If $a$ is initially not equal to 0,
\var{seq} is evaluated once (more generally, the condition on $a$ is tested
\emph{after} execution of the \var{seq}, not before as in \kbd{while}).
Function: valuation
Class: basic
Section: conversions
C-Name: ggval
Prototype: lGG
Help: valuation(x,p): valuation of x with respect to p.
Doc:
computes the highest
exponent of $p$ dividing $x$. If $p$ is of type integer, $x$ must be an
integer, an intmod whose modulus is divisible by $p$, a fraction, a
$q$-adic number with $q=p$, or a polynomial or power series in which case the
valuation is the minimum of the valuation of the coefficients.
If $p$ is of type polynomial, $x$ must be of type polynomial or rational
function, and also a power series if $x$ is a monomial. Finally, the
valuation of a vector, complex or quadratic number is the minimum of the
component valuations.
If $x=0$, the result is \tet{LONG_MAX} ($2^{31}-1$ for 32-bit machines or
$2^{63}-1$ for 64-bit machines) if $x$ is an exact object. If $x$ is a
$p$-adic numbers or power series, the result is the exponent of the zero.
Any other type combinations gives an error.
Function: variable
Class: basic
Section: conversions
C-Name: gpolvar
Prototype: DG
Help: variable({x}): main variable of object x. Gives p for p-adic x, error
for scalars. Returns the list of user variables if x is omitted.
Description:
(pol):var:parens:copy $var:1
(gen):gen gpolvar($1)
Doc:
gives the main variable of the object $x$, and
$p$ if $x$ is a $p$-adic number. Gives an error if $x$ has no variable
associated to it. If $x$ is omitted, returns the list of user variables known
to the interpreter, by order of decreasing priority. (Highest priority is $x$,
which always come first.)
Variant: However, in library mode, this function should not be used for $x$
non-\kbd{NULL}, since \tet{gvar} is more appropriate. Instead, for
$x$ a $p$-adic (type \typ{PADIC}), $p$ is $gel(x,2)$; otherwise, use
\fun{long}{gvar}{GEN x} which returns the variable number of $x$ if
it exists, \kbd{NO\_VARIABLE} otherwise, which satisfies the property
$\kbd{varncmp}(\kbd{NO\_VARIABLE}, v) > 0$ for all valid variable number
$v$, i.e. it has lower priority than any variable.
Function: vecextract
Class: basic
Section: linear_algebra
C-Name: extract0
Prototype: GGDG
Help: vecextract(x,y,{z}): extraction of the components of the matrix or
vector x according to y and z. If z is omitted, y represents columns, otherwise
y corresponds to rows and z to columns. y and z can be vectors (of indices),
strings (indicating ranges as in "1..10") or masks (integers whose binary
representation indicates the indices to extract, from left to right 1, 2, 4,
8, etc.).
Description:
(vec,gen,?gen):vec extract0($1, $2, $3)
Doc: extraction of components of the
vector or matrix $x$ according to $y$. In case $x$ is a matrix, its
components are as usual the \emph{columns} of $x$. The parameter $y$ is a
component specifier, which is either an integer, a string describing a
range, or a vector.
If $y$ is an integer, it is considered as a mask: the binary bits of $y$ are
read from right to left, but correspond to taking the components from left to
right. For example, if $y=13=(1101)_2$ then the components 1,3 and 4 are
extracted.
If $y$ is a vector, which must have integer entries, these entries correspond
to the component numbers to be extracted, in the order specified.
If $y$ is a string, it can be
\item a single (non-zero) index giving a component number (a negative
index means we start counting from the end).
\item a range of the form \kbd{"$a$..$b$"}, where $a$ and $b$ are
indexes as above. Any of $a$ and $b$ can be omitted; in this case, we take
as default values $a = 1$ and $b = -1$, i.e.~ the first and last components
respectively. We then extract all components in the interval $[a,b]$, in
reverse order if $b < a$.
In addition, if the first character in the string is \kbd{\pow}, the
complement of the given set of indices is taken.
If $z$ is not omitted, $x$ must be a matrix. $y$ is then the \emph{line}
specifier, and $z$ the \emph{column} specifier, where the component specifier
is as explained above.
\bprog
? v = [a, b, c, d, e];
? vecextract(v, 5) \\@com mask
%1 = [a, c]
? vecextract(v, [4, 2, 1]) \\@com component list
%2 = [d, b, a]
? vecextract(v, "2..4") \\@com interval
%3 = [b, c, d]
? vecextract(v, "-1..-3") \\@com interval + reverse order
%4 = [e, d, c]
? vecextract(v, "^2") \\@com complement
%5 = [a, c, d, e]
? vecextract(matid(3), "2..", "..")
%6 =
[0 1 0]
[0 0 1]
@eprog
Function: vecmax
Class: basic
Section: operators
C-Name: vecmax
Prototype: G
Help: vecmax(x): maximum of the elements of the vector/matrix x
Description:
(vecsmall):small vecsmall_max($1)
(gen):gen vecmax($1)
Doc: if $x$ is a vector or a matrix, returns the maximum
of the elements of $x$, otherwise returns a copy of $x$. Error if $x$ is
empty.
Function: vecmin
Class: basic
Section: operators
C-Name: vecmin
Prototype: G
Help: vecmin(x): minimum of the elements of the vector/matrix x
Description:
(vecsmall):small vecsmall_min($1)
(gen):gen vecmin($1)
Doc: if $x$ is a vector or a matrix, returns the minimum
of the elements of $x$, otherwise returns a copy of $x$. Error if $x$ is
empty.
Function: vecsort
Class: basic
Section: linear_algebra
C-Name: vecsort0
Prototype: GDGD0,L,
Help: vecsort(x,{cmp},{flag=0}): sorts the vector of vectors (or matrix) x in
ascending order, according to the comparison function cmp, if not omitted.
(If cmp is an integer, sort according to the value of the k-th component
of each entry.) Binary digits of flag (if present) mean: 1: indirect sorting,
return the permutation instead of the permuted vector, 2: sort using
lexicographic order, 4: use descending instead of ascending order, 8: remove
duplicate entries.
Description:
(vecsmall,?gen):vecsmall vecsort0($1, $2, 0)
(vecsmall,?gen,small):vecsmall vecsort0($1, $2, $3)
(vec, , ?0):vec sort($1)
(vec, , 1):vecsmall indexsort($1)
(vec, , 2):vec lexsort($1)
(vec, gen):vec vecsort0($1, $2, 0)
(vec, ?gen, 1):vecsmall vecsort0($1, $2, 1)
(vec, ?gen, 3):vecsmall vecsort0($1, $2, 3)
(vec, ?gen, 5):vecsmall vecsort0($1, $2, 5)
(vec, ?gen, 7):vecsmall vecsort0($1, $2, 7)
(vec, ?gen, 9):vecsmall vecsort0($1, $2, 9)
(vec, ?gen, 11):vecsmall vecsort0($1, $2, 11)
(vec, ?gen, 13):vecsmall vecsort0($1, $2, 13)
(vec, ?gen, 15):vecsmall vecsort0($1, $2, 15)
(vec, ?gen, #small):vec vecsort0($1, $2, $3)
(vec, ?gen, small):gen vecsort0($1, $2, $3)
Doc: sorts the vector $x$ in ascending order, using a mergesort method.
$x$ must be a list, vector or matrix (seen as a vector of its columns).
Note that mergesort is stable, hence the initial ordering of ``equal''
entries (with respect to the sorting criterion) is not changed.
If \kbd{cmp} is omitted, we use the standard comparison function
\kbd{<}, thereby restricting the possible types for the elements of $x$
(integers, fractions or reals). If \kbd{cmp} is present, it is understood as
a comparison function and we sort according to it. The following
possibilities exist:
\item an integer $k$: sort according to the value of the $k$-th
subcomponents of the components of~$x$.
\item a vector: sort lexicographically according to the components listed in
the vector. For example, if $\kbd{cmp}=\kbd{[2,1,3]}$, sort with respect to
the second component, and when these are equal, with respect to the first,
and when these are equal, with respect to the third.
\item a comparison function (\typ{CLOSURE}), with two arguments $x$ and $y$,
and returning an integer which is $<0$, $>0$ or $=0$ if $x<y$, $x>y$ or
$x=y$ respectively. The \tet{sign} function is very useful in this context:
\bprog
? vecsort([3,0,2; 1,0,2],lex) \\ sort columns according to lex order
%1 =
[2 3]
[2 1]
? vecsort(v, (x,y)->sign(y-x)) \\@com reverse sort
? vecsort(v, (x,y)->sign(abs(x)-abs(y))) \\@com sort by increasing absolute value
? cmp(x,y) = my(dx = poldisc(x), dy = poldisc(y)); sign(abs(dx) - abs(dy))
? vecsort([x^2+1, x^3-2, x^4+5*x+1], cmp)
@eprog\noindent
The last example used the named \kbd{cmp} instead of an anonymous function,
and sorts polynomials with respect to the absolute value of their
discriminant. A more efficient approach would use precomputations to ensure
a given discriminant is computed only once:
\bprog
? DISC = vector(#v, i, abs(poldisc(v[i])));
? perm = vecsort(vector(#v,i,i), (x,y)->sign(DISC[x]-DISC[y]))
? vecextract(v, perm)
@eprog\noindent Similar ideas apply whenever we sort according to the values
of a function which is expensive to compute.
\noindent The binary digits of \fl\ mean:
\item 1: indirect sorting of the vector $x$, i.e.~if $x$ is an
$n$-component vector, returns a permutation of $[1,2,\dots,n]$ which
applied to the components of $x$ sorts $x$ in increasing order.
For example, \kbd{vecextract(x, vecsort(x,,1))} is equivalent to
\kbd{vecsort(x)}.
\item 2: sorts $x$ by ascending lexicographic order (as per the
\kbd{lex} comparison function).
\item 4: use descending instead of ascending order.
\item 8: remove ``duplicate'' entries with respect to the sorting function
(keep the first occurring entry). For example:
\bprog
? vecsort([Pi,Mod(1,2),z], (x,y)->0, 8) \\@com make everything compare equal
%1 = [3.141592653589793238462643383]
? vecsort([[2,3],[0,1],[0,3]], 2, 8)
%2 = [[0, 1], [2, 3]]
@eprog
Function: vector
Class: basic
Section: linear_algebra
C-Name: vecteur
Prototype: GDVDE
Help: vector(n,{X},{expr=0}): row vector with n components of expression
expr (X ranges from 1 to n). By default, fill with 0s.
Doc: creates a row vector (type
\typ{VEC}) with $n$ components whose components are the expression
\var{expr} evaluated at the integer points between 1 and $n$. If one of the
last two arguments is omitted, fill the vector with zeroes.
Avoid modifying $X$ within \var{expr}; if you do, the formal variable
still runs from $1$ to $n$. In particular, \kbd{vector(n,i,expr)} is not
equivalent to
\bprog
v = vector(n)
for (i = 1, n, v[i] = expr)
@eprog\noindent
as the following example shows:
\bprog
n = 3
v = vector(n); vector(n, i, i++) ----> [2, 3, 4]
v = vector(n); for (i = 1, n, v[i] = i++) ----> [2, 0, 4]
@eprog\noindent
%\syn{NO}
Function: vectorsmall
Class: basic
Section: linear_algebra
C-Name: vecteursmall
Prototype: GDVDE
Help: vectorsmall(n,{X},{expr=0}): VECSMALL with n components of expression
expr (X ranges from 1 to n) which must be small integers. By default, fill
with 0s.
Doc: creates a row vector of small integers (type
\typ{VECSMALL}) with $n$ components whose components are the expression
\var{expr} evaluated at the integer points between 1 and $n$. If one of the
last two arguments is omitted, fill the vector with zeroes.
%\syn{NO}
Function: vectorv
Class: basic
Section: linear_algebra
C-Name: vvecteur
Prototype: GDVDE
Help: vectorv(n,{X},{expr=0}): column vector with n components of expression
expr (X ranges from 1 to n). By default, fill with 0s.
Doc: as \tet{vector}, but returns a column vector (type \typ{COL}).
%\syn{NO}
Function: version
Class: basic
Section: programming/specific
C-Name: pari_version
Prototype:
Help: version(): returns the PARI version as [major,minor,patch] or [major,minor,patch,VCSversion].
Doc: returns the current version number as a \typ{VEC} with three integer
components (major version number, minor version number and patchlevel);
if your sources were obtained through our version control system, this will
be followed by a more precise version string, e.g.~\kbd{git-}\emph{commit
hash}.
This function is present in all versions of PARI following releases 2.3.4
(stable) and 2.4.3 (testing).
Unless you are working with multiple development versions, you probably only
care about the 3 first numeric components. In any case, the \kbd{lex} function
offers a clever way to check against a particular version number, since it will
compare each successive vector entry, numerically or as strings, and will not
mind if the vectors it compares have different lengths :
\bprog
if (lex(version(), [2,3,5]) >= 0,
\\ code to be executed if we are running 2.3.5 or more recent.
,
\\ compatibility code
);
@eprog\noindent On a number of different machines, \kbd{version()} could return either of
\bprog
%1 = [2, 3, 4] \\ released version, stable branch
%1 = [2, 4, 3] \\ released version, testing branch
%1 = [2, 6, 0, "git-2cce227"] \\ development
@eprog
In particular the first line of the gp introductory message can be essentially
emulated by
\bprog
v = version();
n = Str(v[1], ".", v[2], ".", v[3]);
s = if (#v > 3, v[4], "");
print("GP/PARI CALCULATOR Version ", n, " (", s, ")");
@eprog\noindent If you \emph{are} working with many development versions of
PARI/GP, the last component can be profitably included in the name of
your logfile, for instance.
Function: warning
Class: basic
Section: programming/specific
C-Name: warning0
Prototype: vs*
Help: warning({str}*): display warning message str
Description:
(?gen,...):void pari_warn(user, "${2 format_string}"${2 format_args})
Doc: outputs the message ``user warning''
and the argument list (each of them interpreted as a string).
If colors are enabled, this warning will be in a different color,
making it easy to distinguish.
\bprog
warning(n, " is very large, this might take a while.")
@eprog
% \syn{NO}
Function: weber
Class: basic
Section: transcendental
C-Name: weber0
Prototype: GD0,L,p
Help: weber(x,{flag=0}): One of Weber's f function of x. flag is optional,
and can be 0: default, function f(x)=exp(-i*Pi/24)*eta((x+1)/2)/eta(x),
1: function f1(x)=eta(x/2)/eta(x)
2: function f2(x)=sqrt(2)*eta(2*x)/eta(x). Note that
j = (f^24-16)^3/f^24 = (f1^24+16)^3/f1^24 = (f2^24+16)^3/f2^24.
Doc: one of Weber's three $f$ functions.
If $\fl=0$, returns
$$f(x)=\exp(-i\pi/24)\cdot\eta((x+1)/2)\,/\,\eta(x) \quad\hbox{such that}\quad
j=(f^{24}-16)^3/f^{24}\,,$$
where $j$ is the elliptic $j$-invariant (see the function \kbd{ellj}).
If $\fl=1$, returns
$$f_1(x)=\eta(x/2)\,/\,\eta(x)\quad\hbox{such that}\quad
j=(f_1^{24}+16)^3/f_1^{24}\,.$$
Finally, if $\fl=2$, returns
$$f_2(x)=\sqrt{2}\eta(2x)\,/\,\eta(x)\quad\hbox{such that}\quad
j=(f_2^{24}+16)^3/f_2^{24}.$$
Note the identities $f^8=f_1^8+f_2^8$ and $ff_1f_2=\sqrt2$.
Variant: Also available are \fun{GEN}{weberf}{GEN x, long prec},
\fun{GEN}{weberf1}{GEN x, long prec} and \fun{GEN}{weberf2}{GEN x, long prec}.
Function: whatnow
Class: gp
Section: programming/specific
C-Name: whatnow0
Prototype: vr
Help: whatnow(key): if key was present in GP version 1.39.15 or lower, gives
the new function name.
Description:
(str):void whatnow($1, 0)
Doc: if keyword \var{key} is the name of a function that was present in GP
version 1.39.15 or lower, outputs the new function name and syntax, if it
changed at all ($387$ out of $560$ did).
Function: while
Class: basic
Section: programming/control
C-Name: whilepari
Prototype: vEI
Help: while(a,seq): while a is nonzero evaluate the expression sequence seq.
Otherwise 0.
Doc: while $a$ is non-zero, evaluates the expression sequence \var{seq}. The
test is made \emph{before} evaluating the $seq$, hence in particular if $a$
is initially equal to zero the \var{seq} will not be evaluated at all.
Function: write
Class: basic
Section: programming/specific
C-Name: write0
Prototype: vss*
Help: write(filename,{str}*): appends the remaining arguments (same output as
print) to filename.
Doc: writes (appends) to \var{filename} the remaining arguments, and appends a
newline (same output as \kbd{print}).
%\syn{NO}
Function: write1
Class: basic
Section: programming/specific
C-Name: write1
Prototype: vss*
Help: write1(filename,{str}*): appends the remaining arguments (same output as
print1) to filename.
Doc: writes (appends) to \var{filename} the remaining arguments without a
trailing newline (same output as \kbd{print1}).
%\syn{NO}
Function: writebin
Class: basic
Section: programming/specific
C-Name: gpwritebin
Prototype: vsDG
Help: writebin(filename,{x}): write x as a binary object to file filename.
If x is omitted, write all session variables.
Doc: writes (appends) to
\var{filename} the object $x$ in binary format. This format is not human
readable, but contains the exact internal structure of $x$, and is much
faster to save/load than a string expression, as would be produced by
\tet{write}. The binary file format includes a magic number, so that such a
file can be recognized and correctly input by the regular \tet{read} or \b{r}
function. If saved objects refer to (polynomial) variables that are not
defined in the new session, they will be displayed in a funny way (see
\secref{se:kill}).
If $x$ is omitted, saves all user variables from the session, together with
their names. Reading such a ``named object'' back in a \kbd{gp} session will set
the corresponding user variable to the saved value. E.g after
\bprog
x = 1; writebin("log")
@eprog\noindent
reading \kbd{log} into a clean session will set \kbd{x} to $1$.
The relative variables priorities (see \secref{se:priority}) of new variables
set in this way remain the same (preset variables retain their former
priority, but are set to the new value). In particular, reading such a
session log into a clean session will restore all variables exactly as they
were in the original one.
User functions, installed functions and history objects can not be saved via
this function. Just as a regular input file, a binary file can be compressed
using \tet{gzip}, provided the file name has the standard \kbd{.gz}
extension.\sidx{binary file}
In the present implementation, the binary files are architecture dependent
and compatibility with future versions of \kbd{gp} is not guaranteed. Hence
binary files should not be used for long term storage (also, they are
larger and harder to compress than text files).
Function: writetex
Class: basic
Section: programming/specific
C-Name: writetex
Prototype: vss*
Help: writetex(filename,{str}*): appends the remaining arguments (same format as
print) to filename, in TeX format.
Doc: as \kbd{write}, in \TeX\ format.
%\syn{NO}
Function: zeta
Class: basic
Section: transcendental
C-Name: gzeta
Prototype: Gp
Help: zeta(s): Riemann zeta function at s with s a complex or a p-adic number.
Doc: For $s$ a complex number, Riemann's zeta
function \sidx{Riemann zeta-function} $\zeta(s)=\sum_{n\ge1}n^{-s}$,
computed using the \idx{Euler-Maclaurin} summation formula, except
when $s$ is of type integer, in which case it is computed using
Bernoulli numbers\sidx{Bernoulli numbers} for $s\le0$ or $s>0$ and
even, and using modular forms for $s>0$ and odd.
For $s$ a $p$-adic number, Kubota-Leopoldt zeta function at $s$, that
is the unique continuous $p$-adic function on the $p$-adic integers
that interpolates the values of $(1 - p^{-k}) \zeta(k)$ at negative
integers $k$ such that $k \equiv 1 \pmod{p-1}$ (resp. $k$ is odd) if
$p$ is odd (resp. $p = 2$).
Function: zetak
Class: basic
Section: number_fields
C-Name: gzetakall
Prototype: GGD0,L,p
Help: zetak(nfz,x,{flag=0}): Dedekind zeta function of the number field nfz
at x, where nfz is the vector computed by zetakinit (NOT by nfinit); flag is
optional, and can be 0: default, compute zetak, or non-zero: compute the
lambdak function, i.e. with the gamma factors.
Doc: \var{znf} being a number
field initialized by \kbd{zetakinit} (\emph{not} by \kbd{nfinit}),
computes the value of the \idx{Dedekind} zeta function of the number
field at the complex number $x$. If $\fl=1$ computes Dedekind $\Lambda$
function instead (i.e.~the product of the Dedekind zeta function by its gamma
and exponential factors).
\misctitle{CAVEAT} This implementation is not satisfactory and must be
rewritten. In particular
\item The accuracy of the result depends in an essential way on the
accuracy of both the \kbd{zetakinit} program and the current accuracy.
Be wary in particular that $x$ of large imaginary part or, on the
contrary, very close to an ordinary integer will suffer from precision
loss, yielding fewer significant digits than expected. Computing with 28
digits of relative accuracy, we have
\bprog
? zeta(3)
%1 = 1.202056903159594285399738161
? zeta(3-1e-20)
%2 = 1.202056903159594285401719424
? zetak(zetakinit(x), 3-1e-20)
%3 = 1.2020569031595952919 \\ 5 digits are wrong
? zetak(zetakinit(x), 3-1e-28)
%4 = -25.33411749 \\ junk
@eprog
\item As the precision increases, results become unexpectedly
completely wrong:
\bprog
? \p100
? zetak(zetakinit(x^2-5), -1) - 1/30
%1 = 7.26691813 E-108 \\ perfect
? \p150
? zetak(zetakinit(x^2-5), -1) - 1/30
%2 = -2.486113578 E-156 \\ perfect
? \p200
? zetak(zetakinit(x^2-5), -1) - 1/30
%3 = 4.47... E-75 \\ more than half of the digits are wrong
? \p250
? zetak(zetakinit(x^2-5), -1) - 1/30
%4 = 1.6 E43 \\ junk
@eprog
Variant: See also \fun{GEN}{glambdak}{GEN znf, GEN x, long prec} or
\fun{GEN}{gzetak}{GEN znf, GEN x, long prec}.
Function: zetakinit
Class: basic
Section: number_fields
C-Name: initzeta
Prototype: Gp
Help: zetakinit(bnf): compute number field information necessary to use zetak.
bnf may also be an irreducible polynomial.
Doc: computes a number of initialization data
concerning the number field associated to \kbd{bnf} so as to be able
to compute the \idx{Dedekind} zeta and lambda functions, respectively
$\kbd{zetak}(x)$ and $\kbd{zetak}(x,1)$, at the current real precision. If
you do not need the \kbd{bnfinit} data somewhere else, you may call it
with an irreducible polynomial instead of a \var{bnf}: it will call
\kbd{bnfinit} itself.
The result is a 9-component vector $v$ whose components are very technical
and cannot really be used except through the \kbd{zetak} function.
This function is very inefficient and should be rewritten. It needs to
computes millions of coefficients of the corresponding Dirichlet series if
the precision is big. Unless the discriminant is small it will not be able
to handle more than 9 digits of relative precision. For instance,
\kbd{zetakinit(x\pow 8 - 2)} needs 440MB of memory at default precision.
Function: zncoppersmith
Class: basic
Section: number_theoretical
C-Name: zncoppersmith
Prototype: GGGDG
Help: zncoppersmith(P, N, X, {B=N}): finds all integers x
with |x| <= X such that gcd(N, P(x)) >= B. X should be smaller than
exp((log B)^2 / (deg(P) log N)).
Doc: $N$ being an integer and $P\in \Z[X]$, finds all integers $x$ with
$|x| \leq X$ such that
$$\gcd(N, P(x)) \geq B,$$
using \idx{Coppersmith}'s algorithm (a famous application of the \idx{LLL}
algorithm). $X$ must be smaller than $\exp(\log^2 B / (\deg(P) \log N))$:
for $B = N$, this means $X < N^{1/\deg(P)}$. Some $x$ larger than $X$ may
be returned if you are very lucky. The smaller $B$ (or the larger $X$), the
slower the routine will be. The strength of Coppersmith method is the
ability to find roots modulo a general \emph{composite} $N$: if $N$ is a prime
or a prime power, \tet{polrootsmod} or \tet{polrootspadic} will be much
faster.
We shall now present two simple applications. The first one is
finding non-trivial factors of $N$, given some partial information on the
factors; in that case $B$ must obviously be smaller than the largest
non-trivial divisor of $N$.
\bprog
setrand(1); \\ to make the example reproducible
p = nextprime(random(10^30));
q = nextprime(random(10^30)); N = p*q;
p0 = p % 10^20; \\ assume we know 1) p > 10^29, 2) the last 19 digits of p
p1 = zncoppersmith(10^19*x + p0, N, 10^12, 10^29)
\\ result in 10ms.
%1 = [35023733690]
? gcd(p1[1] * 10^19 + p0, N) == p
%2 = 1
@eprog\noindent and we recovered $p$, faster than by trying all
possibilities $ < 10^{12}$.
The second application is an attack on RSA with low exponent, when the
message $x$ is short and the padding $P$ is known to the attacker. We use
the same RSA modulus $N$ as in the first example:
\bprog
setrand(1);
P = random(N); \\ known padding
e = 3; \\ small public encryption exponent
X = floor(N^0.3); \\ N^(1/e - epsilon)
x0 = random(X); \\ unknown short message
C = lift( (Mod(x0,N) + P)^e ); \\ known ciphertext, with padding P
zncoppersmith((P + x)^3 - C, N, X)
\\ result in 3.8s.
%3 = [265174753892462432]
? %[1] == x0
%4 = 1
@eprog\noindent
We guessed an integer of the order of $10^{18}$ in a couple of seconds.
Function: znlog
Class: basic
Section: number_theoretical
C-Name: znlog
Prototype: GGDG
Help: znlog(x,g,{o}): return the discrete logarithm of x in
(Z/nZ)* in base g. If present, o represents the multiplicative
order of g. If no o is given, assume that g generate (Z/nZ)*.
Doc: discrete logarithm of $x$ in $(\Z/N\Z)^*$ in base $g$.
If present, $o$ represents the multiplicative order of $g$, see
\secref{se:DLfun}; the preferred format for this parameter is
\kbd{[ord, factor(ord)]}, where \kbd{ord} is the order of $g$.
If no $o$ is given, assume that $g$ generate $(\Z/N\Z)^*$.
This function uses a simple-minded combination of generic
discrete log algorithms (index calculus methods are not yet implemented).
\item Pohlig-Hellman algorithm, to reduce to groups of prime order $q$,
where $q | p-1$ and $p$ is an odd prime divisor of $N$,
\item Shanks baby-step/giant-step ($q$ small),
\item Pollard rho method ($q$ large).
The latter two algorithms require $O(\sqrt{q})$ operations in the group on
average, hence will not be able to treat cases where $q > 10^{30}$, say.
\bprog
? g = znprimroot(101)
%1 = Mod(2,101)
? znlog(5, g)
%2 = 24
? g^24
%3 = Mod(5, 101)
? G = znprimroot(2 * 101^10)
%4 = Mod(110462212541120451003, 220924425082240902002)
? znlog(5, G)
%5 = 76210072736547066624
? G^% == 5
%6 = 1
@eprog\noindent The result is undefined when $x$ is not a power of $g$ or
when $x$ is not invertible mod $N$:
\bprog
? znlog(6, Mod(2,3))
*** at top-level: znlog(6,Mod(2,3))
*** ^-----------------
*** znlog: impossible inverse modulo: Mod(0, 3).
@eprog\noindent For convenience, $g$ is also allowed to be a $p$-adic number:
\bprog
? g = 3+O(5^10); znlog(2, g)
%1 = 1015243
? g^%
%2 = 2 + O(5^10)
@eprog
Function: znorder
Class: basic
Section: number_theoretical
C-Name: znorder
Prototype: GDG
Help: znorder(x,{o}): order of the integermod x in (Z/nZ)*.
Optional o represents a multiple of the order of the element.
Description:
(gen):int order($1)
(gen,):int order($1)
(gen,int):int znorder($1, $2)
Doc: $x$ must be an integer mod $n$, and the
result is the order of $x$ in the multiplicative group $(\Z/n\Z)^*$. Returns
an error if $x$ is not invertible.
The parameter o, if present, represents a non-zero
multiple of the order of $x$, see \secref{se:DLfun}; the preferred format for
this parameter is \kbd{[ord, factor(ord)]}, where \kbd{ord = eulerphi(n)}
is the cardinality of the group.
Variant: Also available is \fun{GEN}{order}{GEN x}.
Function: znprimroot
Class: basic
Section: number_theoretical
C-Name: znprimroot0
Prototype: G
Help: znprimroot(n): returns a primitive root of n when it exists.
Description:
(int):gen znprimroot($1)
(gen):gen znprimroot0($1)
Doc: returns a primitive root (generator) of $(\Z/n\Z)^*$, whenever this
latter group is cyclic ($n = 4$ or $n = 2p^k$ or $n = p^k$, where $p$ is an
odd prime and $k \geq 0$). If the group is not cyclic, the result is
undefined. If $n$ is a prime, then the smallest positive primitive root is
returned. This is no longer true for composites.
Note that this function requires factoring $p-1$ for $p$ as above,
in order to determine the exact order of elements in
$(\Z/n\Z)^*$: this is likely to be very costly if $p$ is large.
The function accepts vector/matrices arguments, and is then applied
componentwise.
Variant: For a \typ{INT} $x$, the special case
\fun{GEN}{znprimroot}{GEN n} is also available.
Function: znstar
Class: basic
Section: number_theoretical
C-Name: znstar
Prototype: G
Help: znstar(n): 3-component vector v, giving the structure of (Z/nZ)^*.
v[1] is the order (i.e. eulerphi(n)), v[2] is a vector of cyclic components,
and v[3] is a vector giving the corresponding generators.
Doc: gives the structure of the multiplicative group
$(\Z/n\Z)^*$ as a 3-component row vector $v$, where $v[1]=\phi(n)$ is the
order of that group, $v[2]$ is a $k$-component row-vector $d$ of integers
$d[i]$ such that $d[i]>1$ and $d[i]\mid d[i-1]$ for $i \ge 2$ and
$(\Z/n\Z)^* \simeq \prod_{i=1}^k(\Z/d[i]\Z)$, and $v[3]$ is a $k$-component row
vector giving generators of the image of the cyclic groups $\Z/d[i]\Z$.
|