/usr/include/polybori/BoolePolynomial.h is in libpolybori-dev 0.8.3-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 | // -*- c++ -*-
//*****************************************************************************
/** @file BoolePolynomial.h
*
* @author Alexander Dreyer
* @date 2006-03-10
*
* This file carries the definition of class @c BoolePolynomial, which can be
* used to access the boolean polynomials with respect to the polynomial ring,
* which was active on initialization time.
*
* @par Copyright:
* (c) 2006-2010 by The PolyBoRi Team
*
**/
//*****************************************************************************
#ifndef polybori_BoolePolynomial_h_
#define polybori_BoolePolynomial_h_
// include standard definitions
#include <vector>
// get standard map functionality
#include <map>
// get standard algorithmic functionalites
#include <algorithm>
#include <polybori/BoolePolyRing.h>
// include definition of sets of Boolean variables
#include <polybori/routines/pbori_func.h>
#include <polybori/common/tags.h>
#include <polybori/BooleSet.h>
#include <polybori/iterators/CTermIter.h>
#include <polybori/iterators/CGenericIter.h>
#include <polybori/iterators/CBidirectTermIter.h>
#include <polybori/BooleConstant.h>
BEGIN_NAMESPACE_PBORI
// forward declarations
class LexOrder;
class DegLexOrder;
class DegRevLexAscOrder;
class BlockDegLexOrder;
class BlockDegRevLexAscOrder;
class BooleMonomial;
class BooleVariable;
class BooleExponent;
template <class IteratorType, class MonomType>
class CIndirectIter;
template <class IteratorType, class MonomType>
class COrderedIter;
//template<class, class, class, class> class CGenericIter;
template<class, class, class, class> class CDelayedTermIter;
template<class OrderType, class NavigatorType, class MonomType>
class CGenericIter;
template<class NavigatorType, class ExpType>
class CExpIter;
/** @class BoolePolynomial
* @brief This class wraps the underlying decicion diagram type and defines the
* necessary operations.
*
**/
class BoolePolynomial;
BoolePolynomial
operator+(const BoolePolynomial& lhs, const BoolePolynomial& rhs);
class BoolePolynomial:
public CAuxTypes{
public:
/// Let BooleMonomial access protected and private members
friend class BooleMonomial;
//-------------------------------------------------------------------------
// types definitions
//-------------------------------------------------------------------------
/// Generic access to current type
typedef BoolePolynomial self;
/// @name Adopt global type definitions
//@{
typedef BooleSet dd_type;
typedef CTypes::ostream_type ostream_type;
//@}
/// Iterator type for iterating over indices of the leading term
typedef dd_type::first_iterator first_iterator;
/// Iterator-like type for navigating through diagram structure
typedef dd_type::navigator navigator;
/// @todo A more sophisticated treatment for monomials is needed.
/// Fix type for treatment of monomials
typedef BooleMonomial monom_type;
/// Fix type for treatment of monomials
typedef BooleVariable var_type;
/// Fix type for treatment of exponent vectors
typedef BooleExponent exp_type;
/// Type for wrapping integer and bool values
typedef BooleConstant constant_type;
/// Type for Boolean polynomial rings (without ordering)
typedef BoolePolyRing ring_type;
/// Type for result of polynomial comparisons
typedef CTypes::comp_type comp_type;
/// Incrementation functional type
typedef
binary_composition< std::plus<size_type>,
project_ith<1>, integral_constant<size_type, 1> >
increment_type;
/// Decrementation functional type
typedef
binary_composition< std::minus<size_type>,
project_ith<1>, integral_constant<size_type, 1> >
decrement_type;
/// Iterator type for iterating over all exponents in ordering order
// typedef COrderedIter<exp_type> ordered_exp_iterator;
typedef COrderedIter<navigator, exp_type> ordered_exp_iterator;
/// Iterator type for iterating over all monomials in ordering order
// typedef COrderedIter<monom_type> ordered_iterator;
typedef COrderedIter<navigator, monom_type> ordered_iterator;
/// @name Generic iterators for various orderings
//@{
typedef CGenericIter<LexOrder, navigator, monom_type> lex_iterator;
//// typedef CGenericIter<LexOrder, navigator, monom_type> lex_iterator;
typedef CGenericIter<DegLexOrder, navigator, monom_type> dlex_iterator;
typedef CGenericIter<DegRevLexAscOrder, navigator, monom_type>
dp_asc_iterator;
typedef CGenericIter<BlockDegLexOrder, navigator, monom_type>
block_dlex_iterator;
typedef CGenericIter<BlockDegRevLexAscOrder, navigator, monom_type>
block_dp_asc_iterator;
typedef CGenericIter<LexOrder, navigator, exp_type> lex_exp_iterator;
typedef CGenericIter<DegLexOrder, navigator, exp_type> dlex_exp_iterator;
typedef CGenericIter<DegRevLexAscOrder, navigator, exp_type>
dp_asc_exp_iterator;
typedef CGenericIter<BlockDegLexOrder, navigator, exp_type>
block_dlex_exp_iterator;
typedef CGenericIter<BlockDegRevLexAscOrder, navigator, exp_type>
block_dp_asc_exp_iterator;
//@}
/// Iterator type for iterating over all monomials
typedef lex_iterator const_iterator;
/// Iterator type for iterating all exponent vectors
typedef CExpIter<navigator, exp_type> exp_iterator;
/// Iterator type for iterating all monomials (dereferencing to degree)
typedef CGenericIter<LexOrder, navigator, deg_type> deg_iterator;
/// Type for lists of terms
typedef std::vector<monom_type> termlist_type;
/// The property whether the equality check is easy is inherited from dd_type
typedef dd_type::easy_equality_property easy_equality_property;
/// Type for sets of Boolean variables
typedef BooleSet set_type;
/// Type for index maps
typedef std::map<self, idx_type, symmetric_composition<
std::less<navigator>, navigates<self> > > idx_map_type;
typedef std::map<self, std::vector<self>, symmetric_composition<
std::less<navigator>, navigates<self> > > poly_vec_map_type;
//-------------------------------------------------------------------------
// constructors and destructor
//-------------------------------------------------------------------------
/// Default constructor
// BoolePolynomial();
/// Construct polynomial from a constant value 0 or 1
// explicit BoolePolynomial(constant_type);
/// Construct zero polynomial
BoolePolynomial(const ring_type& ring):
m_dd(ring.zero() ) { }
/// Construct polynomial in given @c ring from a constant value 0 or 1
BoolePolynomial(constant_type isOne, const ring_type& ring):
m_dd(isOne? ring.one(): ring.zero() ) { }
/// Construct polynomial from decision diagram
BoolePolynomial(const dd_type& rhs): m_dd(rhs) {}
/// Construct polynomial from a subset of the powerset over all variables
// BoolePolynomial(const set_type& rhs): m_dd(rhs.diagram()) {}
/// Construct polynomial from exponent vector
BoolePolynomial(const exp_type&, const ring_type&);
/// Construct polynomial from navigator
BoolePolynomial(const navigator& rhs, const ring_type& ring):
m_dd(ring, rhs) {
PBORI_ASSERT(rhs.isValid());
}
/// Destructor
~BoolePolynomial() {}
//-------------------------------------------------------------------------
// operators and member functions
//-------------------------------------------------------------------------
// self& operator=(const self& rhs) {
// return m_dd = rhs.m_dd;
// }
self& operator=(constant_type rhs) {
return (*this) = self(rhs, ring());
}
/// @name Arithmetical operations
//@{
const self& operator-() const { return *this; }
self& operator+=(const self&);
self& operator+=(constant_type rhs) {
//return *this = (self(*this) + (rhs).generate(*this));
if (rhs) (*this) = (*this + ring().one());
return *this;
}
template <class RHSType>
self& operator-=(const RHSType& rhs) { return operator+=(rhs); }
self& operator*=(const monom_type&);
self& operator*=(const exp_type&);
self& operator*=(const self&);
self& operator*=(constant_type rhs) {
if (!rhs) *this = ring().zero();
return *this;
}
self& operator/=(const var_type&);
self& operator/=(const monom_type&);
self& operator/=(const exp_type&);
self& operator/=(const self& rhs);
self& operator/=(constant_type rhs);
self& operator%=(const var_type&);
self& operator%=(const monom_type&);
self& operator%=(const self& rhs) {
return (*this) -= (self(rhs) *= (self(*this) /= rhs));
}
self& operator%=(constant_type rhs) { return (*this) /= (!rhs); }
//@}
/// @name Logical operations
//@{
bool_type operator==(const self& rhs) const { return (m_dd == rhs.m_dd); }
bool_type operator!=(const self& rhs) const { return (m_dd != rhs.m_dd); }
bool_type operator==(constant_type rhs) const {
return ( rhs? isOne(): isZero() );
}
bool_type operator!=(constant_type rhs) const {
//return ( rhs? (!(isOne())): (!(isZero())) );
return (!(*this==rhs));
}
//@}
/// Check whether polynomial is constant zero
bool_type isZero() const { return m_dd.isZero(); }
/// Check whether polynomial is constant one
bool_type isOne() const { return m_dd.isOne(); }
/// Check whether polynomial is zero or one
bool_type isConstant() const { return m_dd.isConstant(); }
/// Check whether polynomial has term one
bool_type hasConstantPart() const { return m_dd.ownsOne(); }
/// Tests whether polynomial can be reduced by right-hand side
bool_type firstReducibleBy(const self&) const;
/// Get leading term
monom_type lead() const;
/// Get leading term w.r.t. lexicographical order
monom_type lexLead() const;
/// Get leading term (using upper bound of the polynomial degree)
/** @note Implementation note: for degree orderings (dlex, dp_asc)
* returns the lead of the sub-polynomial of degree 'bound',
* falls back to @c lead for all other orderings (lp, block_*) */
monom_type boundedLead(deg_type bound) const;
/// Get leading term
exp_type leadExp() const;
/// Get leading term (using upper bound of the polynomial degree)
/// @note See implementation notes of @c boundedLead
exp_type boundedLeadExp(deg_type bound) const;
/// Get all divisors of the leading term
set_type leadDivisors() const { return leadFirst().firstDivisors(); };
/// Get unique hash value (may change from run to run)
hash_type hash() const { return m_dd.hash(); }
/// Get hash value, which is reproducible
hash_type stableHash() const { return m_dd.stableHash(); }
/// Hash value of the leading term
hash_type leadStableHash() const;
/// Maximal degree of the polynomial
deg_type deg() const;
/// Degree of the leading term
deg_type leadDeg() const;
/// Degree of the leading term w.r.t. lexicographical ordering
deg_type lexLeadDeg() const;
/// Total maximal degree of the polynomial
deg_type totalDeg() const;
/// Total degree of the leading term
deg_type leadTotalDeg() const;
/// Get part of given degree
self gradedPart(deg_type deg) const;
/// Number of nodes in the decision diagram
size_type nNodes() const;
/// Number of variables of the polynomial
size_type nUsedVariables() const;
/// Set of variables of the polynomial
monom_type usedVariables() const;
/// Exponent vector of all of variables of the polynomial
exp_type usedVariablesExp() const;
/// Returns number of terms
size_type length() const;
/// Print current polynomial to output stream
ostream_type& print(ostream_type&) const;
/// Start of iteration over monomials
const_iterator begin() const;
/// Finish of iteration over monomials
const_iterator end() const;
/// Start of iteration over exponent vectors
exp_iterator expBegin() const;
/// Finish of iteration over exponent vectors
exp_iterator expEnd() const;
/// Start of first term
first_iterator firstBegin() const;
/// Finish of first term
first_iterator firstEnd() const;
/// Get of first lexicographic term
monom_type firstTerm() const;
/// Start of degrees
deg_iterator degBegin() const;
/// Finish of degrees
deg_iterator degEnd() const;
/// Start of ordering respecting iterator
ordered_iterator orderedBegin() const;
/// Finish of ordering respecting iterator
ordered_iterator orderedEnd() const;
/// Start of ordering respecting exponent iterator
ordered_exp_iterator orderedExpBegin() const;
/// Finish of ordering respecting exponent iterator
ordered_exp_iterator orderedExpEnd() const;
/// @name Compile-time access to generic iterators
//@{
lex_iterator genericBegin(lex_tag) const;
lex_iterator genericEnd(lex_tag) const;
dlex_iterator genericBegin(dlex_tag) const;
dlex_iterator genericEnd(dlex_tag) const;
dp_asc_iterator genericBegin(dp_asc_tag) const;
dp_asc_iterator genericEnd(dp_asc_tag) const;
block_dlex_iterator genericBegin(block_dlex_tag) const;
block_dlex_iterator genericEnd(block_dlex_tag) const;
block_dp_asc_iterator genericBegin(block_dp_asc_tag) const;
block_dp_asc_iterator genericEnd(block_dp_asc_tag) const;
lex_exp_iterator genericExpBegin(lex_tag) const;
lex_exp_iterator genericExpEnd(lex_tag) const;
dlex_exp_iterator genericExpBegin(dlex_tag) const;
dlex_exp_iterator genericExpEnd(dlex_tag) const;
dp_asc_exp_iterator genericExpBegin(dp_asc_tag) const;
dp_asc_exp_iterator genericExpEnd(dp_asc_tag) const;
block_dlex_exp_iterator genericExpBegin(block_dlex_tag) const;
block_dlex_exp_iterator genericExpEnd(block_dlex_tag) const;
block_dp_asc_exp_iterator genericExpBegin(block_dp_asc_tag) const;
block_dp_asc_exp_iterator genericExpEnd(block_dp_asc_tag) const;
//@}
/// Navigate through structure
navigator navigation() const { return m_dd.navigation(); }
/// End of navigation marker
navigator endOfNavigation() const { return navigator(); }
/// gives a copy of the diagram
dd_type copyDiagram(){ return diagram(); }
/// Casting operator to Boolean set
operator set_type() const { return set(); };
size_type eliminationLength() const;
size_type eliminationLengthWithDegBound(deg_type garantied_deg_bound) const;
/// Get list of all terms
void fetchTerms(termlist_type&) const;
/// Return of all terms
termlist_type terms() const;
/// Read-only access to internal decision diagramm structure
const dd_type& diagram() const { return m_dd; }
/// Get corresponding subset of of the powerset over all variables
set_type set() const { return m_dd; }
/// Test, whether we have one term only
bool_type isSingleton() const { return dd_is_singleton(navigation()); }
/// Test, whether we have one or two terms only
bool_type isSingletonOrPair() const {
return dd_is_singleton_or_pair(navigation());
}
/// Test, whether we have two terms only
bool_type isPair() const { return dd_is_pair(navigation()); }
/// Access ring, where this belongs to
const ring_type& ring() const { return m_dd.ring(); }
/// Compare with right-hand side and return comparision code
comp_type compare(const self&) const;
/// Check whether all variables are in one variable block
bool_type inSingleBlock() const;
protected:
/// Access to internal decision diagramm structure
dd_type& internalDiagram() { return m_dd; }
/// Generate a polynomial, whose first term is the leading term
self leadFirst() const;
/// Get all divisors of the first term
set_type firstDivisors() const;
private:
/// The actual decision diagramm
dd_type m_dd;
};
/// Addition operation
inline BoolePolynomial
operator+(const BoolePolynomial& lhs, const BoolePolynomial& rhs) {
return BoolePolynomial(lhs) += rhs;
}
/// Addition operation
inline BoolePolynomial
operator+(const BoolePolynomial& lhs, BooleConstant rhs) {
return BoolePolynomial(lhs) += (rhs);
//return BoolePolynomial(lhs) += BoolePolynomial(rhs);
}
/// Addition operation
inline BoolePolynomial
operator+(BooleConstant lhs, const BoolePolynomial& rhs) {
return BoolePolynomial(rhs) += (lhs);
}
/// Subtraction operation
template <class RHSType>
inline BoolePolynomial
operator-(const BoolePolynomial& lhs, const RHSType& rhs) {
return BoolePolynomial(lhs) -= rhs;
}
/// Subtraction operation with constant right-hand-side
inline BoolePolynomial
operator-(const BooleConstant& lhs, const BoolePolynomial& rhs) {
return -(BoolePolynomial(rhs) -= lhs);
}
/// Multiplication with other left-hand side type
#define PBORI_RHS_MULT(type) inline BoolePolynomial \
operator*(const BoolePolynomial& lhs, const type& rhs) { \
return BoolePolynomial(lhs) *= rhs; }
PBORI_RHS_MULT(BoolePolynomial)
PBORI_RHS_MULT(BooleMonomial)
PBORI_RHS_MULT(BooleExponent)
PBORI_RHS_MULT(BooleConstant)
#undef PBORI_RHS_MULT
/// Multiplication with other left-hand side type
#define PBORI_LHS_MULT(type) inline BoolePolynomial \
operator*(const type& lhs, const BoolePolynomial& rhs) { return rhs * lhs; }
PBORI_LHS_MULT(BooleMonomial)
PBORI_LHS_MULT(BooleExponent)
PBORI_LHS_MULT(BooleConstant)
#undef PBORI_LHS_MULT
/// Division by monomial (skipping remainder)
template <class RHSType>
inline BoolePolynomial
operator/(const BoolePolynomial& lhs, const RHSType& rhs){
return BoolePolynomial(lhs) /= rhs;
}
/// Modulus monomial (division remainder)
template <class RHSType>
inline BoolePolynomial
operator%(const BoolePolynomial& lhs, const RHSType& rhs){
return BoolePolynomial(lhs) %= rhs;
}
/// Equality check (with constant lhs)
inline BoolePolynomial::bool_type
operator==(BoolePolynomial::bool_type lhs, const BoolePolynomial& rhs) {
return (rhs == lhs);
}
/// Nonquality check (with constant lhs)
inline BoolePolynomial::bool_type
operator!=(BoolePolynomial::bool_type lhs, const BoolePolynomial& rhs) {
return (rhs != lhs);
}
/// Stream output operator
BoolePolynomial::ostream_type&
operator<<(BoolePolynomial::ostream_type&, const BoolePolynomial&);
// tests whether polynomial can be reduced by rhs
inline BoolePolynomial::bool_type
BoolePolynomial::firstReducibleBy(const self& rhs) const {
if( rhs.isOne() )
return true;
if( isZero() )
return rhs.isZero();
return std::includes(firstBegin(), firstEnd(),
rhs.firstBegin(), rhs.firstEnd());
}
END_NAMESPACE_PBORI
#endif // of polybori_BoolePolynomial_h_
|