/usr/lib/perl5/Prima/CurvedText.pm is in libprima-perl 1.28-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 | # Copyright (c) 1997-2007 Dmitry Karasik
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#
# $Id: CurvedText.pm,v 1.2 2007/11/01 11:41:55 dk Exp $
package Prima::CurvedText;
use strict;
use warnings;
*Prima::Drawable::curved_text_out = \&curved_text_out;
sub init_pointer
{
my ( $p, $beginning) = @_;
my $P = {
x => $p-> [0], # current coordinates of the aperture point
y => $p-> [1], #
i => 0, # index of the current segment in polygon
n => scalar(@$p)-2,# number of points
end => 0, # end of polygon?
p => $p, # polygon
a => undef, # angle of the current segment
l => undef, # length of the current segment
lleft => undef, # length of line between (x,y) and the end of the curr segment
dx => undef, # tangent of the current segment
dy => undef, #
};
$P->{i} = $P->{n} - 2 unless $beginning;
calc_segment( $P);
$P->{lleft} = 0 unless $beginning;
return $P;
}
sub calc_segment
{
my $p = $_[0];
my ($P,$I) = ($p->{p}, $p->{i});
my $x = $p-> {dx} = $$P[$I + 2] - $$P[$I];
my $y = $p-> {dy} = $$P[$I + 3] - $$P[$I + 1];
$p-> {l} = $p->{lleft} = int( 0.5 + sqrt( $y * $y + $x * $x));
$p-> {a} = atan2($y, $x) * 180 / 3.14159265358;
#print "next segment $$P[$I],$$P[$I+1]-$$P[$I+2],$$P[$I+3] len $p->{l} angle $p->{a}\n";
}
# skip to next segment
sub next_segment
{
my $p = $_[0];
my $P = $p->{p};
while ( not $p-> {end}) {
$p-> {i} += 2;
$p-> {end}++, return 0 if $p-> {i} >= $p->{n};
calc_segment( $p);
$p-> {x} = $$P[ $p->{i} ];
$p-> {y} = $$P[ $p->{i} + 1 ];
last if $p-> {l} > 0;
}
return 1;
}
# track back to previous segment
sub prev_segment
{
my $p = $_[0];
my $P = $p->{p};
$p-> {end} = 0;
$p-> {lleft} = 0;
while ( 1) {
return 0 if $p-> {i} == 0;
$p-> {i} -= 2;
calc_segment( $p);
$p-> {x} = $$P[ $p->{i} ];
$p-> {y} = $$P[ $p->{i} + 1 ];
last if $p-> {l} > 0;
}
return 1;
}
# move the pointer to a given offset, return the average angle of the passed path
sub move_pointer
{
my ( $p, $o) = @_;
#print "shift $o pixels i=$p->{i} llen=$p->{lleft} l=$p->{l}\n";
my $O = $o;
my ($ox,$oy) = ($p->{x}, $p->{y});
my $i = $p-> {i};
if ( $o < 0) {
$o = -$o;
$o = int($o + 0.5);
while ( $o + $p->{lleft} > $p-> {l} or $p-> {l} == 0) {
$o -= $p->{l} - $p-> {lleft};
goto EXIT unless prev_segment($p);
#print "prev segment $p->{i} o=$o lleft=$p->{lleft} l=$p->{l}\n";
}
goto EXIT if $o <= 0;
$o = -$o;
} else {
$o = int($o + 0.5);
while ( $o > $p->{lleft} or $p-> {l} == 0) {
$o -= $p-> {lleft};
goto EXIT unless next_segment($p);
#print "next segment $p->{i} o=$o\n";
}
goto EXIT if $o <= 0;
}
my $l = $p-> {l} - $p-> {lleft} + $o;
$p-> {lleft} = $p-> {l} - $l;
if ( $p-> {lleft} > 0) {
my $P = $p->{p};
$p-> {x} = $$P[ $p-> {i} ] + $p-> {dx} * $l / $p-> {l};
$p-> {y} = $$P[ $p-> {i} + 1 ] + $p-> {dy} * $l / $p-> {l};
$_ = ( $_ < 0) ? int( $_ - 0.5) : int( $_ + 0.5) for ($p-> {x}, $p->{y});
#print "offset pointer to $p->{x},$p->{y}, lleft $p->{lleft}\n";
} else {
next_segment($p);
}
EXIT:
return $p-> {a} if $i == $p-> {i}; # same segment, don't recalculate the angle
$ox = $p->{x} - $ox;
$oy = $p->{y} - $oy;
return $p->{a} if $ox == 0 and $oy == 0; # last point of the segment
return atan2($oy, $ox) * 180 / 3.14159265358;
}
# changes current coordinates to a point within given segment
sub set_pointer
{
my ( $p, $x, $y) = @_;
$p-> {x} = $x;
$p-> {y} = $y;
my $dx = $p-> {p}-> [$p-> {i} ] - $x;
my $dy = $p-> {p}-> [$p-> {i} + 1] - $y;
my $l = int( 0.5 + sqrt( $dy * $dy + $dx * $dx));
$p-> {lleft} = $p-> {l} - $l;
#print "move pointer to $x,$y, set llen $p->{lleft}\n";
next_segment($p) if $p->{lleft} <= 0;
}
sub update_box
{
my ( $self, $x, $y, $angle, $t, $box) = @_;
$self-> font-> direction( $angle) if defined $angle;
@$box = @{$self-> get_text_box( $$t)};
for ( my $j = 0; $j < 10; $j += 2) {
$box-> [$j] += $x;
$box-> [$j+1] += $y;
}
}
# rotate back @$a to angle=0, calculate transformation matrix,
# and store all in the cache
sub precalc_box
{
my ( $angle, $box, $cache) = @_;
my ($dx, $dy) = @$box[2,3];
$cache-> [0] = $dx; # offset x
$cache-> [1] = $dy; # offset y
my ($x, $y) = @$box[0,1];
# height
$cache-> [2] = sqrt(($dx - $x) * ($dx - $x) + ($dy - $y) * ($dy - $y));
($x, $y) = @$box[6,7];
# width
$cache-> [3] = sqrt(($dx - $x) * ($dx - $x) + ($dy - $y) * ($dy - $y));
#print "precalc box @$box to $cache->[3],$cache->[2] shift $dx,$dy rotated to $angle\n";
$angle *= -3.14159265358/180;
$cache-> [4] = sin($angle);
$cache-> [5] = cos($angle);
}
# check whether rotated rectangle $b is inside box $a.
# $a is calculated from a rotated rectangle box by precalc_box()
sub boxes_overlap
{
my ( $a, $b) = @_;
#print "overlap? @$b\n";
my (@b,$i);
my ($dx,$dy,$h,$w,$sin,$cos) = @$a;
# rotate and shift $b
for ( $i = 0; $i < 8; $i+=2) {
my ( $x, $y) = @$b[$i,$i+1];
$x -= $dx;
$y -= $dy;
my $X = $x * $cos - $y * $sin;
my $Y = $x * $sin + $y * $cos;
# check immediately if the point is inside the box
if (
( $X >= 0 and $X < $w) and
( $Y >= 0 and $Y < $h)
) {
#print "point $X,$Y is inside 0,0-$w,$h\n";
return 1;
}
@b[$i,$i+1] = ($X,$Y);
}
# check whether any segment that forms @b intesects with $a
# reshuffle order of get_text_box() points so [0] is lower left, [1] is upper left, [2] is upper right
# also, point 8,9->0,1 for easier looping
@b[0..3,8,9] = @b[2,3,0..3];
for ( $i = 0; $i < 8; $i +=2 ) {
my ($x1, $y1, $x2, $y2) = @b[$i .. $i + 3];
my ( $dx, $dy) = ( $x2 - $x1, $y2 - $y1);
# check intersections with vertical axes
if ( $dx != 0) {
my $tangent = $dy / $dx;
for (0, $w) {
next if
( $_ > $x1 and $_ > $x2) or
( $_ < $x1 and $_ < $x2);
my $p = $y2 - $tangent * ( $x2 - $_ );
next unless $p >= 0 and $p < $h;
#print "segment $x1,$y1-$x2,$y2 crosses vertical line x=$_ at y=0<=$p=>$h\n";
return 1;
}
}
# check intersections with horizontal axes
if ( $dy != 0) {
my $tangent = $dx / $dy;
for (0, $h) {
next if
( $_ > $y1 and $_ > $y2) or
( $_ < $y1 and $_ < $y2);
my $p = $x2 - $tangent * ( $y2 - $_ );
next unless $p >= 0 and $p < $w;
#print "segment $x1,$y1-$x2,$y2 crosses horizontal line y=$_ at x=0<=$p=>$w\n";
return 1;
}
}
}
return 0;
}
sub curved_text_out
{
my ( $self, $text, $polyline, %options) = @_;
return unless 4 == grep { defined } @$polyline[0..3];
my $retval = 1;
my $fa = $self-> font-> direction;
my $collisions = $options{collisions} || 0;
my $bevel = not (exists $options{bevel}) || $options{bevel};
my $offset = $options{offset} || 0;
my $p = init_pointer( $polyline, $offset >= 0);
move_pointer( $p, $offset);
my ( @chunks, $try_text_wrap, $angle, @box);
my ( %start, @walkback, @translated_box, @all_boxes, $fitting_direction); # collision detection
$try_text_wrap = 1;
@box[8,9] = ( $p->{x}, $p->{y});
push @all_boxes, \@translated_box if $collisions == 1;
while ( not $p-> {end} and length ($text) ) {
# Try to fit next glyphs in the string. We don't know whether more than 1 glyph
# fits, but if yes, text_wrap() will speed up things a lot. Otherwise, fit each
# character individually
my ( $t);
my ( $x, $y) = @$p{qw(x y)};
#print "* point $x $y\n";
# obtain next position
if ( $try_text_wrap) {
my $chunk = $self-> text_wrap(
$text, $p-> {lleft},
tw::BreakSingle|tw::ReturnFirstLineLength
);
$t = substr( $text, 0, $chunk, '');
unless ( $collisions) {
#print "'$t' text_wrap plot at $x,$y,$p->{a}\n" if $chunk;
push @chunks, [ $t, $p->{a}, $x, $y]
if $chunk;
unless ( $bevel) {
# simple case
update_box( $self, $x, $y, $angle = $p->{a}, \$t, \@box);
set_pointer( $p, @box[8,9]);
next_segment($p);
next;
}
}
unless ( $chunk) {
$try_text_wrap = 0;
goto SINGLE_GLYPH;
}
update_box( $self, $x, $y, $angle = $p->{a}, \$t, \@box);
set_pointer( $p, @box[8,9]);
#print "text_wrap '$t' move to $p->{x},$p->{y}\n";
} else {
SINGLE_GLYPH:
$t = substr( $text, 0, 1, '');
my ( $a, $b, $c) = @{ $self-> get_font_abc(
ord($t), ord($t),
utf8::is_utf8($t)
)};
my $w = $a + $b + $c;
$angle = move_pointer( $p, $w);
update_box( $self, $x, $y, $angle, \$t, \@box);
#print "'$t' single, move to $p->{x},$p->{y}\n";
unless ( $collisions) {
push @chunks, [ $t, $angle, $x, $y ];
$try_text_wrap = 1;
#print "'$t' bevel plot at $x,$y,".(defined($angle)?$angle:"undef")."\n";
}
}
next unless $collisions;
# first glyphs don't need to be checked for collisions
unless ( @translated_box) {
%start = %$p;
precalc_box( $angle, \@box, \@translated_box);
push @all_boxes, [@translated_box] if $collisions > 1;
push @chunks, [ $t, $angle, $x, $y ];
#print "plot '$t' at $x,$y,$angle init non-overlap\n";
next;
}
# if glyphs overlap, move the pointer forwards,
# otherwise backwards until the overlapping occurs
my $start_direction = -1;
for ( @all_boxes) {
next unless boxes_overlap( $_, \@box);
$start_direction = 1;
last;
}
$fitting_direction =
(
not defined($fitting_direction) or
$fitting_direction == $start_direction
) ?
$start_direction :
undef
;
if ( defined $fitting_direction) {
# retry
@walkback = ($x, $y, $angle)
if $fitting_direction < 0;
move_pointer( \%start, $fitting_direction);
%$p = %start;
#print "retry direction=$start_direction from $start{x} $start{y}\n";
$text = $t . $text;
} else {
# done
if ( $start_direction > 0) {
# was moving backwards
($x, $y, $angle) = @walkback;
}
$try_text_wrap = 1;
%start = %$p;
#print "plot '$t' at $x,$y,$angle non-overlap\n";
push @chunks, [ $t, $angle, $x, $y];
precalc_box( $angle, \@box, \@translated_box);
push @all_boxes, [@translated_box] if $collisions > 1;
%start = %$p;
}
}
if ( length $text and not $options{skiptail}) {
$angle = $p-> {a} unless $bevel;
#print "'$text' at @box[8,9] ".(defined($angle)?$angle:"undef")." tail\n";
push @chunks, [ $text, $angle, @box[8,9]];
}
$options{callback}->( $self, $p, \@chunks)
if $options{callback};
unless ( $options{nodraw}) {
for ( @chunks) {
my ( $text, $angle, $x, $y) = @$_;
$self-> font-> direction($angle) if defined $angle;
last unless $retval = $self-> text_out( $text, $x, $y);
}
}
$self-> font-> direction($fa);
return wantarray ? @chunks : $retval;
}
1;
__END__
=pod
=head1 NAME
Prima::CurvedText - fit text to path
=head1 DESCRIPTION
The module registers single function C<curved_text_out> in C<Prima::Drawable>
namespace. The function plots the line of text along the path, which given as a
set of points. Various options regulate behavior of the function when glyphs
collide with the path boundaries and each other.
=head1 SYNOPSIS
use Prima qw(Application CurvedText);
$::application-> begin_paint;
$::application-> curved_text_out( 'Hello, world!',
$::application-> render_spline( [qw(100 100 150 150 200 100)]));
=head2 curved_text_out $TEXT, $POLYLINE, %OPTIONS
C<$TEXT> is a line of text, no special treatment is given to tab and newline characters.
The text is plotted over C<$POLYLINE> path that should be an array of coordinate
numeric pairs, in the same format as C<Prima::Drawable::polyline> expects.
The text begins to plot by drawing the first glyphs at the first path point, unless
specified otherwise with the C<offset> option. The glyph is plotted with the angle
perpendicular to the path segment; therefore the path may contain floating point numbers if
futher plotting angle accuracy is desired.
When text cannot be fit along a single segment, it is plotted along the next segment in the
path. Depending on the C<bevel> boolean option, the next glyph is either simply drawn on
the next segment with the angle corresponding to the tangent of that segment (value 0), or
is drawn with the normal text concatenation offset, with the angle averaged between
tangents of the two segments it is plotted between (value 1). The default value of
C<bevel> option is 1.
The glyph positioning rules differ depending on C<collisions> integer option. If
0 (default), the next glyph position always corresponds with the glyph width as
projected to the path. That means, that glyphs will overlap when plotted inside
segments forming an acute angle. Also, when plotting along a reflex angle, the
glyphs will be visually more distant from each other that when plotted along
the straight line.
Simple collision detection can be turned on with setting C<collisions> to 1 so
that no two neighbour glyphs may overlap. Also, the glyphs will be moved
together to the minimal distance, when possible. With this option set the
function will behave slower. If detection of not only neighbouring glyphs is
required, C<collisions> value can be set to 2, in which case a glyph is
guaranteedly will never overlap any other glyph. This option may be needed
when, for example, text is plotted inside an acute angle and upper parts of
glyphs plotted along one segment will overlap with lower parts of glyphs
plotted along the other one. Setting C<collisions> to 2 will slow the function
even more.
The function internally creates an array of tuples where each contains text,
plotting angle, and horisontal and vertical coordinates for the text to be
plotted. In the array context the function returns this array. In the scalar
context the function returns the success flag that is the result of last call
to C<text_out>.
Options:
=over
=item bevel BOOLEAN=true
If set, glyphs between two adjoining segments will be plotted with bevelled angle.
Otherwise glyphs will strictly follow the angles of the segments in the path.
=item callback CODE($SELF, $POLYLINE, $CHUNKS)
If set, the callback is called with C<$CHUNKS> after the calculations were made
but before the text is plotted. C<$CHUNKS> is an array of tuples where each
consists of text, angle, x and y coordinates for each text. The callback is
free to modify the array.
=item collisions INTEGER=0
If 0, collision detection is disabled, glyphs plotted along the path. If 1,
no two neighbour glyphs may overlap, and no two neighbour glyph will be
situated further away from each other than it is necessary. If 2, same
functionality as with 1, and also two glyphs (in all text) will overlap.
=item nodraw BOOLEAN=false
If set, calculate glyph positions but do not draw them.
=item offset INTEGER=0
Sets offset from the beginning of the path where the first glyph is plotted.
If offset is negative, it is calculated from the end of the path.
=item skiptail BOOLEAN=false
If set, the remainder of the text that is left after the path is completely
traversed, is not shown. Otherwise (default), the tail text is shown with the
angle used to plot the last glyph (if bevelling was requested) or the angle
perpendicular to the last path segment (otherwise).
=back
=head1 AUTHOR
Dmitry Karasik, E<lt>dmitry@karasik.eu.orgE<gt>.
=head1 SEE ALSO
L<Prima>, L<Prima::Drawable>
=cut
|