/usr/include/ql/math/autocovariance.hpp is in libquantlib0-dev 1.4-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2010 Liquidnet Holdings, Inc.
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file autocovariance.hpp
\brief autocovariance and convolution calculation
*/
#ifndef quantlib_auto_covariance_hpp
#define quantlib_auto_covariance_hpp
#include <ql/math/fastfouriertransform.hpp>
#include <ql/math/array.hpp>
#include <complex>
#include <vector>
#include <algorithm>
#include <functional>
namespace QuantLib {
namespace detail {
// Outputs double FT for a given input:
// input -> FFT -> norm -> FFT -> out
template <typename ForwardIterator>
std::vector<std::complex<Real> > double_ft(ForwardIterator begin,
ForwardIterator end) {
std::size_t nData = std::distance(begin, end);
std::size_t order = FastFourierTransform::min_order(nData) + 1;
FastFourierTransform fft(order);
std::vector<std::complex<Real> > ft(fft.output_size());
fft.transform(begin, end, ft.begin());
Array tmp(ft.size(), 0.0);
std::complex<Real> z = std::complex<Real>();
for (Size i=0; i<ft.size(); ++i) {
tmp[i] = std::norm<Real>(ft[i]);
ft[i] = z;
}
fft.transform(tmp.begin(), tmp.end(), ft.begin());
return ft;
}
// Calculates and subtracts mean from the input data; returns mean
template <typename InputIterator, typename OutputIterator>
Real remove_mean(InputIterator begin, InputIterator end,
OutputIterator out) {
Real mean(0.0);
std::size_t n = 1;
for (InputIterator it = begin; it != end; ++it, ++n)
mean = (mean*Real(n-1) + *it)/n;
std::transform(begin, end, out,
std::bind2nd(std::minus<Real>(), mean));
return mean;
}
}
//! Convolutions of the input sequence.
/*! Calculates x[0]*x[n]+x[1]*x[n+1]+x[2]*x[n+2]+...
for n = 0,1,...,maxLag via FFT.
\pre The size of the output sequence must be maxLag + 1
*/
template <typename ForwardIterator, typename OutputIterator>
void convolutions(ForwardIterator begin, ForwardIterator end,
OutputIterator out, std::size_t maxLag) {
using namespace detail;
std::size_t nData = std::distance(begin, end);
QL_REQUIRE(maxLag < nData, "maxLag must be less than data size");
const std::vector<std::complex<Real> >& ft = double_ft(begin, end);
Real w = 1.0 / (Real)ft.size();
for (std::size_t k = 0; k <= maxLag; ++k)
*out++ = ft[k].real() * w;
}
//! Unbiased auto-covariances
/*! Results are calculated via FFT.
\pre Input data are supposed to be centered (i.e., zero mean).
\pre The size of the output sequence must be maxLag + 1
*/
template <typename ForwardIterator, typename OutputIterator>
void autocovariances(ForwardIterator begin, ForwardIterator end,
OutputIterator out, std::size_t maxLag) {
using namespace detail;
std::size_t nData = std::distance(begin, end);
QL_REQUIRE(maxLag < nData,
"number of covariances must be less than data size");
const std::vector<std::complex<Real> >& ft = double_ft(begin, end);
Real w1 = 1.0 / (Real)ft.size(), w2 = (Real)nData;
for (std::size_t k = 0; k <= maxLag; ++k, w2 -= 1.0) {
*out++ = ft[k].real() * w1 / w2;
}
}
//! Unbiased auto-covariances
/*! Results are calculated via FFT.
This overload accepts non-centered data, removes the mean and
returns it as a result. The centered sequence is written back
into the input sequence if the reuse parameter is true.
\pre The size of the output sequence must be maxLag + 1
*/
template <typename ForwardIterator, typename OutputIterator>
Real autocovariances(ForwardIterator begin, ForwardIterator end,
OutputIterator out,
std::size_t maxLag, bool reuse) {
using namespace detail;
Real mean = 0.0;
if (reuse) {
mean = remove_mean(begin, end, begin);
autocovariances(begin, end, out, maxLag);
} else {
Array tmp(std::distance(begin, end));
mean = remove_mean(begin, end, tmp.begin());
autocovariances(tmp.begin(), tmp.end(), out, maxLag);
}
return mean;
}
//! Unbiased auto-correlations.
/*! Results are calculated via FFT.
The first element of the output is the unbiased sample variance.
\pre Input data are supposed to be centered (i.e., zero mean).
\pre The size of the output sequence must be maxLag + 1
*/
template <typename ForwardIterator, typename OutputIterator>
void autocorrelations(ForwardIterator begin, ForwardIterator end,
OutputIterator out, std::size_t maxLag) {
using namespace detail;
std::size_t nData = std::distance(begin, end);
QL_REQUIRE(maxLag < nData,
"number of correlations must be less than data size");
const std::vector<std::complex<Real> >& ft = double_ft(begin, end);
Real w1 = 1.0 / (Real)ft.size(), w2 = (Real)nData;
Real variance = ft[0].real() * w1 / w2;
*out++ = variance * w2 / (w2-1.0);
w2 -= 1.0;
for (std::size_t k = 1; k <= maxLag; ++k, w2 -= 1.0)
*out++ = ft[k].real() * w1 / (variance * w2);
}
//! Unbiased auto-correlations.
/*! Results are calculated via FFT.
The first element of the output is the unbiased sample variance.
This overload accepts non-centered data, removes the mean and
returns it as a result. The centered sequence is written back
into the input sequence if the reuse parameter is true.
\pre The size of the output sequence must be maxLag + 1
*/
template <typename ForwardIterator, typename OutputIterator>
Real autocorrelations(ForwardIterator begin, ForwardIterator end,
OutputIterator out,
std::size_t maxLag, bool reuse) {
using namespace detail;
Real mean = 0.0;
if (reuse) {
mean = remove_mean(begin, end, begin);
autocorrelations(begin, end, out, maxLag);
} else {
Array tmp(std::distance(begin, end));
mean = remove_mean(begin, end, tmp.begin());
autocorrelations(tmp.begin(), tmp.end(), out, maxLag);
}
return mean;
}
}
#endif
|