This file is indexed.

/usr/include/ql/math/distributions/poissondistribution.hpp is in libquantlib0-dev 1.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2003 Ferdinando Ametrano
 Copyright (C) 2004 Walter Penschke

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file poissondistribution.hpp
    \brief Poisson distribution
*/

#ifndef quantlib_poisson_distribution_hpp
#define quantlib_poisson_distribution_hpp

#include <ql/math/factorial.hpp>
#include <ql/math/incompletegamma.hpp>

namespace QuantLib {

    //! Poisson distribution function
    /*! Given an integer \f$ k \f$, it returns its probability
        in a Poisson distribution.

        \test the correctness of the returned value is tested by
              checking it against known good results.
    */
    class PoissonDistribution : public std::unary_function<Real,Real> {
      public:
        PoissonDistribution(Real mu);
        // function
        Real operator()(BigNatural k) const;
      private:
        Real mu_, logMu_;
    };


    //! Cumulative Poisson distribution function
    /*! This function provides an approximation of the
        integral of the Poisson distribution.

        For this implementation see
        "Numerical Recipes in C", 2nd edition,
        Press, Teukolsky, Vetterling, Flannery, chapter 6

        \test the correctness of the returned value is tested by
              checking it against known good results.
    */
    class CumulativePoissonDistribution
        : public std::unary_function<Real,Real> {
      public:
        CumulativePoissonDistribution(Real mu) : mu_(mu) {}
        Real operator()(BigNatural k) const {
            return 1.0 - incompleteGammaFunction(k+1, mu_);
        }
      private:
        Real mu_;
    };


    //! Inverse cumulative Poisson distribution function
    /*! \test the correctness of the returned value is tested by
              checking it against known good results.
    */
    class InverseCumulativePoisson : public std::unary_function<Real,Real> {
      public:
        InverseCumulativePoisson(Real lambda = 1.0);
        Real operator()(Real x) const;
      private:
        Real lambda_;
        Real calcSummand(BigNatural index) const;
    };



    // inline definitions

    inline PoissonDistribution::PoissonDistribution(Real mu)
    : mu_(mu) {

        QL_REQUIRE(mu_>=0.0,
                   "mu must be non negative (" << mu_ << " not allowed)");

        if (mu_!=0.0) logMu_ = std::log(mu_);
    }

    inline Real PoissonDistribution::operator()(BigNatural k) const {
        if (mu_==0.0) {
            if (k==0) return 1.0;
            else      return 0.0;
        }
        Real logFactorial = Factorial::ln(k);
        return std::exp(k*std::log(mu_) - logFactorial - mu_);
    }


    inline InverseCumulativePoisson::InverseCumulativePoisson(Real lambda)
    : lambda_(lambda) {
        QL_REQUIRE(lambda_ > 0.0, "lambda must be positive");
    }

    inline Real InverseCumulativePoisson::operator()(Real x) const {
        QL_REQUIRE(x >= 0.0 && x <= 1.0,
                   "Inverse cumulative Poisson distribution is "
                   "only defined on the interval [0,1]");

        if (x == 1.0)
            return QL_MAX_REAL;

        Real sum = 0.0;
        BigNatural index = 0;
        while (x > sum) {
            sum += calcSummand(index);
            index++;
        }

        return Real(index-1);
    }

    inline Real InverseCumulativePoisson::calcSummand(BigNatural index) const {
        return std::exp(-lambda_) * std::pow(lambda_, Integer(index)) /
            Factorial::get(index);
    }

}


#endif