This file is indexed.

/usr/include/ql/math/generallinearleastsquares.hpp is in libquantlib0-dev 1.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2009 Dirk Eddelbuettel
 Copyright (C) 2006, 2009, 2010 Klaus Spanderen
 Copyright (C) 2010 Kakhkhor Abdijalilov
 Copyright (C) 2010 Slava Mazur

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file linearleastsquaresregression.hpp
    \brief general linear least square regression
*/

#ifndef quantlib_general_linear_least_squares_hpp
#define quantlib_general_linear_least_squares_hpp

#include <ql/qldefines.hpp>
#include <ql/math/matrixutilities/svd.hpp>
#include <ql/math/array.hpp>
#include <ql/math/functional.hpp>
#include <boost/function.hpp>
#include <boost/type_traits.hpp>
#include <vector>

namespace QuantLib {

    //! general linear least squares regression
    /*! References:
    "Numerical Recipes in C", 2nd edition,
    Press, Teukolsky, Vetterling, Flannery,

    \test the correctness of the returned values is tested by
    checking their properties.
    */
    class GeneralLinearLeastSquares {
    public:
        template <class xContainer, class yContainer, class vContainer>
        GeneralLinearLeastSquares(const xContainer & x,
                                  const yContainer &y, const vContainer & v);

        template<class xIterator, class yIterator, class vIterator>
        GeneralLinearLeastSquares(xIterator xBegin, xIterator xEnd,
                                  yIterator yBegin, yIterator yEnd,
                                  vIterator vBegin, vIterator vEnd);

        const Array& coefficients()   const { return a_; }
        const Array& residuals()      const { return residuals_; }

        //! standard parameter errors as given by Excel, R etc.
        const Array& standardErrors() const { return standardErrors_; }
        //! modeling uncertainty as definied in Numerical Recipes
        const Array& error()          const { return err_;}

        /*! \deprecated Use coefficients() instead */
        QL_DEPRECATED
        const Array& a() const     { return a_;  }

        Size size() const { return residuals_.size(); }

        Size dim() const { return a_.size(); }

    protected:
        Array a_, err_, residuals_, standardErrors_;

        template <class xIterator, class yIterator, class vIterator>
        void calculate(
            xIterator xBegin, xIterator xEnd,
            yIterator yBegin, yIterator yEnd,
            vIterator vBegin, vIterator vEnd);
    };

    template <class xContainer, class yContainer, class vContainer> inline
    GeneralLinearLeastSquares::GeneralLinearLeastSquares(const xContainer & x,
                                                         const yContainer &y,
                                                         const vContainer & v)
    : a_(v.size(), 0.0),
      err_(v.size(), 0.0),
      residuals_(y.size()),
      standardErrors_(v.size()) {
        calculate(x.begin(), x.end(), y.begin(), y.end(), v.begin(), v.end());
    }

    template<class xIterator, class yIterator, class vIterator> inline
    GeneralLinearLeastSquares::GeneralLinearLeastSquares(
                                            xIterator xBegin, xIterator xEnd,
                                            yIterator yBegin, yIterator yEnd,
                                            vIterator vBegin, vIterator vEnd)
    : a_(std::distance(vBegin, vEnd), 0.0),
      err_(a_.size(), 0.0),
      residuals_(std::distance(yBegin, yEnd)),
      standardErrors_(a_.size()) {
        calculate(xBegin, xEnd, yBegin, yEnd, vBegin, vEnd);
    }


    template <class xIterator, class yIterator, class vIterator>
    void GeneralLinearLeastSquares::calculate(xIterator xBegin, xIterator xEnd,
                                              yIterator yBegin, yIterator yEnd,
                                              vIterator vBegin, vIterator vEnd) {

        const Size n = residuals_.size();
        const Size m = err_.size();

        QL_REQUIRE( n == Size(std::distance(yBegin, yEnd)),
            "sample set need to be of the same size");
        QL_REQUIRE(n >= m, "sample set is too small");

        Size i;

        Matrix A(n, m);
        for (i=0; i<m; ++i)
            std::transform(xBegin, xEnd, A.column_begin(i), *vBegin++);

        const SVD svd(A);
        const Matrix& V = svd.V();
        const Matrix& U = svd.U();
        const Array& w = svd.singularValues();
        const Real threshold = n*QL_EPSILON;

        for (i=0; i<m; ++i) {
            if (w[i] > threshold) {
                const Real u = std::inner_product(U.column_begin(i),
                    U.column_end(i),
                    yBegin, 0.0)/w[i];

                for (Size j=0; j<m; ++j) {
                    a_[j]  +=u*V[j][i];
                    err_[j]+=V[j][i]*V[j][i]/(w[i]*w[i]);
                }
            }
        }
        err_      = Sqrt(err_);
        Array tmp = A*a_;
        std::transform(tmp.begin(), tmp.end(),
                       yBegin, residuals_.begin(), std::minus<Real>());

        const Real chiSq
            = std::inner_product(residuals_.begin(), residuals_.end(),
            residuals_.begin(), 0.0);
        std::transform(err_.begin(), err_.end(), standardErrors_.begin(),
            std::bind1st(std::multiplies<Real>(),
            std::sqrt(chiSq/(n-2))));
    }
}

#endif