/usr/include/ql/math/interpolations/convexmonotoneinterpolation.hpp is in libquantlib0-dev 1.4-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Simon Ibbotson
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file convexmonotoneinterpolation.hpp
\brief convex monotone interpolation method
*/
#ifndef quantlib_convex_monotone_interpolation_hpp
#define quantlib_convex_monotone_interpolation_hpp
#include <ql/math/interpolation.hpp>
#include <map>
namespace QuantLib {
namespace detail {
class SectionHelper {
public:
virtual ~SectionHelper() {}
virtual Real value(Real x) const = 0;
virtual Real primitive(Real x) const = 0;
virtual Real fNext() const = 0;
};
//the first value in the y-vector is ignored.
template <class I1, class I2>
class ConvexMonotoneImpl : public Interpolation::templateImpl<I1, I2> {
typedef std::map<Real, boost::shared_ptr<SectionHelper> >
helper_map;
public:
enum SectionType {
EverywhereConstant,
ConstantGradient,
QuadraticMinimum,
QuadraticMaximum
};
ConvexMonotoneImpl(const I1& xBegin,
const I1& xEnd,
const I2& yBegin,
Real quadraticity,
Real monotonicity,
bool forcePositive,
bool constantLastPeriod,
const helper_map& preExistingHelpers)
: Interpolation::templateImpl<I1,I2>(xBegin,xEnd,yBegin),
preSectionHelpers_(preExistingHelpers),
forcePositive_(forcePositive),
constantLastPeriod_(constantLastPeriod),
quadraticity_(quadraticity), monotonicity_(monotonicity),
length_(xEnd-xBegin) {
QL_REQUIRE(monotonicity_ >= 0 && monotonicity_ <= 1,
"Monotonicity must lie between 0 and 1");
QL_REQUIRE(quadraticity_ >= 0 && quadraticity_ <= 1,
"Quadraticity must lie between 0 and 1");
QL_REQUIRE(length_ >= 2,
"Single point provided, not supported by convex "
"monotone method as first point is ignored");
QL_REQUIRE((length_ - preExistingHelpers.size()) > 1,
"Too many existing helpers have been supplied");
}
void update();
Real value(Real x) const;
Real primitive(Real x) const;
Real derivative(Real) const {
QL_FAIL("Convex-monotone spline derivative not implemented");
}
Real secondDerivative(Real) const {
QL_FAIL("Convex-monotone spline second derivative "
"not implemented");
}
helper_map getExistingHelpers() {
helper_map retArray(sectionHelpers_);
if (constantLastPeriod_)
retArray.erase(*(this->xEnd_-1));
return retArray;
}
private:
helper_map sectionHelpers_;
helper_map preSectionHelpers_;
boost::shared_ptr<SectionHelper> extrapolationHelper_;
bool forcePositive_, constantLastPeriod_;
Real quadraticity_;
Real monotonicity_;
Size length_;
};
class ComboHelper : public SectionHelper {
public:
ComboHelper(boost::shared_ptr<SectionHelper>& quadraticHelper,
boost::shared_ptr<SectionHelper>& convMonoHelper,
Real quadraticity)
: quadraticity_(quadraticity),
quadraticHelper_(quadraticHelper),
convMonoHelper_(convMonoHelper) {
QL_REQUIRE(quadraticity < 1.0 && quadraticity > 0.0,
"Quadratic value must lie between 0 and 1"); }
Real value(Real x) const {
return( quadraticity_*quadraticHelper_->value(x) + (1.0-quadraticity_)*convMonoHelper_->value(x) );
}
Real primitive(Real x) const {
return( quadraticity_*quadraticHelper_->primitive(x) + (1.0-quadraticity_)*convMonoHelper_->primitive(x) );
}
Real fNext() const {
return( quadraticity_*quadraticHelper_->fNext() + (1.0-quadraticity_)*convMonoHelper_->fNext() );
}
private:
Real quadraticity_;
boost::shared_ptr<SectionHelper> quadraticHelper_;
boost::shared_ptr<SectionHelper> convMonoHelper_;
};
class EverywhereConstantHelper : public SectionHelper {
public:
EverywhereConstantHelper(Real value, Real prevPrimitive, Real xPrev)
: value_(value), prevPrimitive_(prevPrimitive), xPrev_(xPrev)
{}
Real value(Real) const {
return value_;
}
Real primitive(Real x) const {
return prevPrimitive_ + (x-xPrev_)*value_;
}
Real fNext() const {
return value_;
}
private:
Real value_;
Real prevPrimitive_;
Real xPrev_;
};
class ConvexMonotone2Helper : public SectionHelper {
public:
ConvexMonotone2Helper(Real xPrev, Real xNext,
Real gPrev, Real gNext,
Real fAverage, Real eta2,
Real prevPrimitive)
: xPrev_(xPrev), xScaling_(xNext-xPrev), gPrev_(gPrev),
gNext_(gNext), fAverage_(fAverage), eta2_(eta2),
prevPrimitive_(prevPrimitive)
{}
Real value(Real x) const {
Real xVal = (x-xPrev_)/xScaling_;
if (xVal <= eta2_) {
return( fAverage_ + gPrev_ );
} else {
return( fAverage_ + gPrev_ + (gNext_-gPrev_)/((1-eta2_)*(1-eta2_))*(xVal-eta2_)*(xVal-eta2_) );
}
}
Real primitive(Real x) const {
Real xVal = (x-xPrev_)/xScaling_;
if (xVal <= eta2_) {
return( prevPrimitive_ + xScaling_*(fAverage_*xVal + gPrev_*xVal) );
} else {
return( prevPrimitive_ + xScaling_*(fAverage_*xVal + gPrev_*xVal + (gNext_-gPrev_)/((1-eta2_)*(1-eta2_)) *
(1.0/3.0*(xVal*xVal*xVal - eta2_*eta2_*eta2_) - eta2_*xVal*xVal + eta2_*eta2_*xVal) ) );
}
}
Real fNext() const {
return(fAverage_+gNext_);
}
private:
Real xPrev_, xScaling_, gPrev_, gNext_, fAverage_, eta2_, prevPrimitive_;
};
class ConvexMonotone3Helper : public SectionHelper {
public:
ConvexMonotone3Helper(Real xPrev, Real xNext,
Real gPrev, Real gNext,
Real fAverage, Real eta3,
Real prevPrimitive)
: xPrev_(xPrev), xScaling_(xNext-xPrev), gPrev_(gPrev),
gNext_(gNext), fAverage_(fAverage), eta3_(eta3), prevPrimitive_(prevPrimitive)
{}
Real value(Real x) const {
Real xVal = (x-xPrev_)/xScaling_;
if (xVal <= eta3_) {
return( fAverage_ + gNext_ + (gPrev_-gNext_) / (eta3_*eta3_) * (eta3_-xVal)*(eta3_-xVal) );
} else {
return( fAverage_ + gNext_ );
}
}
Real primitive(Real x) const {
Real xVal = (x-xPrev_)/xScaling_;
if (xVal <= eta3_) {
return( prevPrimitive_ + xScaling_ * (fAverage_*xVal + gNext_*xVal + (gPrev_-gNext_)/(eta3_*eta3_) *
(1.0/3.0 * xVal*xVal*xVal - eta3_*xVal*xVal + eta3_*eta3_*xVal) ) );
} else {
return( prevPrimitive_ + xScaling_ * (fAverage_*xVal + gNext_*xVal + (gPrev_-gNext_)/(eta3_*eta3_) *
(1.0/3.0 * eta3_*eta3_*eta3_)) );
}
}
Real fNext() const {
return(fAverage_+gNext_);
}
private:
Real xPrev_, xScaling_, gPrev_, gNext_, fAverage_, eta3_, prevPrimitive_;
};
class ConvexMonotone4Helper : public SectionHelper {
public:
ConvexMonotone4Helper(Real xPrev, Real xNext,
Real gPrev, Real gNext,
Real fAverage, Real eta4,
Real prevPrimitive)
: xPrev_(xPrev), xScaling_(xNext-xPrev), gPrev_(gPrev),
gNext_(gNext), fAverage_(fAverage), eta4_(eta4), prevPrimitive_(prevPrimitive) {
A_ = -0.5*(eta4_*gPrev_ + (1-eta4_)*gNext_);
}
Real value(Real x) const {
Real xVal = (x-xPrev_)/xScaling_;
if (xVal <= eta4_) {
return(fAverage_ + A_ + (gPrev_-A_)*(eta4_-xVal)*(eta4_-xVal)/(eta4_*eta4_) );
} else {
return(fAverage_ + A_ + (gNext_-A_)*(xVal-eta4_)*(xVal-eta4_)/((1-eta4_)*(1-eta4_)) );
}
}
Real primitive(Real x) const {
Real xVal = (x-xPrev_)/xScaling_;
Real retVal;
if (xVal <= eta4_) {
retVal = prevPrimitive_ + xScaling_ * (fAverage_ + A_ + (gPrev_-A_)/(eta4_*eta4_) *
(eta4_*eta4_ - eta4_*xVal + 1.0/3.0*xVal*xVal)) * xVal;
} else {
retVal = prevPrimitive_ + xScaling_ *(fAverage_*xVal + A_*xVal + (gPrev_-A_)*(1.0/3.0*eta4_) +
(gNext_-A_)/((1-eta4_)*(1-eta4_)) *
(1.0/3.0*xVal*xVal*xVal - eta4_*xVal*xVal + eta4_*eta4_*xVal - 1.0/3.0*eta4_*eta4_*eta4_));
}
return retVal;
}
Real fNext() const {
return(fAverage_+gNext_);
}
protected:
Real xPrev_, xScaling_, gPrev_, gNext_, fAverage_, eta4_, prevPrimitive_;
Real A_;
};
class ConvexMonotone4MinHelper : public ConvexMonotone4Helper {
public:
ConvexMonotone4MinHelper(Real xPrev, Real xNext,
Real gPrev, Real gNext,
Real fAverage, Real eta4,
Real prevPrimitive)
: ConvexMonotone4Helper(xPrev, xNext, gPrev, gNext,
fAverage, eta4, prevPrimitive),
splitRegion_(false) {
if ( A_+ fAverage_ <= 0.0 ) {
splitRegion_ = true;
Real fPrev = gPrev_+fAverage_;
Real fNext = gNext_+fAverage_;
Real reqdShift = (eta4_*fPrev + (1-eta4_)*fNext)/3.0 - fAverage_;
Real reqdPeriod = reqdShift * xScaling_ / (fAverage_+reqdShift);
Real xAdjust = xScaling_ - reqdPeriod;
xRatio_ = xAdjust/xScaling_;
fAverage_ += reqdShift;
gNext_ = fNext - fAverage_;
gPrev_ = fPrev - fAverage_;
A_ = -(eta4_ * gPrev_ + (1.0-eta4)*gNext_)/2.0;
x2_ = xPrev_ + xAdjust * eta4_;
x3_ = xPrev_ + xScaling_ - xAdjust*(1.0-eta4_);
}
}
Real value(Real x) const {
if (!splitRegion_)
return ConvexMonotone4Helper::value(x);
Real xVal = (x-xPrev_)/xScaling_;
if (x <= x2_) {
xVal /= xRatio_;
return(fAverage_ + A_ + (gPrev_-A_)*(eta4_-xVal)*(eta4_-xVal)/(eta4_*eta4_));
} else if (x < x3_) {
return 0.0;
} else {
xVal = 1.0 - (1.0 - xVal) / xRatio_;
return(fAverage_ + A_ + (gNext_-A_)*(xVal-eta4_)*(xVal-eta4_)/((1-eta4_)*(1-eta4_)) );
}
}
Real primitive(Real x) const {
if (!splitRegion_)
return ConvexMonotone4Helper::primitive(x);
Real xVal = (x-xPrev_)/xScaling_;
if (x <= x2_) {
xVal /= xRatio_;
return( prevPrimitive_ + xScaling_*xRatio_*(fAverage_ + A_ + (gPrev_-A_)/(eta4_*eta4_) *
(eta4_*eta4_ - eta4_*xVal + 1.0/3.0*xVal*xVal)) * xVal );
} else if (x <= x3_) {
return( prevPrimitive_ + xScaling_*xRatio_*(fAverage_*eta4_ + A_*eta4_ + (gPrev_-A_)/(eta4_*eta4_) *
(1.0/3.0*eta4_*eta4_*eta4_)) );
} else {
xVal = 1.0 - (1.0-xVal)/xRatio_;
return( prevPrimitive_ + xScaling_*xRatio_*(fAverage_*xVal + A_*xVal + (gPrev_-A_)*(1.0/3.0*eta4_) +
(gNext_-A_) / ((1.0-eta4_)*(1.0-eta4_)) *
(1.0/3.0*xVal*xVal*xVal - eta4_*xVal*xVal + eta4_*eta4_*xVal - 1.0/3.0*eta4_*eta4_*eta4_)) );
}
}
private:
bool splitRegion_;
Real xRatio_, x2_, x3_;
};
class ConstantGradHelper : public SectionHelper {
public:
ConstantGradHelper(Real fPrev, Real prevPrimitive,
Real xPrev, Real xNext, Real fNext)
: fPrev_(fPrev), prevPrimitive_(prevPrimitive),
xPrev_(xPrev), fGrad_((fNext-fPrev)/(xNext-xPrev)),fNext_(fNext)
{}
Real value(Real x) const {
return (fPrev_ + (x-xPrev_)*fGrad_);
}
Real primitive(Real x) const {
return (prevPrimitive_+(x-xPrev_)*(fPrev_+0.5*(x-xPrev_)*fGrad_));
}
Real fNext() const {
return fNext_;
}
private:
Real fPrev_, prevPrimitive_, xPrev_, fGrad_, fNext_;
};
class QuadraticHelper : public SectionHelper {
public:
QuadraticHelper(Real xPrev, Real xNext,
Real fPrev, Real fNext,
Real fAverage,
Real prevPrimitive)
: xPrev_(xPrev), xNext_(xNext), fPrev_(fPrev),
fNext_(fNext), fAverage_(fAverage),
prevPrimitive_(prevPrimitive) {
a_ = 3*fPrev_ + 3*fNext_ - 6*fAverage_;
b_ = -(4*fPrev_ + 2*fNext_ - 6*fAverage_);
c_ = fPrev_;
xScaling_ = xNext_-xPrev_;
}
Real value(Real x) const {
Real xVal = (x-xPrev_)/xScaling_;
return( a_*xVal*xVal + b_*xVal + c_ );
}
Real primitive(Real x) const {
Real xVal = (x-xPrev_)/xScaling_;
return( prevPrimitive_ + xScaling_ * (a_/3*xVal*xVal + b_/2*xVal + c_) * xVal );
}
Real fNext() const {
return fNext_;
}
private:
Real xPrev_, xNext_, fPrev_, fNext_, fAverage_, prevPrimitive_;
Real xScaling_, a_, b_, c_;
};
class QuadraticMinHelper : public SectionHelper {
public:
QuadraticMinHelper(Real xPrev, Real xNext,
Real fPrev, Real fNext,
Real fAverage,
Real prevPrimitive)
: splitRegion_(false), x1_(xPrev), x4_(xNext),
primitive1_(prevPrimitive), fAverage_(fAverage),
fPrev_(fPrev), fNext_(fNext) {
a_ = 3*fPrev_ + 3*fNext_ - 6*fAverage_;
b_ = -(4*fPrev_ + 2*fNext_ - 6*fAverage_);
c_ = fPrev_;
Real d = b_*b_-4*a_*c_;
xScaling_ = x4_-x1_;
xRatio_ = 1.0;
if (d > 0) {
Real aAv = 36;
Real bAv = -24*(fPrev_+fNext_);
Real cAv = 4*(fPrev_*fPrev_ + fPrev_*fNext_ + fNext_*fNext_);
Real dAv = bAv*bAv - 4.0*aAv*cAv;
if (dAv >= 0.0) {
splitRegion_ = true;
Real avRoot = (-bAv - sqrt(dAv))/(2*aAv);
xRatio_ = fAverage_ / avRoot;
xScaling_ *= xRatio_;
a_ = 3*fPrev_ + 3*fNext_ - 6*avRoot;
b_ = -(4*fPrev_ + 2*fNext_ - 6*avRoot);
c_ = fPrev_;
Real xRoot = -b_/(2*a_);
x2_ = x1_ + xRatio_ * (x4_-x1_) * xRoot;
x3_ = x4_ - xRatio_ * (x4_-x1_) * (1-xRoot);
primitive2_ =
primitive1_ + xScaling_*(a_/3*xRoot*xRoot + b_/2*xRoot + c_)*xRoot;
}
}
}
Real value(Real x) const {
Real xVal = (x - x1_) / (x4_-x1_);
if (splitRegion_) {
if (x <= x2_) {
xVal /= xRatio_;
} else if (x < x3_) {
return 0.0;
} else {
xVal = 1.0 - (1.0 - xVal) / xRatio_;
}
}
return c_ + b_*xVal + a_*xVal*xVal;
}
Real primitive(Real x) const {
Real xVal = (x - x1_) / (x4_-x1_);
if (splitRegion_) {
if (x < x2_) {
xVal /= xRatio_;
} else if (x < x3_) {
return primitive2_;
} else {
xVal = 1.0 - (1.0 - xVal) / xRatio_;
}
}
return primitive1_ + xScaling_ * (a_/3*xVal*xVal+ b_/2*xVal+c_)*xVal;
}
Real fNext() const {
return fNext_;
}
private:
bool splitRegion_;
Real x1_, x2_, x3_, x4_;
Real a_, b_, c_;
Real primitive1_, primitive2_;
Real fAverage_, fPrev_, fNext_, xScaling_, xRatio_;
};
template <class I1, class I2>
void ConvexMonotoneImpl<I1,I2>::update() {
sectionHelpers_.clear();
if (length_ == 2) { //single period
boost::shared_ptr<SectionHelper> singleHelper(
new EverywhereConstantHelper(this->yBegin_[1],
0.0,
this->xBegin_[0]));
sectionHelpers_[this->xBegin_[1]] = singleHelper;
extrapolationHelper_ = singleHelper;
return;
}
std::vector<Real> f(length_);
sectionHelpers_ = preSectionHelpers_;
Size startPoint = sectionHelpers_.size()+1;
//first derive the boundary forwards.
for (Size i=startPoint; i<length_-1; ++i) {
Real dxPrev = this->xBegin_[i] - this->xBegin_[i-1];
Real dx = this->xBegin_[i+1] - this->xBegin_[i];
f[i] = dxPrev/(dx+dxPrev) * this->yBegin_[i]
+ dx/(dx+dxPrev) * this->yBegin_[i+1];
}
if (startPoint > 1)
f[startPoint-1] = preSectionHelpers_.rbegin()->second->fNext();
if (startPoint == 1)
f[0] = 1.5 * this->yBegin_[1] - 0.5 * f[1];
f[length_-1] = 1.5 * this->yBegin_[length_-1] - 0.5 * f[length_-2];
if (forcePositive_) {
if (f[0] < 0)
f[0] = 0.0;
if (f[length_-1] < 0.0)
f[length_-1] = 0.0;
}
Real primitive = 0.0;
for (Size i = 0; i < startPoint-1; ++i)
primitive +=
this->yBegin_[i+1] * (this->xBegin_[i+1]-this->xBegin_[i]);
Size endPoint = length_;
//constantLastPeriod_ = false;
if (constantLastPeriod_)
endPoint = endPoint-1;
for (Size i=startPoint; i< endPoint; ++i) {
Real gPrev = f[i-1] - this->yBegin_[i];
Real gNext = f[i] - this->yBegin_[i];
//first deal with the zero gradient case
if ( std::fabs(gPrev) < 1.0E-14
&& std::fabs(gNext) < 1.0E-14 ) {
boost::shared_ptr<SectionHelper> singleHelper(
new ConstantGradHelper(f[i-1], primitive,
this->xBegin_[i-1],
this->xBegin_[i],
f[i]));
sectionHelpers_[this->xBegin_[i]] = singleHelper;
} else {
Real quadraticity = quadraticity_;
boost::shared_ptr<SectionHelper> quadraticHelper;
boost::shared_ptr<SectionHelper> convMonotoneHelper;
if (quadraticity_ > 0.0) {
if (gPrev >= -2.0*gNext && gPrev > -0.5*gNext && forcePositive_) {
quadraticHelper =
boost::shared_ptr<SectionHelper>(
new QuadraticMinHelper(this->xBegin_[i-1],
this->xBegin_[i],
f[i-1], f[i],
this->yBegin_[i],
primitive) );
} else {
quadraticHelper =
boost::shared_ptr<SectionHelper>(
new QuadraticHelper(this->xBegin_[i-1],
this->xBegin_[i],
f[i-1], f[i],
this->yBegin_[i],
primitive) );
}
}
if (quadraticity_ < 1.0) {
if ((gPrev > 0.0 && -0.5*gPrev >= gNext && gNext >= -2.0*gPrev) ||
(gPrev < 0.0 && -0.5*gPrev <= gNext && gNext <= -2.0*gPrev)) {
quadraticity = 1.0;
if (quadraticity_ == 0) {
if (forcePositive_) {
quadraticHelper =
boost::shared_ptr<SectionHelper>(
new QuadraticMinHelper(
this->xBegin_[i-1],
this->xBegin_[i],
f[i-1], f[i],
this->yBegin_[i],
primitive) );
} else {
quadraticHelper =
boost::shared_ptr<SectionHelper>(
new QuadraticHelper(
this->xBegin_[i-1],
this->xBegin_[i],
f[i-1], f[i],
this->yBegin_[i],
primitive) );
}
}
}
else if ( (gPrev < 0.0 && gNext > -2.0*gPrev) ||
(gPrev > 0.0 && gNext < -2.0*gPrev)) {
Real eta = (gNext + 2.0*gPrev)/(gNext - gPrev);
Real b2 = (1.0 + monotonicity_)/2.0;
if (eta < b2) {
convMonotoneHelper =
boost::shared_ptr<SectionHelper>(
new ConvexMonotone2Helper(
this->xBegin_[i-1],
this->xBegin_[i],
gPrev, gNext,
this->yBegin_[i],
eta, primitive));
} else {
if (forcePositive_) {
convMonotoneHelper =
boost::shared_ptr<SectionHelper>(
new ConvexMonotone4MinHelper(
this->xBegin_[i-1],
this->xBegin_[i],
gPrev, gNext,
this->yBegin_[i],
b2, primitive));
} else {
convMonotoneHelper =
boost::shared_ptr<SectionHelper>(
new ConvexMonotone4Helper(
this->xBegin_[i-1],
this->xBegin_[i],
gPrev, gNext,
this->yBegin_[i],
b2, primitive));
}
}
}
else if ( (gPrev > 0.0 && gNext < 0.0 && gNext > -0.5*gPrev) ||
(gPrev < 0.0 && gNext > 0.0 && gNext < -0.5*gPrev) ) {
Real eta = gNext/(gNext-gPrev) * 3.0;
Real b3 = (1.0 - monotonicity_)/2.0;
if (eta > b3) {
convMonotoneHelper =
boost::shared_ptr<SectionHelper>(
new ConvexMonotone3Helper(
this->xBegin_[i-1],
this->xBegin_[i],
gPrev, gNext,
this->yBegin_[i],
eta, primitive));
} else {
if (forcePositive_) {
convMonotoneHelper =
boost::shared_ptr<SectionHelper>(
new ConvexMonotone4MinHelper(
this->xBegin_[i-1],
this->xBegin_[i],
gPrev, gNext,
this->yBegin_[i],
b3, primitive));
} else {
convMonotoneHelper =
boost::shared_ptr<SectionHelper>(
new ConvexMonotone4Helper(
this->xBegin_[i-1],
this->xBegin_[i],
gPrev, gNext,
this->yBegin_[i],
b3, primitive));
}
}
} else {
Real eta = gNext/(gPrev + gNext);
Real b2 = (1.0 + monotonicity_)/2.0;
Real b3 = (1.0 - monotonicity_)/2.0;
if (eta > b2)
eta = b2;
if (eta < b3)
eta = b3;
if (forcePositive_) {
convMonotoneHelper =
boost::shared_ptr<SectionHelper>(
new ConvexMonotone4MinHelper(
this->xBegin_[i-1],
this->xBegin_[i],
gPrev, gNext,
this->yBegin_[i],
eta, primitive));
} else {
convMonotoneHelper =
boost::shared_ptr<SectionHelper>(
new ConvexMonotone4Helper(
this->xBegin_[i-1],
this->xBegin_[i],
gPrev, gNext,
this->yBegin_[i],
eta, primitive));
}
}
}
if (quadraticity == 1.0) {
sectionHelpers_[this->xBegin_[i]] = quadraticHelper;
} else if (quadraticity == 0.0) {
sectionHelpers_[this->xBegin_[i]] = convMonotoneHelper;
} else {
sectionHelpers_[this->xBegin_[i]] =
boost::shared_ptr<SectionHelper>(
new ComboHelper(quadraticHelper,
convMonotoneHelper,
quadraticity));
}
}
primitive +=
this->yBegin_[i] * (this->xBegin_[i]-this->xBegin_[i-1]);
}
if (constantLastPeriod_) {
sectionHelpers_[this->xBegin_[length_-1]] =
boost::shared_ptr<SectionHelper>(
new EverywhereConstantHelper(this->yBegin_[length_-1],
primitive,
this->xBegin_[length_-2]));
extrapolationHelper_ = sectionHelpers_[this->xBegin_[length_-1]];
} else {
extrapolationHelper_ =
boost::shared_ptr<SectionHelper>(
new EverywhereConstantHelper(
(sectionHelpers_.rbegin())->second->value(*(this->xEnd_-1)),
primitive,
*(this->xEnd_-1)));
}
}
template <class I1, class I2>
Real ConvexMonotoneImpl<I1,I2>::value(Real x) const {
if (x >= *(this->xEnd_-1)) {
return extrapolationHelper_->value(x);
}
return sectionHelpers_.upper_bound(x)->second->value(x);
}
template <class I1, class I2>
Real ConvexMonotoneImpl<I1,I2>::primitive(Real x) const {
if (x >= *(this->xEnd_-1)) {
return extrapolationHelper_->primitive(x);
}
return sectionHelpers_.upper_bound(x)->second->primitive(x);
}
}
//! Convex monotone yield-curve interpolation method.
/*! Enhances implementation of the convex monotone method
described in "Interpolation Methods for Curve Construction" by
Hagan & West AMF Vol 13, No2 2006.
A setting of monotonicity = 1 and quadraticity = 0 will
reproduce the basic Hagan/West method. However, this can
produce excessive gradients which can mean P&L swings for some
curves. Setting monotonicity < 1 and/or quadraticity > 0
produces smoother curves. Extra enhancement to avoid negative
values (if required) is in place.
*/
template <class I1, class I2>
class ConvexMonotoneInterpolation : public Interpolation {
typedef std::map<Real, boost::shared_ptr<detail::SectionHelper> >
helper_map;
public:
ConvexMonotoneInterpolation(const I1& xBegin, const I1& xEnd,
const I2& yBegin, Real quadraticity,
Real monotonicity, bool forcePositive,
bool flatFinalPeriod = false,
const helper_map& preExistingHelpers =
helper_map()) {
impl_ = boost::shared_ptr<Interpolation::Impl>(
new detail::ConvexMonotoneImpl<I1,I2>(xBegin,
xEnd,
yBegin,
quadraticity,
monotonicity,
forcePositive,
flatFinalPeriod,
preExistingHelpers));
impl_->update();
}
ConvexMonotoneInterpolation(Interpolation& interp)
: Interpolation(interp) {}
std::map<Real, boost::shared_ptr<detail::SectionHelper> >
getExistingHelpers() {
boost::shared_ptr<detail::ConvexMonotoneImpl<I1,I2> > derived =
boost::dynamic_pointer_cast<detail::ConvexMonotoneImpl<I1,I2>,
Interpolation::Impl>(impl_);
return derived->getExistingHelpers();
}
};
//! Convex-monotone interpolation factory and traits
class ConvexMonotone {
public:
static const bool global = true;
static const Size requiredPoints = 2;
static const Size dataSizeAdjustment = 1;
explicit ConvexMonotone(Real quadraticity = 0.3,
Real monotonicity = 0.7,
bool forcePositive = true)
: quadraticity_(quadraticity), monotonicity_(monotonicity),
forcePositive_(forcePositive) {}
template <class I1, class I2>
Interpolation interpolate(const I1& xBegin, const I1& xEnd,
const I2& yBegin) const {
return ConvexMonotoneInterpolation<I1,I2>(xBegin, xEnd, yBegin,
quadraticity_,
monotonicity_,
forcePositive_,
false);
}
template <class I1, class I2>
Interpolation localInterpolate(const I1& xBegin, const I1& xEnd,
const I2& yBegin, Size localisation,
Interpolation& prevInterpolation,
Size finalSize) const {
Size length = std::distance(xBegin, xEnd);
if (length - localisation == 1) { // the first time this
// function is called
if (length == finalSize) {
return ConvexMonotoneInterpolation<I1,I2>(xBegin, xEnd,
yBegin,
quadraticity_,
monotonicity_,
forcePositive_,
false);
} else {
return ConvexMonotoneInterpolation<I1,I2>(xBegin, xEnd,
yBegin,
quadraticity_,
monotonicity_,
forcePositive_,
true);
}
}
ConvexMonotoneInterpolation<I1,I2> interp(prevInterpolation);
if (length == finalSize) {
return ConvexMonotoneInterpolation<I1,I2>(
xBegin, xEnd, yBegin,
quadraticity_,
monotonicity_,
forcePositive_,
false,
interp.getExistingHelpers());
} else {
return ConvexMonotoneInterpolation<I1,I2>(
xBegin, xEnd, yBegin,
quadraticity_,
monotonicity_,
forcePositive_,
true,
interp.getExistingHelpers());
}
}
private:
Real quadraticity_, monotonicity_;
bool forcePositive_;
};
}
#endif
|