This file is indexed.

/usr/include/ql/math/interpolations/cubicinterpolation.hpp is in libquantlib0-dev 1.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
 Copyright (C) 2001, 2002, 2003 Nicolas Di Césaré
 Copyright (C) 2004, 2008, 2009, 2011 Ferdinando Ametrano
 Copyright (C) 2009 Sylvain Bertrand
 Copyright (C) 2013 Peter Caspers

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file cubicinterpolation.hpp
    \brief cubic interpolation between discrete points
*/

#ifndef quantlib_cubic_interpolation_hpp
#define quantlib_cubic_interpolation_hpp

#include <ql/math/matrix.hpp>
#include <ql/math/interpolation.hpp>
#include <ql/methods/finitedifferences/tridiagonaloperator.hpp>
#include <vector>

namespace QuantLib {

    namespace detail {

        class CoefficientHolder {
          public:
            CoefficientHolder(Size n)
            : n_(n), primitiveConst_(n-1), a_(n-1), b_(n-1), c_(n-1),
              monotonicityAdjustments_(n) {}
            virtual ~CoefficientHolder() {}
            Size n_;
            // P[i](x) = y[i] +
            //           a[i]*(x-x[i]) +
            //           b[i]*(x-x[i])^2 +
            //           c[i]*(x-x[i])^3
            std::vector<Real> primitiveConst_, a_, b_, c_;
            std::vector<bool> monotonicityAdjustments_;
        };

        template <class I1, class I2> class CubicInterpolationImpl;

    }

    //! %Cubic interpolation between discrete points.
    /*! Cubic interpolation is fully defined when the ${f_i}$ function values
        at points ${x_i}$ are supplemented with ${f^'_i}$ function derivative
        values.

        Different type of first derivative approximations are implemented,
        both local and non-local. Local schemes (Fourth-order, Parabolic,
        Modified Parabolic, Fritsch-Butland, Akima, Kruger) use only $f$ values
        near $x_i$ to calculate each $f^'_i$. Non-local schemes (Spline with
        different boundary conditions) use all ${f_i}$ values and obtain
        ${f^'_i}$ by solving a linear system of equations. Local schemes
        produce $C^1$ interpolants, while the spline schemes generate $C^2$
        interpolants.

        Hyman's monotonicity constraint filter is also implemented: it can be
        applied to all schemes to ensure that in the regions of local
        monotoniticity of the input (three successive increasing or decreasing
        values) the interpolating cubic remains monotonic. If the interpolating
        cubic is already monotonic, the Hyman filter leaves it unchanged
        preserving all its original features.

        In the case of $C^2$ interpolants the Hyman filter ensures local
        monotonicity at the expense of the second derivative of the interpolant
        which will no longer be continuous in the points where the filter has
        been applied.

        While some non-linear schemes (Modified Parabolic, Fritsch-Butland,
        Kruger) are guaranteed to be locally monotonic in their original
        approximation, all other schemes must be filtered according to the
        Hyman criteria at the expense of their linearity.

        See R. L. Dougherty, A. Edelman, and J. M. Hyman,
        "Nonnegativity-, Monotonicity-, or Convexity-Preserving CubicSpline and
        Quintic Hermite Interpolation"
        Mathematics Of Computation, v. 52, n. 186, April 1989, pp. 471-494.

        \todo implement missing schemes (FourthOrder and ModifiedParabolic) and
              missing boundary conditions (Periodic and Lagrange).

        \test to be adapted from old ones.

    */
    class CubicInterpolation : public Interpolation {
      public:
        enum DerivativeApprox {
            /*! Spline approximation (non-local, non-monotonic, linear[?]).
                Different boundary conditions can be used on the left and right
                boundaries: see BoundaryCondition.
            */
            Spline,

            //! Overshooting minimization 1st derivative
            SplineOM1,

            //! Overshooting minimization 2nd derivative
            SplineOM2,

            //! Fourth-order approximation (local, non-monotonic, linear)
            FourthOrder,

            //! Parabolic approximation (local, non-monotonic, linear)
            Parabolic,

            //! Fritsch-Butland approximation (local, monotonic, non-linear)
            FritschButland,

            //! Akima approximation (local, non-monotonic, non-linear)
            Akima,

            //! Kruger approximation (local, monotonic, non-linear)
            Kruger
        };
        enum BoundaryCondition {
            //! Make second(-last) point an inactive knot
            NotAKnot,

            //! Match value of end-slope
            FirstDerivative,

            //! Match value of second derivative at end
            SecondDerivative,

            //! Match first and second derivative at either end
            Periodic,

            /*! Match end-slope to the slope of the cubic that matches
                the first four data at the respective end
            */
            Lagrange
        };
        /*! \pre the \f$ x \f$ values must be sorted. */
        template <class I1, class I2>
        CubicInterpolation(const I1& xBegin,
                           const I1& xEnd,
                           const I2& yBegin,
                           CubicInterpolation::DerivativeApprox da,
                           bool monotonic,
                           CubicInterpolation::BoundaryCondition leftCond,
                           Real leftConditionValue,
                           CubicInterpolation::BoundaryCondition rightCond,
                           Real rightConditionValue) {
            impl_ = boost::shared_ptr<Interpolation::Impl>(new
                detail::CubicInterpolationImpl<I1,I2>(xBegin, xEnd, yBegin,
                                                      da,
                                                      monotonic,
                                                      leftCond,
                                                      leftConditionValue,
                                                      rightCond,
                                                      rightConditionValue));
            impl_->update();
            coeffs_ =
                boost::dynamic_pointer_cast<detail::CoefficientHolder>(impl_);
        }
        const std::vector<Real>& primitiveConstants() const {
            return coeffs_->primitiveConst_;
        }
        const std::vector<Real>& aCoefficients() const { return coeffs_->a_; }
        const std::vector<Real>& bCoefficients() const { return coeffs_->b_; }
        const std::vector<Real>& cCoefficients() const { return coeffs_->c_; }
        const std::vector<bool>& monotonicityAdjustments() const {
            return coeffs_->monotonicityAdjustments_;
        }
      private:
        boost::shared_ptr<detail::CoefficientHolder> coeffs_;
    };


    // convenience classes

    class CubicNaturalSpline : public CubicInterpolation {
      public:
        /*! \pre the \f$ x \f$ values must be sorted. */
        template <class I1, class I2>
        CubicNaturalSpline(const I1& xBegin,
                           const I1& xEnd,
                           const I2& yBegin)
        : CubicInterpolation(xBegin, xEnd, yBegin,
                             Spline, false,
                             SecondDerivative, 0.0,
                             SecondDerivative, 0.0) {}
    };

    class MonotonicCubicNaturalSpline : public CubicInterpolation {
      public:
        /*! \pre the \f$ x \f$ values must be sorted. */
        template <class I1, class I2>
        MonotonicCubicNaturalSpline(const I1& xBegin,
                                    const I1& xEnd,
                                    const I2& yBegin)
        : CubicInterpolation(xBegin, xEnd, yBegin,
                             Spline, true,
                             SecondDerivative, 0.0,
                             SecondDerivative, 0.0) {}
    };

    class CubicSplineOvershootingMinimization1 : public CubicInterpolation {
      public:
        /*! \pre the \f$ x \f$ values must be sorted. */
        template <class I1, class I2>
        CubicSplineOvershootingMinimization1 (const I1& xBegin,
                                           const I1& xEnd,
                                           const I2& yBegin)
        : CubicInterpolation(xBegin, xEnd, yBegin,
                             SplineOM1, false,
                             SecondDerivative, 0.0,
                             SecondDerivative, 0.0) {}
    };

    class CubicSplineOvershootingMinimization2 : public CubicInterpolation {
      public:
        /*! \pre the \f$ x \f$ values must be sorted. */
        template <class I1, class I2>
        CubicSplineOvershootingMinimization2 (const I1& xBegin,
                                           const I1& xEnd,
                                           const I2& yBegin)
        : CubicInterpolation(xBegin, xEnd, yBegin,
                             SplineOM2, false,
                             SecondDerivative, 0.0,
                             SecondDerivative, 0.0) {}
    };

    class AkimaCubicInterpolation : public CubicInterpolation {
      public:
        /*! \pre the \f$ x \f$ values must be sorted. */
    template <class I1, class I2>
    AkimaCubicInterpolation(const I1& xBegin,
                const I1& xEnd,
                const I2& yBegin)
    : CubicInterpolation(xBegin, xEnd, yBegin,
                 Akima, false,
                 SecondDerivative, 0.0,
                 SecondDerivative, 0.0) {}
    };

    class KrugerCubic : public CubicInterpolation {
      public:
        /*! \pre the \f$ x \f$ values must be sorted. */
        template <class I1, class I2>
        KrugerCubic(const I1& xBegin,
                    const I1& xEnd,
                    const I2& yBegin)
        : CubicInterpolation(xBegin, xEnd, yBegin,
                             Kruger, false,
                             SecondDerivative, 0.0,
                             SecondDerivative, 0.0) {}
    };

    class FritschButlandCubic : public CubicInterpolation {
      public:
        /*! \pre the \f$ x \f$ values must be sorted. */
        template <class I1, class I2>
        FritschButlandCubic(const I1& xBegin,
                            const I1& xEnd,
                            const I2& yBegin)
        : CubicInterpolation(xBegin, xEnd, yBegin,
                             FritschButland, false,
                             SecondDerivative, 0.0,
                             SecondDerivative, 0.0) {}
    };

    class Parabolic : public CubicInterpolation {
      public:
        /*! \pre the \f$ x \f$ values must be sorted. */
        template <class I1, class I2>
        Parabolic(const I1& xBegin,
                  const I1& xEnd,
                  const I2& yBegin)
        : CubicInterpolation(xBegin, xEnd, yBegin,
                             CubicInterpolation::Parabolic, false,
                             SecondDerivative, 0.0,
                             SecondDerivative, 0.0) {}
    };

    class MonotonicParabolic : public CubicInterpolation {
      public:
        /*! \pre the \f$ x \f$ values must be sorted. */
        template <class I1, class I2>
        MonotonicParabolic(const I1& xBegin,
                           const I1& xEnd,
                           const I2& yBegin)
        : CubicInterpolation(xBegin, xEnd, yBegin,
                             Parabolic, true,
                             SecondDerivative, 0.0,
                             SecondDerivative, 0.0) {}
    };

    //! %Cubic interpolation factory and traits
    class Cubic {
      public:
        Cubic(CubicInterpolation::DerivativeApprox da
                  = CubicInterpolation::Kruger,
              bool monotonic = false,
              CubicInterpolation::BoundaryCondition leftCondition
                  = CubicInterpolation::SecondDerivative,
              Real leftConditionValue = 0.0,
              CubicInterpolation::BoundaryCondition rightCondition
                  = CubicInterpolation::SecondDerivative,
              Real rightConditionValue = 0.0)
        : da_(da), monotonic_(monotonic),
          leftType_(leftCondition), rightType_(rightCondition),
          leftValue_(leftConditionValue), rightValue_(rightConditionValue) {}
        template <class I1, class I2>
        Interpolation interpolate(const I1& xBegin,
                                  const I1& xEnd,
                                  const I2& yBegin) const {
            return CubicInterpolation(xBegin, xEnd, yBegin,
                                      da_, monotonic_,
                                      leftType_, leftValue_,
                                      rightType_, rightValue_);
        }
        static const bool global = true;
        static const Size requiredPoints = 2;
      private:
        CubicInterpolation::DerivativeApprox da_;
        bool monotonic_;
        CubicInterpolation::BoundaryCondition leftType_, rightType_;
        Real leftValue_, rightValue_;
    };


    namespace detail {

        template <class I1, class I2>
        class CubicInterpolationImpl : public CoefficientHolder,
                                    public Interpolation::templateImpl<I1,I2> {
          public:
            CubicInterpolationImpl(const I1& xBegin,
                                   const I1& xEnd,
                                   const I2& yBegin,
                                   CubicInterpolation::DerivativeApprox da,
                                   bool monotonic,
                                   CubicInterpolation::BoundaryCondition leftCondition,
                                   Real leftConditionValue,
                                   CubicInterpolation::BoundaryCondition rightCondition,
                                   Real rightConditionValue)
            : CoefficientHolder(xEnd-xBegin),
              Interpolation::templateImpl<I1,I2>(xBegin, xEnd, yBegin),
              da_(da),
              monotonic_(monotonic),
              leftType_(leftCondition), rightType_(rightCondition),
              leftValue_(leftConditionValue),
              rightValue_(rightConditionValue),
              tmp_(n_), dx_(n_-1), S_(n_-1), L_(n_) {
                if (leftType_ == CubicInterpolation::Lagrange
                    || rightType_ == CubicInterpolation::Lagrange) {
                    QL_REQUIRE((xEnd-xBegin) >= 4,
                               "Lagrange boundary condition requires at least "
                               "4 points (" << (xEnd-xBegin) << " are given)"); 
                }
            }

            void update() {

                for (Size i=0; i<n_-1; ++i) {
                    dx_[i] = this->xBegin_[i+1] - this->xBegin_[i];
                    S_[i] = (this->yBegin_[i+1] - this->yBegin_[i])/dx_[i];
                }

                // first derivative approximation
                if (da_==CubicInterpolation::Spline) {
                    for (Size i=1; i<n_-1; ++i) {
                        L_.setMidRow(i, dx_[i], 2.0*(dx_[i]+dx_[i-1]), dx_[i-1]);
                        tmp_[i] = 3.0*(dx_[i]*S_[i-1] + dx_[i-1]*S_[i]);
                    }

                    // left boundary condition
                    switch (leftType_) {
                      case CubicInterpolation::NotAKnot:
                        // ignoring end condition value
                        L_.setFirstRow(dx_[1]*(dx_[1]+dx_[0]),
                                      (dx_[0]+dx_[1])*(dx_[0]+dx_[1]));
                        tmp_[0] = S_[0]*dx_[1]*(2.0*dx_[1]+3.0*dx_[0]) +
                                 S_[1]*dx_[0]*dx_[0];
                        break;
                      case CubicInterpolation::FirstDerivative:
                        L_.setFirstRow(1.0, 0.0);
                        tmp_[0] = leftValue_;
                        break;
                      case CubicInterpolation::SecondDerivative:
                        L_.setFirstRow(2.0, 1.0);
                        tmp_[0] = 3.0*S_[0] - leftValue_*dx_[0]/2.0;
                        break;
                      case CubicInterpolation::Periodic:
                        QL_FAIL("this end condition is not implemented yet");
                      case CubicInterpolation::Lagrange:
                        L_.setFirstRow(1.0, 0.0);
                        tmp_[0] = cubicInterpolatingPolynomialDerivative(
                                            this->xBegin_[0],this->xBegin_[1],
                                            this->xBegin_[2],this->xBegin_[3],
                                            this->yBegin_[0],this->yBegin_[1],
                                            this->yBegin_[2],this->yBegin_[3],
                                            this->xBegin_[0]);
                        break;
                      default:
                        QL_FAIL("unknown end condition");
                    }

                    // right boundary condition
                    switch (rightType_) {
                      case CubicInterpolation::NotAKnot:
                        // ignoring end condition value
                        L_.setLastRow(-(dx_[n_-2]+dx_[n_-3])*(dx_[n_-2]+dx_[n_-3]),
                                     -dx_[n_-3]*(dx_[n_-3]+dx_[n_-2]));
                        tmp_[n_-1] = -S_[n_-3]*dx_[n_-2]*dx_[n_-2] -
                                     S_[n_-2]*dx_[n_-3]*(3.0*dx_[n_-2]+2.0*dx_[n_-3]);
                        break;
                      case CubicInterpolation::FirstDerivative:
                        L_.setLastRow(0.0, 1.0);
                        tmp_[n_-1] = rightValue_;
                        break;
                      case CubicInterpolation::SecondDerivative:
                        L_.setLastRow(1.0, 2.0);
                        tmp_[n_-1] = 3.0*S_[n_-2] + rightValue_*dx_[n_-2]/2.0;
                        break;
                      case CubicInterpolation::Periodic:
                        QL_FAIL("this end condition is not implemented yet");
                      case CubicInterpolation::Lagrange:
                        L_.setLastRow(0.0,1.0);
                        tmp_[n_-1] = cubicInterpolatingPolynomialDerivative(
                                      this->xBegin_[n_-4],this->xBegin_[n_-3],
                                      this->xBegin_[n_-2],this->xBegin_[n_-1],
                                      this->yBegin_[n_-4],this->yBegin_[n_-3],
                                      this->yBegin_[n_-2],this->yBegin_[n_-1],
                                      this->xBegin_[n_-1]);
                        break;
                      default:
                        QL_FAIL("unknown end condition");
                    }

                    // solve the system
                    L_.solveFor(tmp_, tmp_);
                } else if (da_==CubicInterpolation::SplineOM1) {
                    Matrix T_(n_-2, n_, 0.0);
                    for (Size i=0; i<n_-2; ++i) {
                        T_[i][i]=dx_[i]/6.0;
                        T_[i][i+1]=(dx_[i+1]+dx_[i])/3.0;
                        T_[i][i+2]=dx_[i+1]/6.0;
                    }
                    Matrix S_(n_-2, n_, 0.0);
                    for (Size i=0; i<n_-2; ++i) {
                        S_[i][i]=1.0/dx_[i];
                        S_[i][i+1]=-(1.0/dx_[i+1]+1.0/dx_[i]);
                        S_[i][i+2]=1.0/dx_[i+1];
                    }
                    Matrix Up_(n_, 2, 0.0);
                    Up_[0][0]=1;
                    Up_[n_-1][1]=1;
                    Matrix Us_(n_, n_-2, 0.0);
                    for (Size i=0; i<n_-2; ++i)
                        Us_[i+1][i]=1;
                    Matrix Z_ = Us_*inverse(T_*Us_);
                    Matrix I_(n_, n_, 0.0);
                    for (Size i=0; i<n_; ++i)
                        I_[i][i]=1;
                    Matrix V_ = (I_-Z_*T_)*Up_;
                    Matrix W_ = Z_*S_;
                    Matrix Q_(n_, n_, 0.0);
                    Q_[0][0]=1.0/(n_-1)*dx_[0]*dx_[0]*dx_[0];
                    Q_[0][1]=7.0/8*1.0/(n_-1)*dx_[0]*dx_[0]*dx_[0];
                    for (Size i=1; i<n_-1; ++i) {
                        Q_[i][i-1]=7.0/8*1.0/(n_-1)*dx_[i-1]*dx_[i-1]*dx_[i-1];
                        Q_[i][i]=1.0/(n_-1)*dx_[i]*dx_[i]*dx_[i]+1.0/(n_-1)*dx_[i-1]*dx_[i-1]*dx_[i-1];
                        Q_[i][i+1]=7.0/8*1.0/(n_-1)*dx_[i]*dx_[i]*dx_[i];
                    }
                    Q_[n_-1][n_-2]=7.0/8*1.0/(n_-1)*dx_[n_-2]*dx_[n_-2]*dx_[n_-2];
                    Q_[n_-1][n_-1]=1.0/(n_-1)*dx_[n_-2]*dx_[n_-2]*dx_[n_-2];
                    Matrix J_ = (I_-V_*inverse(transpose(V_)*Q_*V_)*transpose(V_)*Q_)*W_;
                    Array Y_(n_);
                    for (Size i=0; i<n_; ++i)
                        Y_[i]=this->yBegin_[i];
                    Array D_ = J_*Y_;
                    for (Size i=0; i<n_-1; ++i)
                        tmp_[i]=(Y_[i+1]-Y_[i])/dx_[i]-(2.0*D_[i]+D_[i+1])*dx_[i]/6.0;
                    tmp_[n_-1]=tmp_[n_-2]+D_[n_-2]*dx_[n_-2]+(D_[n_-1]-D_[n_-2])*dx_[n_-2]/2.0;

                } else if (da_==CubicInterpolation::SplineOM2) {
                    Matrix T_(n_-2, n_, 0.0);
                    for (Size i=0; i<n_-2; ++i) {
                        T_[i][i]=dx_[i]/6.0;
                        T_[i][i+1]=(dx_[i]+dx_[i+1])/3.0;
                        T_[i][i+2]=dx_[i+1]/6.0;
                    }
                    Matrix S_(n_-2, n_, 0.0);
                    for (Size i=0; i<n_-2; ++i) {
                        S_[i][i]=1.0/dx_[i];
                        S_[i][i+1]=-(1.0/dx_[i+1]+1.0/dx_[i]);
                        S_[i][i+2]=1.0/dx_[i+1];
                    }
                    Matrix Up_(n_, 2, 0.0);
                    Up_[0][0]=1;
                    Up_[n_-1][1]=1;
                    Matrix Us_(n_, n_-2, 0.0);
                    for (Size i=0; i<n_-2; ++i)
                        Us_[i+1][i]=1;
                    Matrix Z_ = Us_*inverse(T_*Us_);
                    Matrix I_(n_, n_, 0.0);
                    for (Size i=0; i<n_; ++i)
                        I_[i][i]=1;
                    Matrix V_ = (I_-Z_*T_)*Up_;
                    Matrix W_ = Z_*S_;
                    Matrix Q_(n_, n_, 0.0);
                    Q_[0][0]=1.0/(n_-1)*dx_[0];
                    Q_[0][1]=1.0/2*1.0/(n_-1)*dx_[0];
                    for (Size i=1; i<n_-1; ++i) {
                        Q_[i][i-1]=1.0/2*1.0/(n_-1)*dx_[i-1];
                        Q_[i][i]=1.0/(n_-1)*dx_[i]+1.0/(n_-1)*dx_[i-1];
                        Q_[i][i+1]=1.0/2*1.0/(n_-1)*dx_[i];
                    }
                    Q_[n_-1][n_-2]=1.0/2*1.0/(n_-1)*dx_[n_-2];
                    Q_[n_-1][n_-1]=1.0/(n_-1)*dx_[n_-2];
                    Matrix J_ = (I_-V_*inverse(transpose(V_)*Q_*V_)*transpose(V_)*Q_)*W_;
                    Array Y_(n_);
                    for (Size i=0; i<n_; ++i)
                        Y_[i]=this->yBegin_[i];
                    Array D_ = J_*Y_;
                    for (Size i=0; i<n_-1; ++i)
                        tmp_[i]=(Y_[i+1]-Y_[i])/dx_[i]-(2.0*D_[i]+D_[i+1])*dx_[i]/6.0;
                    tmp_[n_-1]=tmp_[n_-2]+D_[n_-2]*dx_[n_-2]+(D_[n_-1]-D_[n_-2])*dx_[n_-2]/2.0;
                } else { // local schemes
                    if (n_==2)
                        tmp_[0] = tmp_[1] = S_[0];
                    else {
                        switch (da_) {
                            case CubicInterpolation::FourthOrder:
                                QL_FAIL("FourthOrder not implemented yet");
                                break;
                            case CubicInterpolation::Parabolic:
                                // intermediate points
                                for (Size i=1; i<n_-1; ++i)
                                    tmp_[i] = (dx_[i-1]*S_[i]+dx_[i]*S_[i-1])/(dx_[i]+dx_[i-1]);
                                // end points
                                tmp_[0]    = ((2.0*dx_[   0]+dx_[   1])*S_[   0] - dx_[   0]*S_[   1]) / (dx_[   0]+dx_[   1]);
                                tmp_[n_-1] = ((2.0*dx_[n_-2]+dx_[n_-3])*S_[n_-2] - dx_[n_-2]*S_[n_-3]) / (dx_[n_-2]+dx_[n_-3]);
                                break;
                            case CubicInterpolation::FritschButland:
                                // intermediate points
                                for (Size i=1; i<n_-1; ++i) {
                                    Real Smin = std::min(S_[i-1], S_[i]);
                                    Real Smax = std::max(S_[i-1], S_[i]);
                                    tmp_[i] = 3.0*Smin*Smax/(Smax+2.0*Smin);
                                }
                                // end points
                                tmp_[0]    = ((2.0*dx_[   0]+dx_[   1])*S_[   0] - dx_[   0]*S_[   1]) / (dx_[   0]+dx_[   1]);
                                tmp_[n_-1] = ((2.0*dx_[n_-2]+dx_[n_-3])*S_[n_-2] - dx_[n_-2]*S_[n_-3]) / (dx_[n_-2]+dx_[n_-3]);
                                break;
                            case CubicInterpolation::Akima:
                                tmp_[0] = (std::abs(S_[1]-S_[0])*2*S_[0]*S_[1]+std::abs(2*S_[0]*S_[1]-4*S_[0]*S_[0]*S_[1])*S_[0])/(std::abs(S_[1]-S_[0])+std::abs(2*S_[0]*S_[1]-4*S_[0]*S_[0]*S_[1]));
                                tmp_[1] = (std::abs(S_[2]-S_[1])*S_[0]+std::abs(S_[0]-2*S_[0]*S_[1])*S_[1])/(std::abs(S_[2]-S_[1])+std::abs(S_[0]-2*S_[0]*S_[1]));
                                for (Size i=2; i<n_-2; ++i) {
                                    if ((S_[i-2]==S_[i-1]) && (S_[i]!=S_[i+1]))
                                        tmp_[i] = S_[i-1];
                                    else if ((S_[i-2]!=S_[i-1]) && (S_[i]==S_[i+1]))
                                        tmp_[i] = S_[i];
                                    else if (S_[i]==S_[i-1])
                                        tmp_[i] = S_[i];
                                    else if ((S_[i-2]==S_[i-1]) && (S_[i-1]!=S_[i]) && (S_[i]==S_[i+1]))
                                        tmp_[i] = (S_[i-1]+S_[i])/2.0;
                                    else
                                        tmp_[i] = (std::abs(S_[i+1]-S_[i])*S_[i-1]+std::abs(S_[i-1]-S_[i-2])*S_[i])/(std::abs(S_[i+1]-S_[i])+std::abs(S_[i-1]-S_[i-2]));
                                 }
                                 tmp_[n_-2] = (std::abs(2*S_[n_-2]*S_[n_-3]-S_[n_-2])*S_[n_-3]+std::abs(S_[n_-3]-S_[n_-4])*S_[n_-2])/(std::abs(2*S_[n_-2]*S_[n_-3]-S_[n_-2])+std::abs(S_[n_-3]-S_[n_-4]));
                                 tmp_[n_-1] = (std::abs(4*S_[n_-2]*S_[n_-2]*S_[n_-3]-2*S_[n_-2]*S_[n_-3])*S_[n_-2]+std::abs(S_[n_-2]-S_[n_-3])*2*S_[n_-2]*S_[n_-3])/(std::abs(4*S_[n_-2]*S_[n_-2]*S_[n_-3]-2*S_[n_-2]*S_[n_-3])+std::abs(S_[n_-2]-S_[n_-3]));
                                 break;
                            case CubicInterpolation::Kruger:
                                // intermediate points
                                for (Size i=1; i<n_-1; ++i) {
                                    if (S_[i-1]*S_[i]<0.0)
                                        // slope changes sign at point
                                        tmp_[i] = 0.0;
                                    else
                                        // slope will be between the slopes of the adjacent
                                        // straight lines and should approach zero if the
                                        // slope of either line approaches zero
                                        tmp_[i] = 2.0/(1.0/S_[i-1]+1.0/S_[i]);
                                }
                                // end points
                                tmp_[0] = (3.0*S_[0]-tmp_[1])/2.0;
                                tmp_[n_-1] = (3.0*S_[n_-2]-tmp_[n_-2])/2.0;
                                break;
                            default:
                                QL_FAIL("unknown scheme");
                        }
                    }
                }

                std::fill(monotonicityAdjustments_.begin(),
                          monotonicityAdjustments_.end(), false);
                // Hyman monotonicity constrained filter
                if (monotonic_) {
                    Real correction;
                    Real pm, pu, pd, M;
                    for (Size i=0; i<n_; ++i) {
                        if (i==0) {
                            if (tmp_[i]*S_[0]>0.0) {
                                correction = tmp_[i]/std::fabs(tmp_[i]) *
                                    std::min<Real>(std::fabs(tmp_[i]),
                                                   std::fabs(3.0*S_[0]));
                            } else {
                                correction = 0.0;
                            }
                            if (correction!=tmp_[i]) {
                                tmp_[i] = correction;
                                monotonicityAdjustments_[i] = true;
                            }
                        } else if (i==n_-1) {
                            if (tmp_[i]*S_[n_-2]>0.0) {
                                correction = tmp_[i]/std::fabs(tmp_[i]) *
                                    std::min<Real>(std::fabs(tmp_[i]),
                                                   std::fabs(3.0*S_[n_-2]));
                            } else {
                                correction = 0.0;
                            }
                            if (correction!=tmp_[i]) {
                                tmp_[i] = correction;
                                monotonicityAdjustments_[i] = true;
                            }
                        } else {
                            pm=(S_[i-1]*dx_[i]+S_[i]*dx_[i-1])/
                                (dx_[i-1]+dx_[i]);
                            M = 3.0 * std::min(std::min(std::fabs(S_[i-1]),
                                                        std::fabs(S_[i])),
                                               std::fabs(pm));
                            if (i>1) {
                                if ((S_[i-1]-S_[i-2])*(S_[i]-S_[i-1])>0.0) {
                                    pd=(S_[i-1]*(2.0*dx_[i-1]+dx_[i-2])
                                        -S_[i-2]*dx_[i-1])/
                                        (dx_[i-2]+dx_[i-1]);
                                    if (pm*pd>0.0 && pm*(S_[i-1]-S_[i-2])>0.0) {
                                        M = std::max<Real>(M, 1.5*std::min(
                                                std::fabs(pm),std::fabs(pd)));
                                    }
                                }
                            }
                            if (i<n_-2) {
                                if ((S_[i]-S_[i-1])*(S_[i+1]-S_[i])>0.0) {
                                    pu=(S_[i]*(2.0*dx_[i]+dx_[i+1])-S_[i+1]*dx_[i])/
                                        (dx_[i]+dx_[i+1]);
                                    if (pm*pu>0.0 && -pm*(S_[i]-S_[i-1])>0.0) {
                                        M = std::max<Real>(M, 1.5*std::min(
                                                std::fabs(pm),std::fabs(pu)));
                                    }
                                }
                            }
                            if (tmp_[i]*pm>0.0) {
                                correction = tmp_[i]/std::fabs(tmp_[i]) *
                                    std::min(std::fabs(tmp_[i]), M);
                            } else {
                                correction = 0.0;
                            }
                            if (correction!=tmp_[i]) {
                                tmp_[i] = correction;
                                monotonicityAdjustments_[i] = true;
                            }
                        }
                    }
                }


                // cubic coefficients
                for (Size i=0; i<n_-1; ++i) {
                    a_[i] = tmp_[i];
                    b_[i] = (3.0*S_[i] - tmp_[i+1] - 2.0*tmp_[i])/dx_[i];
                    c_[i] = (tmp_[i+1] + tmp_[i] - 2.0*S_[i])/(dx_[i]*dx_[i]);
                }

                primitiveConst_[0] = 0.0;
                for (Size i=1; i<n_-1; ++i) {
                    primitiveConst_[i] = primitiveConst_[i-1]
                        + dx_[i-1] *
                        (this->yBegin_[i-1] + dx_[i-1] *
                         (a_[i-1]/2.0 + dx_[i-1] *
                          (b_[i-1]/3.0 + dx_[i-1] * c_[i-1]/4.0)));
                }
            }
            Real value(Real x) const {
                Size j = this->locate(x);
                Real dx_ = x-this->xBegin_[j];
                return this->yBegin_[j] + dx_*(a_[j] + dx_*(b_[j] + dx_*c_[j]));
            }
            Real primitive(Real x) const {
                Size j = this->locate(x);
                Real dx_ = x-this->xBegin_[j];
                return primitiveConst_[j]
                    + dx_*(this->yBegin_[j] + dx_*(a_[j]/2.0
                    + dx_*(b_[j]/3.0 + dx_*c_[j]/4.0)));
            }
            Real derivative(Real x) const {
                Size j = this->locate(x);
                Real dx_ = x-this->xBegin_[j];
                return a_[j] + (2.0*b_[j] + 3.0*c_[j]*dx_)*dx_;
            }
            Real secondDerivative(Real x) const {
                Size j = this->locate(x);
                Real dx_ = x-this->xBegin_[j];
                return 2.0*b_[j] + 6.0*c_[j]*dx_;
            }
          private:
            CubicInterpolation::DerivativeApprox da_;
            bool monotonic_;
            CubicInterpolation::BoundaryCondition leftType_, rightType_;
            Real leftValue_, rightValue_;
            mutable Array tmp_;
            mutable std::vector<Real> dx_, S_;
            mutable TridiagonalOperator L_;

            inline Real cubicInterpolatingPolynomialDerivative(
                               Real a, Real b, Real c, Real d,
                               Real u, Real v, Real w, Real z, Real x) const {
                return (-((((a-c)*(b-c)*(c-x)*z-(a-d)*(b-d)*(d-x)*w)*(a-x+b-x)
                           +((a-c)*(b-c)*z-(a-d)*(b-d)*w)*(a-x)*(b-x))*(a-b)+
                          ((a-c)*(a-d)*v-(b-c)*(b-d)*u)*(c-d)*(c-x)*(d-x)
                          +((a-c)*(a-d)*(a-x)*v-(b-c)*(b-d)*(b-x)*u)
                          *(c-x+d-x)*(c-d)))/
                    ((a-b)*(a-c)*(a-d)*(b-c)*(b-d)*(c-d));
            }
        };

    }

}

#endif