This file is indexed.

/usr/include/ql/math/interpolations/multicubicspline.hpp is in libquantlib0-dev 1.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2003, 2004 Roman Gitlin

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file multicubicspline.hpp
    \brief N-dimensional cubic spline interpolation between discrete points
*/

#ifndef quantlib_multi_cubic_spline_hpp
#define quantlib_multi_cubic_spline_hpp

#include <ql/errors.hpp>
#include <ql/types.hpp>
#include <functional>
#include <vector>

namespace QuantLib {

    namespace detail {

        // data structures

        typedef std::vector<std::vector<Real> > SplineGrid;

        // different termination markers are necessary
        // to maintain separation of possibly overlapping types
        struct EmptyArg {};  // arg_type termination marker
        struct EmptyRes {};  // res_type termination marker
        struct EmptyDim {};  // size_t termination marker

        template<class X> struct DataTable {
            DataTable<X>(const std::vector<Size>::const_iterator &i) {
                std::vector<X> temp(*i, X(i + 1));
                data_table_.swap(temp);
            }
            DataTable<X>(const SplineGrid::const_iterator &i) {
                std::vector<X> temp(i->size(), X(i + 1));
                data_table_.swap(temp);
            }
            template<class U> DataTable<X>(const std::vector<U> &v) {
                DataTable temp(v.begin());
                data_table_.swap(temp.data_table_);
            }
            Size size() const {
                return data_table_.size();
            }
            const X &operator[](Size n) const {return data_table_[n];}
            X &operator[](Size n) {return data_table_[n];}
            std::vector<X> data_table_;
        };

        template<> struct DataTable<Real> {
            DataTable<Real>(Size n) : data_table_(n) {}
            DataTable<Real>(const std::vector<Size>::const_iterator& i)
            : data_table_(*i) {}
            DataTable<Real>(const SplineGrid::const_iterator &i)
            : data_table_(i->size()) {}
            template<class U> DataTable<Real>(const std::vector<U> &v) {
                DataTable temp(v.begin());
                data_table_.swap(temp.data_table_);
            }
            Size size() const {
                return data_table_.size();
            }
            Real operator[](Size n) const {return data_table_[n];}
            Real& operator[](Size n) {return data_table_[n];}
            std::vector<Real> data_table_;
        };

        typedef DataTable<Real> base_data_table;

        template<class X, class Y> struct Data {
            Data<X, Y>()
            : first(X()), second(Y()) {}
            Data<X, Y>(const SplineGrid::const_iterator &i)
            : first(*i), second(i + 1) {}
            Data<X, Y>(const SplineGrid &v)
            : first(v[0]), second(v.begin()+1) {}
            void swap(Data<X, Y> &d) {
                first.swap(d.first);
                second.swap(d.second);
            }
            X first;
            Y second;
        };

        template<> struct Data<std::vector<Real>, EmptyArg> {
            Data<std::vector<Real>, EmptyArg>()
            : first(std::vector<Real>()) {}
            Data<std::vector<Real>, EmptyArg>(const SplineGrid::const_iterator &i)
            : first(*i) {}
            Data<std::vector<Real>, EmptyArg>(const SplineGrid &v)
            : first(v[0]) {}
            Data<std::vector<Real>, EmptyArg>(const std::vector<Real> &v)
            : first(v) {}
            void swap(Data<std::vector<Real>, EmptyArg> &d) {
                first.swap(d.first);
            }
            Real operator[](Size n) const {return first[n];}
            Real& operator[](Size n) {return first[n];}
            std::vector<Real> first;
            EmptyArg second;
        };

        typedef Data<std::vector<Real>, EmptyArg> base_data;

        template<class X, class Y> struct Point {
            typedef X data_type;
            Point<X, Y>()
            : first(data_type()), second(Y()) {}
            Point<X, Y>(const std::vector<Real>::const_iterator &i)
            : first(*i), second(i + 1) {}
            Point<X, Y>(const std::vector<Real> &v)
            : first(v[0]), second(v.begin()+1) {}
            Point<X, Y>(const SplineGrid::const_iterator &i)
            : first(i->size()), second(i + 1) {}
            Point<X, Y>(const SplineGrid &grid)
            : first(grid[0].size()), second(grid.begin()+1) {}
            operator data_type() const {
                return first;
            }
            data_type operator[](Size n) const {
                return n ? second[n - 1] : first;
            }
            data_type& operator[](Size n) {
                return n ? second[n - 1] : first;
            }
            data_type first;
            Y second;
        };

        template<> struct Point<Real, EmptyArg> {
            typedef Real data_type;
            Point<Real, EmptyArg>(data_type s)
            : first(s) {}
            Point<Real, EmptyArg>(const std::vector<Real>::const_iterator &i)
            : first(*i) {}
            Point<Real, EmptyArg>(const std::vector<Real> &v)
            : first(v[0]) {}
            operator data_type() const {return first;}
            data_type operator[](Size n) const {
                QL_REQUIRE(n == 0, "operator[] : access violation");
                return first;
            }
            data_type& operator[](Size n) {
                QL_REQUIRE(n == 0, "operator[] : access violation");
                return first;
            }
            data_type first;
            EmptyArg second;
        };

        typedef Point<Real, EmptyArg> base_arg_type;

        template<> struct Point<Real, EmptyRes> {
            typedef Real data_type;
            Point<Real, EmptyRes>()
            : first(data_type()) {}
            Point<Real, EmptyRes>(data_type s)
            : first(s) {}
            operator data_type() const {return first;}
            const data_type &operator[](Size n) const {
                QL_REQUIRE(n == 0, "operator[] : access violation");
                return first;
            }
            data_type &operator[](Size n) {
                QL_REQUIRE(n == 0, "operator[] : access violation");
                return first;
            }
            data_type first;
            EmptyRes second;
        };

        typedef Point<Real, EmptyRes> base_return_type;

        template<> struct Point<Size, EmptyDim> {
            typedef Size data_type;
            Point<Size, EmptyDim>()
            : first(data_type()) {}
            Point<Size, EmptyDim>(data_type s)
            : first(s) {}
            operator data_type() const {return first;}
            data_type operator[](Size n) const {
                QL_REQUIRE(n == 0, "operator[] : access violation");
                return first;
            }
            data_type& operator[](Size n) {
                QL_REQUIRE(n == 0, "operator[] : access violation");
                return first;
            }
            data_type first;
            EmptyDim second;
        };

        typedef Point<Size, EmptyDim> base_dimensions;

        template<> struct Point<base_data_table, EmptyRes> {
            typedef base_data_table data_type;
            Point<base_data_table, EmptyRes>(data_type s)
            : first(s) {}
            Point<base_data_table, EmptyRes>(const SplineGrid::const_iterator &i)
            : first(i->size()) {}
            Point<base_data_table, EmptyRes>(const SplineGrid &grid)
            : first(grid[0].size()) {}
            Real operator[](Size n) const {return first[n];}
            Real& operator[](Size n) {return first[n];}
            data_type first;
            EmptyRes second;
        };

        typedef Point<base_data_table, EmptyRes> base_output_data;


        // cubic spline iplementations

        // no heap memory is allocated
        // in any of the recursive calls
        class base_cubic_spline : public std::unary_function<Real,Real> {
          public:
            typedef base_data data;
            typedef base_data_table data_table;
            typedef base_output_data output_data;
            base_cubic_spline(const data &d, const data &d2,
                              const data_table& y, data_table &y2,
                              output_data &v) {
                Size dim = d.first.size();
                Size j = 1, k = 2, l = 3;
                result_type  &w = ((y2[dim] = y[1]) -= y[0]) /= d[0],
                    &u = ((y2[0] = y[2]) -= y[1]) /= d[1], &t = v[dim];
                y2[1] = -d[1] / d2[0], v[1] = 6.0 * (u - w) / d2[0];
                for(; k < dim; u = w, j = k, k = l, ++l) {
                    w = (y[l]-y[k])/d[k];
                    u = (u-w)*6.0;
                    (y2[k] = d[k]) /= ((t = -y2[j]) *= d[j]) -= d2[j];
                    (v[k] = (u += d[j] * v[j])) /= t;
                }
                y2[0] = y2[dim] = 0.0;
                while (k) {
                    (y2[k-1] *= y2[l-1]) += v[k-1];
                    --k; --l;
                }
            }
        };

        template<class X>
        class n_cubic_spline {
          public:
            typedef Data<base_data, typename X::data> data;
            typedef DataTable<typename X::data_table> data_table;
            typedef Point<base_output_data, typename X::output_data> output_data;
            n_cubic_spline(const data &d, const data &d2,
                           const data_table &y, data_table &y2, output_data &v)
            :  d_(d), d2_(d2), y_(y), y2_(y2), v_(v) {
                for(Size j = 0, dim = y_.size();  j < dim; ++j)
                    X(d_.second, d2_.second, y_[j], y2_[j], v_.second);
            }
            ~n_cubic_spline(){}
          private:
            const data &d_, &d2_;
            const data_table &y_;
            data_table &y2_;
            output_data &v_;
        };

        class base_cubic_splint : public std::unary_function<base_arg_type,Real> {
          public:
            typedef base_data data;
            typedef base_data_table data_table;
            typedef base_dimensions dimensions;
            typedef base_output_data output_data;
            typedef base_return_type return_type;
            base_cubic_splint(const return_type &a, const return_type &b,
                              const return_type &a2, const return_type &b2,
                              const dimensions &i,
                              const data&, const data&,
                              const data_table &y, data_table &y2,
                              output_data&,
                              output_data&, output_data&,
                              result_type &res) {
                res = a * y[i] + b * y[i + 1] + a2 * y2[i] + b2 * y2[i + 1];
            }
        };

        template<class X>
        class n_cubic_splint : public
        std::unary_function<Point<Real, typename X::argument_type>, Real> {
          public:
            typedef std::unary_function<Point<Real, typename X::argument_type>,
                                        Real> super;
            typedef Data<base_data, typename X::data> data;
            typedef DataTable<typename X::data_table> data_table;
            typedef Point<Size, typename X::dimensions> dimensions;
            typedef Point<base_output_data, typename X::output_data> output_data;
            typedef Point<typename super::result_type,
                          typename X::return_type> return_type;
            n_cubic_splint(const return_type &a, const return_type &b,
                           const return_type &a2, const return_type &b2,
                           const dimensions &i, const data &d, const data &d2,
                           const data_table &y, data_table &y2, output_data &v,
                           output_data &v1, output_data &v2,
                           typename super::result_type& r)
            :  a_(a), b_(b), a2_(a2), b2_(b2), i_(i), d_(d), d2_(d2),
               y_(y), y2_(y2), v_(v), v1_(v1), v2_(v2) {
                for(Size j = 0, dim = y_.size(); j < dim; ++j)
                    X(a_.second, b_.second, a2_.second, b2_.second, i_.second,
                      d_.second, d2_.second, y_[j], y2_[j], v_.second,
                      v1_.second, v2_.second, v1_.first[j]);
                base_cubic_spline(d_.first, d2_.first,
                                  v1_.first.first, v2_.first.first, v_.first);
                base_cubic_splint(a_.first, b_.first, a2_.first, b2_.first,
                                  i_.first, d_.first, d2_.first,
                                  v1_.first.first, v2_.first.first,
                                  v_.first, v1_.first, v2_.first, r);
            }
            ~n_cubic_splint(){}
          private:
            const return_type &a_, &b_, &a2_, &b2_;
            const dimensions &i_;
            const data &d_, &d2_;
            const data_table &y_;
            data_table &y2_;
            output_data &v_, &v1_, &v2_;
        };

        typedef base_cubic_spline               cubic_spline_01;
        typedef n_cubic_spline<cubic_spline_01> cubic_spline_02;
        typedef n_cubic_spline<cubic_spline_02> cubic_spline_03;
        typedef n_cubic_spline<cubic_spline_03> cubic_spline_04;
        typedef n_cubic_spline<cubic_spline_04> cubic_spline_05;
        typedef n_cubic_spline<cubic_spline_05> cubic_spline_06;
        typedef n_cubic_spline<cubic_spline_06> cubic_spline_07;
        typedef n_cubic_spline<cubic_spline_07> cubic_spline_08;
        typedef n_cubic_spline<cubic_spline_08> cubic_spline_09;
        typedef n_cubic_spline<cubic_spline_09> cubic_spline_10;
        typedef n_cubic_spline<cubic_spline_10> cubic_spline_11;
        typedef n_cubic_spline<cubic_spline_11> cubic_spline_12;
        typedef n_cubic_spline<cubic_spline_12> cubic_spline_13;
        typedef n_cubic_spline<cubic_spline_13> cubic_spline_14;
        typedef n_cubic_spline<cubic_spline_14> cubic_spline_15;

        typedef base_cubic_splint               cubic_splint_01;
        typedef n_cubic_splint<cubic_splint_01> cubic_splint_02;
        typedef n_cubic_splint<cubic_splint_02> cubic_splint_03;
        typedef n_cubic_splint<cubic_splint_03> cubic_splint_04;
        typedef n_cubic_splint<cubic_splint_04> cubic_splint_05;
        typedef n_cubic_splint<cubic_splint_05> cubic_splint_06;
        typedef n_cubic_splint<cubic_splint_06> cubic_splint_07;
        typedef n_cubic_splint<cubic_splint_07> cubic_splint_08;
        typedef n_cubic_splint<cubic_splint_08> cubic_splint_09;
        typedef n_cubic_splint<cubic_splint_09> cubic_splint_10;
        typedef n_cubic_splint<cubic_splint_10> cubic_splint_11;
        typedef n_cubic_splint<cubic_splint_11> cubic_splint_12;
        typedef n_cubic_splint<cubic_splint_12> cubic_splint_13;
        typedef n_cubic_splint<cubic_splint_13> cubic_splint_14;
        typedef n_cubic_splint<cubic_splint_14> cubic_splint_15;

        template<Size i> struct Int2Type {
            typedef cubic_spline_01 c_spline;
            typedef cubic_splint_01 c_splint;
        };

        template<> struct Int2Type<2> {
            typedef cubic_spline_02 c_spline;
            typedef cubic_splint_02 c_splint;
        };

        template<> struct Int2Type<3> {
            typedef cubic_spline_03 c_spline;
            typedef cubic_splint_03 c_splint;
        };

        template<> struct Int2Type<4> {
            typedef cubic_spline_04 c_spline;
            typedef cubic_splint_04 c_splint;
        };

        template<> struct Int2Type<5> {
            typedef cubic_spline_05 c_spline;
            typedef cubic_splint_05 c_splint;
        };

        template<> struct Int2Type<6> {
            typedef cubic_splint_06 c_splint;
            typedef cubic_spline_06 c_spline;
        };

        template<> struct Int2Type<7> {
            typedef cubic_spline_07 c_spline;
            typedef cubic_splint_07 c_splint;
        };

        template<> struct Int2Type<8> {
            typedef cubic_spline_08 c_spline;
            typedef cubic_splint_08 c_splint;
        };

        template<> struct Int2Type<9> {
            typedef cubic_spline_09 c_spline;
            typedef cubic_splint_09 c_splint;
        };

        template<> struct Int2Type<10> {
            typedef cubic_spline_10 c_spline;
            typedef cubic_splint_10 c_splint;
        };

        template<> struct Int2Type<11> {
            typedef cubic_splint_11 c_splint;
            typedef cubic_spline_11 c_spline;
        };

        template<> struct Int2Type<12> {
            typedef cubic_spline_12 c_spline;
            typedef cubic_splint_12 c_splint;
        };

        template<> struct Int2Type<13> {
            typedef cubic_spline_13 c_spline;
            typedef cubic_splint_13 c_splint;
        };

        template<> struct Int2Type<14> {
            typedef cubic_spline_14 c_spline;
            typedef cubic_splint_14 c_splint;
        };

        template<> struct Int2Type<15> {
            typedef cubic_spline_15 c_spline;
            typedef cubic_splint_15 c_splint;
        };

    }


    // Multi-cubic spline

    typedef detail::SplineGrid SplineGrid;

    //! N-dimensional cubic spline interpolation between discrete points
    /*! \test interpolated values are checked against the original
              function.

        \todo
        - allow extrapolation as for the other interpolations
        - investigate if and how to implement Hyman filters and
          different boundary conditions

        \bug cannot interpolate at the grid points on the boundary
             surface of the N-dimensional region
    */
    template <Size i> class MultiCubicSpline {
        typedef typename detail::Int2Type<i>::c_spline c_spline;
        typedef typename detail::Int2Type<i>::c_splint c_splint;
      public:
        typedef typename c_splint::argument_type argument_type;
        typedef typename c_splint::result_type result_type;
        typedef typename c_splint::data_table data_table;
        typedef typename c_splint::return_type return_type;
        typedef typename c_splint::output_data output_data;
        typedef typename c_splint::dimensions dimensions;
        typedef typename c_splint::data data;
        MultiCubicSpline(const SplineGrid& grid, const data_table &y,
                         const std::vector<bool>& ae =
                                             std::vector<bool>(20, false))
        : grid_(grid), y_(y), ae_(ae), v_(grid), v1_(grid),
          v2_(grid), y2_(grid) {
            set_shared_increments();
            c_spline(d_, d2_, y_, y2_, v_);
        }
        result_type operator()(const argument_type& x) const {
            set_shared_coefficients(x);
            c_splint(a_, b_, a2_, b2_, i_, d_, d2_, y_, y2_,
                     v_, v1_, v2_, res_);
            return res_;
        }
        void set_shared_increments() const;
        void set_shared_coefficients(const argument_type &x) const;
      private:
        const SplineGrid &grid_;
        const data_table &y_;
        const std::vector<bool> &ae_;
        mutable return_type a_, b_, a2_, b2_;
        mutable output_data v_, v1_, v2_;
        mutable result_type res_;
        mutable dimensions i_;
        mutable data d_, d2_;
        mutable data_table y2_;
    };

    // the data is checked and, in case of insufficient number of points,
    // exception is thrown BEFORE the main body of interpolation begins
    template <Size i>
    void MultiCubicSpline<i>::set_shared_increments() const {
        SplineGrid x(i), y(i);
        Size k = 0, dim = 0;
        for(Size j = 0; j < i; k = 0, ++j) {
            const std::vector<Real> &v = grid_[j];
            if((dim = v.size() - 1) > 2) {
                std::vector<Real> tmp1(dim);
                x[j].swap(tmp1);
                std::vector<Real> tmp2(dim - 1);
                y[j].swap(tmp2);
                for(; k < dim; ++k) {
                    if((x[j][k] = v[k + 1] - v[k]) <= 0.0) break;
                    if(k) y[j][k - 1] = 2.0 * (v[k + 1] - v[k - 1]);
                }
            }
            QL_REQUIRE(dim >= 3,
                       "Dimension " << j
                       << " : not enough points for interpolation");
            QL_REQUIRE(k >= dim,
                       "Dimension " << j << " : invalid data");
        }

        typename c_splint::data tmp1(x), tmp2(y);
        d_.swap(tmp1);
        d2_.swap(tmp2);
    }

    #ifndef __DOXYGEN__
    // the argument value is checked and, in out of boundaries case,
    // exception is thrown BEFORE the main body of interpolation begins
    template <Size i>
    void MultiCubicSpline<i>::set_shared_coefficients(
                 const typename MultiCubicSpline<i>::argument_type &x) const {
        for(Size j = 0; j < i; ++j) {
            Size &k = i_[j], sz = grid_[j].size() - 1;
            const std::vector<Real> &v = grid_[j];
            if(x[j] < v[0] || x[j] >= v[sz]) {
                QL_REQUIRE(ae_[j],
                           "Dimension " << j
                           << ": extrapolation is not allowed.");
                a_[j] = 1.0, a2_[j] = b_[j] = b2_[j] = 0.0;
                k =  x[j] < v[0] ? 0 : sz;
            }
            else {
                k = v[k] <= x[j] && x[j] < v[k + 1] ? k :
                    std::upper_bound(v.begin(),v.end(),x[j])-v.begin()-1;
                Real h = v[k + 1] - v[k];
                a_[j] = (v[k + 1] - x[j]) / h, b_[j] = (x[j] - v[k]) / h;
                a2_[j] = (a_[j] * a_[j] * a_[j] - a_[j]) * h * h / 6.0,
                    b2_[j] = (b_[j] * b_[j] * b_[j] - b_[j]) * h * h / 6.0;
            }
        }
    }
    #endif

}


#endif