This file is indexed.

/usr/include/ql/math/interpolations/sabrinterpolation.hpp is in libquantlib0-dev 1.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2006 Ferdinando Ametrano
 Copyright (C) 2007 Marco Bianchetti
 Copyright (C) 2007 François du Vignaud
 Copyright (C) 2007 Giorgio Facchinetti
 Copyright (C) 2006 Mario Pucci
 Copyright (C) 2006 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file sabrinterpolation.hpp
    \brief SABR interpolation interpolation between discrete points
*/

#ifndef quantlib_sabr_interpolation_hpp
#define quantlib_sabr_interpolation_hpp

#include <ql/math/interpolation.hpp>
#include <ql/math/optimization/method.hpp>
#include <ql/math/optimization/simplex.hpp>
#include <ql/math/optimization/levenbergmarquardt.hpp>
#include <ql/pricingengines/blackformula.hpp>
#include <ql/utilities/null.hpp>
#include <ql/utilities/dataformatters.hpp>
#include <ql/termstructures/volatility/sabr.hpp>
#include <ql/math/optimization/projectedcostfunction.hpp>
#include <ql/math/optimization/constraint.hpp>
#include <ql/math/randomnumbers/haltonrsg.hpp>

namespace QuantLib {

    namespace detail {

        class SABRCoeffHolder {
          public:
            SABRCoeffHolder(Time t,
                            const Real& forward,
                            Real alpha,
                            Real beta,
                            Real nu,
                            Real rho,
                            bool alphaIsFixed,
                            bool betaIsFixed,
                            bool nuIsFixed,
                            bool rhoIsFixed)
            : t_(t), forward_(forward),
              alpha_(alpha), beta_(beta), nu_(nu), rho_(rho),
              alphaIsFixed_(false),
              betaIsFixed_(false),
              nuIsFixed_(false),
              rhoIsFixed_(false),
              weights_(std::vector<Real>()),
              error_(Null<Real>()),
              maxError_(Null<Real>()),
              SABREndCriteria_(EndCriteria::None)
            {
                QL_REQUIRE(t>0.0, "expiry time must be positive: "
                                  << t << " not allowed");
                if (alpha_ != Null<Real>())
                    alphaIsFixed_ = alphaIsFixed;
                else alpha_ = std::sqrt(0.2);
                if (beta_ != Null<Real>())
                    betaIsFixed_ = betaIsFixed;
                else beta_ = 0.5;
                if (nu_ != Null<Real>())
                    nuIsFixed_ = nuIsFixed;
                else nu_ = std::sqrt(0.4);
                if (rho_ != Null<Real>())
                    rhoIsFixed_ = rhoIsFixed;
                else rho_ = 0.0;
                validateSabrParameters(alpha_, beta_, nu_, rho_);
            }
            virtual ~SABRCoeffHolder() {}

            /*! Option expiry */
            Real t_;
            /*! */
            const Real& forward_;
            /*! Sabr parameters */
            Real alpha_, beta_, nu_, rho_;
            bool alphaIsFixed_, betaIsFixed_, nuIsFixed_, rhoIsFixed_;
            std::vector<Real> weights_;
            /*! Sabr interpolation results */
            Real error_, maxError_;
            EndCriteria::Type SABREndCriteria_;
        };

        template <class I1, class I2>
        class SABRInterpolationImpl : public Interpolation::templateImpl<I1,I2>,
                                      public SABRCoeffHolder {
          public:
            SABRInterpolationImpl(
                const I1& xBegin, const I1& xEnd,
                const I2& yBegin,
                Time t,
                const Real& forward,
                Real alpha, Real beta, Real nu, Real rho,
                bool alphaIsFixed,
                bool betaIsFixed,
                bool nuIsFixed,
                bool rhoIsFixed,
                bool vegaWeighted,
                const boost::shared_ptr<EndCriteria>& endCriteria,
                const boost::shared_ptr<OptimizationMethod>& optMethod,
                const Real errorAccept,
                const bool useMaxError,
                const Size maxGuesses)
            : Interpolation::templateImpl<I1,I2>(xBegin, xEnd, yBegin),
              SABRCoeffHolder(t, forward, alpha, beta, nu, rho,
                              alphaIsFixed,betaIsFixed,nuIsFixed,rhoIsFixed),
              endCriteria_(endCriteria), optMethod_(optMethod),
              errorAccept_(errorAccept), useMaxError_(useMaxError),
              maxGuesses_(maxGuesses), forward_(forward),
              vegaWeighted_(vegaWeighted)
            {
                // if no optimization method or endCriteria is provided, we provide one
                if (!optMethod_)
                    optMethod_ = boost::shared_ptr<OptimizationMethod>(new
                       LevenbergMarquardt(1e-8, 1e-8, 1e-8));
                    //optMethod_ = boost::shared_ptr<OptimizationMethod>(new
                    //    Simplex(0.01));
                if (!endCriteria_) {
                    endCriteria_ = boost::shared_ptr<EndCriteria>(new
                        EndCriteria(60000, 100, 1e-8, 1e-8, 1e-8));
                }
                weights_ = std::vector<Real>(xEnd-xBegin, 1.0/(xEnd-xBegin));
            }

            void update() {
                // forward_ might have changed
                QL_REQUIRE(forward_>0.0, "at the money forward rate must be "
                           "positive: " << io::rate(forward_) << " not allowed");

                // we should also check that y contains positive values only

                // we must update weights if it is vegaWeighted
                if (vegaWeighted_) {
                    std::vector<Real>::const_iterator x = this->xBegin_;
                    std::vector<Real>::const_iterator y = this->yBegin_;
                    //std::vector<Real>::iterator w = weights_.begin();
                    weights_.clear();
                    Real weightsSum = 0.0;
                    for ( ; x!=this->xEnd_; ++x, ++y) {
                        Real stdDev = std::sqrt((*y)*(*y)*t_);
                        weights_.push_back(
                            blackFormulaStdDevDerivative(*x, forward_, stdDev));
                        weightsSum += weights_.back();
                    }
                    // weight normalization
                    std::vector<Real>::iterator w = weights_.begin();
                    for ( ; w!=weights_.end(); ++w)
                        *w /= weightsSum;
                }

                // there is nothing to optimize
                if (alphaIsFixed_ && betaIsFixed_ && nuIsFixed_ && rhoIsFixed_) {
                    error_ = interpolationError();
                    maxError_ = interpolationMaxError();
                    SABREndCriteria_ = EndCriteria::None;
                    return;

                } else {

                    SABRError costFunction(this);
                    transformation_ = boost::shared_ptr<ParametersTransformation>(new
                        SabrParametersTransformation);

                    Array guess(4);
                    guess[0] = alpha_;
                    guess[1] = beta_;
                    guess[2] = nu_;
                    guess[3] = rho_;

                    std::vector<bool> parameterAreFixed(4);
                    parameterAreFixed[0] = alphaIsFixed_;
                    parameterAreFixed[1] = betaIsFixed_;
                    parameterAreFixed[2] = nuIsFixed_;
                    parameterAreFixed[3] = rhoIsFixed_;

                    Size iterations = 0;
                    Size freeParameters = 0;
                    Real bestError = QL_MAX_REAL;
                    Array bestParameters;
                    for(Size i=0;i<4;i++) if(!parameterAreFixed[i]) freeParameters++;
                    HaltonRsg halton(freeParameters,42);
                    EndCriteria::Type tmpEndCriteria;
                    Real tmpInterpolationError;

                    do {

                        if(iterations > 0) {
                            HaltonRsg::sample_type s = halton.nextSequence();
                            Size j = 0;
                            //for(int i=0;i<4;i++) {
                            //  if(!parameterAreFixed[i]) guess[i] = tan(-M_PI/2.0 + 1E-6 + (1-1E-6) * M_PI * s.value[j++]);
                            //}
                            if(!parameterAreFixed[0]) guess[0] = (1.0-2E-6)*s.value[j++]+1E-6;
                            if(!parameterAreFixed[1]) guess[1] = (1.0-2E-6)*s.value[j++]+1E-6;
                            if(!parameterAreFixed[2]) guess[2] = 5.0*s.value[j++]+1E-6;
                            if(!parameterAreFixed[3]) guess[3] = (2.0*s.value[j++]-1.0)*(1.0-1E-6);
                            guess = transformation_->direct(guess);
                            if(alphaIsFixed_) guess[0] = alpha_;
                            if(betaIsFixed_) guess[1] = beta_;
                            if(nuIsFixed_) guess[2] = nu_;
                            if(rhoIsFixed_) guess[3] = rho_;
                        }

                        Array inversedTransformatedGuess(transformation_->inverse(guess));

                        ProjectedCostFunction constrainedSABRError(costFunction,
                                        inversedTransformatedGuess, parameterAreFixed);

                        Array projectedGuess
                            (constrainedSABRError.project(inversedTransformatedGuess));

                        NoConstraint constraint;
                        Problem problem(constrainedSABRError, constraint, projectedGuess);
                        tmpEndCriteria = optMethod_->minimize(problem, *endCriteria_);
                        Array projectedResult(problem.currentValue());
                        Array transfResult(constrainedSABRError.include(projectedResult));

                        Array result = transformation_->direct(transfResult);

                        tmpInterpolationError = useMaxError_ ? interpolationMaxError() : interpolationError();

                        if(tmpInterpolationError < bestError) {
                            bestError = tmpInterpolationError;
                            bestParameters = result;
                            SABREndCriteria_ = tmpEndCriteria;
                        }

                    } while( ++iterations < maxGuesses_ && tmpInterpolationError > errorAccept_ );

                    alpha_ = bestParameters[0];
                    beta_ = bestParameters[1];
                    nu_ = bestParameters[2];
                    rho_ = bestParameters[3];
                    error_ = interpolationError();
                    maxError_ = interpolationMaxError();

                }

            }

            Real value(Real x) const {
                QL_REQUIRE(x>0.0, "strike must be positive: " <<
                                  io::rate(x) << " not allowed");
                return sabrVolatility(x, forward_, t_,
                                      alpha_, beta_, nu_, rho_);
            }
            Real primitive(Real) const {
                QL_FAIL("SABR primitive not implemented");
            }
            Real derivative(Real) const {
                QL_FAIL("SABR derivative not implemented");
            }
            Real secondDerivative(Real) const {
                QL_FAIL("SABR secondDerivative not implemented");
            }
            // calculate total squared weighted difference (L2 norm)
            Real interpolationSquaredError() const {
                Real error, totalError = 0.0;
                std::vector<Real>::const_iterator x = this->xBegin_;
                std::vector<Real>::const_iterator y = this->yBegin_;
                std::vector<Real>::const_iterator w = weights_.begin();
                for (; x != this->xEnd_; ++x, ++y, ++w) {
                    error = (value(*x) - *y);
                    totalError += error*error * (*w);
                }
                return totalError;
            }
            // calculate weighted differences
            Disposable<Array> interpolationErrors(const Array&) const {
                Array results(this->xEnd_ - this->xBegin_);
                std::vector<Real>::const_iterator x = this->xBegin_;
                Array::iterator r = results.begin();
                std::vector<Real>::const_iterator y = this->yBegin_;
                std::vector<Real>::const_iterator w = weights_.begin();
                for (; x != this->xEnd_; ++x, ++r, ++w, ++y) {
                    *r = (value(*x) - *y)* std::sqrt(*w);
                }
                return results;
            }

            Real interpolationError() const {
                Size n = this->xEnd_-this->xBegin_;
                Real squaredError = interpolationSquaredError();
                return std::sqrt(n*squaredError/(n-1));
            }

            Real interpolationMaxError() const {
                Real error, maxError = QL_MIN_REAL;
                I1 i = this->xBegin_;
                I2 j = this->yBegin_;
                for (; i != this->xEnd_; ++i, ++j) {
                    error = std::fabs(value(*i) - *j);
                    maxError = std::max(maxError, error);
                }
                return maxError;
            }
          private:
            class SabrParametersTransformation :
                  public ParametersTransformation {
                     mutable Array y_;
                     const Real eps1_, eps2_, dilationFactor_ ;
             public:
                SabrParametersTransformation() : y_(Array(4)),
                    eps1_(.0000001),
                    eps2_(.9999),
                    dilationFactor_(0.001){
                }

                Array direct(const Array& x) const {
                    y_[0] = std::fabs(x[0])<5.0 ? x[0]*x[0] + eps1_ : 25.0;
                    //y_[1] = std::atan(dilationFactor_*x[1])/M_PI + 0.5;
                    y_[1] = std::fabs(x[1])<1000.0 ? std::exp(-(x[1]*x[1])) : eps1_;
                    y_[2] = std::fabs(x[2])<5.0 ? x[2]*x[2] + eps1_ : 25.0;
                    y_[3] = std::fabs(x[3])<10.0 ? eps2_ * std::sin(x[3]) : eps1_;
                    return y_;
                }

                Array inverse(const Array& x) const {
                    y_[0] = std::sqrt(x[0] - eps1_);
                    //y_[1] = std::tan(M_PI*(x[1] - 0.5))/dilationFactor_;
                    y_[1] = std::sqrt(-std::log(x[1]));
                    y_[2] = std::sqrt(x[2] - eps1_);
                    y_[3] = std::asin(x[3]/eps2_);

                    return y_;
                }
            };

            class SABRError : public CostFunction {
              public:
                SABRError(SABRInterpolationImpl* sabr)
                : sabr_(sabr) {}

                Real value(const Array& x) const {
                    const Array y = sabr_->transformation_->direct(x);
                    sabr_->alpha_ = y[0];
                    sabr_->beta_  = y[1];
                    sabr_->nu_    = y[2];
                    sabr_->rho_   = y[3];
                    return sabr_->interpolationSquaredError();
                }

                Disposable<Array> values(const Array& x) const{
                    const Array y = sabr_->transformation_->direct(x);
                    sabr_->alpha_ = y[0];
                    sabr_->beta_  = y[1];
                    sabr_->nu_    = y[2];
                    sabr_->rho_   = y[3];
                    return sabr_->interpolationErrors(x);
                }

              private:
                SABRInterpolationImpl* sabr_;
            };
            boost::shared_ptr<EndCriteria> endCriteria_;
            boost::shared_ptr<OptimizationMethod> optMethod_;
            const Real errorAccept_;
            const bool useMaxError_;
            const Size maxGuesses_;
            const Real& forward_;
            bool vegaWeighted_;
            boost::shared_ptr<ParametersTransformation> transformation_;
            NoConstraint constraint_;

        };

    }

    //! %SABR smile interpolation between discrete volatility points.
    class SABRInterpolation : public Interpolation {
      public:
        template <class I1, class I2>
        SABRInterpolation(const I1& xBegin,  // x = strikes
                          const I1& xEnd,
                          const I2& yBegin,  // y = volatilities
                          Time t,            // option expiry
                          const Real& forward,
                          Real alpha,
                          Real beta,
                          Real nu,
                          Real rho,
                          bool alphaIsFixed,
                          bool betaIsFixed,
                          bool nuIsFixed,
                          bool rhoIsFixed,
                          bool vegaWeighted = true,
                          const boost::shared_ptr<EndCriteria>& endCriteria
                                  = boost::shared_ptr<EndCriteria>(),
                          const boost::shared_ptr<OptimizationMethod>& optMethod
                                  = boost::shared_ptr<OptimizationMethod>(),
                          const Real errorAccept=0.0020,
                          const bool useMaxError=false,
                          const Size maxGuesses=50) {

            impl_ = boost::shared_ptr<Interpolation::Impl>(new
                detail::SABRInterpolationImpl<I1,I2>(xBegin, xEnd, yBegin,
                                                     t, forward,
                                                     alpha, beta, nu, rho,
                                                     alphaIsFixed, betaIsFixed,
                                                     nuIsFixed, rhoIsFixed,
                                                     vegaWeighted,
                                                     endCriteria,
                                                     optMethod,
                                                     errorAccept, useMaxError, maxGuesses));
            coeffs_ =
                boost::dynamic_pointer_cast<detail::SABRCoeffHolder>(
                                                                       impl_);
        }
        Real expiry()  const { return coeffs_->t_; }
        Real forward() const { return coeffs_->forward_; }
        Real alpha()   const { return coeffs_->alpha_; }
        Real beta()    const { return coeffs_->beta_; }
        Real nu()      const { return coeffs_->nu_; }
        Real rho()     const { return coeffs_->rho_; }
        Real rmsError() const { return coeffs_->error_; }
        Real maxError() const { return coeffs_->maxError_; }
        const std::vector<Real>& interpolationWeights() const {
            return coeffs_->weights_; }
        EndCriteria::Type endCriteria(){ return coeffs_->SABREndCriteria_; }

      private:
        boost::shared_ptr<detail::SABRCoeffHolder> coeffs_;
    };

    //! %SABR interpolation factory and traits
    class SABR {
      public:
        SABR(Time t, Real forward,
             Real alpha, Real beta, Real nu, Real rho,
             bool alphaIsFixed, bool betaIsFixed,
             bool nuIsFixed, bool rhoIsFixed,
             bool vegaWeighted = false,
             const boost::shared_ptr<EndCriteria> endCriteria
                 = boost::shared_ptr<EndCriteria>(),
             const boost::shared_ptr<OptimizationMethod> optMethod
                 = boost::shared_ptr<OptimizationMethod>(),
             const Real errorAccept=0.0020, const bool useMaxError=false,
             const Size maxGuesses=50)
        : t_(t), forward_(forward),
          alpha_(alpha), beta_(beta), nu_(nu), rho_(rho),
          alphaIsFixed_(alphaIsFixed), betaIsFixed_(betaIsFixed),
          nuIsFixed_(nuIsFixed), rhoIsFixed_(rhoIsFixed),
          vegaWeighted_(vegaWeighted),
          endCriteria_(endCriteria),
          optMethod_(optMethod), errorAccept_(errorAccept), useMaxError_(useMaxError), maxGuesses_(maxGuesses) {}
        template <class I1, class I2>
        Interpolation interpolate(const I1& xBegin, const I1& xEnd,
                                  const I2& yBegin) const {
            return SABRInterpolation(xBegin, xEnd, yBegin,
                                     t_,  forward_,
                                     alpha_, beta_, nu_, rho_,
                                     alphaIsFixed_, betaIsFixed_,
                                     nuIsFixed_, rhoIsFixed_,
                                     vegaWeighted_,
                                     endCriteria_, optMethod_,
                                     errorAccept_, useMaxError_, maxGuesses_);
        }
        static const bool global = true;
      private:
        Time t_;
        Real forward_;
        Real alpha_, beta_, nu_, rho_;
        bool alphaIsFixed_, betaIsFixed_, nuIsFixed_, rhoIsFixed_;
        bool vegaWeighted_;
        const boost::shared_ptr<EndCriteria> endCriteria_;
        const boost::shared_ptr<OptimizationMethod> optMethod_;
        const Real errorAccept_;
        const bool useMaxError_;
        const Size maxGuesses_;
    };

}

#endif