This file is indexed.

/usr/include/ql/math/linearleastsquaresregression.hpp is in libquantlib0-dev 1.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2009 Dirk Eddelbuettel
 Copyright (C) 2006, 2009, 2010 Klaus Spanderen
 Copyright (C) 2010 Kakhkhor Abdijalilov
 Copyright (C) 2010 Slava Mazur

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file linearleastsquaresregression.hpp
    \brief general linear least square regression
*/

#ifndef quantlib_linear_least_squares_regression_hpp
#define quantlib_linear_least_squares_regression_hpp

#include <ql/math/generallinearleastsquares.hpp>

namespace QuantLib {

    namespace details {

        template <class Container>
        class LinearFct : public std::unary_function<Real, Container > {
          public:
            LinearFct(Size i) : i_(i) {}

            inline Real operator()(const Container& x) const {
                return x[i_];
            }

          private:
            const Size i_;
       };

        // 1d implementation (arithmetic types)
        template <class xContainer, bool>
        class LinearFcts {
          public:
            typedef typename xContainer::value_type ArgumentType;
            LinearFcts (const xContainer &x, Real intercept) {
                if (intercept)
                    v.push_back(constant<ArgumentType, Real>(intercept));
                v.push_back(identity<ArgumentType>());
            }

            const std::vector< boost::function1<Real, ArgumentType> > & fcts() {
                return v;
            }

          private:
            std::vector< boost::function1<Real, ArgumentType> > v;
        };

        // multi-dimensional implementation (container types)
        template <class xContainer>
        class LinearFcts<xContainer, false>  {
          public:
            typedef typename xContainer::value_type ArgumentType;
            LinearFcts (const xContainer &x, Real intercept) {
                if (intercept)
                    v.push_back(constant<ArgumentType, Real>(intercept));
                Size m = x.begin()->size();
                for (Size i = 0; i < m; ++i)
                    v.push_back(LinearFct<ArgumentType>(i));
            }

            const std::vector< boost::function1<Real, ArgumentType> > & fcts() {
               return v;
            }
          private:
            std::vector< boost::function1<Real, ArgumentType> > v;
        };
    }

    class LinearRegression : public GeneralLinearLeastSquares {
    public:
        //! linear regression y_i = a_0 + a_1*x_0 +..+a_n*x_{n-1} + eps
        template <class xContainer, class yContainer>
        LinearRegression(const xContainer& x, 
                         const yContainer& y, Real intercept = 1.0);

        template <class xContainer, class yContainer, class vContainer>
        LinearRegression(const xContainer& x, 
                         const yContainer& y, const vContainer &v);
    };


    template <class xContainer, class yContainer> inline
        LinearRegression::LinearRegression(const xContainer& x, 
                                           const yContainer& y, Real intercept) 
    : GeneralLinearLeastSquares(x, y,
          details::LinearFcts<xContainer, 
              boost::is_arithmetic<typename xContainer::value_type>::value>
                                                        (x, intercept).fcts()) {
    }

    template <class xContainer, class yContainer, class vContainer> inline
        LinearRegression::LinearRegression(const xContainer& x, 
                                           const yContainer& y, 
                                           const vContainer &v) 
    : GeneralLinearLeastSquares(x, y, v) {
    }

    // general linear least squares regression
    // this interface is support for backward compatibility only
    // please use GeneralLinearLeastSquares directly
    template <class ArgumentType = Real>
    class LinearLeastSquaresRegression : public GeneralLinearLeastSquares {
      public:
        LinearLeastSquaresRegression(
            const std::vector<ArgumentType> & x,
            const std::vector<Real> &         y,
            const std::vector<boost::function1<Real, ArgumentType> > & v)
        : GeneralLinearLeastSquares(x, y, v) {
        }
    };
}
#endif