/usr/include/ql/math/optimization/differentialevolution.hpp is in libquantlib0-dev 1.4-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2012 Ralph Schreyer
Copyright (C) 2012 Mateusz Kapturski
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file differentialevolution.hpp
\brief Differential Evolution optimization method
*/
#ifndef quantlib_optimization_differential_evolution_hpp
#define quantlib_optimization_differential_evolution_hpp
#include <ql/math/optimization/constraint.hpp>
#include <ql/math/optimization/problem.hpp>
#include <ql/math/randomnumbers/mt19937uniformrng.hpp>
namespace QuantLib {
//! Differential Evolution configuration object
/*! The algorithm and strategy names are taken from here:
Price, K., Storn, R., 1997. Differential Evolution -
A Simple and Efficient Heuristic for Global Optimization
over Continuous Spaces.
Journal of Global Optimization, Kluwer Academic Publishers,
1997, Vol. 11, pp. 341 - 359.
There are seven basic strategies for creating mutant population
currently implemented. Three basic crossover types are also
available.
Future development:
1) base element type to be extracted
2) L differences to be used instead of fixed number
3) various weights distributions for the differences (dither etc.)
4) printFullInfo parameter usage to track the algorithm
\warning This was reported to fail tests on Mac OS X 10.8.4.
*/
//! %OptimizationMethod using Differential Evolution algorithm
class DifferentialEvolution: public OptimizationMethod {
public:
enum Strategy {
Rand1Standard,
BestMemberWithJitter,
CurrentToBest2Diffs,
Rand1DiffWithPerVectorDither,
Rand1DiffWithDither,
EitherOrWithOptimalRecombination,
Rand1SelfadaptiveWithRotation
};
enum CrossoverType {
Normal,
Binomial,
Exponential
};
struct Candidate {
Array values;
Real cost;
Candidate(Size size = 0) : values(size, 0.0), cost(0.0) {}
};
class Configuration {
public:
Strategy strategy;
CrossoverType crossoverType;
Size populationMembers;
Real stepsizeWeight, crossoverProbability;
unsigned long seed;
bool applyBounds, crossoverIsAdaptive;
Configuration()
: strategy(BestMemberWithJitter),
crossoverType(Normal),
populationMembers(100),
stepsizeWeight(0.2),
crossoverProbability(0.9),
seed(0),
applyBounds(true),
crossoverIsAdaptive(false) {}
Configuration& withBounds(bool b = true) {
applyBounds = b;
return *this;
}
Configuration& withCrossoverProbability(Real p) {
QL_REQUIRE(p>=0.0 && p<=1.0,
"Crossover probability (" << p
<< ") must be in [0,1] range");
crossoverProbability = p;
return *this;
}
Configuration& withPopulationMembers(Size n) {
QL_REQUIRE(n>0, "Positive number of population members required");
populationMembers = n;
return *this;
}
Configuration& withSeed(unsigned long s) {
seed = s;
return *this;
}
Configuration& withAdaptiveCrossover(bool b = true) {
crossoverIsAdaptive = b;
return *this;
}
Configuration& withStepsizeWeight(Real w) {
QL_ENSURE(w>=0 && w<=2.0,
"Step size weight ("<< w
<< ") must be in [0,2] range");
stepsizeWeight = w;
return *this;
}
Configuration& withCrossoverType(CrossoverType t) {
crossoverType = t;
return *this;
}
Configuration& withStrategy(Strategy s) {
strategy = s;
return *this;
}
};
DifferentialEvolution(Configuration configuration = Configuration())
: configuration_(configuration), rng_(configuration.seed) {}
virtual EndCriteria::Type minimize(Problem& p,
const EndCriteria& endCriteria);
const Configuration& configuration() const {
return configuration_;
}
private:
Configuration configuration_;
Array upperBound_, lowerBound_;
mutable Array currGenSizeWeights_, currGenCrossover_;
Candidate bestMemberEver_;
MersenneTwisterUniformRng rng_;
void fillInitialPopulation(std::vector<Candidate>& population,
const Problem& p) const;
void getCrossoverMask(std::vector<Array>& crossoverMask,
std::vector<Array>& invCrossoverMask,
const Array& mutationProbabilities) const;
Array getMutationProbabilities(
const std::vector<Candidate>& population) const;
void adaptSizeWeights() const;
void adaptCrossover() const;
void calculateNextGeneration(std::vector<Candidate>& population,
const CostFunction& costFunction) const;
Array rotateArray(Array inputArray) const;
void crossover(const std::vector<Candidate>& oldPopulation,
std::vector<Candidate> & population,
const std::vector<Candidate>& mutantPopulation,
const std::vector<Candidate>& mirrorPopulation,
const CostFunction& costFunction) const;
};
}
#endif
|