This file is indexed.

/usr/include/ql/math/randomnumbers/primitivepolynomials.h is in libquantlib0-dev 1.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/* -*- mode: c; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/* this file is a slightly edited version of
 * PrimitivePolynomialsModuloTwoUpToDegree27.h
 * © 2002 "Monte Carlo Methods in Finance"
 * as provided ready for compilation in the directory
 * "PrimitivePolynomialsModuloTwo" on the CD accompanying the book
 * "Monte Carlo Methods in Finance" by Peter Jäckel.
 *
 * ===========================================================================
 * NOTE: The following copyright notice applies to the original code,
 *
 * Copyright (C) 2002 Peter Jäckel "Monte Carlo Methods in Finance".
 * All rights reserved.
 *
 * Permission to use, copy, modify, and distribute this software is freely
 * granted, provided that this notice is preserved.
 * ===========================================================================
 */
#ifndef primitivepolynomials_h
#define primitivepolynomials_h

/* This file is provided for the use with Sobol' sequences of higher
 * dimensions. The dimensionality of the Sobol' sequence can be extended to
 * virtually any size you ever might need by the aid of the table of
 * primitive polynomials modulo two.
 * It is up to you to define a macro PPMT_MAX_DIM to a positive integer
 * less than or equal to 8129334. If you don't define it, it will be set
 * below to N_PRIMITIVES_UP_TO_DEGREE_18 which is 21200. That's how many
 * primitive polynomials are provided by the standard primitivepolynomial.c
 * distributed with QuantLib and that will be compiled into a static array.
 * Should you need more, get the original version of primitivepolynomial.c
 * as provided ready for compilation in the directory
 * "PrimitivePolynomialsModuloTwo" on the CD accompanying the book
 * "Monte Carlo Methods in Finance" by Peter Jäckel.
 * The file provides polynomials up to degree 27
 * for a grand total of 8129334 dimensions.
 * Since 8129334 longs compile into an object file of at least 32517336 byte
 * size (in fact, gcc -c -O0 PrimitivePolynomialsModuloTwoUpToDegree27.c
 * produced a file PrimitivePolynomialsModuloTwoUpToDegree27.o with 32519920
 * bytes), it is recommended to only compile as many as you may ever need.
 * Worse even than the output file size is the virtual memory requirement
 * for the compilation. For Visual C++ 6 you will need to use the /Zm compiler
 * option to set the compiler's memory allocation limit (/Zm1500 should work)
 * So really only take the maximum of what you think you might ever need.
 * After all, you can always recompile with more, should you need it.
 */

/*  PPMT : Primitive Polynomials Modulo Two
 *
 *
 * The encoding is as follows:
 *
 * The coefficients of each primitive polynomial are the bits of the given
 * integer. The leading and trailing coefficients, which are 1 for all of the
 * polynomials, have been omitted.
 *
 * Example: The polynomial
 *
 *      4    2
 *     x  + x  + 1
 *
 * is encoded as  2  in the array of polynomials of degree 4 because the
 * binary sequence of coefficients
 *
 *   10101
 *
 * becomes
 *
 *    0101
 *
 * after stripping off the top bit, and this is converted to
 *
 *     010
 *
 * by right-shifting and losing the rightmost bit. Similarly, we have
 *
 *   5    4    2
 *  x  + x  + x  + x + 1
 *
 * encoded as  13  [ (1)1101(1) ]  in the array for degree 5.
 */

/* Example: replace primitivepolynomials.c provided by QuantLib standard
 * distribution with the 8129334 polinomials version and
 * comment out the line below if you want absolutely all of the
 * provided primitive polynomials modulo two.
 *
 * #define PPMT_MAX_DIM 8129334
 *
 * Note that PPMT_MAX_DIM will be redefined to be the nearest equal or larger
 * number of polynomials up to one of the predefined macros
 * N_PRIMITIVES_UP_TO_DEGREE_XX
 * below.
 */


#define N_PRIMITIVES_UP_TO_DEGREE_01         1
#define N_PRIMITIVES_UP_TO_DEGREE_02         2
#define N_PRIMITIVES_UP_TO_DEGREE_03         4
#define N_PRIMITIVES_UP_TO_DEGREE_04         6
#define N_PRIMITIVES_UP_TO_DEGREE_05        12
#define N_PRIMITIVES_UP_TO_DEGREE_06        18
#define N_PRIMITIVES_UP_TO_DEGREE_07        36
#define N_PRIMITIVES_UP_TO_DEGREE_08        52
#define N_PRIMITIVES_UP_TO_DEGREE_09       100
#define N_PRIMITIVES_UP_TO_DEGREE_10       160
#define N_PRIMITIVES_UP_TO_DEGREE_11       336
#define N_PRIMITIVES_UP_TO_DEGREE_12       480
#define N_PRIMITIVES_UP_TO_DEGREE_13      1110
#define N_PRIMITIVES_UP_TO_DEGREE_14      1866
#define N_PRIMITIVES_UP_TO_DEGREE_15      3666
#define N_PRIMITIVES_UP_TO_DEGREE_16      5714
#define N_PRIMITIVES_UP_TO_DEGREE_17     13424
#define N_PRIMITIVES_UP_TO_DEGREE_18     21200
#define N_PRIMITIVES_UP_TO_DEGREE_19     48794
#define N_PRIMITIVES_UP_TO_DEGREE_20     72794
#define N_PRIMITIVES_UP_TO_DEGREE_21    157466
#define N_PRIMITIVES_UP_TO_DEGREE_22    277498
#define N_PRIMITIVES_UP_TO_DEGREE_23    634458
#define N_PRIMITIVES_UP_TO_DEGREE_24    910938
#define N_PRIMITIVES_UP_TO_DEGREE_25   2206938
#define N_PRIMITIVES_UP_TO_DEGREE_26   3926838
#define N_PRIMITIVES_UP_TO_DEGREE_27   8129334

#define N_PRIMITIVES N_PRIMITIVES_UP_TO_DEGREE_27

#ifndef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_18
#endif

#if      PPMT_MAX_DIM > N_PRIMITIVES
# error  PPMT_MAX_DIM cannot be greater than N_PRIMITIVES
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_01
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_01
# define N_MAX_DEGREE 01
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_02
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_02
# define N_MAX_DEGREE 02
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_03
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_03
# define N_MAX_DEGREE 03
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_04
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_04
# define N_MAX_DEGREE 04
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_05
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_05
# define N_MAX_DEGREE 05
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_06
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_06
# define N_MAX_DEGREE 06
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_07
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_07
# define N_MAX_DEGREE 07
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_08
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_08
# define N_MAX_DEGREE 08
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_09
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_09
# define N_MAX_DEGREE 09
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_10
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_10
# define N_MAX_DEGREE 10
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_11
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_11
# define N_MAX_DEGREE 11
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_12
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_12
# define N_MAX_DEGREE 12
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_13
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_13
# define N_MAX_DEGREE 13
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_14
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_14
# define N_MAX_DEGREE 14
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_15
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_15
# define N_MAX_DEGREE 15
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_16
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_16
# define N_MAX_DEGREE 16
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_17
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_17
# define N_MAX_DEGREE 17
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_18
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_18
# define N_MAX_DEGREE 18
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_19
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_19
# define N_MAX_DEGREE 19
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_20
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_20
# define N_MAX_DEGREE 20
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_21
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_21
# define N_MAX_DEGREE 21
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_22
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_22
# define N_MAX_DEGREE 22
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_23
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_23
# define N_MAX_DEGREE 23
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_24
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_24
# define N_MAX_DEGREE 24
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_25
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_25
# define N_MAX_DEGREE 25
#elif    PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_26
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_26
# define N_MAX_DEGREE 26
#else
# undef  PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_27
# define N_MAX_DEGREE 27
#endif

/* Microsoft Visual C++ 6.0 */
#if defined(_MSC_VER)
    /* disable useless warning C4049
       compiler limit : terminating line number emission
       No line number support is available for file with more
       than 64K source lines. */
    #pragma warning(disable: 4049)
#endif

extern

#ifdef __cplusplus

"C"

#endif

/*! You can access the following array as in PrimitivePolynomials[i][j]
    with i and j counting from 0 in C convention. PrimitivePolynomials[i][j]
    will get you the j-th (counting from zero) primitive polynomial of degree
    i+1. Each one-dimensional array of primitive polynomials of a given
    degree is terminated with an entry of -1. Accessing beyond this entry
    will result in a memory violation and must be avoided.  */
const long *const PrimitivePolynomials[N_MAX_DEGREE];

#endif