This file is indexed.

/usr/include/ql/math/randomnumbers/rngtraits.hpp is in libquantlib0-dev 1.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2004 Ferdinando Ametrano
 Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
 Copyright (C) 2004 Walter Penschke

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file rngtraits.hpp
    \brief random-number generation policies
*/

#ifndef quantlib_rng_traits_hpp
#define quantlib_rng_traits_hpp

#include <ql/methods/montecarlo/pathgenerator.hpp>
#include <ql/math/randomnumbers/mt19937uniformrng.hpp>
#include <ql/math/randomnumbers/inversecumulativerng.hpp>
#include <ql/math/randomnumbers/randomsequencegenerator.hpp>
#include <ql/math/randomnumbers/sobolrsg.hpp>
#include <ql/math/randomnumbers/inversecumulativersg.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/distributions/poissondistribution.hpp>

namespace QuantLib {

    // random number traits

    template <class URNG, class IC>
    struct GenericPseudoRandom {
        // typedefs
        typedef URNG urng_type;
        typedef InverseCumulativeRng<urng_type,IC> rng_type;
        typedef RandomSequenceGenerator<urng_type> ursg_type;
        typedef InverseCumulativeRsg<ursg_type,IC> rsg_type;
        // more traits
        enum { allowsErrorEstimate = 1 };
        // factory
        static rsg_type make_sequence_generator(Size dimension,
                                                BigNatural seed) {
            ursg_type g(dimension, seed);
            return (icInstance ? rsg_type(g, *icInstance) : rsg_type(g));
        }
        // data
        static boost::shared_ptr<IC> icInstance;
    };

    // static member initialization
    template<class URNG, class IC>
    boost::shared_ptr<IC> GenericPseudoRandom<URNG, IC>::icInstance;


    //! default traits for pseudo-random number generation
    /*! \test a sequence generator is generated and tested by comparing
              samples against known good values.
    */
    typedef GenericPseudoRandom<MersenneTwisterUniformRng,
                                InverseCumulativeNormal> PseudoRandom;

    //! traits for Poisson-distributed pseudo-random number generation
    /*! \test sequence generators are generated and tested by comparing
              samples against known good values.
    */
    typedef GenericPseudoRandom<MersenneTwisterUniformRng,
                                InverseCumulativePoisson> PoissonPseudoRandom;


    template <class URSG, class IC>
    struct GenericLowDiscrepancy {
        // typedefs
        typedef URSG ursg_type;
        typedef InverseCumulativeRsg<ursg_type,IC> rsg_type;
        // more traits
        enum { allowsErrorEstimate = 0 };
        // factory
        static rsg_type make_sequence_generator(Size dimension,
                                                BigNatural seed) {
            ursg_type g(dimension, seed);
            return (icInstance ? rsg_type(g, *icInstance) : rsg_type(g));
        }
        // data
        static boost::shared_ptr<IC> icInstance;
    };

    // static member initialization
    template<class URSG, class IC>
    boost::shared_ptr<IC> GenericLowDiscrepancy<URSG, IC>::icInstance;


    //! default traits for low-discrepancy sequence generation
    typedef GenericLowDiscrepancy<SobolRsg,
                                  InverseCumulativeNormal> LowDiscrepancy;

}


#endif