This file is indexed.

/usr/include/ql/math/statistics/gaussianstatistics.hpp is in libquantlib0-dev 1.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2003 Ferdinando Ametrano
 Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file gaussianstatistics.hpp
    \brief statistics tool for gaussian-assumption risk measures
*/

#ifndef quantlib_gaussian_statistics_h
#define quantlib_gaussian_statistics_h

#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/statistics/generalstatistics.hpp>

namespace QuantLib {

    //! Statistics tool for gaussian-assumption risk measures
    /*! This class wraps a somewhat generic statistic tool and adds
        a number of gaussian risk measures (e.g.: value-at-risk, expected
        shortfall, etc.) based on the mean and variance provided by
        the underlying statistic tool.
    */
    template<class Stat>
    class GenericGaussianStatistics : public Stat {
      public:
        typedef typename Stat::value_type value_type;
        GenericGaussianStatistics() {}
        GenericGaussianStatistics(const Stat& s) : Stat(s) {}
        //! \name Gaussian risk measures
        //@{
        /*! returns the downside variance, defined as
            \f[ \frac{N}{N-1} \times \frac{ \sum_{i=1}^{N}
                \theta \times x_i^{2}}{ \sum_{i=1}^{N} w_i} \f],
            where \f$ \theta \f$ = 0 if x > 0 and
            \f$ \theta \f$ =1 if x <0
        */
        Real gaussianDownsideVariance() const {
            return gaussianRegret(0.0);
        }

        /*! returns the downside deviation, defined as the
            square root of the downside variance.
        */
        Real gaussianDownsideDeviation() const {
            return std::sqrt(gaussianDownsideVariance());
        }

        /*! returns the variance of observations below target
            \f[ \frac{\sum w_i (min(0, x_i-target))^2 }{\sum w_i}. \f]

            See Dembo, Freeman "The Rules Of Risk", Wiley (2001)
        */
        Real gaussianRegret(Real target) const;


        /*! gaussian-assumption y-th percentile, defined as the value x
            such that \f[ y = \frac{1}{\sqrt{2 \pi}}
                                      \int_{-\infty}^{x} \exp (-u^2/2) du \f]
        */
        Real gaussianPercentile(Real percentile) const;
        Real gaussianTopPercentile(Real percentile) const;

        //! gaussian-assumption Potential-Upside at a given percentile
        Real gaussianPotentialUpside(Real percentile) const;

        //! gaussian-assumption Value-At-Risk at a given percentile
        Real gaussianValueAtRisk(Real percentile) const;

        //! gaussian-assumption Expected Shortfall at a given percentile
        /*! Assuming a gaussian distribution it
            returns the expected loss in case that the loss exceeded
            a VaR threshold,

            \f[ \mathrm{E}\left[ x \;|\; x < \mathrm{VaR}(p) \right], \f]

            that is the average of observations below the
            given percentile \f$ p \f$.
            Also know as conditional value-at-risk.

            See Artzner, Delbaen, Eber and Heath,
            "Coherent measures of risk", Mathematical Finance 9 (1999)
        */
        Real gaussianExpectedShortfall(Real percentile) const;

        //! gaussian-assumption Shortfall (observations below target)
        Real gaussianShortfall(Real target) const;

        //! gaussian-assumption Average Shortfall (averaged shortfallness)
        Real gaussianAverageShortfall(Real target) const;
        //@}
    };

    //! default gaussian statistic tool
    typedef GenericGaussianStatistics<GeneralStatistics> GaussianStatistics;


    //! Helper class for precomputed distributions
    class StatsHolder {
      public:
        typedef Real value_type;
        StatsHolder(Real mean,
                    Real standardDeviation)
                    : mean_(mean), standardDeviation_(standardDeviation) {}
        ~StatsHolder() {}
        Real mean() const { return mean_; }
        Real standardDeviation() const { return standardDeviation_; }
      private:
        Real mean_, standardDeviation_;
    };


    // inline definitions

    template<class Stat>
    inline
    Real GenericGaussianStatistics<Stat>::gaussianRegret(Real target) const {
        Real m = this->mean();
        Real std = this->standardDeviation();
        Real variance = std*std;
        CumulativeNormalDistribution gIntegral(m, std);
        NormalDistribution g(m, std);
        Real firstTerm = variance + m*m - 2.0*target*m + target*target;
        Real alfa = gIntegral(target);
        Real secondTerm = m - target;
        Real beta = variance*g(target);
        Real result = alfa*firstTerm - beta*secondTerm;
        return result/alfa;
    }

    /*! \pre percentile must be in range (0%-100%) extremes excluded */
    template<class Stat>
    inline Real GenericGaussianStatistics<Stat>::gaussianPercentile(
                                                     Real percentile) const {

        QL_REQUIRE(percentile>0.0,
                   "percentile (" << percentile << ") must be > 0.0");
        QL_REQUIRE(percentile<1.0,
                   "percentile (" << percentile << ") must be < 1.0");

        InverseCumulativeNormal gInverse(Stat::mean(),
                                         Stat::standardDeviation());
        return gInverse(percentile);
    }

    /*! \pre percentile must be in range (0%-100%) extremes excluded */
    template<class Stat>
    inline Real GenericGaussianStatistics<Stat>::gaussianTopPercentile(
                                                     Real percentile) const {

        return gaussianPercentile(1.0-percentile);
    }

    /*! \pre percentile must be in range [90%-100%) */
    template<class Stat>
    inline Real GenericGaussianStatistics<Stat>::gaussianPotentialUpside(
                                                    Real percentile) const {

        QL_REQUIRE(percentile<1.0 && percentile>=0.9,
                   "percentile (" << percentile << ") out of range [0.9, 1)");

        Real result = gaussianPercentile(percentile);
        // potential upside must be a gain, i.e., floored at 0.0
        return std::max<Real>(result, 0.0);
    }


    /*! \pre percentile must be in range [90%-100%) */
    template<class Stat>
    inline Real GenericGaussianStatistics<Stat>::gaussianValueAtRisk(
                                                    Real percentile) const {

        QL_REQUIRE(percentile<1.0 && percentile>=0.9,
                   "percentile (" << percentile << ") out of range [0.9, 1)");

        Real result = gaussianPercentile(1.0-percentile);
        // VAR must be a loss
        // this means that it has to be MIN(dist(1.0-percentile), 0.0)
        // VAR must also be a positive quantity, so -MIN(*)
        return -std::min<Real>(result, 0.0);
    }


    /*! \pre percentile must be in range [90%-100%) */
    template<class Stat>
    inline Real GenericGaussianStatistics<Stat>::gaussianExpectedShortfall(
                                                    Real percentile) const {
        QL_REQUIRE(percentile<1.0 && percentile>=0.9,
                   "percentile (" << percentile << ") out of range [0.9, 1)");

        Real m = this->mean();
        Real std = this->standardDeviation();
        InverseCumulativeNormal gInverse(m, std);
        Real var = gInverse(1.0-percentile);
        NormalDistribution g(m, std);
        Real result = m - std*std*g(var)/(1.0-percentile);
        // expectedShortfall must be a loss
        // this means that it has to be MIN(result, 0.0)
        // expectedShortfall must also be a positive quantity, so -MIN(*)
        return -std::min<Real>(result, 0.0);
    }


    template<class Stat>
    inline Real GenericGaussianStatistics<Stat>::gaussianShortfall(
                                                        Real target) const {
        CumulativeNormalDistribution gIntegral(this->mean(),
                                               this->standardDeviation());
        return gIntegral(target);
    }


    template<class Stat>
    inline Real GenericGaussianStatistics<Stat>::gaussianAverageShortfall(
                                                        Real target) const {
        Real m = this->mean();
        Real std = this->standardDeviation();
        CumulativeNormalDistribution gIntegral(m, std);
        NormalDistribution g(m, std);
        return ( (target-m) + std*std*g(target)/gIntegral(target) );
    }

}


#endif