/usr/include/ql/math/statistics/generalstatistics.hpp is in libquantlib0-dev 1.4-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2003 Ferdinando Ametrano
Copyright (C) 2003 RiskMap srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file generalstatistics.hpp
\brief statistics tool
*/
#ifndef quantlib_general_statistics_hpp
#define quantlib_general_statistics_hpp
#include <ql/utilities/null.hpp>
#include <ql/errors.hpp>
#include <vector>
#include <utility>
namespace QuantLib {
//! Statistics tool
/*! This class accumulates a set of data and returns their
statistics (e.g: mean, variance, skewness, kurtosis,
error estimation, percentile, etc.) based on the empirical
distribution (no gaussian assumption)
It doesn't suffer the numerical instability problem of
IncrementalStatistics. The downside is that it stores all
samples, thus increasing the memory requirements.
*/
class GeneralStatistics {
public:
typedef Real value_type;
GeneralStatistics();
//! \name Inspectors
//@{
//! number of samples collected
Size samples() const;
//! collected data
const std::vector<std::pair<Real,Real> >& data() const;
//! sum of data weights
Real weightSum() const;
/*! returns the mean, defined as
\f[ \langle x \rangle = \frac{\sum w_i x_i}{\sum w_i}. \f]
*/
Real mean() const;
/*! returns the variance, defined as
\f[ \sigma^2 = \frac{N}{N-1} \left\langle \left(
x-\langle x \rangle \right)^2 \right\rangle. \f]
*/
Real variance() const;
/*! returns the standard deviation \f$ \sigma \f$, defined as the
square root of the variance.
*/
Real standardDeviation() const;
/*! returns the error estimate on the mean value, defined as
\f$ \epsilon = \sigma/\sqrt{N}. \f$
*/
Real errorEstimate() const;
/*! returns the skewness, defined as
\f[ \frac{N^2}{(N-1)(N-2)} \frac{\left\langle \left(
x-\langle x \rangle \right)^3 \right\rangle}{\sigma^3}. \f]
The above evaluates to 0 for a Gaussian distribution.
*/
Real skewness() const;
/*! returns the excess kurtosis, defined as
\f[ \frac{N^2(N+1)}{(N-1)(N-2)(N-3)}
\frac{\left\langle \left(x-\langle x \rangle \right)^4
\right\rangle}{\sigma^4} - \frac{3(N-1)^2}{(N-2)(N-3)}. \f]
The above evaluates to 0 for a Gaussian distribution.
*/
Real kurtosis() const;
/*! returns the minimum sample value */
Real min() const;
/*! returns the maximum sample value */
Real max() const;
/*! Expectation value of a function \f$ f \f$ on a given
range \f$ \mathcal{R} \f$, i.e.,
\f[ \mathrm{E}\left[f \;|\; \mathcal{R}\right] =
\frac{\sum_{x_i \in \mathcal{R}} f(x_i) w_i}{
\sum_{x_i \in \mathcal{R}} w_i}. \f]
The range is passed as a boolean function returning
<tt>true</tt> if the argument belongs to the range
or <tt>false</tt> otherwise.
The function returns a pair made of the result and
the number of observations in the given range.
*/
template <class Func, class Predicate>
std::pair<Real,Size> expectationValue(const Func& f,
const Predicate& inRange) const {
Real num = 0.0, den = 0.0;
Size N = 0;
std::vector<std::pair<Real,Real> >::const_iterator i;
for (i=samples_.begin(); i!=samples_.end(); ++i) {
Real x = i->first, w = i->second;
if (inRange(x)) {
num += f(x)*w;
den += w;
N += 1;
}
}
if (N == 0)
return std::make_pair<Real,Size>(Null<Real>(),0);
else
return std::make_pair(num/den,N);
}
/*! \f$ y \f$-th percentile, defined as the value \f$ \bar{x} \f$
such that
\f[ y = \frac{\sum_{x_i < \bar{x}} w_i}{
\sum_i w_i} \f]
\pre \f$ y \f$ must be in the range \f$ (0-1]. \f$
*/
Real percentile(Real y) const;
/*! \f$ y \f$-th top percentile, defined as the value
\f$ \bar{x} \f$ such that
\f[ y = \frac{\sum_{x_i > \bar{x}} w_i}{
\sum_i w_i} \f]
\pre \f$ y \f$ must be in the range \f$ (0-1]. \f$
*/
Real topPercentile(Real y) const;
//@}
//! \name Modifiers
//@{
//! adds a datum to the set, possibly with a weight
void add(Real value, Real weight = 1.0);
//! adds a sequence of data to the set, with default weight
template <class DataIterator>
void addSequence(DataIterator begin, DataIterator end) {
for (;begin!=end;++begin)
add(*begin);
}
//! adds a sequence of data to the set, each with its weight
template <class DataIterator, class WeightIterator>
void addSequence(DataIterator begin, DataIterator end,
WeightIterator wbegin) {
for (;begin!=end;++begin,++wbegin)
add(*begin, *wbegin);
}
//! resets the data to a null set
void reset();
//! informs the internal storage of a planned increase in size
void reserve(Size n) const;
//! sort the data set in increasing order
void sort() const;
//@}
private:
mutable std::vector<std::pair<Real,Real> > samples_;
mutable bool sorted_;
};
// inline definitions
inline GeneralStatistics::GeneralStatistics() {
reset();
}
inline Size GeneralStatistics::samples() const {
return samples_.size();
}
inline const std::vector<std::pair<Real,Real> >&
GeneralStatistics::data() const {
return samples_;
}
inline Real GeneralStatistics::standardDeviation() const {
return std::sqrt(variance());
}
inline Real GeneralStatistics::errorEstimate() const {
return std::sqrt(variance()/samples());
}
inline Real GeneralStatistics::min() const {
QL_REQUIRE(samples() > 0, "empty sample set");
return std::min_element(samples_.begin(),
samples_.end())->first;
}
inline Real GeneralStatistics::max() const {
QL_REQUIRE(samples() > 0, "empty sample set");
return std::max_element(samples_.begin(),
samples_.end())->first;
}
/*! \pre weights must be positive or null */
inline void GeneralStatistics::add(Real value, Real weight) {
QL_REQUIRE(weight>=0.0, "negative weight not allowed");
samples_.push_back(std::make_pair(value,weight));
sorted_ = false;
}
inline void GeneralStatistics::reset() {
samples_ = std::vector<std::pair<Real,Real> >();
sorted_ = true;
}
inline void GeneralStatistics::reserve(Size n) const {
samples_.reserve(n);
}
inline void GeneralStatistics::sort() const {
if (!sorted_) {
std::sort(samples_.begin(), samples_.end());
sorted_ = true;
}
}
}
#endif
|