This file is indexed.

/usr/include/ql/math/statistics/riskstatistics.hpp is in libquantlib0-dev 1.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2003 RiskMap srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file riskstatistics.hpp
    \brief empirical-distribution risk measures
*/

#ifndef quantlib_risk_statistics_h
#define quantlib_risk_statistics_h

#include <ql/math/functional.hpp>
#include <ql/math/statistics/gaussianstatistics.hpp>

namespace QuantLib {

    //! empirical-distribution risk measures
    /*! This class wraps a somewhat generic statistic tool and adds
        a number of risk measures (e.g.: value-at-risk, expected
        shortfall, etc.) based on the data distribution as reported by
        the underlying statistic tool.

        \todo add historical annualized volatility

    */
    template <class S>
    class GenericRiskStatistics : public S {
      public:
        typedef typename S::value_type value_type;

        /*! returns the variance of observations below the mean,
            \f[ \frac{N}{N-1}
                \mathrm{E}\left[ (x-\langle x \rangle)^2 \;|\;
                                  x < \langle x \rangle \right]. \f]

            See Markowitz (1959).
        */
        Real semiVariance() const;

        /*! returns the semi deviation, defined as the
            square root of the semi variance.
        */
        Real semiDeviation() const;

        /*! returns the variance of observations below 0.0,
            \f[ \frac{N}{N-1}
                \mathrm{E}\left[ x^2 \;|\; x < 0\right]. \f]
        */
        Real downsideVariance() const;

        /*! returns the downside deviation, defined as the
            square root of the downside variance.
        */
        Real downsideDeviation() const;

        /*! returns the variance of observations below target,
            \f[ \frac{N}{N-1}
                \mathrm{E}\left[ (x-t)^2 \;|\;
                                  x < t \right]. \f]

            See Dembo and Freeman, "The Rules Of Risk", Wiley (2001).
        */
        Real regret(Real target) const;

        //! potential upside (the reciprocal of VAR) at a given percentile
        Real potentialUpside(Real percentile) const;

        //! value-at-risk at a given percentile
        Real valueAtRisk(Real percentile) const;

        //! expected shortfall at a given percentile
        /*! returns the expected loss in case that the loss exceeded
            a VaR threshold,

            \f[ \mathrm{E}\left[ x \;|\; x < \mathrm{VaR}(p) \right], \f]

            that is the average of observations below the
            given percentile \f$ p \f$.
            Also know as conditional value-at-risk.

            See Artzner, Delbaen, Eber and Heath,
            "Coherent measures of risk", Mathematical Finance 9 (1999)
        */
        Real expectedShortfall(Real percentile) const;

        /*! probability of missing the given target, defined as
            \f[ \mathrm{E}\left[ \Theta \;|\; (-\infty,\infty) \right] \f]
            where
            \f[ \Theta(x) = \left\{
                \begin{array}{ll}
                1 & x < t \\
                0 & x \geq t
                \end{array}
                \right. \f]
        */
        Real shortfall(Real target) const;

        /*! averaged shortfallness, defined as
            \f[ \mathrm{E}\left[ t-x \;|\; x<t \right] \f]
        */
        Real averageShortfall(Real target) const;
    };


    //! default risk measures tool
    /*! \test the correctness of the returned values is tested by
              checking them against numerical calculations.
    */
    typedef GenericRiskStatistics<GaussianStatistics> RiskStatistics;



    // inline definitions

    template <class S>
    inline Real GenericRiskStatistics<S>::semiVariance() const {
        return regret(this->mean());
    }

    template <class S>
    inline Real GenericRiskStatistics<S>::semiDeviation() const {
        return std::sqrt(semiVariance());
    }

    template <class S>
    inline Real GenericRiskStatistics<S>::downsideVariance() const {
        return regret(0.0);
    }

    template <class S>
    inline Real GenericRiskStatistics<S>::downsideDeviation() const {
        return std::sqrt(downsideVariance());
    }

    // template definitions

    template <class S>
    Real GenericRiskStatistics<S>::regret(Real target) const {
        // average over the range below the target
        std::pair<Real,Size> result =
            this->expectationValue(compose(square<Real>(),
                                           std::bind2nd(std::minus<Real>(),
                                                        target)),
                                   std::bind2nd(std::less<Real>(),  target));
        Real x = result.first;
        Size N = result.second;
        QL_REQUIRE(N > 1,
                   "samples under target <= 1, unsufficient");
        return (N/(N-1.0))*x;
    }

    /*! \pre percentile must be in range [90%-100%) */
    template <class S>
    Real GenericRiskStatistics<S>::potentialUpside(Real centile)
        const {
        QL_REQUIRE(centile>=0.9 && centile<1.0,
                   "percentile (" << centile << ") out of range [0.9, 1.0)");

        // potential upside must be a gain, i.e., floored at 0.0
        return std::max<Real>(this->percentile(centile), 0.0);
    }

    /*! \pre percentile must be in range [90%-100%) */
    template <class S>
    Real GenericRiskStatistics<S>::valueAtRisk(Real centile) const {

        QL_REQUIRE(centile>=0.9 && centile<1.0,
                   "percentile (" << centile << ") out of range [0.9, 1.0)");

        // must be a loss, i.e., capped at 0.0 and negated
        return -std::min<Real>(this->percentile(1.0-centile), 0.0);
    }

    /*! \pre percentile must be in range [90%-100%) */
    template <class S>
    Real GenericRiskStatistics<S>::expectedShortfall(Real centile) const {
        QL_REQUIRE(centile>=0.9 && centile<1.0,
                   "percentile (" << centile << ") out of range [0.9, 1.0)");

        QL_ENSURE(this->samples() != 0, "empty sample set");
        Real target = -valueAtRisk(centile);
        std::pair<Real,Size> result =
            this->expectationValue(identity<Real>(),
                             std::bind2nd(std::less<Real>(),
                                          target));
        Real x = result.first;
        Size N = result.second;
        QL_ENSURE(N != 0, "no data below the target");
        // must be a loss, i.e., capped at 0.0 and negated
        return -std::min<Real>(x, 0.0);
    }

    template <class S>
    Real GenericRiskStatistics<S>::shortfall(Real target) const {
        QL_ENSURE(this->samples() != 0, "empty sample set");
        return this->expectationValue(clip(constant<Real,Real>(1.0),
                                           std::bind2nd(std::less<Real>(),
                                                        target)),
                                      everywhere()).first;
    }

    template <class S>
    Real GenericRiskStatistics<S>::averageShortfall(Real target)
        const {
        std::pair<Real,Size> result =
            this->expectationValue(std::bind1st(std::minus<Real>(),
                                                target),
                                   std::bind2nd(std::less<Real>(),
                                                target));
        Real x = result.first;
        Size N = result.second;
        QL_ENSURE(N != 0, "no data below the target");
        return x;
    }

}


#endif