/usr/include/ql/processes/endeulerdiscretization.hpp is in libquantlib0-dev 1.4-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Frank Hövermann
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file endeulerdiscretization.hpp
\brief Euler end-point discretization for stochastic processes
*/
#ifndef quantlib_end_euler_discretization_hpp
#define quantlib_end_euler_discretization_hpp
#include <ql/stochasticprocess.hpp>
namespace QuantLib {
//! Euler end-point discretization for stochastic processes
/*! \ingroup processes */
class EndEulerDiscretization
: public StochasticProcess::discretization,
public StochasticProcess1D::discretization {
public:
/*! Returns an approximation of the drift defined as
\f$ \mu(t_0 + \Delta t, \mathbf{x}_0) \Delta t \f$.
*/
Disposable<Array> drift(const StochasticProcess&,
Time t0, const Array& x0, Time dt) const;
/*! Returns an approximation of the drift defined as
\f$ \mu(t_0 + \Delta t, x_0) \Delta t \f$.
*/
Real drift(const StochasticProcess1D&,
Time t0, Real x0, Time dt) const;
/*! Returns an approximation of the diffusion defined as
\f$ \sigma(t_0 + \Delta t, \mathbf{x}_0) \sqrt{\Delta t} \f$.
*/
Disposable<Matrix> diffusion(const StochasticProcess&,
Time t0, const Array& x0, Time dt) const;
/*! Returns an approximation of the diffusion defined as
\f$ \sigma(t_0 + \Delta t, x_0) \sqrt{\Delta t} \f$.
*/
Real diffusion(const StochasticProcess1D&,
Time t0, Real x0, Time dt) const;
/*! Returns an approximation of the covariance defined as
\f$ \sigma(t_0 + \Delta t, \mathbf{x}_0)^2 \Delta t \f$.
*/
Disposable<Matrix> covariance(const StochasticProcess&,
Time t0, const Array& x0, Time dt) const;
/*! Returns an approximation of the variance defined as
\f$ \sigma(t_0 + \Delta t, x_0)^2 \Delta t \f$.
*/
Real variance(const StochasticProcess1D&,
Time t0, Real x0, Time dt) const;
};
}
#endif
|