/usr/include/ranlip/ranlip.h is in libranlip-dev 1.0-4.1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 | /************ CRanLip - universal multivariate random ************************
* variate generatior based on acceptance/rejection
*
* begin : April 30 2004
* version : 1.0
* copyright : (C) 2004 by Gleb Beliakov
* email : gleb@deakin.edu.au
*
*
* Declaration of CRanLip class
*
* Description: CRanLip is a class which implements a universal nonuniform
* multivariate random variate generator based on acceptance/rejection.
* Random varites are generated with the help of a hat function - an
* approximation to the given density function from above. RanLip uses
* a piecewise constant hat function, calculated by subdividing the
* domain into hypercubes, and by using a large number of sample points
* and the Lipschitz constant of the probability density. It is assumed
* than the density function is Lipschitz continuous.
*
* This method subdivides the rectangular domain into a number of hyper-
* rectangles, computes on each element of this partition a large number
* of values of the density function, and estimates its absolute maximum
* on this hyperrectangle using the Lipschitz constant of the density.
* This maximum is taken as the value of the hat function.
*
* Functionality: CRanLip performs two main functions: compute the hat
* function (using PrepareHatFunction() method), and then generate a random
* variate (using RandomVec() method) with the required density.
*
* Typical usage: The user needs to derive a new class from CRanLip, in order
* to provide the code for evaluation of the required density. The user needs
* to override Distribution(double* p) method, as shown below.
*
* Then the user calls: Init(dimension, left_boundary, right_boundary)
* PrepareHatFunction(num_elements, fine_partition, Lipschitz)
* RandomVec(random_vector)
*
* The first call specifies the domain and the dimension
* The second call prepares the hat function
* The third call returns random vectors with the desired density
*
* Example:
class MyRnumGen:public CRanLip {
public: virtual double Distribution(double* p) ;
};
double MyRnumGen::Distribution(double* p)
{ // multivriate normal distribution
double r;
for(int j=0;j<Dimension;j++) {
r+=sqr_(p[j]);
}
return exp(-r);;
}
// declare an instance of this class
MyRnumGen MyGen;
#define dim 3
double left[dim],right[dim]; // boundaries of the domain
double R[dim];
for(i=0;i<dim;i++) {left[i]=-2.0; right[i]=3.0;} // domain is [-2,3]^dim
MyGen.Init(dim,a,b);
MyGen.PrepareHatFunctionAuto(10,32); // will be in total 10^dim elements in the partition, and (32*10)^dim
// evaluations of the density function (calls to Distribution() method)
for(i=1;i<= TotalRandomVariates;i++)
MyGen.RandomVec(R); // generate random variates
*
* In the above example, Lipschitz constant is unknown and is estimated automatically. If it is known
* at least approximately (must be an overestimate), then use MyGen.PrepareHatFunction(10,32,LipConst)
*
*
* Computational complexity: The user has total control of the number of evaluations of the density
* function, when s/he supplies arguments num and numfine in PrepareHatFunction(num,numfine, LipConst)
* The domain (hyperrectangle) is subdivided into num^dim hyperrectangles, each of which is further
* subdivided into numfine^dim rectangles. The fine partition is used to compute the absolute maximum
* of the density on the elements of the rough partition. The total number of computations is
* (num*numfine)^dim. These values are compared to each other in (num*numfine*dim)^dim comparisons.
*
* The memory required by the algorithm is numfine^dim + 2*num^dim
*
* numfine should be a power of 2 to speed up computations (CRanLip will enforce it). It can be >=2.
* However, high values of num translate into less efficient generation, because of very long
* tables needed for the discrete random number generator.
*
* It is important to realise that the quality of the hat function directly depends on the number of
* elements in the partitions, and the user should find a right balance between the quality and the
* time/memory required to build the hat function. Better hat functions require more computing time
* but then the speed of random variate generation is improved because of smaller rejection constant.
* A more accurate estimate of the Lipschitz constant may also reduce the rejection constant.
*
* For dimensions >3 the preprocessing time may be significant. The tables in the accompanying
* paper (ranlip.ps) provide some indications.
*
* Other functionality: The user can store the computed hat function in a file using SavePartition()
* method. LoadPartition() will load the hat function. In this case no preprocessing is required, ie
* the sequence of commands is MyGen.LoadPartition("partitionfile");
* MyGen.RandomVec(R); // generate random variates
*
* Statistics for generation step can be computed from MyGen.count_total (this is the total number
* of calls to the uniform random vector generator (ie dim calls to uniform random number generator))
* total number of generated variates / count_total gives the acceptance ratio. Higher ratio indicates
* higher efficiency of the generation step.
*
* MyGen.count_errors contains the number of errors due to incorrect specification of the Lipschitz
* constant (and hence incorrect hat function). count_errors is incremented when the value of the hat
* function is below the density at this point. Non-zero value indicates that generation was performed
* incorrectly, and should be re-done after computing the hat function with a higher Lipschitz
* constant. Although some user may choose to ignore low error count.
*
*
*
*
* Copyright (C) 2004 Gleb Beliakov (gleb@deakin.edu.au)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#if !defined(RLIPNUMGEN_H)
#define RLIPNUMGEN_H
#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <ranlip/ranlipdist.h>
// returns a uniform random number in (0,1)
typedef double (*UFunction)() ;
#define sqr_(a) ((a)*(a))
#define max_(a,b) ((a>b)?(a):(b))
class CRanLip
{
public:
CRanLip();
virtual ~CRanLip();
UFunction UGen; // pointer to the uniform random number generator
int Dimension; // the number of variables
// Lipschitz constant, volume of each hypercube and an array of probabilities
// for the discrete generator
double Lipschitz, Volume, *Probabilities;
int TotalElements; // the number of hypercubes in the subdivision ofthe domain
long int count_total, count_errors; // to provide some statistics
gsl_ran_discrete_t *Dist; // points to the discrete random variate generator
size_t m_chosenElement; // chosen element of the partition
// these are just global vectors to save time on memory allocation
double *V;
double *m_boundLeft, *m_boundRight; // left and right bounds of the domain
double *m_tempLeft, *m_tempRight;
// initialises the tables and arrays for the generator
// should be the first method to call
void Init(int dim, double* left, double* right);
// to free memory occupied by the partition and tables for the alias method
// called from the destructor, but can also be called before
void FreeMem();
// sets the pointer to the uniform random number generator. The default is
// M. Luescher's ranlux generator (see gsl_randist.h)
void SetUniformGenerator(UFunction gen) {UGen=gen;};
// computes the hat function given the Lipschitz constant
// num refers to the number of cells the domain is subdivided in each direction
// the total number of cells will be num^dim
// numfine is the number of cells in the fine partition. Should be a power of 2
// to speed up calculations
void PrepareHatFunction(int num, int numfine, double Lip);
// computes the hat function, and automatically computes the Lipschitz constant, no smaller than minLip
void PrepareHatFunctionAuto(int num, int numfine, double minLip=0);
// generates a random variate with the required density
void RandomVec(double* p);
// generates a random vector uniform on (0,1)^dim
void RandomVecUniform(double* p);
// sets the seed for the uniform random number generator
void Seed(int seed);
// returns the value of the seed
int GetSeed() {return TheSeed;};
// returns a uniform random number on (0,1) (the default generator is ranlux )
inline double UniformRNumber() { return UGen(); };
// returns a uniform random number on (a,b)
inline double UniformRNumber(double a, double b){ return UGen()*(b-a)+a;};
// saves the computed hat function into a file
void SavePartition(char * fname);
// loads the hat function from the file
void LoadPartition(char * fname);
// computes the probability density function. Should be provided by the user. The default method returns 1.
virtual double Distribution(double* p) ;
private:
// the following methods are to compute the indices in a multidimensional array
void GetIJK(int b);
void GetIJKfineBin(int b);
int GetIndexfromIJK( int* IJK);
// to compute the value of the hat function on an element of the partition
double ComputeMaxBin();
// to estimate the Lipschitz constant of the density on an element of the partition
double ComputeLipschitzBin();
// compute the values of the density function in the nodes of a finemesh
void ComputeArray();
// compute the values of the density function in the nodes of the rough mesh
void ComputeArrayCache(int J);
unsigned int mask1, mask2, bits;
double *h, *hfine;
int *m_tempint,*m_tempintfine;
int *m_delta;
int Computed; // 1 if computed, 0 otherwise
int num_partition, num_small_partition,num_small_partition_p1;
int TheSeed;
double *vals;
int totvals;
double* LipschitzH;
double* cache;
};
#endif // !defined(RLIPNUMGEN_H)
|