This file is indexed.

/usr/include/rheolef/Vector.h is in librheolef-dev 6.5-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
#ifndef _RHEO_VECTOR_H
#define _RHEO_VECTOR_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================

/*Class:csr
NAME:  @code{Vector} - STL @code{vector<T>} with reference counting 
@clindex Vector
DESCRIPTION:       
 @noindent
 The class implement a reference counting wrapper for
 the STL @code{vector<T>} container class, with shallow copies.
 See also:
 @emph{The standard template library}, by Alexander Stephanov and Meng Lee.

 @noindent
 This class provides the full @code{vector<T>}
 interface specification
 an could be used instead of @code{vector<T>}.
NOTE:
 @noindent
 The write accessors 
 @example
	T& operator[](size_type)
 @end example
 @noindent
 as in @code{v[i]}
 may checks the reference count for each access.
 For a loop, a better usage is:
 @example
      Vector<T>::iterator i = v.begin();
      Vector<T>::iterator last = v.end();
      while (i != last) @{ ...@}
 @end example
 @noindent
 and the reference count check step occurs only two time,
 when accessing via @code{begin()} and @code{end()}.

 @noindent
 Thus, in order to encourage users to do it, we declare private
 theses member functions. A synonym of @code{operator[]} is @code{at}.

AUTHOR: 
     Pierre Saramito
   | Pierre.Saramito@imag.fr
    LMC-IMAG, 38041 Grenoble cedex 9, France
DATE:   14 september 1997
End:
*/

/*
//<Vector:
template<class T>
class Vector : private smart_pointer<vector_rep<T> > {
 
public:

// typedefs:

    typedef iterator;
    typedef const_iterator;
    typedef pointer;
    typedef reference;
    typedef const_reference;
    typedef size_type;
    typedef difference_type;
    typedef value_type;
    typedef reverse_iterator;
    typedef const_reverse_iterator;

// allocation/deallocation:

    explicit Vector (size_type n = 0, const T& value = T ());
    Vector (const_iterator first, const_iterator last);
    void reserve (size_type n);
    void swap (Vector<T>& x) ;

// accessors:

    iterator                 begin ();
    const_iterator           begin () const;
    iterator                 end ();
    const_iterator           end ()   const;
    reverse_iterator         rbegin();
    const_reverse_iterator   rbegin() const;
    reverse_iterator         rend();
    const_reverse_iterator   rend() const;
    size_type size () const;
    size_type max_size () const;
    size_type capacity () const;
    bool empty () const;
    void resize (size_type sz, T v = T ()); // non-standard ?
private:
    const_reference operator[] (size_type n) const;
    reference operator[] (size_type n);
public:
    const_reference at (size_type n) const; // non-standard ?
    reference at (size_type n);
    reference         front ();
    const_reference   front () const;
    reference         back ();
    const_reference   back ()  const;

// insert/erase:

    void push_back (const T& x);
    iterator insert (iterator position, const T& x = T ());
    void insert (iterator position, size_type n, const T& x);
    void insert (iterator position, const_iterator first, const_iterator last);
    void pop_back ();
    void erase (iterator position);
    void erase (iterator first, iterator last);
};
//>Vector:
*/

#include "rheolef/compiler.h"
#include "rheolef/smart_pointer.h"

namespace rheolef { 
template<class T>
struct vector_rep : public std::vector<T> {

// typedefs:
    typedef std::vector<T>  DATA;

    typedef typename DATA::iterator                   iterator;
    typedef typename DATA::const_iterator             const_iterator;
    typedef typename DATA::pointer                    pointer;
    typedef typename DATA::reference                  reference;
    typedef typename DATA::const_reference            const_reference;
    typedef typename DATA::size_type                  size_type;
    typedef typename DATA::difference_type            difference_type;
    typedef          T                                value_type;
    typedef typename DATA::reverse_iterator           reverse_iterator;
    typedef typename DATA::const_reverse_iterator     const_reverse_iterator;

// allocators/deallocators:

    vector_rep (const vector_rep& x) 
    : std::vector<T>(x)
    {}

    explicit
    vector_rep (size_type n = 0, const T& value = T ())
    : std::vector<T>(n,value)
    {}

#ifdef TODO
    vector_rep (const_iterator first, const_iterator last)
    : std::vector<T>(first,last)
    {}
#endif // TODO
};

template<class T>
struct Vector : smart_pointer<vector_rep<T> > 
{
    typedef vector_rep<T>                    DATA;

public:

// typedefs:

    typedef typename DATA::iterator                   iterator;
    typedef typename DATA::const_iterator             const_iterator;
    typedef typename DATA::pointer                    pointer;
    typedef typename DATA::reference                  reference;
    typedef typename DATA::const_reference            const_reference;
    typedef typename DATA::size_type                  size_type;
    typedef typename DATA::difference_type            difference_type;
    typedef          T                                value_type;
    typedef typename DATA::reverse_iterator           reverse_iterator;
    typedef typename DATA::const_reverse_iterator     const_reverse_iterator;

// allocation/deallocation:

    explicit
    Vector (size_type n = 0, const T& value = T ())
    : smart_pointer<DATA>(new_macro(DATA(n,value)))
    {}

#ifdef TODO
    Vector (const_iterator first, const_iterator last)
    : smart_pointer<DATA>(new_macro(DATA(first,last)))
    {}
#endif // TODO

    void reserve (size_type n)
    { 
	smart_pointer<vector_rep<T> >::data().reserve(n);
    }
    void swap (Vector<T>& x) 
    {
	smart_pointer<vector_rep<T> >::data().swap(*x.p);
    }
// accessors:

    iterator                 begin ()       
    { 
	return smart_pointer<vector_rep<T> >::data().begin();
    }
    const_iterator           begin () const 
    {
	return smart_pointer<vector_rep<T> >::data().begin();
    }
    iterator                 end ()         
    { 
	return smart_pointer<vector_rep<T> >::data().end();
    }
    const_iterator           end ()   const 
    { 
	return smart_pointer<vector_rep<T> >::data().end();
    }
    reverse_iterator rbegin()
    {
	return reverse_iterator(smart_pointer<vector_rep<T> >::data().end());
    }
    const_reverse_iterator rbegin() const
    {
	return const_reverse_iterator(smart_pointer<vector_rep<T> >::data().end());
    }
    reverse_iterator rend()
    {
	return reverse_iterator(smart_pointer<vector_rep<T> >::data().begin());
    }
    const_reverse_iterator rend() const
    {
	return const_reverse_iterator(smart_pointer<vector_rep<T> >::data().begin());
    }
    size_type size ()     const 
    {
	return smart_pointer<vector_rep<T> >::data().size();
    }
    size_type max_size () const
    {
	return smart_pointer<vector_rep<T> >::data().max_size ();
    }
    size_type capacity () const
    {
	return smart_pointer<vector_rep<T> >::data().capacity ();
    }
    bool empty () const
    {
	return smart_pointer<vector_rep<T> >::data().empty();
    }
    // non-standatd ?
    void resize (size_type sz, T v = T ())
    {
        if (sz > (smart_pointer<vector_rep<T> >::data().size ())) {
           smart_pointer<vector_rep<T> >::data().insert (smart_pointer<vector_rep<T> >::data().end(), sz- (smart_pointer<vector_rep<T> >::data().size ()), v);
        } else if (sz < (smart_pointer<vector_rep<T> >::data().size())) {
           smart_pointer<vector_rep<T> >::data().erase (smart_pointer<vector_rep<T> >::data().begin()+sz, smart_pointer<vector_rep<T> >::data().end());
        }
    }
    const_reference operator[] (size_type n) const
    {
        return smart_pointer<vector_rep<T> >::data().operator[] (n);
    }
    reference operator[] (size_type n)
    {
        return smart_pointer<vector_rep<T> >::data().operator[] (n);
    }
public:
    const_reference at (size_type n) const
    {
        return smart_pointer<vector_rep<T> >::data().operator[] (n);
    }
    reference at (size_type n) 
    {
        return smart_pointer<vector_rep<T> >::data().operator[] (n);
    }
    reference         front ()        
    {
        return smart_pointer<vector_rep<T> >::data().front();
    }
    const_reference   front () const
    {
        return smart_pointer<vector_rep<T> >::data().front();
    }
    reference         back ()
    {
        return smart_pointer<vector_rep<T> >::data().back();
    }
    const_reference   back ()  const
    {
        return smart_pointer<vector_rep<T> >::data().back();
    }
// insert/erase:

    void push_back (const T& x)
    {
        smart_pointer<vector_rep<T> >::data().push_back(x);
    }
    iterator insert (iterator position, const T& x = T ())
    {
        return smart_pointer<vector_rep<T> >::data().insert(position,x);
    }
    void insert (iterator position, size_type n, const T& x)
    {
        smart_pointer<vector_rep<T> >::data().insert(position,n,x);
    }
#ifdef TODO
    void insert (iterator position, const_iterator first, const_iterator last)
    {
        smart_pointer<vector_rep<T> >::data().insert(position,first,last);
    }
#endif // TODO
    void pop_back ()
    {
        smart_pointer<vector_rep<T> >::data().pop_back();
    }
    void erase (iterator position)
    {
        smart_pointer<vector_rep<T> >::data().erase(position);
    }
    void erase (iterator first, iterator last)
    {
        smart_pointer<vector_rep<T> >::data().erase(first,last);
    }
};
template<class IteratorValue, class ConstIteratorValue>
struct VectorOfIterators : Vector<IteratorValue>
{
    typedef          Vector<IteratorValue>         V;
    typedef          Vector<ConstIteratorValue>    CONST_V;

    typedef          IteratorValue                 value_type;
    typedef          ConstIteratorValue            const_value_type;

    typedef typename V::iterator                   iterator;
    typedef typename CONST_V::const_iterator       const_iterator;
    typedef typename V::pointer                    pointer;
    typedef typename V::reference                  reference;
    typedef typename CONST_V::const_reference      const_reference;
    typedef typename V::size_type                  size_type;
    typedef typename V::difference_type            difference_type;
    typedef typename V::reverse_iterator           reverse_iterator;
    typedef typename CONST_V::const_reverse_iterator const_reverse_iterator;

    explicit
    VectorOfIterators (size_type n, const IteratorValue& value = IteratorValue ())
    : V(n,value)
    {}

#ifdef TODO
    VectorOfIterators (const_iterator first, const_iterator last)
    : V(first,last)
    {}
#endif // TODO

    iterator begin()
    {
	return Vector<IteratorValue>::data().begin(); 
    }
    const_iterator begin() const
    {
	return const_iterator (Vector<IteratorValue>::data().begin()); 
    }
    const_iterator end ()   const 
    { 
	return const_iterator (Vector<IteratorValue>::data().end()); 
    }
    iterator end ()
    { 
	return Vector<IteratorValue>::data().end(); 
    }
    const_reverse_iterator rbegin() const
    {
	return const_reverse_iterator(Vector<IteratorValue>::data().end());
    }
    reverse_iterator rbegin()
    {
	return reverse_iterator(Vector<IteratorValue>::data().end());
    }
    const_reverse_iterator rend() const
    {
	return const_reverse_iterator(Vector<IteratorValue>::data().begin());
    }
    reverse_iterator rend()
    {
	return reverse_iterator(Vector<IteratorValue>::data().begin());
    }
private:
    const_reference operator[] (size_type n) const
    {
        return const_reference(Vector<IteratorValue>::data().operator[] (n));
    }
    reference operator[] (size_type n)
    {
        return reference(Vector<IteratorValue>::data().operator[] (n));
    }
public:
    const_reference at (size_type n) const
    {
        return const_reference(Vector<IteratorValue>::data().operator[] (n));
    }
    reference at (size_type n)
    {
        return Vector<IteratorValue>::data().operator[] (n);
    }
    const_reference   front () const
    {
        return const_reference(Vector<IteratorValue>::data().front());
    }
    reference   front ()
    {
        return Vector<IteratorValue>::data().front();
    }
    const_reference   back ()  const
    {
        return const_reference(Vector<IteratorValue>::data().back());
    }
    reference   back ()
    {
        return Vector<IteratorValue>::data().back();
    }
};
}// namespace rheolef
#endif /* _RHEO_VECTOR_H */