/usr/include/rheolef/field_nonlinear_expr.h is in librheolef-dev 6.5-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 | #ifndef _RHEOLEF_FIELD_NONLINEAR_EXPR_H
#define _RHEOLEF_FIELD_NONLINEAR_EXPR_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
//
// field_nonlinear_expr: separate from field_expr
//
// it is a prototype: only compose(f,uh) is still handled
//
// OUTLINE:
// 1) main wrapper class
// 2) unary function call: (f expr)
// 3) binary function call: (f expr1 expr2)
// 4) jump of a field
#include "rheolef/field_nonlinear_expr_terminal.h"
#include "rheolef/field_evaluate.h"
#include "rheolef/tensor4.h"
#include "rheolef/field_functor.h"
#include "rheolef/operators.h"
#include <boost/functional.hpp>
namespace rheolef {
// ---------------------------------------------------------------------------
// 1) main wrapper class
// ---------------------------------------------------------------------------
template<class RawExpr>
class field_nonlinear_expr {
public:
// typedefs:
typedef geo_element::size_type size_type;
typedef typename RawExpr::memory_type memory_type;
typedef typename RawExpr::result_type result_type;
typedef typename RawExpr::value_type value_type;
typedef typename RawExpr::float_type float_type;
typedef typename RawExpr::scalar_type scalar_type;
// alocators:
field_nonlinear_expr (const RawExpr& raw_expr)
: _raw_expr(raw_expr) {}
// accessors:
static const space_constant::valued_type valued_hint = RawExpr::valued_hint;
space_constant::valued_type valued_tag() const { return _raw_expr.valued_tag(); }
void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& hat_x) const {
_raw_expr.initialize (omega, hat_x);
}
bool initialize (const space_basic<float_type,memory_type>& Xh) const {
return _raw_expr.initialize (Xh);
}
template<class Result>
void evaluate (const geo_element& K, std::vector<Result>& value) const {
_raw_expr.evaluate (K, value);
}
void evaluate_on_side (const geo_element& K, const side_information_type& sid, std::vector<result_type>& value) const {
_raw_expr.evaluate_on_side (K, sid, value);
}
template<class Result>
void valued_check() const {
_raw_expr.valued_check<Result>();
}
protected:
// data:
RawExpr _raw_expr;
};
// ---------------------------------------------------------------------------
// 2) unary function call: (f expr)
// ---------------------------------------------------------------------------
template<class UnaryFunction, class Expr>
class field_nonlinear_expr_uf {
public:
// typedefs:
typedef geo_element::size_type size_type;
typedef typename Expr::memory_type memory_type;
typedef typename details::generic_unary_traits<UnaryFunction>::template result_hint<typename Expr::result_type>::type
result_type;
typedef result_type value_type;
typedef typename scalar_traits<value_type>::type scalar_type;
typedef typename float_traits<value_type>::type float_type;
typedef field_nonlinear_expr_uf<UnaryFunction,Expr> self_type;
// alocators:
field_nonlinear_expr_uf (const UnaryFunction& f, const field_nonlinear_expr<Expr>& expr)
: _f(f), _expr(expr) {}
// accessors:
static const space_constant::valued_type valued_hint = space_constant::valued_tag_traits<result_type>::value;
space_constant::valued_type valued_tag() const {
return details::generic_unary_traits<UnaryFunction>::valued_tag (_expr.valued_tag());
}
// initializators:
void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& hat_x) const {
_expr.initialize (omega, hat_x);
}
bool initialize (const space_basic<float_type,memory_type>& Xh) const {
return _expr.initialize (Xh);
}
// evaluator:
template<class Result, class Arg, class Status>
struct evaluate_call_check {
void operator() (const self_type& obj, const geo_element& K, std::vector<Result>& value) const {
fatal_macro ("invalid type resolution: Result="<<typename_macro(Result)
<< ", Arg="<<typename_macro(Arg)
<< ", UnaryFunction="<<typename_macro(UnaryFunction)
);
}
};
template<class Result, class Arg>
struct evaluate_call_check<Result,Arg,mpl::true_> {
void operator() (const self_type& obj, const geo_element& K, std::vector<Result>& value) const {
std::vector<Arg> tmp_value;
obj._expr.evaluate (K, tmp_value);
value.resize(tmp_value.size());
typename std::vector<Arg>::const_iterator tmp = tmp_value.begin();
for (typename std::vector<Result>::iterator
iter = value.begin(),
last = value.end(); iter != last; ++iter, ++tmp) {
*iter = obj._f(*tmp);
}
}
};
template<class Result, class Arg>
void evaluate_call (const geo_element& K, std::vector<Result>& value) const {
typedef typename details::generic_unary_traits<UnaryFunction>::template hint<Arg,Result>::result_type result_type;
typedef typename mpl::and_<
typename details::is_equal<Result,result_type>::type
,typename mpl::not_<typename details::is_error<Arg>::type>::type
>::type
status_t;
evaluate_call_check<Result,Arg,status_t> eval;
eval (*this, K, value);
}
// when arg is known at run-time:
template<class This, class Result, class Arg, space_constant::valued_type ArgTag>
struct evaluate_switch {
void evaluate (const This& obj, const geo_element& K, std::vector<Result>& value) const {
typedef typename scalar_traits<Arg>::type T;
space_constant::valued_type arg_valued_tag = obj._expr.valued_tag();
switch (arg_valued_tag) {
case space_constant::scalar:
obj.template evaluate_call<Result,T> (K, value); break;
case space_constant::vector:
obj.template evaluate_call<Result, point_basic<T> > (K, value); break;
case space_constant::tensor:
case space_constant::unsymmetric_tensor:
obj.template evaluate_call<Result, tensor_basic<T> > (K, value); break;
default: { error_macro ("unexpected valued tag="<<arg_valued_tag); }
}
}
};
// when arg is known at compile-time:
template<class This, class Result, class Arg>
struct evaluate_switch <This, Result, Arg, space_constant::scalar> {
typedef typename scalar_traits<Arg>::type T;
void evaluate (const This& obj, const geo_element& K, std::vector<Result>& value) const {
obj.template evaluate_call<Result,T> (K, value);
}
};
template<class This, class Result, class Arg>
struct evaluate_switch <This, Result, Arg, space_constant::vector> {
typedef typename scalar_traits<Arg>::type T;
void evaluate (const This& obj, const geo_element& K, std::vector<Result>& value) const {
obj.template evaluate_call<Result, point_basic<T> > (K, value);
}
};
template<class This, class Result, class Arg>
struct evaluate_switch <This, Result, Arg, space_constant::tensor> {
typedef typename scalar_traits<Arg>::type T;
void evaluate (const This& obj, const geo_element& K, std::vector<Result>& value) const {
obj.template evaluate_call<Result, tensor_basic<T> > (K, value);
}
};
template<class Result>
void evaluate (const geo_element& K, std::vector<Result>& value) const
{
typedef typename details::generic_unary_traits<UnaryFunction>::template hint<typename Expr::value_type,Result>::argument_type
A1;
typedef field_nonlinear_expr_uf<UnaryFunction, Expr> This;
static const space_constant::valued_type argument_tag = space_constant::valued_tag_traits<A1>::value;
evaluate_switch <This, Result, A1, argument_tag> helper;
helper.evaluate (*this, K, value);
}
template<class Result>
void evaluate_on_side (const geo_element& K, const side_information_type& sid, std::vector<Result>& value) const {
// TODO: group with evaluate
fatal_macro ("uf::evaluate_on_side: not yet");
}
template<class Result>
void valued_check() const {
typedef typename details::generic_unary_traits<UnaryFunction>::template hint<typename Expr::value_type,Result>::argument_type
A1;
if (! is_undeterminated<A1>::value) _expr.valued_check<A1>();
}
protected:
// data:
UnaryFunction _f;
field_nonlinear_expr<Expr> _expr;
};
// ---------------------------------------------------------------------------
// 3) binary function call: (f expr1 expr2)
// ---------------------------------------------------------------------------
template<class BinaryFunction, class Expr1, class Expr2>
class field_nonlinear_expr_bf {
public:
// typedefs:
typedef geo_element::size_type size_type;
typedef typename details::generic_binary_traits<BinaryFunction>::template result_hint<typename Expr1::result_type,typename Expr2::result_type>::type result_type;
typedef result_type value_type;
typedef typename scalar_traits<value_type>::type scalar_type;
typedef typename float_traits<value_type>::type float_type;
typedef typename Expr1::memory_type memory_type;
// alocators:
field_nonlinear_expr_bf (const BinaryFunction& f,
const Expr1& expr1,
const Expr2& expr2)
: _f(f), _expr1(expr1), _expr2(expr2)
{
}
// accessors:
static const space_constant::valued_type valued_hint = space_constant::valued_tag_traits<result_type>::value;
space_constant::valued_type valued_tag() const {
return details::generic_binary_traits<BinaryFunction>::valued_tag(_expr1.valued_tag(), _expr2.valued_tag());
}
// initializers:
void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& hat_x) const
{
_expr1.initialize (omega, hat_x);
_expr2.initialize (omega, hat_x);
}
bool initialize (const space_basic<float_type,memory_type>& Xh) const {
bool is_homogeneous1 = _expr1.initialize (Xh);
bool is_homogeneous2 = _expr2.initialize (Xh);
return is_homogeneous1 && is_homogeneous2;
}
// evaluators:
template<class Result, class Arg1, class Arg2>
void evaluate_internal2 (const geo_element& K, std::vector<Result>& value) const {
#ifdef TO_CLEAN
_check<Result,Arg1,Arg2> ();
#endif // TO_CLEAN
std::vector<Arg1> tmp1_value;
std::vector<Arg2> tmp2_value;
_expr1.evaluate (K, tmp1_value);
_expr2.evaluate (K, tmp2_value);
value.resize(tmp1_value.size());
typename std::vector<Arg1>::const_iterator tmp1 = tmp1_value.begin();
typename std::vector<Arg2>::const_iterator tmp2 = tmp2_value.begin();
for (typename std::vector<Result>::iterator
iter = value.begin(),
last = value.end(); iter != last; ++iter, ++tmp1, ++tmp2) {
*iter = _f (*tmp1, *tmp2);
}
}
template<class This, class Result, class ReturnType, class Arg1, class Arg2>
struct evaluate_internal {
void operator() (const This& obj, const geo_element& K, std::vector<Result>& value) const {
fatal_macro ("unexpected return type "
<< pretty_typename_macro(ReturnType) << ": "
<< pretty_typename_macro(Result) << " was expected for function "
<< pretty_typename_macro(BinaryFunction) << "("
<< pretty_typename_macro(Arg1) << ","
<< pretty_typename_macro(Arg2) << ")");
}
};
template<class This, class Result, class Arg1, class Arg2>
struct evaluate_internal<This,Result,Result,Arg1,Arg2> {
void operator() (const This& obj, const geo_element& K, std::vector<Result>& value) const {
obj.template evaluate_internal2 <Result,Arg1,Arg2> (K, value);
}
};
template<class Result, class Arg1, class Arg2>
void evaluate_call (const geo_element& K, std::vector<Result>& value) const {
typedef typename details::generic_binary_traits<BinaryFunction>::template result_hint<Arg1,Arg2>::type ReturnType;
typedef field_nonlinear_expr_bf<BinaryFunction, Expr1, Expr2> This;
evaluate_internal<This,Result,ReturnType,Arg1,Arg2> eval_int;
eval_int (*this, K, value);
}
// when both args are defined at compile time:
template<class This, class Result,
class Arg1, space_constant::valued_type Arg1Tag,
class Arg2, space_constant::valued_type Arg2Tag>
struct evaluate_switch {
void operator() (const This& obj, const geo_element& K, std::vector<Result>& value) const {
obj.template evaluate_call<Result, Arg1, Arg2> (K, value);
}
};
// when both args are undefined at compile time:
template<class This, class Result,
class Arg1,
class Arg2>
struct evaluate_switch<This, Result,
Arg1, space_constant::last_valued,
Arg2, space_constant::last_valued> {
void operator() (const This& obj, const geo_element& K, std::vector<Result>& value) const {
typedef typename scalar_traits<Arg1>::type T1;
typedef typename scalar_traits<Arg2>::type T2;
space_constant::valued_type arg1_valued_tag = obj._expr1.valued_tag();
space_constant::valued_type arg2_valued_tag = obj._expr2.valued_tag();
switch (arg1_valued_tag) {
case space_constant::scalar: {
switch (arg2_valued_tag) {
case space_constant::scalar:
obj.template evaluate_call<Result, T1, T2> (K, value); break;
case space_constant::vector:
obj.template evaluate_call<Result, T1, point_basic<T2> > (K, value); break;
case space_constant::tensor:
case space_constant::unsymmetric_tensor:
obj.template evaluate_call<Result, T1, tensor_basic<T2> > (K, value); break;
case space_constant::tensor3:
obj.template evaluate_call<Result, T1, tensor3_basic<T2> > (K, value); break;
default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
}
break;
}
case space_constant::vector: {
switch (arg2_valued_tag) {
case space_constant::scalar:
obj.template evaluate_call<Result, point_basic<T1>, T2> (K, value); break;
case space_constant::vector:
obj.template evaluate_call<Result, point_basic<T1>, point_basic<T2> > (K, value); break;
case space_constant::tensor:
case space_constant::unsymmetric_tensor:
obj.template evaluate_call<Result, point_basic<T1>, tensor_basic<T2> > (K, value); break;
case space_constant::tensor3:
obj.template evaluate_call<Result, point_basic<T1>, tensor3_basic<T2> > (K, value); break;
default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
}
break;
}
case space_constant::tensor:
case space_constant::unsymmetric_tensor: {
switch (arg2_valued_tag) {
case space_constant::scalar:
obj.template evaluate_call<Result, tensor_basic<T1>, T2> (K, value); break;
case space_constant::vector:
obj.template evaluate_call<Result, tensor_basic<T1>, point_basic<T2> > (K, value); break;
case space_constant::tensor:
case space_constant::unsymmetric_tensor:
obj.template evaluate_call<Result, tensor_basic<T1>, tensor_basic<T2> > (K, value); break;
case space_constant::tensor3:
obj.template evaluate_call<Result, tensor_basic<T1>, tensor3_basic<T2> > (K, value); break;
default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
}
break;
}
case space_constant::tensor3: {
switch (arg2_valued_tag) {
case space_constant::scalar:
obj.template evaluate_call<Result, tensor3_basic<T1>, T2> (K, value); break;
case space_constant::vector:
obj.template evaluate_call<Result, tensor3_basic<T1>, point_basic<T2> > (K, value); break;
case space_constant::tensor:
case space_constant::unsymmetric_tensor:
obj.template evaluate_call<Result, tensor3_basic<T1>, tensor_basic<T2> > (K, value); break;
case space_constant::tensor3:
obj.template evaluate_call<Result, tensor3_basic<T1>, tensor3_basic<T2> > (K, value); break;
default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
}
break;
}
default: error_macro ("unexpected first argument valued tag="<<arg1_valued_tag);
}
}
};
// when only first arg is defined at compile time:
template<class This, class Result,
class Arg1, space_constant::valued_type Arg1Tag,
class Arg2>
struct evaluate_switch<This, Result,
Arg1, Arg1Tag,
Arg2, space_constant::last_valued> {
void operator() (const This& obj, const geo_element& K, std::vector<Result>& value) const {
typedef typename scalar_traits<Arg2>::type T2;
space_constant::valued_type arg2_valued_tag = obj._expr2.valued_tag();
switch (arg2_valued_tag) {
case space_constant::scalar:
obj.template evaluate_call<Result, Arg1, T2> (K, value); break;
case space_constant::vector:
obj.template evaluate_call<Result, Arg1, point_basic<T2> > (K, value); break;
case space_constant::tensor:
case space_constant::unsymmetric_tensor:
obj.template evaluate_call<Result, Arg1, tensor_basic<T2> > (K, value); break;
case space_constant::tensor3:
obj.template evaluate_call<Result, Arg1, tensor3_basic<T2> > (K, value); break;
default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
}
}
};
// when only second arg is defined at compile time:
template<class This, class Result,
class Arg1,
class Arg2, space_constant::valued_type Arg2Tag>
struct evaluate_switch<This, Result,
Arg1, space_constant::last_valued,
Arg2, Arg2Tag> {
void operator() (const This& obj, const geo_element& K, std::vector<Result>& value) const {
typedef typename scalar_traits<Arg1>::type T1;
space_constant::valued_type arg1_valued_tag = obj._expr1.valued_tag();
switch (arg1_valued_tag) {
case space_constant::scalar:
obj.template evaluate_call<Result, T1, Arg2> (K, value); break;
case space_constant::vector:
obj.template evaluate_call<Result, point_basic<T1>, Arg2> (K, value); break;
case space_constant::tensor:
case space_constant::unsymmetric_tensor:
obj.template evaluate_call<Result, tensor_basic<T1>, Arg2> (K, value); break;
case space_constant::tensor3:
obj.template evaluate_call<Result, tensor3_basic<T1>, Arg2> (K, value); break;
default: error_macro ("unexpected first argument valued tag="<<arg1_valued_tag);
}
}
};
template<class Result>
void evaluate (const geo_element& K, std::vector<Result>& value) const
{
typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
typename Expr1::value_type
,typename Expr2::value_type
,Result>::first_argument_type A1;
typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
typename Expr1::value_type
,typename Expr2::value_type
,Result>::second_argument_type A2;
static const space_constant::valued_type first_argument_tag = space_constant::valued_tag_traits<A1>::value;
static const space_constant::valued_type second_argument_tag = space_constant::valued_tag_traits<A2>::value;
typedef field_nonlinear_expr_bf<BinaryFunction, Expr1, Expr2> This;
evaluate_switch <This, Result, A1, first_argument_tag, A2, second_argument_tag> eval;
eval (*this, K, value);
}
template<class Result>
void valued_check() const {
typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
typename Expr1::value_type
,typename Expr2::value_type
,Result>::first_argument_type A1;
typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
typename Expr1::value_type
,typename Expr2::value_type
,Result>::second_argument_type A2;
if (! is_undeterminated<A1>::value) _expr1.valued_check<A1>();
if (! is_undeterminated<A2>::value) _expr2.valued_check<A2>();
}
protected:
// data:
BinaryFunction _f;
Expr1 _expr1;
Expr2 _expr2;
};
// ----------------------------------------------------------------------------
// 4) jump of a field
// ----------------------------------------------------------------------------
template<class Expr>
class field_nonlinear_expr_dg {
public:
// typedefs:
typedef geo_element::size_type size_type;
typedef typename Expr::memory_type memory_type;
typedef typename Expr::result_type result_type;
typedef typename Expr::value_type value_type;
typedef typename Expr::scalar_type scalar_type;
typedef typename Expr::float_type float_type;
// alocators:
field_nonlinear_expr_dg (const Expr& expr, const float_type& c0, const float_type& c1);
// accessors:
static const space_constant::valued_type valued_hint = Expr::valued_hint;
space_constant::valued_type valued_tag() const { return _expr0.valued_tag(); }
void initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& quad) const;
bool initialize (const space_basic<float_type,memory_type>& Xh) const;
template<class ValueType>
void evaluate (const geo_element& K, std::vector<ValueType>& value) const;
template<class ValueType>
void valued_check() const;
// data:
protected:
Expr _expr0, _expr1;
float_type _c0, _c1;
mutable geo_basic<float_type,memory_type> _omega;
};
template<class Expr>
inline
field_nonlinear_expr_dg<Expr>::field_nonlinear_expr_dg (
const Expr& expr,
const float_type& c0,
const float_type& c1)
: _expr0(expr), _expr1(expr),
_c0(c0), _c1(c1),
_omega()
{
}
template<class Expr>
inline
void
field_nonlinear_expr_dg<Expr>::initialize (
const geo_basic<float_type,memory_type>& side_dom,
const quadrature<float_type>& quad) const
{
_expr0.initialize (side_dom, quad);
_expr1.initialize (side_dom, quad);
_omega = side_dom.get_background_geo();
}
template<class Expr>
inline
bool
field_nonlinear_expr_dg<Expr>::initialize (
const space_basic<float_type,memory_type>& Xh) const
{
_expr0.initialize (Xh);
_expr1.initialize (Xh);
_omega = Xh.get_geo().get_background_geo();
return true;
}
template<class Expr>
template<class ValueType>
inline
void
field_nonlinear_expr_dg<Expr>::valued_check() const
{
space_constant::valued_type valued_tag = space_constant::valued_tag_traits<ValueType>::value;
check_macro (_expr0.valued_tag() == valued_tag,
"unexpected "<< space_constant::valued_name(_expr0.valued_tag())
<< "-valued field while a " << space_constant::valued_name(valued_tag)
<< "-valued one is expected in expression");
}
template<class Expr>
template<class Result>
void
field_nonlinear_expr_dg<Expr>::evaluate (
const geo_element& K,
std::vector<Result>& value) const
{
size_type L_map_d = K.dimension() + 1;
size_type L_dis_ie0, L_dis_ie1;
side_information_type sid0, sid1;
L_dis_ie0 = K.master(0);
L_dis_ie1 = K.master(1);
check_macro (L_dis_ie0 != std::numeric_limits<size_type>::max(),
"unexpected isolated mesh side K="<<K);
if (L_dis_ie1 == std::numeric_limits<size_type>::max()) {
// K is a boundary side
const geo_element& L0 = _omega.dis_get_geo_element (L_map_d, L_dis_ie0);
L0.get_side_informations (K, sid0);
_expr0.evaluate_on_side (L0, sid0, value);
// average (i.e. _c0==0.5): fix it on the boundary where c0=1 : average(v)=v on the boundary
Float c0 = (_c0 != 0.5) ? _c0 : 1;
for (size_type loc_idof = 0, loc_ndof = value.size(); loc_idof < loc_ndof; ++loc_idof) {
value[loc_idof] = c0*value[loc_idof];
}
return;
}
// K is an internal side
std::vector<Result> value1;
const geo_element& L0 = _omega.dis_get_geo_element (L_map_d, L_dis_ie0);
const geo_element& L1 = _omega.dis_get_geo_element (L_map_d, L_dis_ie1);
L0.get_side_informations (K, sid0);
L1.get_side_informations (K, sid1);
_expr0.evaluate_on_side (L0, sid0, value);
_expr1.evaluate_on_side (L1, sid1, value1);
for (size_type loc_idof = 0, loc_ndof = value.size(); loc_idof < loc_ndof; ++loc_idof) {
value[loc_idof] = _c0*value[loc_idof] + _c1*value1[loc_idof];
}
}
} // namespace rheolef
#endif // _RHEOLEF_FIELD_nONLINEAR_EXPR_H
|