/usr/include/rheolef/gauss_lobatto_jacobi.icc is in librheolef-dev 6.5-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | /// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/// lexer for qmg mesh files
/// =========================================================================
#include "rheolef/gamma.h"
#include "rheolef/jacobi.h"
#include "rheolef/jacobi_roots.h"
#include <iterator>
template <class Size, class OutputIterator1, class OutputIterator2>
void gauss_lobatto_jacobi (Size R,
typename std::iterator_traits<OutputIterator1>::value_type alpha,
typename std::iterator_traits<OutputIterator1>::value_type beta,
OutputIterator1 zeta, OutputIterator2 omega)
{
typedef typename std::iterator_traits<OutputIterator1>::value_type T;
check_macro (R >= 2, "gauss_lobatto_jacobi: node number " << R << " may be >= 2");
T num = pow(T(2), alpha+beta+1)/T(R-1);
T w0 = pow(T(2), alpha+beta+1)*(beta+1);
T wf = pow(T(2), alpha+beta+1)*(alpha+1);
if (alpha == T(int(alpha)) && beta == T(int(beta))) {
num *= T(R)/((alpha+T(R))*(beta+T(R)));
w0 *= 1/(T(R-1)*(alpha+T(R)));
wf *= 1/(T(R-1)*(beta+T(R)));
for (Size k = 1; k <= size_t(int(beta)); k++) {
num *= T(R+k)/(alpha+T(R+k));
w0 *= T(sqr(k))/(T(R-1+k)*(alpha+T(R+k)));
}
for (Size k = 1; k <= size_t(int(alpha)); k++) {
wf *= T(sqr(k))/(T(R-1+k)*(beta+T(R+k)));
}
} else {
num *= (my_gamma(alpha+T(R))/my_gamma(alpha+beta+T(R)+1))
*(my_gamma(beta+T(R))/my_gamma(T(R)));
w0 *= (my_gamma(alpha+T(R))/my_gamma(alpha+beta+T(R)+1))
*(sqr(my_gamma(beta+1))*my_gamma(T(R-1))/my_gamma(beta+T(R)));
wf *= (my_gamma(beta+T(R))/my_gamma(alpha+beta+T(R)+1))
*(sqr(my_gamma(alpha+1))*my_gamma(T(R-1))/my_gamma(alpha+T(R)));
}
zeta [0] = -1;
omega[0] = w0;
jacobi_roots (R-2, alpha+1, beta+1, zeta+1);
jacobi<T> P1 (R-1, alpha, beta);
for (Size r = 1; r < R-1; ++r)
omega[r] = num/sqr(P1(zeta[r]));
zeta [R-1] = 1;
omega[R-1] = wf;
}
|