This file is indexed.

/usr/include/rheolef/interpolate.h is in librheolef-dev 6.5-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
#ifndef _RHEOLEF_INTERPOLATE_H
#define _RHEOLEF_INTERPOLATE_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================
// 
// interpolation
//
#include "rheolef/field.h"
#include "rheolef/field_nonlinear_expr.h"
namespace rheolef {

// --------------------------------------------------------------------------
// interpolate a general nonlinear expression
// --------------------------------------------------------------------------
// function template partial specialization is not allowed --> class-function
template<class T, class M, class Expr, class Result, class Status = typename details::is_equal<Result,typename Expr::value_type>::type>
struct interpolate_internal_check {
  field_basic<T,M>
  operator() (
    const space_basic<T,M>&           Xh,
    const field_nonlinear_expr<Expr>& expr) const
{
  trace_macro ("Expr="<<pretty_typename_macro(Expr));
  trace_macro ("Result="<<typename_macro(Result));
  trace_macro ("Status="<<typename_macro(Status));
  trace_macro ("Expr::value_type="<<typename_macro(typename Expr::value_type));
  fatal_macro ("invalid type resolution");
  return field_basic<T,M>();
}};
// scalar-valued result field
template<class T, class M, class Expr>
struct interpolate_internal_check<T,M,Expr,T,mpl::true_> {
  field_basic<T,M>
  operator() (
    const space_basic<T,M>&           Xh,
    const field_nonlinear_expr<Expr>& expr) const
{
  typedef typename field_basic<T,M>::size_type size_type;
  bool is_homogeneous = expr.initialize (Xh);
  expr.template valued_check<T>();
  trace_macro ("is_homogeneous: " << is_homogeneous);
  const geo_basic<T,M>& omega = Xh.get_geo();
  field_basic<T,M> uh (Xh, std::numeric_limits<T>::max());
  typename field_basic<T,M>::iterator random_iter_uh = uh.begin_dof();
  std::vector<size_type> dis_idof;
  distributor ownership = Xh.ownership();
  size_type first_dis_idof = ownership.first_index();
  check_macro (Xh.valued_tag() == space_constant::scalar,
	"interpolate: invalid "<<Xh.valued()<<"-valued space and scalar function");
  std::vector<T> value;
  for (typename geo_basic<T,M>::const_iterator
        iter_ie = omega.begin(),
        last_ie = omega.end(); iter_ie != last_ie; ++iter_ie) {
    const geo_element& K = *iter_ie;
    expr.evaluate (K, value);
    Xh.dis_idof   (K, dis_idof);
    for (size_type loc_idof = 0, loc_ndof = dis_idof.size(); loc_idof < loc_ndof; ++loc_idof) {
      if (! ownership.is_owned (dis_idof [loc_idof])) continue;
      size_type idof = dis_idof [loc_idof] - first_dis_idof;
      random_iter_uh [idof] = value [loc_idof];
    }
  }
  return uh;
}};
// vector-valued case
template<class T, class M, class Expr>
struct interpolate_internal_check<T,M,Expr,point_basic<T>,mpl::true_> {
  field_basic<T,M>
  operator() (
    const space_basic<T,M>&           Xh,
    const field_nonlinear_expr<Expr>& expr) const
{
  typedef typename field_basic<T,M>::size_type size_type;
  bool is_homogeneous = expr.initialize (Xh);
  expr.template valued_check<point_basic<T> >();
  const geo_basic<T,M>& omega = Xh.get_geo();
  field_basic<T,M> uh (Xh, std::numeric_limits<T>::max());
  std::vector<size_type> dis_idof;
  distributor ownership = Xh.ownership();
  size_type first_dis_idof = ownership.first_index();
  typename field_basic<T,M>::iterator random_iter_uh = uh.begin_dof();
  check_macro (Xh.valued_tag() == space_constant::vector,
	"interpolate: invalid "<<Xh.valued()<<"-valued space and vector function");
  std::vector<point_basic<T> > value;
  size_type dim = Xh.get_geo().dimension();
  size_type n_comp = dim;
  for (typename geo_basic<T,M>::const_iterator
        iter_ie = omega.begin(),
        last_ie = omega.end(); iter_ie != last_ie; ++iter_ie) {
    const geo_element& K = *iter_ie;
    expr.evaluate (K, value);
    Xh.dis_idof   (K, dis_idof);
    size_type dis_ndof = dis_idof.size();
    size_type loc_comp_ndof = dis_ndof/n_comp;
    for (size_type loc_comp_idof = 0; loc_comp_idof < loc_comp_ndof; ++loc_comp_idof) {
      for (size_type i_comp = 0; i_comp < n_comp; ++i_comp) {
        size_type loc_idof = loc_comp_idof + i_comp*loc_comp_ndof;
        if (! ownership.is_owned (dis_idof [loc_idof])) continue;
        size_type idof = dis_idof [loc_idof] - first_dis_idof;
        random_iter_uh [idof] = value [loc_comp_idof][i_comp];
      }
    }
  }
  return uh;
}};
// tensor-valued case
template<class T, class M, class Expr>
struct interpolate_internal_check<T,M,Expr,tensor_basic<T>,mpl::true_> {
  field_basic<T,M>
  operator() (
    const space_basic<T,M>&           Xh,
    const field_nonlinear_expr<Expr>& expr) const
{
  typedef typename field_basic<T,M>::size_type size_type;
  bool is_homogeneous = expr.initialize (Xh);
  expr.template valued_check<tensor_basic<T> >();
  const geo_basic<T,M>& omega = Xh.get_geo();
  field_basic<T,M> uh (Xh, std::numeric_limits<T>::max());
  std::vector<size_type> dis_idof;
  distributor ownership = Xh.ownership();
  size_type first_dis_idof = ownership.first_index();
  typename field_basic<T,M>::iterator random_iter_uh = uh.begin_dof();
  check_macro (Xh.valued_tag() == space_constant::tensor ||
               Xh.valued_tag() == space_constant::unsymmetric_tensor,
	"interpolate: invalid "<<Xh.valued()<<"-valued space and vector function");
  std::vector<tensor_basic<T> > value;
  size_type dim = Xh.get_geo().dimension();
  space_constant::coordinate_type sys_coord = uh.get_geo().coordinate_system();
  size_type n_comp = space_constant::n_component (space_constant::tensor, dim, sys_coord);
  for (typename geo_basic<T,M>::const_iterator
        iter_ie = omega.begin(),
        last_ie = omega.end(); iter_ie != last_ie; ++iter_ie) {
    const geo_element& K = *iter_ie;
    expr.evaluate (K, value);
    Xh.dis_idof   (K, dis_idof);
    size_type loc_ndof = dis_idof.size();
    size_type loc_comp_ndof = loc_ndof/n_comp;
    for (size_type loc_comp_idof = 0; loc_comp_idof < loc_comp_ndof; ++loc_comp_idof) {
      for (size_type ij_comp = 0; ij_comp < n_comp; ++ij_comp) {
        size_type loc_idof = loc_comp_idof + ij_comp*loc_comp_ndof;
        if (! ownership.is_owned (dis_idof [loc_idof])) continue;
        size_type idof = dis_idof [loc_idof] - first_dis_idof;
        std::pair<size_type,size_type> ij
          = space_constant::tensor_subscript (space_constant::tensor, sys_coord, ij_comp);
        random_iter_uh [idof] = value [loc_comp_idof](ij.first, ij.second);
      }
    }
  }
  return uh;
}};
template<class T, class M, class Expr, class Status>
struct interpolate_internal_check<T,M,Expr,undeterminated_basic<T>,Status> {
  field_basic<T,M>
  operator() (
    const space_basic<T,M>&           Xh,
    const field_nonlinear_expr<Expr>& expr) const 
{
  switch (expr.valued_tag()) {
    case space_constant::scalar: {
	interpolate_internal_check<T,M,Expr,T,mpl::true_> eval;
	return eval (Xh, expr);
    }
    case space_constant::vector: {
	interpolate_internal_check<T,M,Expr,point_basic<T>,mpl::true_> eval;
	return eval (Xh, expr);
    }
    case space_constant::tensor:
    case space_constant::unsymmetric_tensor: {
	interpolate_internal_check<T,M,Expr,tensor_basic<T>,mpl::true_> eval;
	return eval (Xh, expr);
    }
    default:
        warning_macro ("Expr="<<pretty_typename_macro(Expr));
        warning_macro ("Status="<<typename_macro(Status));
        error_macro ("unexpected `"
	<< space_constant::valued_name (expr.valued_tag())
        << "' valued expression");
        return field_basic<T,M>();
  }
}};
template<class T, class M, class Expr, class Result>
field_basic<T,M>
interpolate_internal (
    const space_basic<T,M>&           Xh,
    const field_nonlinear_expr<Expr>& expr)
{
  interpolate_internal_check<T,M,Expr,Result> eval;
  return eval (Xh,expr);
}
// undeterminated-valued case
template<class T, class M, class Expr>
field_basic<T,M>
interpolate (const space_basic<T,M>& Xh, const field_nonlinear_expr<Expr>& expr)
{
  typedef typename Expr::value_type result_t;
  return interpolate_internal<T,M,Expr,result_t> (Xh, expr);
}
// --------------------------------------------------------------------------
// implementation details of the interpolate() function
// --------------------------------------------------------------------------
namespace details {

template <class T, class M, class Function>
field_basic<T,M>
interpolate_tag (const space_basic<T,M>& Xh, const Function& f, const T&)
{
  check_macro (Xh.valued_tag() == space_constant::scalar,
	"interpolate: invalid "<<Xh.valued()<<"-valued " <<Xh.stamp()
	<< " space and scalar function");
  typedef typename space_basic<T,M>::size_type size_type;
  field_basic<T,M> u (Xh, std::numeric_limits<T>::max());
  for (size_type idof = 0, ndof = Xh.ndof(); idof < ndof; idof++) {
    u.dof (idof) = Xh.momentum (f, idof);
  }
  return u;
}
template <class T, class M, class Function>
field_basic<T,M>
interpolate_tag (const space_basic<T,M>& Xh, const Function& f, const point_basic<T>&)
{
  check_macro (Xh.valued_tag() == space_constant::vector,
	"interpolate: invalid "<<Xh.valued()<<"-valued space and vector function");
  typedef typename space_basic<T,M>::size_type size_type;
  field_basic<T,M> u (Xh, std::numeric_limits<T>::max());
  size_type n_comp = Xh.get_geo().dimension();
  point_basic<T> value;
  for (size_type comp_idof = 0, comp_ndof = Xh.ndof()/n_comp; comp_idof < comp_ndof; comp_idof++) {
    value = Xh.vector_momentum (f, comp_idof);
    for (size_type i_comp = 0; i_comp < n_comp; i_comp++) {
      size_type idof = comp_idof + i_comp*comp_ndof;
      u.dof (idof) = value [i_comp];
    }
  }
  return u;
}
template <class T, class M, class Function>
field_basic<T,M>
interpolate_tag (const space_basic<T,M>& Xh, const Function& f, const tensor_basic<T>&)
{
  check_macro (Xh.valued_tag() == space_constant::tensor,
	"interpolate: invalid "<<Xh.valued()<<"-valued space and tensor function");
  typedef typename space_basic<T,M>::size_type size_type;
  field_basic<T,M> u (Xh, std::numeric_limits<T>::max());
  size_type d = Xh.get_geo().dimension();
  space_constant::coordinate_type sys_coord = Xh.get_geo().coordinate_system();
  size_type n_comp = space_constant::n_component (space_constant::tensor, d, sys_coord);
  tensor_basic<T> value;
  for (size_type comp_idof = 0, comp_ndof = Xh.ndof()/n_comp; comp_idof < comp_ndof; comp_idof++) {
    value = Xh.tensor_momentum (f, comp_idof);
    for (size_type ij_comp = 0; ij_comp < n_comp; ij_comp++) {
      size_type idof = comp_idof + ij_comp*comp_ndof;
      std::pair<size_type,size_type> ij
          = space_constant::tensor_subscript (space_constant::tensor, sys_coord, ij_comp);
      u.dof (idof) = value (ij.first, ij.second);
    }
  }
  return u;
}

} // namespace details

// --------------------------------------------------------------------------
// interface of the interpolate() function
// --------------------------------------------------------------------------

/*Class:interpolate
NAME: @code{interpolate} - Lagrange interpolation of a function
@findex  interpolate
@clindex space
@clindex field

DESCRIPTION:
 The function @code{interpolation} implements the
 Lagrange interpolation of a function or a class-function.
SYNOPSYS:
 template <class Function>
 field interpolate (const space& Xh, const Function& f);
EXAMPLE:
@noindent
 The following code compute the Lagrange interpolation
 @code{pi_h_u} of u(x).
@example
  Float u(const point& x);
  ...
  geo omega("square");
  space Xh (omega, "P1");
  field pi_h_u = interpolate (Xh, u);
@end example
ADVANCED EXAMPLE:
  It is possible the replace the function @code{u} 
  by a variable of the @code{field} type that represents
  a picewise polynomial function: this invocation allows
  the reinterpolation of a field on another mesh or with
  another approximation.
@example
  geo omega2 ("square2");
  space X2h (omega2, "P1");
  field uh2 = interpolate (X2h, pi_h_u);
@end example
End: */
//<interpolate:
// TODO: un peu general... utiliser des specialisation des classes-fonctions:
//	function<Float(const point&)>
//	function<point(const point&)>
//	function<tensor(const point&)>
template <class T, class M, class Function>
inline
field_basic<T,M>
interpolate (const space_basic<T,M>& Xh, const Function& f)
//>interpolate:
{
  typedef typename Function::result_type  result_t;
  return details::interpolate_tag (Xh, f, result_t());
}
// specialization for scalar-valued functions:
template <class T, class M>
inline
field_basic<T,M>
interpolate (const space_basic<T,M>& Xh, T (*f)(const point_basic<T>&))
{
  return details::interpolate_tag (Xh, f, T());
}
// specialization for vector-valued functions:
template <class T, class M>
inline
field_basic<T,M>
interpolate (const space_basic<T,M>& Xh, point_basic<T> (*f)(const point_basic<T>&))
{
  return details::interpolate_tag (Xh, f, point_basic<T>());
}
// specialization for re-interpoltion of fields (change of mesh, of approx, ect):
template<class T, class M>
field_basic<T,M>
interpolate (const space_basic<T,M>& X2h, const field_basic<T,M>& u1h);

}// namespace rheolef
#endif // _RHEOLEF_INTERPOLATE_H