/usr/include/rheolef/pminres.h is in librheolef-dev 6.5-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | # ifndef _SKIT_PMINRES_H
# define _SKIT_PMINRES_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
#include "rheolef/diststream.h"
namespace rheolef {
/*D:pminres
NAME: @code{pminres} -- conjugate gradient algorithm.
@findex pminres
@cindex conjugate gradient algorithm
@cindex iterative solver
@cindex preconditioner
SYNOPSIS:
@example
template <class Matrix, class Vector, class Preconditioner, class Real>
int pminres (const Matrix &A, Vector &x, const Vector &b, const Preconditioner &M,
int &max_iter, Real &tol, odiststream *p_derr=0);
@end example
EXAMPLE:
@noindent
The simplest call to 'pminres' has the folling form:
@example
size_t max_iter = 100;
double tol = 1e-7;
int status = pminres(a, x, b, EYE, max_iter, tol, &derr);
@end example
DESCRIPTION:
@noindent
@code{pminres} solves the symmetric positive definite linear
system Ax=b using the Conjugate Gradient method.
@noindent
The return value indicates convergence within max_iter (input)
iterations (0), or no convergence within max_iter iterations (1).
Upon successful return, output arguments have the following values:
@table @code
@item x
approximate solution to Ax = b
@item max_iter
the number of iterations performed before the tolerance was reached
@item tol
the residual after the final iteration
@end table
NOTE:
@noindent
@code{pminres} follows the algorithm described in
"Solution of sparse indefinite systems of linear equations", C. C. Paige
and M. A. Saunders, SIAM J. Numer. Anal., 12(4), 1975.
For more, see http://www.stanford.edu/group/SOL/software.html and also the
PhD "Iterative methods for singular linear equations and least-squares problems",
S.-C. T. Choi, Stanford University, 2006,
http://www.stanford.edu/group/SOL/dissertations/sou-cheng-choi-thesis.pdf at page 60.
@noindent
The present implementation style is inspired from @code{IML++ 1.2} iterative method library,
@url{http://math.nist.gov/iml++}.
AUTHOR:
Pierre Saramito
| Pierre.Saramito@imag.fr
LJK-IMAG, 38041 Grenoble cedex 9, France
DATE:
22 april 2009
METHODS: @pminres
End:
*/
//<pminres:
template <class Matrix, class Vector, class Preconditioner, class Real, class Size>
int pminres(const Matrix &A, Vector &x, const Vector &Mb, const Preconditioner &M,
Size &max_iter, Real &tol, odiststream *p_derr = 0, std::string label = "minres")
{
Vector b = M.solve(Mb);
Real norm_b = sqrt(fabs(dot(Mb,b)));
if (norm_b == Real(0.)) norm_b = 1;
Vector Mr = Mb - A*x;
Vector z = M.solve(Mr);
Real beta2 = dot(Mr, z);
Real norm_r = sqrt(fabs(beta2));
if (p_derr) (*p_derr) << "[" << label << "] #iteration residue" << std::endl;
if (p_derr) (*p_derr) << "[" << label << "] 0 " << norm_r/norm_b << std::endl;
if (beta2 < 0 || norm_r <= tol*norm_b) {
tol = norm_r/norm_b;
max_iter = 0;
dis_warning_macro ("beta2 = " << beta2 << " < 0: stop");
return 0;
}
Real beta = sqrt(beta2);
Real eta = beta;
Vector Mv = Mr/beta;
Vector u = z/beta;
Real c_old = 1.;
Real s_old = 0.;
Real c = 1.;
Real s = 0.;
Vector u_old (x.ownership(), 0.);
Vector Mv_old (x.ownership(), 0.);
Vector w (x.ownership(), 0.);
Vector w_old (x.ownership(), 0.);
Vector w_old2 (x.ownership(), 0.);
for (Size n = 1; n <= max_iter; n++) {
// Lanczos
Mr = A*u;
z = M.solve(Mr);
Real alpha = dot(Mr, u);
Mr = Mr - alpha*Mv - beta*Mv_old;
z = z - alpha*u - beta*u_old;
beta2 = dot(Mr, z);
if (beta2 < 0) {
dis_warning_macro ("pminres: machine precision problem");
tol = norm_r/norm_b;
max_iter = n;
return 2;
}
Real beta_old = beta;
beta = sqrt(beta2);
// QR factorisation
Real c_old2 = c_old;
Real s_old2 = s_old;
c_old = c;
s_old = s;
Real rho0 = c_old*alpha - c_old2*s_old*beta_old;
Real rho2 = s_old*alpha + c_old2*c_old*beta_old;
Real rho1 = sqrt(sqr(rho0) + sqr(beta));
Real rho3 = s_old2 * beta_old;
// Givens rotation
c = rho0 / rho1;
s = beta / rho1;
// update
w_old2 = w_old;
w_old = w;
w = (u - rho2*w_old - rho3*w_old2)/rho1;
x += c*eta*w;
eta = -s*eta;
Mv_old = Mv;
u_old = u;
Mv = Mr/beta;
u = z/beta;
// check residue
norm_r *= s;
if (p_derr) (*p_derr) << "[" << label << "] " << n << " " << norm_r/norm_b << std::endl;
if (norm_r <= tol*norm_b) {
tol = norm_r/norm_b;
max_iter = n;
return 0;
}
}
tol = norm_r/norm_b;
return 1;
}
//>pminres:
}// namespace rheolef
# endif // _SKIT_PMINRES_H
|