This file is indexed.

/usr/include/root/Math/GSLMultiRootFinder.h is in libroot-math-mathmore-dev 5.34.14-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
// @(#)root/mathmore:$Id$
// Author: L. Moneta  03/2011

 /**********************************************************************
  *                                                                    *
  * Copyright (c) 2004 ROOT Foundation,  CERN/PH-SFT                   *
  *                                                                    *
  * This library is free software; you can redistribute it and/or      *
  * modify it under the terms of the GNU General Public License        *
  * as published by the Free Software Foundation; either version 2     *
  * of the License, or (at your option) any later version.             *
  *                                                                    *
  * This library is distributed in the hope that it will be useful,    *
  * but WITHOUT ANY WARRANTY; without even the implied warranty of     *
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU   *
  * General Public License for more details.                           *
  *                                                                    *
  * You should have received a copy of the GNU General Public License  *
  * along with this library (see file COPYING); if not, write          *
  * to the Free Software Foundation, Inc., 59 Temple Place, Suite      *
  * 330, Boston, MA 02111-1307 USA, or contact the author.             *
  *                                                                    *
  **********************************************************************/

// Header file for class GSLMultiRootFinder
// 

#ifndef ROOT_Math_GSLMultiRootFinder
#define ROOT_Math_GSLMultiRootFinder



#ifndef ROOT_Math_IFunction
#include "Math/IFunction.h"
#endif

#ifndef ROOT_Math_WrappedFunction
#include "Math/WrappedFunction.h"
#endif

#include <vector>

#include <iostream>

namespace ROOT {
namespace Math {


   class GSLMultiRootBaseSolver; 



//________________________________________________________________________________________________________
  /**
     Class for  Multidimensional root finding algorithms bassed on GSL. This class is used to solve a
     non-linear system of equations:

     f1(x1,....xn) = 0
     f2(x1,....xn) = 0
     ..................
     fn(x1,....xn) = 0

     See the GSL <A HREF="http://www.gnu.org/software/gsl/manual/html_node/Multidimensional-Root_002dFinding.html"> online manual</A> for 
     information on the GSL MultiRoot finding algorithms

     The available GSL algorithms require the derivatives of the supplied functions or not (they are
     computed internally by GSL). In the first case the user needs to provide a list of multidimensional functions implementing the 
     gradient interface (ROOT::Math::IMultiGradFunction) while in the second case it is enough to supply a list of
     functions impelmenting the ROOT::Math::IMultiGenFunction interface.  
     The available algorithms requiring derivatives (see also the GSL  
     <A HREF="http://www.gnu.org/software/gsl/manual/html_node/Algorithms-using-Derivatives.html">documentation</A> )
     are the followings: 
     <ul>
         <li><tt>ROOT::Math::GSLMultiRootFinder::kHybridSJ</tt>  with name <it>"HybridSJ"</it>: modified Powell's hybrid
     method as implemented in HYBRJ in MINPACK  
         <li><tt>ROOT::Math::GSLMultiRootFinder::kHybridJ</tt>  with name <it>"HybridJ"</it>: unscaled version of the
     previous algorithm</li>
         <li><tt>ROOT::Math::GSLMultiRootFinder::kNewton</tt>  with name <it>"Newton"</it>: Newton method </li>
         <li><tt>ROOT::Math::GSLMultiRootFinder::kGNewton</tt>  with name <it>"GNewton"</it>: modified Newton method </li>
     </ul>
     The algorithms without derivatives (see also the GSL  
     <A HREF="http://www.gnu.org/software/gsl/manual/html_node/Algorithms-without-Derivatives.html">documentation</A> )
     are the followings: 
     <ul>
         <li><tt>ROOT::Math::GSLMultiRootFinder::kHybridS</tt>  with name <it>"HybridS"</it>: same as HybridSJ but using
     finate difference approximation for the derivatives</li> 
         <li><tt>ROOT::Math::GSLMultiRootFinder::kHybrid</tt>  with name <it>"Hybrid"</it>: unscaled version of the
     previous algorithm</li>
         <li><tt>ROOT::Math::GSLMultiRootFinder::kDNewton</tt>  with name <it>"DNewton"</it>: discrete Newton algorithm </li>
         <li><tt>ROOT::Math::GSLMultiRootFinder::kBroyden</tt>  with name <it>"Broyden"</it>: Broyden algorithm </li>
     </ul>

     @ingroup MultiRoot
  */


 class GSLMultiRootFinder {
     
 public: 

   /**
      enumeration specifying the types of GSL multi root finders
      requiring the derivatives
      @ingroup MultiRoot
   */
    enum EDerivType { 
       kHybridSJ, 
       kHybridJ, 
       kNewton, 
       kGNewton
    };
    /**
       enumeration specifying the types of GSL multi root finders
       which do not require the derivatives
       @ingroup MultiRoot
    */
    enum EType { 
       kHybridS, 
       kHybrid, 
       kDNewton, 
       kBroyden
    };



    /// create a multi-root finder based on an algorithm not requiring function derivative
    GSLMultiRootFinder(EType type); 

    /// create a multi-root finder based on an algorithm requiring function derivative
    GSLMultiRootFinder(EDerivType type); 

    /*
      create a multi-root finder using a string. 
      The names are those defined in the GSL manuals
      after having remived the GSL prefix (gsl_multiroot_fsolver).
      Default algorithm  is "hybrids" (without derivative). 
    */ 
    GSLMultiRootFinder(const char * name = 0); 

    /// destructor
    virtual ~GSLMultiRootFinder(); 
     
 private:
    // usually copying is non trivial, so we make this unaccessible
    GSLMultiRootFinder(const GSLMultiRootFinder &); 
    GSLMultiRootFinder & operator = (const GSLMultiRootFinder &); 
     
 public: 

    /// set the type for an algorithm without derivatives 
    void SetType(EType type) { 
       fType = type; fUseDerivAlgo = false; 
    }

    /// set the type of algorithm using derivatives 
    void SetType(EDerivType type) { 
       fType = type; fUseDerivAlgo = true; 
    }

    /// set the type using a string
    void SetType(const char * name);

    /* 
       add the list of functions f1(x1,..xn),...fn(x1,...xn). The list must contain pointers of  
       ROOT::Math::IMultiGenFunctions. The method requires the 
       the begin and end of the list iterator.
       The list can be any stl container or a simple array of  ROOT::Math::IMultiGenFunctions* or 
       whatever implementing an iterator.
       If using a derivative type algorithm the function pointers must implement the 
       ROOOT::Math::IMultiGradFunction interface
    */
    template<class FuncIterator>
    bool SetFunctionList( FuncIterator begin, FuncIterator end) { 
       bool ret = true; 
       for (FuncIterator itr = begin; itr != end; ++itr) { 
          const ROOT::Math::IMultiGenFunction * f = *itr;          
          ret &= AddFunction( *f);
       }
       return ret;
    }

    /*
      add (set) a single function fi(x1,...xn) which is part of the system of 
       specifying the begin and end of the iterator. 
       If using a derivative type algorithm the function must implement the 
       ROOOT::Math::IMultiGradFunction interface
       Return the current number of function in the list and 0 if failed to add the function
     */
    int AddFunction( const ROOT::Math::IMultiGenFunction & func); 

    /// same method as before but using any function implementing 
    /// the operator(), so can be wrapped in a IMultiGenFunction interface
    template <class Function> 
    int AddFunction( Function & f, int ndim) { 
       // no need to care about lifetime of wfunc. It will be cloned inside AddFunction
       WrappedMultiFunction<Function &> wfunc(f, ndim); 
       return AddFunction(wfunc);
    }

    /**
       return the number of sunctions set in the class. 
       The number must be equal to the dimension of the functions
     */
    unsigned  int Dim() const { return fFunctions.size(); } 

    /// clear list of functions
    void Clear(); 

    /// return the root X values solving the system 
    const double * X() const; 

    /// return the function values f(X) solving the system 
    /// i.e. they must be close to zero at the solution
    const double * FVal() const; 

    /// return the last step size 
    const double * Dx() const; 


    /**
       Find the root starting from the point X;
       Use the number of iteration and tolerance if given otherwise use 
       default parameter values which can be defined by 
       the static method SetDefault...
    */
    bool Solve(const double * x,  int maxIter = 0, double absTol = 0, double relTol = 0); 

    /// Return number of iterations
    int Iterations() const {
       return fIter; 
    }

    /// Return the status of last root finding
    int Status() const { return fStatus; }

    /// Return the algorithm name 
    const char * Name() const;  

    /* 
       set print level
       level = 0  quiet (no messages print) 
             = 1  print only the result 
             = 3  max debug. Print result at each iteration
    */             
    void SetPrintLevel(int level) { fPrintLevel = level; }

    /// return the print level 
    int PrintLevel() const { return fPrintLevel; }


    //-- static methods to set configurations 

    /// set tolerance (absolute and relative)
    /// relative tolerance is only use to verify the convergence 
    /// do it is a minor parameter
    static void SetDefaultTolerance(double abstol, double reltol = 0 );

    /// set maximum number of iterations
    static void SetDefaultMaxIterations(int maxiter);

    /// print iteration state
    void PrintState(std::ostream & os = std::cout);

     
 protected:
     
    // return type given a name
    std::pair<bool,int> GetType(const char * name); 
    // clear list of functions 
    void ClearFunctions(); 

         
 private: 

    int fIter;           // current numer of iterations
    int fStatus;         // current status 
    int fPrintLevel;     // print level 

    // int fMaxIter;        // max number of iterations
    // double fAbsTolerance;  // absolute tolerance
    // double fRelTolerance;  // relative tolerance 
    int fType;            // type of algorithm 
    bool fUseDerivAlgo; // algorithm using derivative
     
    GSLMultiRootBaseSolver * fSolver; 
    std::vector<ROOT::Math::IMultiGenFunction *> fFunctions;   //! transient Vector of the functions 


 }; 

   // use typedef for most sensible name 
   typedef GSLMultiRootFinder MultiRootFinder; 

} // namespace Math
} // namespace ROOT


#endif /* ROOT_Math_GSLMultiRootFinder */