This file is indexed.

/usr/include/root/Math/GSLNLSMinimizer.h is in libroot-math-mathmore-dev 5.34.14-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
// @(#)root/mathmore:$Id$
// Author: L. Moneta Wed Dec 20 17:16:32 2006

/**********************************************************************
 *                                                                    *
 * Copyright (c) 2006  LCG ROOT Math Team, CERN/PH-SFT                *
 *                                                                    *
 * This library is free software; you can redistribute it and/or      *
 * modify it under the terms of the GNU General Public License        *
 * as published by the Free Software Foundation; either version 2     *
 * of the License, or (at your option) any later version.             *
 *                                                                    *
 * This library is distributed in the hope that it will be useful,    *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of     *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU   *
 * General Public License for more details.                           *
 *                                                                    *
 * You should have received a copy of the GNU General Public License  *
 * along with this library (see file COPYING); if not, write          *
 * to the Free Software Foundation, Inc., 59 Temple Place, Suite      *
 * 330, Boston, MA 02111-1307 USA, or contact the author.             *
 *                                                                    *
 **********************************************************************/

// Header file for class GSLNLSMinimizer

#ifndef ROOT_Math_GSLNLSMinimizer
#define ROOT_Math_GSLNLSMinimizer



#ifndef ROOT_Math_Minimizer
#include "Math/Minimizer.h"
#endif


#ifndef ROOT_Math_IFunctionfwd
#include "Math/IFunctionfwd.h"
#endif

#ifndef ROOT_Math_IParamFunctionfwd
#include "Math/IParamFunctionfwd.h"
#endif

#ifndef ROOT_Math_FitMethodFunction
#include "Math/FitMethodFunction.h"
#endif

#ifndef ROOT_Math_MinimizerVariable
#include "Math/MinimizerVariable.h"
#endif


#include <vector>
#include <map>
#include <string>

namespace ROOT { 

   namespace Math { 

      class GSLMultiFit; 


//________________________________________________________________________________
/** 
    LSResidualFunc class description. 
    Internal class used for accessing the residuals of the Least Square function
    and their derivates which are estimated numerically using GSL numerical derivation. 
    The class contains a pointer to the fit method function and an index specifying 
    the i-th residual and wraps it in a multi-dim gradient function interface
    ROOT::Math::IGradientFunctionMultiDim. 
    The class is used by ROOT::Math::GSLNLSMinimizer (GSL non linear least square fitter)

    @ingroup MultiMin
*/
class LSResidualFunc : public IMultiGradFunction { 
public: 

   //default ctor (required by CINT) 
   LSResidualFunc() : fIndex(0), fChi2(0)
   {}


   LSResidualFunc(const ROOT::Math::FitMethodFunction & func, unsigned int i) : 
      fIndex(i), 
      fChi2(&func), 
      fX2(std::vector<double>(func.NDim() ) )
   {}


   // copy ctor
   LSResidualFunc(const LSResidualFunc & rhs) :
      IMultiGenFunction(), 
      IMultiGradFunction() 
   { 
      operator=(rhs);
   } 

   // assignment
   LSResidualFunc & operator= (const LSResidualFunc & rhs) 
   { 
      fIndex = rhs.fIndex;
      fChi2 = rhs.fChi2; 
      fX2 = rhs.fX2;
      return *this;
   } 

   IMultiGenFunction * Clone() const { 
      return new LSResidualFunc(*fChi2,fIndex); 
   }

   unsigned int NDim() const { return fChi2->NDim(); }

   void Gradient( const double * x, double * g) const { 
      double f0 = 0; 
      FdF(x,f0,g);
   }

   void FdF (const double * x, double & f, double * g) const { 
      unsigned int n = NDim(); 
      std::copy(x,x+n,fX2.begin());
      const double kEps = 1.0E-4;
      f = DoEval(x); 
      for (unsigned int i = 0; i < n; ++i) { 
         fX2[i] += kEps;
         g[i] =  ( DoEval(&fX2.front()) - f )/kEps;
         fX2[i] = x[i];
      }
   } 
   

private: 

   double DoEval (const double * x) const { 
      return fChi2->DataElement(x, fIndex);
   }
   
   double DoDerivative(const double * x, unsigned int icoord) const { 
      //return  ROOT::Math::Derivator::Eval(*this, x, icoord, 1E-8);
      std::copy(x,x+NDim(),fX2.begin());
      const double kEps = 1.0E-4;
      fX2[icoord] += kEps;
      return ( DoEval(&fX2.front()) - DoEval(x) )/kEps;
   }

   unsigned int fIndex; 
   const ROOT::Math::FitMethodFunction * fChi2; 
   mutable std::vector<double> fX2;  // cached vector
};


//_____________________________________________________________________________________________________
/** 
   GSLNLSMinimizer class for Non Linear Least Square fitting
   It Uses the Levemberg-Marquardt algorithm from 
   <A HREF="http://www.gnu.org/software/gsl/manual/html_node/Nonlinear-Least_002dSquares-Fitting.html">
   GSL Non Linear Least Square fitting</A>.

   @ingroup MultiMin
*/ 
class GSLNLSMinimizer : public  ROOT::Math::Minimizer {

public: 

   /** 
      Default constructor
   */ 
   GSLNLSMinimizer (int type = 0); 

   /** 
      Destructor (no operations)
   */ 
   ~GSLNLSMinimizer ();  

private:
   // usually copying is non trivial, so we make this unaccessible

   /** 
      Copy constructor
   */ 
   GSLNLSMinimizer(const GSLNLSMinimizer &) : ROOT::Math::Minimizer() {} 

   /** 
      Assignment operator
   */ 
   GSLNLSMinimizer & operator = (const GSLNLSMinimizer & rhs)  {
      if (this == &rhs) return *this;  // time saving self-test
      return *this;
   }

public: 

   /// set the function to minimize
   virtual void SetFunction(const ROOT::Math::IMultiGenFunction & func); 

   /// set gradient the function to minimize
   virtual void SetFunction(const ROOT::Math::IMultiGradFunction & func); 

   /// set free variable 
   virtual bool SetVariable(unsigned int ivar, const std::string & name, double val, double step); 

   /// set lower limited variable 
   virtual bool SetLowerLimitedVariable(unsigned int  ivar , const std::string & name , double val , double step , double lower );
   /// set upper limited variable
   virtual bool SetUpperLimitedVariable(unsigned int ivar , const std::string & name , double val , double step , double upper ); 
   /// set upper/lower limited variable 
   virtual bool SetLimitedVariable(unsigned int ivar , const std::string & name , double val , double step , double lower , double upper ); 
   /// set fixed variable
   virtual bool SetFixedVariable(unsigned int ivar , const std::string & name , double val );  

   /// set the value of an existing variable 
   virtual bool SetVariableValue(unsigned int ivar, double val );
   /// set the values of all existing variables (array must be dimensioned to the size of existing parameters)
   virtual bool SetVariableValues(const double * x);

   /// method to perform the minimization
   virtual  bool Minimize(); 

   /// return minimum function value
   virtual double MinValue() const { return fMinVal; } 

   /// return expected distance reached from the minimum
   virtual double Edm() const { return fEdm; } // not impl. }

   /// return  pointer to X values at the minimum 
   virtual const double *  X() const { return &fValues.front(); } 

   /// return pointer to gradient values at the minimum 
   virtual const double *  MinGradient() const; 

   /// number of function calls to reach the minimum 
   virtual unsigned int NCalls() const { return (fObjFunc) ? fObjFunc->NCalls() : 0; } 

   /// this is <= Function().NDim() which is the total 
   /// number of variables (free+ constrained ones) 
   virtual unsigned int NDim() const { return fDim; }   

   /// number of free variables (real dimension of the problem) 
   /// this is <= Function().NDim() which is the total 
   virtual unsigned int NFree() const { return fNFree; }  

   /// minimizer provides error and error matrix
   virtual bool ProvidesError() const { return true; } 

   /// return errors at the minimum 
   virtual const double * Errors() const { return (fErrors.size() > 0) ? &fErrors.front() : 0; }
//  { 
//       static std::vector<double> err; 
//       err.resize(fDim);
//       return &err.front(); 
//    }

   /** return covariance matrices elements 
       if the variable is fixed the matrix is zero
       The ordering of the variables is the same as in errors
   */ 
   virtual double CovMatrix(unsigned int , unsigned int ) const;

   /// return covariance matrix status
   virtual int CovMatrixStatus() const;

protected: 

private: 
   

   unsigned int fDim;        // dimension of the function to be minimized 
   unsigned int fNFree;      // dimension of the internal function to be minimized 
   unsigned int fSize;        // number of fit points (residuals)
 

   ROOT::Math::GSLMultiFit * fGSLMultiFit;        // pointer to GSL multi fit solver 
   const ROOT::Math::FitMethodFunction * fObjFunc;      // pointer to Least square function
   
   double fMinVal;                                // minimum function value
   double fEdm;                                   // edm value
   double fLSTolerance;                           // Line Search Tolerance
   std::vector<double> fValues;           
   std::vector<double> fErrors;
   std::vector<double> fCovMatrix;              //  cov matrix (stored as cov[ i * dim + j] 
   std::vector<double> fSteps;
   std::vector<std::string> fNames;
   std::vector<LSResidualFunc> fResiduals;   //! transient Vector of the residual functions

   std::vector<ROOT::Math::EMinimVariableType> fVarTypes;  // vector specifyng the type of variables
   std::map< unsigned int, std::pair<double, double> > fBounds; // map specifying the bound using as key the parameter index


}; 

   } // end namespace Math

} // end namespace ROOT


#endif /* ROOT_Math_GSLNLSMinimizer */