This file is indexed.

/usr/include/root/Math/Vavilov.h is in libroot-math-mathmore-dev 5.34.14-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
// @(#)root/mathmore:$Id$
// Authors: B. List 29.4.2010

 /**********************************************************************
  *                                                                    *
  * Copyright (c) 2004 ROOT Foundation,  CERN/PH-SFT                   *
  *                                                                    *
  * This library is free software; you can redistribute it and/or      *
  * modify it under the terms of the GNU General Public License        *
  * as published by the Free Software Foundation; either version 2     *
  * of the License, or (at your option) any later version.             *
  *                                                                    *
  * This library is distributed in the hope that it will be useful,    *
  * but WITHOUT ANY WARRANTY; without even the implied warranty of     *
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU   *
  * General Public License for more details.                           *
  *                                                                    *
  * You should have received a copy of the GNU General Public License  *
  * along with this library (see file COPYING); if not, write          *
  * to the Free Software Foundation, Inc., 59 Temple Place, Suite      *
  * 330, Boston, MA 02111-1307 USA, or contact the author.             *
  *                                                                    *
  **********************************************************************/

// Header file for class Vavilov
// 
// Created by: blist  at Thu Apr 29 11:19:00 2010
// 
// Last update: Thu Apr 29 11:19:00 2010
// 
#ifndef ROOT_Math_Vavilov
#define ROOT_Math_Vavilov



/**
   @ingroup StatFunc
 */


#include <iostream>

namespace ROOT {
namespace Math {

//____________________________________________________________________________
/**
   Base class describing a Vavilov distribution
   
   The Vavilov distribution is defined in
   P.V. Vavilov: Ionization losses of high-energy heavy particles,
   Sov. Phys. JETP 5 (1957) 749 [Zh. Eksp. Teor. Fiz. 32 (1957) 920].
   
   The probability density function of the Vavilov distribution 
   as function of Landau's parameter is given by:
  \f[ p(\lambda_L; \kappa, \beta^2) =  
  \frac{1}{2 \pi i}\int_{c-i\infty}^{c+i\infty} \phi(s) e^{\lambda_L s} ds\f]
   where \f$\phi(s) = e^{C} e^{\psi(s)}\f$
   with  \f$ C = \kappa (1+\beta^2 \gamma )\f$
   and \f$\psi(s)= s \ln \kappa + (s+\beta^2 \kappa)
               \cdot \left ( \int \limits_{0}^{1}
               \frac{1 - e^{\frac{-st}{\kappa}}}{t} \,d t- \gamma \right )
               - \kappa \, e^{\frac{-s}{\kappa}}\f$.
   \f$ \gamma = 0.5772156649\dots\f$ is Euler's constant.
   
   For the class Vavilov, 
   Pdf returns the Vavilov distribution as function of Landau's parameter
   \f$\lambda_L = \lambda_V/\kappa  - \ln \kappa\f$,
   which is the convention used in the CERNLIB routines, and in the tables
   by S.M. Seltzer and M.J. Berger: Energy loss stragglin of protons and mesons:
   Tabulation of the Vavilov distribution, pp 187-203
   in: National Research Council (U.S.), Committee on Nuclear Science:
   Studies in penetration of charged particles in matter,
   Nat. Akad. Sci. Publication 1133,
   Nucl. Sci. Series Report No. 39,
   Washington (Nat. Akad. Sci.) 1964, 388 pp.
   Available from
   <A HREF="http://books.google.de/books?id=kmMrAAAAYAAJ&lpg=PP9&pg=PA187#v=onepage&q&f=false">Google books</A>

   Therefore, for small values of \f$\kappa < 0.01\f$,
   pdf approaches the Landau distribution.  
    
   For values \f$\kappa > 10\f$, the Gauss approximation should be used
   with \f$\mu\f$ and \f$\sigma\f$ given by Vavilov::Mean(kappa, beta2)
   and sqrt(Vavilov::Variance(kappa, beta2).
   
   The original Vavilov pdf is obtained by
   v.Pdf(lambdaV/kappa-log(kappa))/kappa.
   
   Two subclasses are provided:
   - VavilovFast uses the algorithm by 
   A. Rotondi and P. Montagna, Fast calculation of Vavilov distribution, 
   <A HREF="http://dx.doi.org/10.1016/0168-583X(90)90749-K">Nucl. Instr. and Meth. B47 (1990) 215-224</A>,
   which has been implemented in 
   <A HREF="http://wwwasdoc.web.cern.ch/wwwasdoc/shortwrupsdir/g115/top.html">
   CERNLIB (G115)</A>.
    
   - VavilovAccurate uses the algorithm by
   B. Schorr, Programs for the Landau and the Vavilov distributions and the corresponding random numbers, 
   <A HREF="http://dx.doi.org/10.1016/0010-4655(74)90091-5">Computer Phys. Comm. 7 (1974) 215-224</A>,
   which has been implemented in 
   <A HREF="http://wwwasdoc.web.cern.ch/wwwasdoc/shortwrupsdir/g116/top.html">
   CERNLIB (G116)</A>.
   
   Both subclasses store coefficients needed to calculate \f$p(\lambda; \kappa, \beta^2)\f$
   for fixed values of \f$\kappa\f$ and \f$\beta^2\f$.
   Changing these values is computationally expensive.
   
   VavilovFast is about 5 times faster for the calculation of the Pdf than VavilovAccurate;
   initialization takes about 100 times longer than calculation of the Pdf value.
   For the quantile calculation, VavilovFast
   is 30 times faster for the initialization, and 6 times faster for 
   subsequent calculations. Initialization for Quantile takes
   27 (11) times longer than subsequent calls for VavilovFast (VavilovAccurate).

   @ingroup StatFunc
   
   */
   

class Vavilov {

public: 


   /**
     Default constructor
   */
   Vavilov();

   /**
     Destructor
   */
   virtual ~Vavilov(); 
   
public: 
  
   /** 
       Evaluate the Vavilov probability density function
       
       @param x The Landau parameter \f$x = \lambda_L\f$ 
       
   */
   virtual double Pdf (double x) const = 0;
  
   /** 
       Evaluate the Vavilov probability density function,
       and set kappa and beta2, if necessary
       
       @param x The Landau parameter \f$x = \lambda_L\f$ 
       @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
   */
   virtual double Pdf (double x, double kappa, double beta2) = 0;
  
   /** 
       Evaluate the Vavilov cummulative probability density function
       
       @param x The Landau parameter \f$x = \lambda_L\f$ 
   */
   virtual double Cdf (double x) const = 0;
 
   /** 
       Evaluate the Vavilov cummulative probability density function,
       and set kappa and beta2, if necessary
       
       @param x The Landau parameter \f$x = \lambda_L\f$ 
       @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
   */
   virtual double Cdf (double x, double kappa, double beta2) = 0;
   
   /** 
       Evaluate the Vavilov complementary cummulative probability density function
       
       @param x The Landau parameter \f$x = \lambda_L\f$ 
   */
   virtual double Cdf_c (double x) const = 0;
   
   /** 
       Evaluate the Vavilov complementary cummulative probability density function,
       and set kappa and beta2, if necessary
       
       @param x The Landau parameter \f$x = \lambda_L\f$ 
       @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
   */
   virtual double Cdf_c (double x, double kappa, double beta2) = 0;
  
   /** 
       Evaluate the inverse of the Vavilov cummulative probability density function
       
       @param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$
   */
   virtual double Quantile (double z) const = 0;
  
   /** 
       Evaluate the inverse of the Vavilov cummulative probability density function,
       and set kappa and beta2, if necessary
       
       @param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$
       @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
   */
   virtual double Quantile (double z, double kappa, double beta2) = 0;
  
   /** 
       Evaluate the inverse of the complementary Vavilov cummulative probability density function
       
       @param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$
   */
   virtual double Quantile_c (double z) const = 0;
  
   /** 
       Evaluate the inverse of the complementary Vavilov cummulative probability density function,
       and set kappa and beta2, if necessary
       
       @param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$
       @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
   */
   virtual double Quantile_c (double z, double kappa, double beta2) = 0;

   /**
      Change \f$\kappa\f$ and \f$\beta^2\f$ and recalculate coefficients if necessary

       @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
   */
   virtual void SetKappaBeta2 (double kappa, double beta2) = 0; 

   /**
      Return the minimum value of \f$\lambda\f$ for which \f$p(\lambda; \kappa, \beta^2)\f$
      is nonzero in the current approximation
   */
   virtual double GetLambdaMin() const = 0;

   /**
      Return the maximum value of \f$\lambda\f$ for which \f$p(\lambda; \kappa, \beta^2)\f$
      is nonzero in the current approximation
   */
   virtual double GetLambdaMax() const = 0;

   /**
      Return the current value of \f$\kappa\f$
   */
   virtual double GetKappa()     const = 0;

   /**
      Return the current value of \f$\beta^2\f$
   */
   virtual double GetBeta2()     const = 0;

   /**
      Return the value of \f$\lambda\f$ where the pdf is maximal
   */
   virtual double Mode() const;
 
   /**
      Return the value of \f$\lambda\f$ where the pdf is maximal function,
       and set kappa and beta2, if necessary

       @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
   */
   virtual double Mode(double kappa, double beta2);

   /**
      Return the theoretical mean \f$\mu = \gamma-1- \ln \kappa - \beta^2\f$,
      where \f$\gamma = 0.5772\dots\f$ is Euler's constant
   */
   virtual double Mean() const;

   /**
      Return the theoretical variance \f$\sigma^2 = \frac{1 - \beta^2/2}{\kappa}\f$
   */
   virtual double Variance() const;

   /**
      Return the theoretical skewness
      \f$\gamma_1 = \frac{1/2 - \beta^2/3}{\kappa^2 \sigma^3} \f$
   */
   virtual double Skewness() const;

   /**
      Return the theoretical kurtosis
      \f$\gamma_2 = \frac{1/3 - \beta^2/4}{\kappa^3 \sigma^4}\f$
   */
   virtual double Kurtosis() const;
    
   /**
      Return the theoretical Mean \f$\mu = \gamma-1- \ln \kappa - \beta^2\f$

       @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
   */
   static double Mean(double kappa, double beta2);
 
   /**
      Return the theoretical Variance \f$\sigma^2 = \frac{1 - \beta^2/2}{\kappa}\f$

       @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
   */
   static double Variance(double kappa, double beta2);
 
   /**
      Return the theoretical skewness
      \f$\gamma_1 = \frac{1/2 - \beta^2/3}{\kappa^2 \sigma^3} \f$

       @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
   */
   static double Skewness(double kappa, double beta2);
 
   /**
      Return the theoretical kurtosis
      \f$\gamma_2 = \frac{1/3 - \beta^2/4}{\kappa^3 \sigma^4}\f$

       @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ 
       @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ 
   */
   static double Kurtosis(double kappa, double beta2);
     
                
}; 

} // namespace Math
} // namespace ROOT

#endif /* ROOT_Math_Vavilov */