This file is indexed.

/usr/include/root/Math/VavilovAccurateQuantile.h is in libroot-math-mathmore-dev 5.34.14-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
// @(#)root/mathmore:$Id$
// Authors: B. List 29.4.2010

 /**********************************************************************
  *                                                                    *
  * Copyright (c) 2004 ROOT Foundation,  CERN/PH-SFT                   *
  *                                                                    *
  * This library is free software; you can redistribute it and/or      *
  * modify it under the terms of the GNU General Public License        *
  * as published by the Free Software Foundation; either version 2     *
  * of the License, or (at your option) any later version.             *
  *                                                                    *
  * This library is distributed in the hope that it will be useful,    *
  * but WITHOUT ANY WARRANTY; without even the implied warranty of     *
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU   *
  * General Public License for more details.                           *
  *                                                                    *
  * You should have received a copy of the GNU General Public License  *
  * along with this library (see file COPYING); if not, write          *
  * to the Free Software Foundation, Inc., 59 Temple Place, Suite      *
  * 330, Boston, MA 02111-1307 USA, or contact the author.             *
  *                                                                    *
  **********************************************************************/

// Header file for class VavilovAccurateQuantile
// 
// Created by: blist  at Thu Apr 29 11:19:00 2010
// 
// Last update: Thu Apr 29 11:19:00 2010
// 
#ifndef ROOT_Math_VavilovAccurateQuantile
#define ROOT_Math_VavilovAccurateQuantile


#include "Math/IParamFunction.h"
#include "Math/VavilovAccurate.h"

#include <memory>

namespace ROOT {
namespace Math {

//____________________________________________________________________________
/**
   Class describing the Vavilov quantile function.
   
   The probability density function of the Vavilov distribution
   is given by:
  \f[ p(\lambda; \kappa, \beta^2) =  
  \frac{1}{2 \pi i}\int_{c-i\infty}^{c+i\infty} \phi(s) e^{\lambda s} ds\f]
   where \f$\phi(s) = e^{C} e^{\psi(s)}\f$
   with  \f$ C = \kappa (1+\beta^2 \gamma )\f$
   and \f$\psi(s)&=& s \ln \kappa + (s+\beta^2 \kappa)
               \cdot \left ( \int \limits_{0}^{1}
               \frac{1 - e^{\frac{-st}{\kappa}}}{t} \,\der t- \gamma \right )
               - \kappa \, e^{\frac{-s}{\kappa}}\f$.
   \f$ \gamma = 0.5772156649\dots\f$ is Euler's constant.
   
   The parameters are:
   - 0: Norm: Normalization constant
   - 1: x0:   Location parameter
   - 2: xi:   Width parameter
   - 3: kappa: Parameter \f$\kappa\f$ of the Vavilov distribution
   - 4: beta2: Parameter \f$\beta^2\f$ of the Vavilov distribution
   
   Benno List, June 2010
       
     
   @ingroup StatFunc
 */


class VavilovAccurateQuantile: public IParametricFunctionOneDim {
   public:

      /**
         Default constructor
      */
      VavilovAccurateQuantile();
      
      /**
         Constructor with parameter values
         @param p vector of doubles containing the parameter values (Norm, x0, xi, kappa, beta2). 
      */
      VavilovAccurateQuantile(const double *p);
      
      /**
         Destructor
      */
      virtual ~VavilovAccurateQuantile ();
      
      /**
         Access the parameter values
      */
      virtual const double * Parameters() const;

      /**
         Set the parameter values
         @param p vector of doubles containing the parameter values (Norm, x0, xi, kappa, beta2). 

      */
      virtual void SetParameters(const double * p );
       
      /**
         Return the number of Parameters
      */
      virtual unsigned int NPar() const;

      /**
         Return the name of the i-th parameter (starting from zero)
       */
      virtual std::string ParameterName(unsigned int i) const;
            
      /**
         Evaluate the function

       @param x The Quantile \f$z\f$ , \f$0 \le z \le 1\f$ 
       */
      virtual double DoEval(double x) const;
   
      /**
         Evaluate the function, using parameters p

       @param x The Quantile \f$z\f$, \f$0 \le z \le 1\f$ 
         @param p vector of doubles containing the parameter values (Norm, x0, xi, kappa, beta2). 
       */
      virtual double DoEvalPar(double x, const double * p) const;
   
      /**
         Return a clone of the object
       */
      virtual IBaseFunctionOneDim  * Clone() const;
      
   private:
     double fP[5];    

};


} // namespace Math
} // namespace ROOT

#endif /* ROOT_Math_VavilovAccurateQuantile */