/usr/include/root/Math/SMatrix.h is in libroot-math-smatrix-dev 5.34.14-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 | // @(#)root/smatrix:$Id$
// Author: T. Glebe, L. Moneta, J. Palacios 2005
#ifndef ROOT_Math_SMatrix
#define ROOT_Math_SMatrix
/*********************************************************************************
//
// source:
//
// type: source code
//
// created: 20. Mar 2001
//
// author: Thorsten Glebe
// HERA-B Collaboration
// Max-Planck-Institut fuer Kernphysik
// Saupfercheckweg 1
// 69117 Heidelberg
// Germany
// E-mail: T.Glebe@mpi-hd.mpg.de
//
// Description: A fixed size two dimensional Matrix class
//
// changes:
// 20 Mar 2001 (TG) creation
// 21 Mar 2001 (TG) added operators +=, -=, *=, /=
// 26 Mar 2001 (TG) place_in_row(), place_in_col() added
// 02 Apr 2001 (TG) non-const Array() added
// 03 Apr 2001 (TG) invert() added
// 07 Apr 2001 (TG) CTOR from SVertex (dyadic product) added
// 09 Apr 2001 (TG) CTOR from array added
// 11 Apr 2001 (TG) rows(), cols(), size() replaced by rows, cols, size
// 25 Mai 2001 (TG) row(), col() added
// 04 Sep 2001 (TG) moved inlined functions to .icc file
// 11 Jan 2002 (TG) added operator==(), operator!=()
// 14 Jan 2002 (TG) added more operator==(), operator!=(), operator>(), operator<()
//
***************************************************************************/
// for platform specific configurations
#ifndef ROOT_Math_MnConfig
#include "Math/MConfig.h"
#endif
#include <iosfwd>
//doxygen tag
/**
@defgroup SMatrixGroup SMatrix
\ref SMatrix for high performance vector and matrix computations.
Classes representing Matrices and Vectors of arbitrary type and dimension and related functions.
For a detailed description and usage examples see:
<ul>
<li>\ref SMatrix home page
<li>\ref SVectorDoc
<li>\ref SMatrixDoc
<li>\ref MatVecFunctions
</ul>
*/
/**
@defgroup SMatrixSVector Matrix and Vector classes
@ingroup SMatrixGroup
Classes representing Matrices and Vectors of arbitrary type and dimension.
For a detailed description and usage examples see:
<ul>
<li>\ref SVectorDoc
<li>\ref SMatrixDoc
<li>\ref MatVecFunctions
</ul>
*/
#ifndef ROOT_Math_Expression
#include "Math/Expression.h"
#endif
#ifndef ROOT_Math_MatrixRepresentationsStatic
#include "Math/MatrixRepresentationsStatic.h"
#endif
namespace ROOT {
namespace Math {
template <class T, unsigned int D> class SVector;
struct SMatrixIdentity { };
//__________________________________________________________________________
/**
SMatrix: a generic fixed size D1 x D2 Matrix class.
The class is template on the scalar type, on the matrix sizes:
D1 = number of rows and D2 = number of columns
amd on the representation storage type.
By default the representation is MatRepStd<T,D1,D2> (standard D1xD2 of type T),
but it can be of type MatRepSym<T,D> for symmetric matrices DxD, where the storage is only
D*(D+1)/2.
See \ref SMatrixDoc.
Original author is Thorsten Glebe
HERA-B Collaboration, MPI Heidelberg (Germany)
@ingroup SMatrixSVector
@authors T. Glebe, L. Moneta and J. Palacios
*/
//==============================================================================
// SMatrix: column-wise storage
//==============================================================================
template <class T,
unsigned int D1,
unsigned int D2 = D1,
class R=MatRepStd<T, D1, D2> >
class SMatrix {
public:
/** @name --- Typedefs --- */
/** contained scalar type */
typedef T value_type;
/** storage representation type */
typedef R rep_type;
/** STL iterator interface. */
typedef T* iterator;
/** STL const_iterator interface. */
typedef const T* const_iterator;
/** @name --- Constructors and Assignment --- */
/**
Default constructor:
*/
SMatrix();
///
/**
construct from an identity matrix
*/
SMatrix( SMatrixIdentity );
/**
copy constructor (from a matrix of the same representation
*/
SMatrix(const SMatrix<T,D1,D2,R>& rhs);
/**
construct from a matrix with different representation.
Works only from symmetric to general and not viceversa.
*/
template <class R2>
SMatrix(const SMatrix<T,D1,D2,R2>& rhs);
/**
Construct from an expression.
In case of symmetric matrices does not work if expression is of type general
matrices. In case one needs to force the assignment from general to symmetric, one can use the
ROOT::Math::AssignSym::Evaluate function.
*/
template <class A, class R2>
SMatrix(const Expr<A,T,D1,D2,R2>& rhs);
/**
Constructor with STL iterator interface. The data will be copied into the matrix
\param begin start iterator position
\param end end iterator position
\param triang if true only the triangular lower/upper part of the matrix is filled from the iterators
\param lower if true the lower triangular part is filled
Size of the matrix must match size of the iterators, if triang is false, otherwise the size of the
triangular block. In the case of symmetric matrices triang is considered always to be true
(what-ever the user specifies) and the size of the iterators must be equal to the size of the
triangular block, which is the number of independent elements of a symmetric matrix: N*(N+1)/2
*/
template<class InputIterator>
SMatrix(InputIterator begin, InputIterator end, bool triang = false, bool lower = true);
/**
Constructor with STL iterator interface. The data will be copied into the matrix
\param begin start iterator position
\param size iterator size
\param triang if true only the triangular lower/upper part of the matrix is filled from the iterators
\param lower if true the lower triangular part is filled
Size of the iterators must not be larger than the size of the matrix representation.
In the case of symmetric matrices the size is N*(N+1)/2.
*/
template<class InputIterator>
SMatrix(InputIterator begin, unsigned int size, bool triang = false, bool lower = true);
/**
constructor of a symmetrix a matrix from a SVector containing the lower (upper)
triangular part.
*/
#ifndef UNSUPPORTED_TEMPLATE_EXPRESSION
SMatrix(const SVector<T, D1*(D2+1)/2> & v, bool lower = true );
#else
template<unsigned int N>
SMatrix(const SVector<T,N> & v, bool lower = true );
#endif
/**
Construct from a scalar value (only for size 1 matrices)
*/
explicit SMatrix(const T& rhs);
/**
Assign from another compatible matrix.
Possible Symmetirc to general but NOT vice-versa
*/
template <class M>
SMatrix<T,D1,D2,R>& operator=(const M& rhs);
/**
Assign from a matrix expression
*/
template <class A, class R2>
SMatrix<T,D1,D2,R>& operator=(const Expr<A,T,D1,D2,R2>& rhs);
/**
Assign from an identity matrix
*/
SMatrix<T,D1,D2,R> & operator=(SMatrixIdentity );
/**
Assign from a scalar value (only for size 1 matrices)
*/
SMatrix<T,D1,D2,R>& operator=(const T& rhs);
/** @name --- Matrix dimension --- */
/**
Enumeration defining the matrix dimension,
number of rows, columns and size = rows*columns)
*/
enum {
/// return no. of matrix rows
kRows = D1,
/// return no. of matrix columns
kCols = D2,
/// return no of elements: rows*columns
kSize = D1*D2
};
/** @name --- Access functions --- */
/** access the parse tree with the index starting from zero and
following the C convention for the order in accessing
the matrix elements.
Same convention for general and symmetric matrices.
*/
T apply(unsigned int i) const;
/// return read-only pointer to internal array
const T* Array() const;
/// return pointer to internal array
T* Array();
/** @name --- STL-like interface ---
The iterators access the matrix element in the order how they are
stored in memory. The C (row-major) convention is used, and in the
case of symmetric matrices the iterator spans only the lower diagonal
block. For example for a symmetric 3x3 matrices the order of the 6
elements \f${a_0,...a_5}\f$ is:
\f[
M = \left( \begin{array}{ccc}
a_0 & a_1 & a_3 \\
a_1 & a_2 & a_4 \\
a_3 & a_4 & a_5 \end{array} \right)
\f]
*/
/** STL iterator interface. */
iterator begin();
/** STL iterator interface. */
iterator end();
/** STL const_iterator interface. */
const_iterator begin() const;
/** STL const_iterator interface. */
const_iterator end() const;
/**
Set matrix elements with STL iterator interface. The data will be copied into the matrix
\param begin start iterator position
\param end end iterator position
\param triang if true only the triangular lower/upper part of the matrix is filled from the iterators
\param lower if true the lower triangular part is filled
Size of the matrix must match size of the iterators, if triang is false, otherwise the size of the
triangular block. In the case of symmetric matrices triang is considered always to be true
(what-ever the user specifies) and the size of the iterators must be equal to the size of the
triangular block, which is the number of independent elements of a symmetric matrix: N*(N+1)/2
*/
template<class InputIterator>
void SetElements(InputIterator begin, InputIterator end, bool triang = false, bool lower = true);
/**
Constructor with STL iterator interface. The data will be copied into the matrix
\param begin start iterator position
\param size iterator size
\param triang if true only the triangular lower/upper part of the matrix is filled from the iterators
\param lower if true the lower triangular part is filled
Size of the iterators must not be larger than the size of the matrix representation.
In the case of symmetric matrices the size is N*(N+1)/2.
*/
template<class InputIterator>
void SetElements(InputIterator begin, unsigned int size, bool triang = false, bool lower = true);
/** @name --- Operators --- */
/// element wise comparison
bool operator==(const T& rhs) const;
/// element wise comparison
bool operator!=(const T& rhs) const;
/// element wise comparison
template <class R2>
bool operator==(const SMatrix<T,D1,D2,R2>& rhs) const;
/// element wise comparison
bool operator!=(const SMatrix<T,D1,D2,R>& rhs) const;
/// element wise comparison
template <class A, class R2>
bool operator==(const Expr<A,T,D1,D2,R2>& rhs) const;
/// element wise comparison
template <class A, class R2>
bool operator!=(const Expr<A,T,D1,D2,R2>& rhs) const;
/// element wise comparison
bool operator>(const T& rhs) const;
/// element wise comparison
bool operator<(const T& rhs) const;
/// element wise comparison
template <class R2>
bool operator>(const SMatrix<T,D1,D2,R2>& rhs) const;
/// element wise comparison
template <class R2>
bool operator<(const SMatrix<T,D1,D2,R2>& rhs) const;
/// element wise comparison
template <class A, class R2>
bool operator>(const Expr<A,T,D1,D2,R2>& rhs) const;
/// element wise comparison
template <class A, class R2>
bool operator<(const Expr<A,T,D1,D2,R2>& rhs) const;
/**
read only access to matrix element, with indices starting from 0
*/
const T& operator()(unsigned int i, unsigned int j) const;
/**
read/write access to matrix element with indices starting from 0
*/
T& operator()(unsigned int i, unsigned int j);
/**
read only access to matrix element, with indices starting from 0.
Function will check index values and it will assert if they are wrong
*/
const T& At(unsigned int i, unsigned int j) const;
/**
read/write access to matrix element with indices starting from 0.
Function will check index values and it will assert if they are wrong
*/
T& At(unsigned int i, unsigned int j);
// helper class for implementing the m[i][j] operator
class SMatrixRow {
public:
SMatrixRow ( SMatrix<T,D1,D2,R> & rhs, unsigned int i ) :
fMat(&rhs), fRow(i)
{}
T & operator[](int j) { return (*fMat)(fRow,j); }
private:
SMatrix<T,D1,D2,R> * fMat;
unsigned int fRow;
};
class SMatrixRow_const {
public:
SMatrixRow_const ( const SMatrix<T,D1,D2,R> & rhs, unsigned int i ) :
fMat(&rhs), fRow(i)
{}
const T & operator[](int j) const { return (*fMat)(fRow, j); }
private:
const SMatrix<T,D1,D2,R> * fMat;
unsigned int fRow;
};
/**
read only access to matrix element, with indices starting from 0 : m[i][j]
*/
SMatrixRow_const operator[](unsigned int i) const { return SMatrixRow_const(*this, i); }
/**
read/write access to matrix element with indices starting from 0 : m[i][j]
*/
SMatrixRow operator[](unsigned int i) { return SMatrixRow(*this, i); }
/**
addition with a scalar
*/
SMatrix<T,D1,D2,R>&operator+=(const T& rhs);
/**
addition with another matrix of any compatible representation
*/
template <class R2>
SMatrix<T,D1,D2,R>&operator+=(const SMatrix<T,D1,D2,R2>& rhs);
/**
addition with a compatible matrix expression
*/
template <class A, class R2>
SMatrix<T,D1,D2,R>& operator+=(const Expr<A,T,D1,D2,R2>& rhs);
/**
subtraction with a scalar
*/
SMatrix<T,D1,D2,R>& operator-=(const T& rhs);
/**
subtraction with another matrix of any compatible representation
*/
template <class R2>
SMatrix<T,D1,D2,R>&operator-=(const SMatrix<T,D1,D2,R2>& rhs);
/**
subtraction with a compatible matrix expression
*/
template <class A, class R2>
SMatrix<T,D1,D2,R>& operator-=(const Expr<A,T,D1,D2,R2>& rhs);
/**
multiplication with a scalar
*/
SMatrix<T,D1,D2,R>& operator*=(const T& rhs);
#ifndef __CINT__
/**
multiplication with another compatible matrix (it is a real matrix multiplication)
Note that this operation does not avid to create a temporary to store intermidiate result
*/
template <class R2>
SMatrix<T,D1,D2,R>& operator*=(const SMatrix<T,D1,D2,R2>& rhs);
/**
multiplication with a compatible matrix expression (it is a real matrix multiplication)
*/
template <class A, class R2>
SMatrix<T,D1,D2,R>& operator*=(const Expr<A,T,D1,D2,R2>& rhs);
#endif
/**
division with a scalar
*/
SMatrix<T,D1,D2,R>& operator/=(const T& rhs);
/** @name --- Linear Algebra Functions --- */
/**
Invert a square Matrix ( this method changes the current matrix).
Return true if inversion is successfull.
The method used for general square matrices is the LU factorization taken from Dinv routine
from the CERNLIB (written in C++ from CLHEP authors)
In case of symmetric matrices Bunch-Kaufman diagonal pivoting method is used
(The implementation is the one written by the CLHEP authors)
*/
bool Invert();
/**
Invert a square Matrix and returns a new matrix. In case the inversion fails
the current matrix is returned.
\param ifail . ifail will be set to 0 when inversion is successfull.
See ROOT::Math::SMatrix::Invert for the inversion algorithm
*/
SMatrix<T,D1,D2,R> Inverse(int & ifail ) const;
/**
Fast Invertion of a square Matrix ( this method changes the current matrix).
Return true if inversion is successfull.
The method used is based on direct inversion using the Cramer rule for
matrices upto 5x5. Afterwards the same defult algorithm of Invert() is used.
Note that this method is faster but can suffer from much larger numerical accuracy
when the condition of the matrix is large
*/
bool InvertFast();
/**
Invert a square Matrix and returns a new matrix. In case the inversion fails
the current matrix is returned.
\param ifail . ifail will be set to 0 when inversion is successfull.
See ROOT::Math::SMatrix::InvertFast for the inversion algorithm
*/
SMatrix<T,D1,D2,R> InverseFast(int & ifail ) const;
/**
Invertion of a symmetric positive defined Matrix using Choleski decomposition.
( this method changes the current matrix).
Return true if inversion is successfull.
The method used is based on Choleski decomposition
A compile error is given if the matrix is not of type symmetric and a run-time failure if the
matrix is not positive defined.
For solving a linear system, it is possible to use also the function
ROOT::Math::SolveChol(matrix, vector) which will be faster than performing the inversion
*/
bool InvertChol();
/**
Invert of a symmetric positive defined Matrix using Choleski decomposition.
A compile error is given if the matrix is not of type symmetric and a run-time failure if the
matrix is not positive defined.
In case the inversion fails the current matrix is returned.
\param ifail . ifail will be set to 0 when inversion is successfull.
See ROOT::Math::SMatrix::InvertChol for the inversion algorithm
*/
SMatrix<T,D1,D2,R> InverseChol(int & ifail ) const;
/**
determinant of square Matrix via Dfact.
Return true when the calculation is successfull.
\param det will contain the calculated determinant value
\b Note: this will destroy the contents of the Matrix!
*/
bool Det(T& det);
/**
determinant of square Matrix via Dfact.
Return true when the calculation is successfull.
\param det will contain the calculated determinant value
\b Note: this will preserve the content of the Matrix!
*/
bool Det2(T& det) const;
/** @name --- Matrix Slice Functions --- */
/// place a vector in a Matrix row
template <unsigned int D>
SMatrix<T,D1,D2,R>& Place_in_row(const SVector<T,D>& rhs,
unsigned int row,
unsigned int col);
/// place a vector expression in a Matrix row
template <class A, unsigned int D>
SMatrix<T,D1,D2,R>& Place_in_row(const VecExpr<A,T,D>& rhs,
unsigned int row,
unsigned int col);
/// place a vector in a Matrix column
template <unsigned int D>
SMatrix<T,D1,D2,R>& Place_in_col(const SVector<T,D>& rhs,
unsigned int row,
unsigned int col);
/// place a vector expression in a Matrix column
template <class A, unsigned int D>
SMatrix<T,D1,D2,R>& Place_in_col(const VecExpr<A,T,D>& rhs,
unsigned int row,
unsigned int col);
/// place a matrix in this matrix
template <unsigned int D3, unsigned int D4, class R2>
SMatrix<T,D1,D2,R>& Place_at(const SMatrix<T,D3,D4,R2>& rhs,
unsigned int row,
unsigned int col);
/// place a matrix expression in this matrix
template <class A, unsigned int D3, unsigned int D4, class R2>
SMatrix<T,D1,D2,R>& Place_at(const Expr<A,T,D3,D4,R2>& rhs,
unsigned int row,
unsigned int col);
/**
return a full Matrix row as a vector (copy the content in a new vector)
*/
SVector<T,D2> Row(unsigned int therow) const;
/**
return a full Matrix column as a vector (copy the content in a new vector)
*/
SVector<T,D1> Col(unsigned int thecol) const;
/**
return a slice of therow as a vector starting at the colum value col0 until col0+N,
where N is the size of the vector (SubVector::kSize )
Condition col0+N <= D2
*/
template <class SubVector>
SubVector SubRow(unsigned int therow, unsigned int col0 = 0 ) const;
/**
return a slice of the column as a vector starting at the row value row0 until row0+Dsub.
where N is the size of the vector (SubVector::kSize )
Condition row0+N <= D1
*/
template <class SubVector>
SubVector SubCol(unsigned int thecol, unsigned int row0 = 0) const;
/**
return a submatrix with the upper left corner at the values (row0, col0) and with sizes N1, N2
where N1 and N2 are the dimension of the sub-matrix (SubMatrix::kRows and SubMatrix::kCols )
Condition row0+N1 <= D1 && col0+N2 <=D2
*/
template <class SubMatrix >
SubMatrix Sub(unsigned int row0, unsigned int col0) const;
/**
return diagonal elements of a matrix as a Vector.
It works only for squared matrices D1 == D2, otherwise it will produce a compile error
*/
SVector<T,D1> Diagonal() const;
/**
Set the diagonal elements from a Vector
Require that vector implements ::kSize since a check (statically) is done on
diagonal size == vector size
*/
template <class Vector>
void SetDiagonal(const Vector & v);
/**
return the trace of a matrix
Sum of the diagonal elements
*/
T Trace() const;
/**
return the upper Triangular block of the matrices (including the diagonal) as
a vector of sizes N = D1 * (D1 + 1)/2.
It works only for square matrices with D1==D2, otherwise it will produce a compile error
*/
#ifndef UNSUPPORTED_TEMPLATE_EXPRESSION
SVector<T, D1 * (D2 +1)/2> UpperBlock() const;
#else
template<class SubVector>
SubVector UpperBlock() const;
#endif
/**
return the lower Triangular block of the matrices (including the diagonal) as
a vector of sizes N = D1 * (D1 + 1)/2.
It works only for square matrices with D1==D2, otherwise it will produce a compile error
*/
#ifndef UNSUPPORTED_TEMPLATE_EXPRESSION
SVector<T, D1 * (D2 +1)/2> LowerBlock() const;
#else
template<class SubVector>
SubVector LowerBlock() const;
#endif
/** @name --- Other Functions --- */
/**
Function to check if a matrix is sharing same memory location of the passed pointer
This function is used by the expression templates to avoid the alias problem during
expression evaluation. When the matrix is in use, for example in operations
like A = B * A, a temporary object storing the intermediate result is automatically
created when evaluating the expression.
*/
bool IsInUse(const T* p) const;
// submatrices
/// Print: used by operator<<()
std::ostream& Print(std::ostream& os) const;
public:
/** @name --- Data Member --- */
/**
Matrix Storage Object containing matrix data
*/
R fRep;
}; // end of class SMatrix
//==============================================================================
// operator<<
//==============================================================================
template <class T, unsigned int D1, unsigned int D2, class R>
inline std::ostream& operator<<(std::ostream& os, const ROOT::Math::SMatrix<T,D1,D2,R>& rhs) {
return rhs.Print(os);
}
} // namespace Math
} // namespace ROOT
#ifndef __CINT__
#ifndef ROOT_Math_SMatrix_icc
#include "Math/SMatrix.icc"
#endif
#ifndef ROOT_Math_MatrixFunctions
#include "Math/MatrixFunctions.h"
#endif
#endif //__CINT__
#endif /* ROOT_Math_SMatrix */
|