/usr/include/sc/chemistry/molecule/energy.h is in libsc-dev 2.3.1-16build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 | //
// energy.h
//
// Copyright (C) 1996 Limit Point Systems, Inc.
//
// Author: Curtis Janssen <cljanss@limitpt.com>
// Maintainer: LPS
//
// This file is part of the SC Toolkit.
//
// The SC Toolkit is free software; you can redistribute it and/or modify
// it under the terms of the GNU Library General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// The SC Toolkit is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with the SC Toolkit; see the file COPYING.LIB. If not, write to
// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
//
// The U.S. Government is granted a limited license as per AL 91-7.
//
#ifndef _chemistry_molecule_energy_h
#define _chemistry_molecule_energy_h
#ifdef __GNUC__
#pragma interface
#endif
#include <iostream>
#include <math/optimize/function.h>
#include <math/optimize/conv.h>
#include <chemistry/molecule/molecule.h>
#include <chemistry/molecule/coor.h>
#include <chemistry/molecule/hess.h>
namespace sc {
/** The MolecularEnergy abstract class inherits from the Function class.
It computes the energy of the molecule as a function of the geometry. The
coordinate system used can be either internal or cartesian. */
class MolecularEnergy: public Function {
private:
RefSCDimension moldim_; // the number of cartesian variables
Ref<MolecularCoor> mc_;
Ref<Molecule> mol_;
Ref<MolecularHessian> hess_;
Ref<MolecularHessian> guesshess_;
RefSCVector cartesian_gradient_;
RefSymmSCMatrix cartesian_hessian_;
/// Whether to do intermediate checkpointing of this object
bool ckpt_;
/// Name of the file into which to checkpoint this object
char *ckpt_file_;
/// How often this object should be checkpointed (only matters in iterative methods)
int ckpt_freq_;
protected:
Ref<PointGroup> initial_pg_;
void failure(const char *);
/// This is just a wrapper around set_value().
virtual void set_energy(double);
/** These are passed gradients and hessian in cartesian coordinates.
The gradient and hessian in internal coordinates are computed. */
virtual void set_gradient(RefSCVector&);
virtual void set_hessian(RefSymmSCMatrix&);
void x_to_molecule();
void molecule_to_x();
int print_molecule_when_changed_;
public:
MolecularEnergy(const MolecularEnergy&);
/** The KeyVal constructor.
<dl>
<dt><tt>molecule</tt><dd> A Molecule object. There is no default.
<dt><tt>coor</tt><dd> A MolecularCoor object that describes the
coordinates. If this is not given cartesian coordinates will be
used. For convenience, two keywords needed by the MolecularCoor
object are automatically provided: natom3 and matrixkit.
<dt><tt>value_accuracy</tt><dd> Sets the accuracy to which values
are computed. The default is 1.0e-6 atomic units.
<dt><tt>gradient_accuracy</tt><dd> Sets the accuracy to which
gradients are computed. The default is 1.0e-6 atomic units.
<dt><tt>hessian_accuracy</tt><dd> Sets the accuracy to which
hessians are computed. The default is 1.0e-4 atomic units.
<dt><tt>hessian</tt><dd>Specifies a MolecularHessian object that is
used to compute the hessian. If this MolecularEnergy
specialization does not provide a hessian of its own, and a hessian
is needed, then this keyword must be specified.
<dt><tt>guess_hessian</tt><dd>Specifies a MolecularHessian object
that is used to compute a guess hessian. Guess hessians are used
to improve the rate of convergence of optimizations. If this
keyword is not specified, and a MolecularCoor object is given by
<tt>coor</tt>, then the guess hessian is obtained from the
MolecularCoor object. If neither this nor <tt>coor</tt> are given,
then Function::guess_hessian is used, which returns a unit matrix.
<dt><tt>print_molecule_when_changed</tt><dd> If true, then whenever
the molecule's coordinates are updated they will be printed. The
default is true.
<dt><tt>checkpoint</tt><dd> If true, then this object will be
checkpointed during its evaluation. Not all implementations
of <tt>MolecularEnergy</tt> support checkpointing.
The default is false.
<dt><tt>checkpoint_file</tt><dd> Specifies the name of the file
into which this object will be checkpointed. Default is
"<inpubasename>.ckpt", where "<inputbasename>" is the name of the input
file without ".in".
<dt><tt>checkpoint_freq</tt><dd> Specifies how often this object to
be checkpointed. Only matters for objects which are computed
iteratively. Default is 1.
</dl> */
MolecularEnergy(const Ref<KeyVal>&);
MolecularEnergy(StateIn&);
~MolecularEnergy();
void save_data_state(StateOut&);
/// Set up checkpointing
void set_checkpoint();
void set_checkpoint_file(const char*);
void set_checkpoint_freq(int freq);
/// Check if need to checkpoint
bool if_to_checkpoint() const;
const char* checkpoint_file() const;
int checkpoint_freq() const;
MolecularEnergy & operator=(const MolecularEnergy&);
/// A wrapper around value();
virtual double energy();
virtual Ref<Molecule> molecule() const;
virtual RefSCDimension moldim() const;
void guess_hessian(RefSymmSCMatrix&);
RefSymmSCMatrix inverse_hessian(RefSymmSCMatrix&);
/** If a molecule hessian object is given, it will be used to provide a
hessian. */
RefSymmSCMatrix hessian();
int hessian_implemented() const;
void set_x(const RefSCVector&);
/// Return the cartesian coordinates.
RefSCVector get_cartesian_x();
/// Return the cartesian gradient.
RefSCVector get_cartesian_gradient();
/// Return the cartesian hessian.
RefSymmSCMatrix get_cartesian_hessian();
Ref<MolecularCoor> molecularcoor() { return mc_; }
/** Call this if you have changed the molecular symmetry of the
molecule contained by this MolecularEnergy. */
virtual void symmetry_changed();
Ref<NonlinearTransform> change_coordinates();
/// Nicely print n x 3 data that are stored in a vector.
void print_natom_3(const RefSCVector &,
const char *t=0, std::ostream&o=ExEnv::out0()) const;
void print_natom_3(double **, const char *t=0, std::ostream&o=ExEnv::out0()) const;
void print_natom_3(double *, const char *t=0, std::ostream&o=ExEnv::out0()) const;
virtual void print(std::ostream& = ExEnv::out0()) const;
};
class SumMolecularEnergy: public MolecularEnergy {
protected:
int n_;
Ref<MolecularEnergy> *mole_;
double *coef_;
void compute();
public:
SumMolecularEnergy(const Ref<KeyVal> &);
SumMolecularEnergy(StateIn&);
~SumMolecularEnergy();
void save_data_state(StateOut&);
int value_implemented() const;
int gradient_implemented() const;
int hessian_implemented() const;
void set_x(const RefSCVector&);
};
/* The MolEnergyConvergence class derives from the Convergence class. The
MolEnergyConvergence class allows the user to request that cartesian
coordinates be used in evaluating the convergence criteria. This is
useful, since the internal coordinates can be somewhat arbitary. If the
optimization is constrained, then the fixed internal coordinates will be
projected out of the cartesian gradients. The input is similar to that for
Convergence class with the exception that giving none of the convergence
criteria keywords is the same as providing the following input to the
KeyVal constructor:
<pre>
conv<MolEnergyConvergence>: (
max_disp = 1.0e-4
max_grad = 1.0e-4
graddisp = 1.0e-4
)
</pre>
For MolEnergyConverence to work, the Function object given to the Optimizer
object must derive from MolecularEnergy.
*/
class MolEnergyConvergence: public Convergence {
protected:
Ref<MolecularEnergy> mole_;
int cartesian_;
void set_defaults();
public:
// Standard constructors and destructor.
MolEnergyConvergence();
MolEnergyConvergence(StateIn&);
/** The KeyVal constructor.
In addition to the keywords read by Convergence, the following
keywords are examined:
<dl>
<dt><tt>energy</tt><dd> The MolecularEnergy object. This is
required.
<dt><tt>cartesian</tt><dd> If true, cartesian displacements and
gradients will be compared to the convergence criteria. The
default is true.
</dl>
*/
MolEnergyConvergence(const Ref<KeyVal>&);
virtual ~MolEnergyConvergence();
void save_data_state(StateOut&);
// Set the current gradient and position information. These
//will possibly grab the cartesian infomation if we have a
//MolecularEnergy.
void get_grad(const Ref<Function> &);
void get_x(const Ref<Function> &);
void set_nextx(const RefSCVector &);
// Return nonzero if the optimization has converged.
int converged();
};
}
#endif
// Local Variables:
// mode: c++
// c-file-style: "CLJ"
// End:
|