/usr/include/sc/chemistry/molecule/molecule.h is in libsc-dev 2.3.1-16build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 | //
// molecule.h
//
// Copyright (C) 1996 Limit Point Systems, Inc.
//
// Author: Curtis Janssen <cljanss@limitpt.com>
// Maintainer: LPS
//
// This file is part of the SC Toolkit.
//
// The SC Toolkit is free software; you can redistribute it and/or modify
// it under the terms of the GNU Library General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// The SC Toolkit is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with the SC Toolkit; see the file COPYING.LIB. If not, write to
// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
//
// The U.S. Government is granted a limited license as per AL 91-7.
//
#ifndef _chemistry_molecule_molecule_h
#define _chemistry_molecule_molecule_h
#ifdef __GNUC__
#pragma interface
#endif
#include <stdio.h>
#include <iostream>
#include <util/class/class.h>
#include <util/state/state.h>
#include <util/keyval/keyval.h>
#include <util/misc/units.h>
#include <math/symmetry/pointgrp.h>
#include <math/scmat/vector3.h>
#include <math/scmat/matrix.h>
#include <chemistry/molecule/atominfo.h>
namespace sc {
/**
The Molecule class contains information about molecules. It has a
KeyVal constructor that can create a new molecule from either a
PDB file or from a list of Cartesian coordinates.
The following ParsedKeyVal input reads from the PDB
file <tt>h2o.pdb</tt>:
<pre>
molecule<Molecule>: (
pdb_file = "h2o.pdb"
)
</pre>
The following input explicitly gives the atom coordinates, using the
ParsedKeyVal table notation:
<pre>
molecule<Molecule>: (
unit=angstrom
{ atom_labels atoms geometry } = {
O1 O [ 0.000000000 0 0.369372944 ]
H1 H [ 0.783975899 0 -0.184686472 ]
H2 H [-0.783975899 0 -0.184686472 ]
}
)
)
</pre>
The default units are Bohr which can be overridden with
<tt>unit=angstrom</tt>. The <tt>atom_labels</tt> array can be
omitted. The <tt>atoms</tt> and <tt>geometry</tt> arrays
are required.
As a special case, an atom can be given with the symbol <tt>Q</tt> or the
name <tt>charge</tt>. Such centers are treated as point charges and not
given basis functions. The values of the charges must be specified with a
<tt>charge</tt> vector in the Molecule input. Since the charge vector
assign charges to all centers, including atoms, it is easiest to place all
point charge centers first in the geometry, and then give a charge vector
with a number of elements equal to the number of point charges. The
following example shows a water molecule interacting with a point charge
having value 0.1:
<pre>
molecule<Molecule>: (
unit=angstrom
charge = [ 0.1 ]
{ atom_labels atoms geometry } = {
Q1 Q [ 0.0 0 10.0 ]
O1 O [ 0.000000000 0 0.369372944 ]
H1 H [ 0.783975899 0 -0.184686472 ]
H2 H [-0.783975899 0 -0.184686472 ]
}
)
)
</pre>
This feature is designed for doing QM/MM calculations, so, by default,
methods will not include interactions between the <tt>Q</tt> centers when
computing the energy or the gradient. To include these interactions, set
<tt>include_qq=1</tt>.
The Molecule class has a PointGroup
member object, which also has a KeyVal constructor
that is called when a Molecule is made. The
following example constructs a molecule with \f$C_{2v}\f$ symmetry:
<pre>
molecule<Molecule>: (
symmetry=c2v
unit=angstrom
{ atoms geometry } = {
O [0.000000000 0 0.369372944 ]
H [0.783975899 0 -0.184686472 ]
}
)
)
</pre>
Only the symmetry unique atoms need to be specified. Nonunique
atoms can be given too, however, numerical errors in the
geometry specification can result in the generation of extra
atoms so be careful.
*/
class Molecule: public SavableState
{
protected:
int natoms_;
Ref<AtomInfo> atominfo_;
Ref<PointGroup> pg_;
Ref<Units> geometry_units_;
double **r_;
int *Z_;
double *charges_;
// symmetry equiv info
int nuniq_;
int *nequiv_;
int **equiv_;
int *atom_to_uniq_;
void init_symmetry_info(double tol=0.5);
void clear_symmetry_info();
// these are optional
double *mass_;
char **labels_;
// The Z that represents a "Q" type atom.
int q_Z_;
// If true, include the q terms in the charge and efield routines
bool include_q_;
// If true, include the coupling between q-q pairs when
// computing nuclear repulsion energy and gradients.
bool include_qq_;
// These vectors contain the atom indices of atoms that are not type
// "Q" and those that are.
std::vector<int> q_atoms_;
std::vector<int> non_q_atoms_;
void clear();
// Throw an exception if an atom is duplicated. The
// atoms in the range [begin, natom_) are checked.
void throw_if_atom_duplicated(int begin=0, double tol = 1e-3);
public:
Molecule();
Molecule(const Molecule&);
Molecule(StateIn&);
/** The Molecule KeyVal constructor is used to generate a Molecule
object from the input. Several examples are given in the Molecule
class overview. The full list of keywords that are accepted is
below.
<table border="1">
<tr><td>Keyword<td>Type<td>Default<td>Description
<tr><td><tt>include_q</tt><td>boolean<td>false<td>Some of the
atoms can be specified as <tt>Q</tt> and given a customizable
charge. Such atoms are a point charge that do not have basis
functions. If this option is true, then the <tt>Q</tt> atoms are
included when computing the nuclear charge and the electric field
due to the nuclear charge.
<tr><td><tt>include_qq</tt><td>boolean<td>false<td>Some of the
atoms can be specified as <tt>Q</tt> and given a customizable
charge. Such atoms are a point charge that do not have basis
functions. If this option is true, then the <tt>Q</tt> atoms are
included when computing the nuclear repulsion energy and its
derivatives.
<tr><td><tt>atominfo</tt><td>AtomInfo<td>library values<td>This
gives information about each atom, such as the symbol, name, and
various atomic radii.
<tr><td><tt>symmetry</tt><td>string<td><tt>C1</tt><td>The
Schoenflies symbol of the point group. This is case insensitive.
It should be a subgroup of D<sub>2h</sub>. If it is <tt>auto</tt>,
then the appropriate subgroup of D<sub>2h</sub> will be found.
<tr><td><tt>symmetry_tolerance</tt><td>double<td>1.0e-4<td>When
a molecule has symmetry, some atoms may be related by symmetry
operations. The distance between given atoms and atoms generated
by symmetry operations is compared to this threshold to determine
if they are the same. If they are the same, then the coordinates
are cleaned up to make them exactly symmetry equivalent. If the
given molecule was produced by a optimization that started in C1
symmetry, but produced a roughly symmetric structure and you would
like to begin using symmetry, then this may need to be increased a
bit to properly symmetrize the molecule.
<tr><td><tt>symmetry_frame</tt><td>double[3][3]<td>[[1 0 0][0 1
0][0 0 1]]<td>The symmetry frame. Ignored for <tt>symmetry =
auto</tt>.
<tr><td><tt>origin</tt><td>double[3]<td>[0 0 0]<td>The origin of
the symmetry frame. Ignored for <tt>symmetry = auto</tt>.
<tr><td><tt>redundant_atoms</tt><td>boolean<td>false<td>If true,
do not generate symmetry equivalent atoms; they are already given
in the input. It should not be necessary to specify this option,
since, by default, if a symmetry operation duplicates an atom, the
generated atom will not be added to the list of atoms. Ignored for
<tt>symmetry = auto</tt>.
<tr><td><tt>pdb_file</tt><td>string<td>undefined<td>This gives
the name of a PDB file, from which the nuclear coordinates will be
read. If this is given, the following options will be ignored.
<tr><td><tt>unit</tt><td>string<td>bohr<td>This gives the name
of the units used for the geometry. See the Units class for
information about the known units. This replaces deprecated
keywords that are still recognized: <tt>angstrom</tt> and
<tt>angstroms</tt>. This is ignored if <tt>pdb_file</tt> is given.
<tr><td><tt>geometry</tt><td>double[][3]<td>none<td>This gives
the Cartesian coordinates of the molecule. This is ignored if
<tt>pdb_file</tt> is given.
<tr><td><tt>atoms</tt><td>string[]<td>none<td>This gives the
Cartesian coordinates of the molecule. This is ignored if
<tt>pdb_file</tt> is given.
<tr><td><tt>ghost</tt><td>boolean[]<td>none<td>If true, the atom
will be given zero charge. It will still have basis functions,
however. This is used to estimate basis set superposition error.
This is ignored if <tt>pdb_file</tt> is given.
<tr><td><tt>charge</tt><td>double[]<td>Z for each atom<td>Allows
specification of the charge for each atom. This is ignored if
<tt>pdb_file</tt> is given.
<tr><td><tt>atom_labels</tt><td>string[]<td>none<td>This gives a
user defined atom label for each atom. This is ignored if
<tt>pdb_file</tt> is given.
<tr><td><tt>mass</tt><td>double[]<td>Taken from AtomInfo given by
the <tt>atominfo</tt> keyword. <td>This gives a user defined mass
for each atom. This is ignored if <tt>pdb_file</tt> is given.
</table>
*/
Molecule(const Ref<KeyVal>&input);
virtual ~Molecule();
Molecule& operator=(const Molecule&);
/// Add an AtomicCenter to the Molecule.
void add_atom(int Z,double x,double y,double z,
const char * = 0, double mass = 0.0,
int have_charge = 0, double charge = 0.0);
/// Print information about the molecule.
virtual void print(std::ostream& =ExEnv::out0()) const;
virtual void print_parsedkeyval(std::ostream& =ExEnv::out0(),
int print_pg = 1,
int print_unit = 1,
int number_atoms = 1) const;
/// Returns the number of atoms in the molcule.
int natom() const { return natoms_; }
int Z(int atom) const { return Z_[atom]; }
double &r(int atom, int xyz) { return r_[atom][xyz]; }
const double &r(int atom, int xyz) const { return r_[atom][xyz]; }
double *r(int atom) { return r_[atom]; }
const double *r(int atom) const { return r_[atom]; }
double mass(int atom) const;
/** Returns the label explicitly assigned to atom. If
no label has been assigned, then null is returned. */
const char *label(int atom) const;
/** Takes an (x, y, z) postion and finds an atom within the
given tolerance distance. If no atom is found -1 is returned. */
int atom_at_position(double *, double tol = 0.05) const;
/** Returns the index of the atom with the given label.
If the label cannot be found -1 is returned. */
int atom_label_to_index(const char *label) const;
/** Returns a double* containing the nuclear
charges of the atoms. The caller is responsible for
freeing the return value. */
double *charges() const;
/// Return the charge of the atom.
double charge(int iatom) const;
/// Returns the total nuclear charge.
double nuclear_charge() const;
/// Sets the PointGroup of the molecule.
void set_point_group(const Ref<PointGroup>&, double tol=1.0e-7);
/// Returns the PointGroup of the molecule.
Ref<PointGroup> point_group() const;
/** Find this molecules true point group (limited to abelian groups).
If the point group of this molecule is set to the highest point
group, then the origin must first be set to the center of mass. */
Ref<PointGroup> highest_point_group(double tol = 1.0e-8) const;
/** Return 1 if this given axis is a symmetry element for the molecule.
The direction vector must be a unit vector. */
int is_axis(SCVector3 &origin,
SCVector3 &udirection, int order, double tol=1.0e-8) const;
/** Return 1 if the given plane is a symmetry element for the molecule.
The perpendicular vector must be a unit vector. */
int is_plane(SCVector3 &origin, SCVector3 &uperp, double tol=1.0e-8) const;
/// Return 1 if the molecule has an inversion center.
int has_inversion(SCVector3 &origin, double tol = 1.0e-8) const;
/// Returns 1 if the molecule is linear, 0 otherwise.
int is_linear(double tolerance = 1.0e-5) const;
/// Returns 1 if the molecule is planar, 0 otherwise.
int is_planar(double tolerance = 1.0e-5) const;
/** Sets linear to 1 if the molecular is linear, 0 otherwise.
Sets planar to 1 if the molecular is planar, 0 otherwise. */
void is_linear_planar(int&linear,int&planar,double tol = 1.0e-5) const;
/** Returns a SCVector3 containing the cartesian coordinates of
the center of mass for the molecule. */
SCVector3 center_of_mass() const;
/// Returns the nuclear repulsion energy for the molecule
double nuclear_repulsion_energy();
/** Compute the nuclear repulsion energy first derivative with respect
to the given center. */
void nuclear_repulsion_1der(int center, double xyz[3]);
/// Compute the electric field due to the nuclei at the given point.
void nuclear_efield(const double *position, double* efield);
/** Compute the electric field due to the given charges at the
positions of the nuclei at the given point. */
void nuclear_charge_efield(const double *charges,
const double *position, double* efield);
/** If the molecule contains only symmetry unique atoms, this function
will generate the other, redundant atoms. The redundant atom
will only be generated if there is no other atoms within a distance
of tol. If the is another atom and it is not identical, then
abort will be called. */
void symmetrize(double tol = 0.5);
/// Set the point group and then symmetrize.
void symmetrize(const Ref<PointGroup> &pg, double tol = 0.5);
/** This will try to carefully correct symmetry errors
in molecules. If any atom is out of place by more then
tol, abort will be called. */
void cleanup_molecule(double tol = 0.1);
void translate(const double *r);
void move_to_com();
void transform_to_principal_axes(int trans_frame=1);
void transform_to_symmetry_frame();
void print_pdb(std::ostream& =ExEnv::out0(), char *title =0) const;
void read_pdb(const char *filename);
/** Compute the principal moments of inertia and, possibly, the
principal axes. */
void principal_moments_of_inertia(double *evals, double **evecs=0) const;
/// Return information about symmetry unique and equivalent atoms.
int nunique() const { return nuniq_; }
/// Returns the overall number of the iuniq'th unique atom.
int unique(int iuniq) const { return equiv_[iuniq][0]; }
/// Returns the number of atoms equivalent to iuniq.
int nequivalent(int iuniq) const { return nequiv_[iuniq]; }
/// Returns the j'th atom equivalent to iuniq.
int equivalent(int iuniq, int j) const { return equiv_[iuniq][j]; }
/** Converts an atom number to the number of its generating unique atom.
The return value is in [0, nunique). */
int atom_to_unique(int iatom) const { return atom_to_uniq_[iatom]; }
/** Converts an atom number to the offset of this atom in the list of
generated atoms. The unique atom itself is allows offset 0. */
int atom_to_unique_offset(int iatom) const;
/// Return the number of core electrons.
int n_core_electrons();
/// Return the maximum atomic number.
int max_z();
/// Return the molecule's AtomInfo object.
Ref<AtomInfo> atominfo() const { return atominfo_; }
/// Returns the element name of the atom.
std::string atom_name(int iatom) const;
/// Returns the element symbol of the atom.
std::string atom_symbol(int iatom) const;
/** If include_q is true, then include the "Q" atoms in the charge and
efield routines. */
void set_include_q(bool iq) { include_q_ = iq; }
/// Returns include_q. See set_include_q.
bool include_q() const { return include_q_; }
/** If include_qq is true, include the coupling between pairs of "Q"
atoms when computing nuclear repulsion energy and gradients. */
void set_include_qq(bool iqq) { include_qq_ = iqq; }
/// Returns include_qq. See set_include_qq.
bool include_qq() const { return include_qq_; }
/// Retrieve the number of "Q" atoms.
int n_q_atom() const { return q_atoms_.size(); }
/// Retrieve the "Q" atoms.
int q_atom(int i) const { return q_atoms_[i]; }
/// Retrieve the number of non-"Q" atoms.
int n_non_q_atom() const { return non_q_atoms_.size(); }
/// Retrieve the of non-"Q" atoms.
int non_q_atom(int i) const { return non_q_atoms_[i]; }
void save_data_state(StateOut&);
};
}
#endif
// Local Variables:
// mode: c++
// c-file-style: "CLJ"
// End:
|