/usr/include/sc/math/scmat/elemop.h is in libsc-dev 2.3.1-16build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 | //
// elemop.h
//
// Copyright (C) 1996 Limit Point Systems, Inc.
//
// Author: Curtis Janssen <cljanss@limitpt.com>
// Maintainer: LPS
//
// This file is part of the SC Toolkit.
//
// The SC Toolkit is free software; you can redistribute it and/or modify
// it under the terms of the GNU Library General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// The SC Toolkit is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with the SC Toolkit; see the file COPYING.LIB. If not, write to
// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
//
// The U.S. Government is granted a limited license as per AL 91-7.
//
#ifndef _math_scmat_elemop_h
#define _math_scmat_elemop_h
#ifdef __GNUC__
#pragma interface
#endif
#include <util/state/state.h>
#include <util/group/message.h>
namespace sc {
class SCMatrixBlock;
class SCMatrixBlockIter;
class SCMatrixRectBlock;
class SCMatrixLTriBlock;
class SCMatrixDiagBlock;
class SCVectorSimpleBlock;
class SCMatrixRectSubBlock;
class SCMatrixLTriSubBlock;
class SCMatrixDiagSubBlock;
class SCVectorSimpleSubBlock;
class SCMatrix;
class SymmSCMatrix;
class DiagSCMatrix;
class SCVector;
/** Objects of class SCElementOp are used to perform operations on the
elements of matrices. When the SCElementOp object is given to the
element_op member of a matrix, each block the matrix is passed to one
of the process, process_base, or process_base members. */
class SCElementOp: public SavableState {
public:
SCElementOp();
SCElementOp(StateIn&s): SavableState(s) {}
virtual ~SCElementOp();
/** If duplicates of the SCElementOp exist (that is, there is more than
one node), then if has_collect returns nonzero then collect is
called with a MessageGrp reference after all of the blocks have
been processed. The default return value of has_collect is 0 and
collect's default action is do nothing. If defer_collect member is
called with nonzero, collect will do nothing (this is only used by
the blocked matrices). */
virtual int has_collect();
virtual void defer_collect(int);
virtual void collect(const Ref<MessageGrp>&);
/** Multithreaded use of cloneable SCElementOp objects requires that
data from cloned objects be collected. The default implementation
will throw an exception. */
virtual void collect(const Ref<SCElementOp>&);
/** By default this returns nonzero. If the ElementOp specialization
will change any elements of the matrix, then this must be
overridden to return nonzero. */
virtual int has_side_effects();
/** Returns true if this SCElementOp is threadsafe. The default
* implementation returns false. */
virtual bool threadsafe();
/** Returns true if this SCElementOp supports the cloneable member. The
* default implmentation returns false. */
virtual bool cloneable();
/** Returns a clone of this object. This is needed for multithreaded
use of SCElementOp objects that are not thread safe. The default
implemenation throws an exception. */
virtual Ref<SCElementOp> clone();
/** This is the fallback routine to process blocks and is called
by process_spec members that are not overridden. */
virtual void process(SCMatrixBlockIter&) = 0;
/** Lazy matrix implementors can call this member when the
type of block specialization is unknown. However, this
will attempt to dynamic_cast block to a block specialization
and will thus be less efficient. */
void process_base(SCMatrixBlock*block);
/** Matrices should call these members when the type of block is known.
ElementOp specializations should override these when
efficiency is important, since these give the most efficient access
to the elements of the block. */
virtual void process_spec_rect(SCMatrixRectBlock*);
virtual void process_spec_ltri(SCMatrixLTriBlock*);
virtual void process_spec_diag(SCMatrixDiagBlock*);
virtual void process_spec_vsimp(SCVectorSimpleBlock*);
virtual void process_spec_rectsub(SCMatrixRectSubBlock*);
virtual void process_spec_ltrisub(SCMatrixLTriSubBlock*);
virtual void process_spec_diagsub(SCMatrixDiagSubBlock*);
virtual void process_spec_vsimpsub(SCVectorSimpleSubBlock*);
};
/** The SCElementOp2 class is very similar to the SCElementOp class except
that pairs of blocks are treated simultaneously. The two matrices
involved must have identical storage layout, which will be the case if
both matrices are of the same type and dimensions. */
class SCElementOp2: public SavableState {
public:
SCElementOp2();
SCElementOp2(StateIn&s): SavableState(s) {}
virtual ~SCElementOp2();
virtual int has_collect();
virtual void defer_collect(int);
virtual int has_side_effects();
virtual int has_side_effects_in_arg();
virtual void collect(const Ref<MessageGrp>&);
virtual void process(SCMatrixBlockIter&,SCMatrixBlockIter&) = 0;
void process_base(SCMatrixBlock*,SCMatrixBlock*);
virtual void process_spec_rect(SCMatrixRectBlock*,SCMatrixRectBlock*);
virtual void process_spec_ltri(SCMatrixLTriBlock*,SCMatrixLTriBlock*);
virtual void process_spec_diag(SCMatrixDiagBlock*,SCMatrixDiagBlock*);
virtual void process_spec_vsimp(SCVectorSimpleBlock*,SCVectorSimpleBlock*);
};
/** The SCElementOp3 class is very similar to the SCElementOp class except
that a triplet of blocks is treated simultaneously. The three matrices
involved must have identical storage layout, which will be the case if
all matrices are of the same type and dimensions. */
class SCElementOp3: public SavableState {
public:
SCElementOp3();
SCElementOp3(StateIn&s): SavableState(s) {}
virtual ~SCElementOp3();
virtual int has_collect();
virtual void defer_collect(int);
virtual int has_side_effects();
virtual int has_side_effects_in_arg1();
virtual int has_side_effects_in_arg2();
virtual void collect(const Ref<MessageGrp>&);
virtual void process(SCMatrixBlockIter&,
SCMatrixBlockIter&,
SCMatrixBlockIter&) = 0;
void process_base(SCMatrixBlock*,SCMatrixBlock*,SCMatrixBlock*);
virtual void process_spec_rect(SCMatrixRectBlock*,
SCMatrixRectBlock*,
SCMatrixRectBlock*);
virtual void process_spec_ltri(SCMatrixLTriBlock*,
SCMatrixLTriBlock*,
SCMatrixLTriBlock*);
virtual void process_spec_diag(SCMatrixDiagBlock*,
SCMatrixDiagBlock*,
SCMatrixDiagBlock*);
virtual void process_spec_vsimp(SCVectorSimpleBlock*,
SCVectorSimpleBlock*,
SCVectorSimpleBlock*);
};
class SCElementScalarProduct: public SCElementOp2 {
private:
int deferred_;
double product;
public:
SCElementScalarProduct();
SCElementScalarProduct(StateIn&);
~SCElementScalarProduct();
void save_data_state(StateOut&);
void process(SCMatrixBlockIter&,SCMatrixBlockIter&);
int has_collect();
void defer_collect(int);
void collect(const Ref<MessageGrp>&);
double result();
void init() { product = 0.0; }
};
class SCDestructiveElementProduct: public SCElementOp2 {
public:
SCDestructiveElementProduct();
SCDestructiveElementProduct(StateIn&);
~SCDestructiveElementProduct();
int has_side_effects();
void save_data_state(StateOut&);
void process(SCMatrixBlockIter&,SCMatrixBlockIter&);
};
class SCElementScale: public SCElementOp {
private:
double scale;
public:
SCElementScale(double a);
SCElementScale(StateIn&);
~SCElementScale();
int has_side_effects();
void save_data_state(StateOut&);
void process(SCMatrixBlockIter&);
};
class SCElementRandomize: public SCElementOp {
private:
double assign;
public:
SCElementRandomize();
SCElementRandomize(StateIn&);
~SCElementRandomize();
int has_side_effects();
void save_data_state(StateOut&);
void process(SCMatrixBlockIter&);
};
class SCElementAssign: public SCElementOp {
private:
double assign;
public:
SCElementAssign(double a);
SCElementAssign(StateIn&);
~SCElementAssign();
int has_side_effects();
void save_data_state(StateOut&);
void process(SCMatrixBlockIter&);
};
class SCElementSquareRoot: public SCElementOp {
public:
SCElementSquareRoot();
SCElementSquareRoot(double a);
SCElementSquareRoot(StateIn&);
~SCElementSquareRoot();
int has_side_effects();
void save_data_state(StateOut&);
void process(SCMatrixBlockIter&);
};
class SCElementInvert: public SCElementOp {
private:
double threshold_;
int nbelowthreshold_;
int deferred_;
public:
SCElementInvert(double threshold = 0.0);
SCElementInvert(StateIn&);
~SCElementInvert();
int has_side_effects();
void save_data_state(StateOut&);
void process(SCMatrixBlockIter&);
int has_collect();
void defer_collect(int);
void collect(const Ref<MessageGrp>&);
void collect(const Ref<SCElementOp>&);
int result() { return nbelowthreshold_; }
};
class SCElementScaleDiagonal: public SCElementOp {
private:
double scale_diagonal;
public:
SCElementScaleDiagonal(double a);
SCElementScaleDiagonal(StateIn&);
~SCElementScaleDiagonal();
int has_side_effects();
void save_data_state(StateOut&);
void process(SCMatrixBlockIter&);
};
class SCElementShiftDiagonal: public SCElementOp {
private:
double shift_diagonal;
public:
SCElementShiftDiagonal(double a);
SCElementShiftDiagonal(StateIn&);
~SCElementShiftDiagonal();
int has_side_effects();
void save_data_state(StateOut&);
void process(SCMatrixBlockIter&);
};
class SCElementMaxAbs: public SCElementOp {
private:
int deferred_;
double r;
public:
SCElementMaxAbs();
SCElementMaxAbs(StateIn&);
~SCElementMaxAbs();
void save_data_state(StateOut&);
void process(SCMatrixBlockIter&);
int has_collect();
void defer_collect(int);
void collect(const Ref<MessageGrp>&);
void collect(const Ref<SCElementOp>&);
double result();
};
class SCElementMinAbs: public SCElementOp {
private:
int deferred_;
double r;
public:
// rinit must be greater than the magnitude of the smallest element
SCElementMinAbs(double rinit);
SCElementMinAbs(StateIn&);
~SCElementMinAbs();
void save_data_state(StateOut&);
void process(SCMatrixBlockIter&);
int has_collect();
void defer_collect(int);
void collect(const Ref<MessageGrp>&);
void collect(const Ref<SCElementOp>&);
double result();
};
class SCElementSumAbs: public SCElementOp {
private:
int deferred_;
double r;
public:
SCElementSumAbs();
SCElementSumAbs(StateIn&);
~SCElementSumAbs();
void save_data_state(StateOut&);
void process(SCMatrixBlockIter&);
int has_collect();
void defer_collect(int);
void collect(const Ref<MessageGrp>&);
void collect(const Ref<SCElementOp>&);
double result();
void init() { r = 0.0; }
};
/// Computed k-norm of matrix.
class SCElementKNorm: public SCElementOp {
private:
int deferred_;
double r_; // result
double k_; // norm parameter
public:
/// by default compute 2-norm
SCElementKNorm(double k = 2.0);
SCElementKNorm(StateIn&);
~SCElementKNorm();
void save_data_state(StateOut&);
void process(SCMatrixBlockIter&);
int has_collect();
void defer_collect(int);
void collect(const Ref<MessageGrp>&);
void collect(const Ref<SCElementOp>&);
double result();
void init() { r_ = 0.0; }
};
class SCElementDot: public SCElementOp {
private:
double** avects;
double** bvects;
int length;
public:
SCElementDot(StateIn&);
void save_data_state(StateOut&);
SCElementDot(double**a, double**b, int length);
void process(SCMatrixBlockIter&);
int has_side_effects();
};
class SCElementAccumulateSCMatrix: public SCElementOp {
private:
SCMatrix *m;
public:
SCElementAccumulateSCMatrix(SCMatrix *);
int has_side_effects();
void process(SCMatrixBlockIter&);
};
class SCElementAccumulateSymmSCMatrix: public SCElementOp {
private:
SymmSCMatrix *m;
public:
SCElementAccumulateSymmSCMatrix(SymmSCMatrix *);
int has_side_effects();
void process(SCMatrixBlockIter&);
};
class SCElementAccumulateDiagSCMatrix: public SCElementOp {
private:
DiagSCMatrix *m;
public:
SCElementAccumulateDiagSCMatrix(DiagSCMatrix *);
int has_side_effects();
void process(SCMatrixBlockIter&);
};
class SCElementAccumulateSCVector: public SCElementOp {
private:
SCVector *m;
public:
SCElementAccumulateSCVector(SCVector *);
int has_side_effects();
void process(SCMatrixBlockIter&);
};
}
#endif
// Local Variables:
// mode: c++
// c-file-style: "CLJ"
// End:
|