This file is indexed.

/usr/include/shogun/kernel/Kernel.h is in libshogun-dev 3.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 1999-2009 Soeren Sonnenburg
 * Written (W) 1999-2008 Gunnar Raetsch
 * Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef _KERNEL_H___
#define _KERNEL_H___

#include <shogun/lib/common.h>
#include <shogun/lib/Signal.h>
#include <shogun/io/SGIO.h>
#include <shogun/io/File.h>
#include <shogun/mathematics/Math.h>
#include <shogun/features/FeatureTypes.h>
#include <shogun/base/SGObject.h>
#include <shogun/features/Features.h>
#include <shogun/kernel/normalizer/KernelNormalizer.h>

namespace shogun
{
	class CFile;
	class CFeatures;
	class CKernelNormalizer;

#ifdef USE_SHORTREAL_KERNELCACHE
	/** kernel cache element */
	typedef float32_t KERNELCACHE_ELEM;
#else
	/** kernel cache element */
	typedef float64_t KERNELCACHE_ELEM;
#endif

/** kernel cache index */
typedef int64_t KERNELCACHE_IDX;


/** optimization type */
enum EOptimizationType
{
	FASTBUTMEMHUNGRY,
	SLOWBUTMEMEFFICIENT
};

/** kernel type */
enum EKernelType
{
	K_UNKNOWN = 0,
	K_LINEAR = 10,
	K_POLY = 20,
	K_GAUSSIAN = 30,
	K_GAUSSIANSHIFT = 32,
	K_GAUSSIANMATCH = 33,
	K_HISTOGRAM = 40,
	K_SALZBERG = 41,
	K_LOCALITYIMPROVED = 50,
	K_SIMPLELOCALITYIMPROVED = 60,
	K_FIXEDDEGREE = 70,
	K_WEIGHTEDDEGREE =    80,
	K_WEIGHTEDDEGREEPOS = 81,
	K_WEIGHTEDDEGREERBF = 82,
	K_WEIGHTEDCOMMWORDSTRING = 90,
	K_POLYMATCH = 100,
	K_ALIGNMENT = 110,
	K_COMMWORDSTRING = 120,
	K_COMMULONGSTRING = 121,
	K_SPECTRUMRBF = 122,
	K_SPECTRUMMISMATCHRBF = 123,
	K_COMBINED = 140,
	K_AUC = 150,
	K_CUSTOM = 160,
	K_SIGMOID = 170,
	K_CHI2 = 180,
	K_DIAG = 190,
	K_CONST = 200,
	K_DISTANCE = 220,
	K_LOCALALIGNMENT = 230,
	K_PYRAMIDCHI2 = 240,
	K_OLIGO = 250,
	K_MATCHWORD = 260,
	K_TPPK = 270,
	K_REGULATORYMODULES = 280,
	K_SPARSESPATIALSAMPLE = 290,
	K_HISTOGRAMINTERSECTION = 300,
	K_WAVELET = 310,
	K_WAVE = 320,
	K_CAUCHY = 330,
	K_TSTUDENT = 340,
	K_RATIONAL_QUADRATIC = 350,
	K_MULTIQUADRIC = 360,
	K_EXPONENTIAL = 370,
	K_SPHERICAL = 380,
	K_SPLINE = 390,
	K_ANOVA = 400,
	K_POWER = 410,
	K_LOG = 420,
	K_CIRCULAR = 430,
	K_INVERSEMULTIQUADRIC = 440,
	K_DISTANTSEGMENTS = 450,
	K_BESSEL = 460,
	K_JENSENSHANNON = 470,
	K_DIRECTOR = 480,
	K_PRODUCT = 490,
	K_LINEARARD = 500,
	K_GAUSSIANARD = 510,
	K_STREAMING = 520
};

/** kernel property */
enum EKernelProperty
{
	KP_NONE = 0,
	KP_LINADD = 1,	// Kernels that can be optimized via doing normal updates w + dw
	KP_KERNCOMBINATION = 2,	// Kernels that are infact a linear combination of subkernels K=\sum_i b_i*K_i
	KP_BATCHEVALUATION = 4  // Kernels that can on the fly generate normals in linadd and more quickly/memory efficient process batches instead of single examples
};

class CSVM;

/** @brief The Kernel base class.
 *
 * Non-mathematically spoken, a kernel is a function
 * that given two input objects \f${\bf x}\f$ and \f${\bf x'}\f$ returns a
 * score describing the similarity of the vectors. The score should be larger
 * when the objects are more similar.
 *
 * It can be defined as
 *
 * \f[
 * k({\bf x},{\bf x'})= \Phi_k({\bf x})\cdot \Phi_k({\bf x'})
 * \f]
 *
 * where \f$\Phi\f$ maps the objects into some potentially high dimensional
 * feature space.
 *
 * Apart from the input features, the base kernel takes only one argument (the
 * size of the kernel cache) that is used to efficiently train kernel-machines
 * like e.g. SVMs.
 *
 * In case you would like to define your own kernel, you only have to define a
 * new compute() function (and the kernel name via get_name() and
 * the kernel type get_kernel_type()). A good example to look at is the
 * GaussianKernel.
 */
class CKernel : public CSGObject
{
	friend class CVarianceKernelNormalizer;
	friend class CSqrtDiagKernelNormalizer;
	friend class CAvgDiagKernelNormalizer;
	friend class CRidgeKernelNormalizer;
	friend class CFirstElementKernelNormalizer;
	friend class CMultitaskKernelNormalizer;
	friend class CMultitaskKernelMklNormalizer;
	friend class CMultitaskKernelMaskNormalizer;
	friend class CMultitaskKernelMaskPairNormalizer;
	friend class CTanimotoKernelNormalizer;
	friend class CDiceKernelNormalizer;
	friend class CZeroMeanCenterKernelNormalizer;

	friend class CStreamingKernel;

	public:

		/** default constructor
		 *
		 */
		CKernel();


		/** constructor
		 *
		 * @param size cache size
		 */
		CKernel(int32_t size);

		/** constructor
		 *
		 * @param l features for left-hand side
		 * @param r features for right-hand side
		 * @param size cache size
		 */
		CKernel(CFeatures* l, CFeatures* r, int32_t size);

		virtual ~CKernel();

		/** get kernel function for lhs feature vector a
		 * and rhs feature vector b
		 *
		 * @param idx_a index of feature vector a
		 * @param idx_b index of feature vector b
		 * @return computed kernel function
		 */
		inline float64_t kernel(int32_t idx_a, int32_t idx_b)
		{
			REQUIRE(idx_a>=0 && idx_b>=0 && idx_a<num_lhs && idx_b<num_rhs,
				"%s::kernel(): index out of Range: idx_a=%d/%d idx_b=%d/%d\n",
				get_name(), idx_a,num_lhs, idx_b,num_rhs);

			return normalizer->normalize(compute(idx_a, idx_b), idx_a, idx_b);
		}

		/** get kernel matrix
		 *
		 * @return computed kernel matrix (needs to be cleaned up)
		 */
		SGMatrix<float64_t> get_kernel_matrix()
		{
			return get_kernel_matrix<float64_t>();
		}

		/** @return Vector with diagonal elements of the kernel matrix.
		 * Note that left- and right-handside features must be set and of equal
		 * size
		 *
		 * @param preallocated vector with space for results
		 */
		SGVector<float64_t> get_kernel_diagonal(SGVector<float64_t>
				preallocated=SGVector<float64_t>())
		{
			REQUIRE(lhs, "CKernel::get_kernel_diagonal(): Left-handside "
					"features missing!\n");

			REQUIRE(rhs, "CKernel::get_kernel_diagonal(): Right-handside "
						"features missing!\n");

			REQUIRE(lhs->get_num_vectors()==rhs->get_num_vectors(),
					"CKernel::get_kernel_diagonal(): Left- and right-"
					"handside features must be equal sized\n");

			/* allocate space if necessary */
			if (!preallocated.vector)
				preallocated=SGVector<float64_t>(lhs->get_num_vectors());
			else
			{
				REQUIRE(preallocated.vlen==lhs->get_num_vectors(),
						"%s::get_kernel_diagonal(): Preallocated vector has"
						" wrong size!\n", get_name());
			}

			for (index_t i=0; i<preallocated.vlen; ++i)
				preallocated[i]=kernel(i, i);

			return preallocated;
		}

		/**
		 * get column j
		 *
		 * @return the jth column of the kernel matrix
		 */
		virtual SGVector<float64_t> get_kernel_col(int32_t j)
		{

			SGVector<float64_t> col = SGVector<float64_t>(num_rhs);

			for (int32_t i=0; i!=num_rhs; i++)
				col[i] = kernel(i,j);

			return col;
		}


		/**
		 * get row i
		 *
		 * @return the ith row of the kernel matrix
		 */
		virtual SGVector<float64_t> get_kernel_row(int32_t i)
		{
			SGVector<float64_t> row = SGVector<float64_t>(num_lhs);

			for (int32_t j=0; j!=num_lhs; j++)
				row[j] = kernel(i,j);

			return row;
		}

		/** get kernel matrix (templated)
		 *
		 * @return the kernel matrix
		 */
		template <class T> SGMatrix<T> get_kernel_matrix();


		/** initialize kernel
		 *  e.g. setup lhs/rhs of kernel, precompute normalization
		 *  constants etc.
		 *  make sure to check that your kernel can deal with the
		 *  supplied features (!)
		 *
		 *  @param lhs features for left-hand side
		 *  @param rhs features for right-hand side
		 *  @return if init was successful
		 */
		virtual bool init(CFeatures* lhs, CFeatures* rhs);

		/** set the current kernel normalizer
		 *
		 * @return if successful
		 */
		virtual bool set_normalizer(CKernelNormalizer* normalizer);

		/** obtain the current kernel normalizer
		 *
		 * @return the kernel normalizer
		 */
		virtual CKernelNormalizer* get_normalizer();

		/** initialize the current kernel normalizer
		 *  @return if init was successful
		 */
		virtual bool init_normalizer();

		/** clean up your kernel
		 *
		 * base method only removes lhs and rhs
		 * overload to add further cleanup but make sure CKernel::cleanup() is
		 * called
		 */
		virtual void cleanup();

		/** load the kernel matrix
		 *
		 * @param loader File object via which to load data
		 */
		void load(CFile* loader);

		/** save kernel matrix
		 *
		 * @param writer File object via which to save data
		 */
		void save(CFile* writer);

		/** get left-hand side of features used in kernel
		 *
		 * @return features of left-hand side
		 */
		inline CFeatures* get_lhs() { SG_REF(lhs); return lhs; }

		/** get right-hand side of features used in kernel
		 *
		 * @return features of right-hand side
		 */
		inline CFeatures* get_rhs() { SG_REF(rhs); return rhs; }

		/** get number of vectors of lhs features
		 *
		 * @return number of vectors of left-hand side
		 */
		virtual int32_t get_num_vec_lhs()
		{
			return num_lhs;
		}

		/** get number of vectors of rhs features
		 *
		 * @return number of vectors of right-hand side
		 */
		virtual int32_t get_num_vec_rhs()
		{
			return num_rhs;
		}

		/** test whether features have been assigned to lhs and rhs
		 *
		 * @return true if features are assigned
		 */
		virtual bool has_features()
		{
			return lhs && rhs;
		}

		/** test whether features on lhs and rhs are the same
		 *
		 * @return true if features are the same
		 */
		inline bool get_lhs_equals_rhs()
		{
			return lhs_equals_rhs;
		}

		/** remove lhs and rhs from kernel */
		virtual void remove_lhs_and_rhs();

		/** remove lhs from kernel */
		virtual void remove_lhs();

		/** remove rhs from kernel */
		virtual void remove_rhs();

		/** return what type of kernel we are, e.g.
		 * Linear,Polynomial, Gaussian,...
		 *
		 * abstract base method
		 *
		 * @return kernel type
		 */
		virtual EKernelType get_kernel_type()=0 ;

		/** return feature type the kernel can deal with
		 *
		 * abstract base method
		 *
		 * @return feature type
		 */
		virtual EFeatureType get_feature_type()=0;

		/** return feature class the kernel can deal with
		 *
		 * abstract base method
		 *
		 * @return feature class
		 */
		virtual EFeatureClass get_feature_class()=0;

		/** set the size of the kernel cache
		 *
		 * @param size of kernel cache
		 */
		inline void set_cache_size(int32_t size)
		{
			cache_size = size;

		}

		/** return the size of the kernel cache
		 *
		 * @return size of kernel cache
		 */
		inline int32_t get_cache_size() { return cache_size; }



		/** list kernel */
		void list_kernel();

		/** check if kernel has given property
		 *
		 * @param p kernel property
		 * @return if kernel has given property
		 */
		inline bool has_property(EKernelProperty p) { return (properties & p) != 0; }

		/** for optimizable kernels, i.e. kernels where the weight
		 * vector can be computed explicitly (if it fits into memory)
		 */
		virtual void clear_normal();

		/** add vector*factor to 'virtual' normal vector
		 *
		 * @param vector_idx index
		 * @param weight weight
		 */
		virtual void add_to_normal(int32_t vector_idx, float64_t weight);

		/** get optimization type
		 *
		 * @return optimization type
		 */
		inline EOptimizationType get_optimization_type() { return opt_type; }

		/** set optimization type
		 *
		 * @param t optimization type to set
		 */
		virtual void set_optimization_type(EOptimizationType t) { opt_type=t;}

		/** check if optimization is initialized
		 *
		 * @return if optimization is initialized
		 */
		inline bool get_is_initialized() { return optimization_initialized; }

		/** initialize optimization
		 *
		 * @param count count
		 * @param IDX index
		 * @param weights weights
		 * @return if initializing was successful
		 */
		virtual bool init_optimization(
			int32_t count, int32_t *IDX, float64_t *weights);

		/** delete optimization
		 *
		 * @return if deleting was successful
		 */
		virtual bool delete_optimization();

		/** initialize optimization
		 *
		 * @param svm svm model
		 * @return if initializing was successful
		 */
		bool init_optimization_svm(CSVM * svm) ;

		/** compute optimized
		 *
		 * @param vector_idx index to compute
		 * @return optimized value at given index
		 */
		virtual float64_t compute_optimized(int32_t vector_idx);

		/** computes output for a batch of examples in an optimized fashion
		 * (favorable if kernel supports it, i.e. has KP_BATCHEVALUATION.  to
		 * the outputvector target (of length num_vec elements) the output for
		 * the examples enumerated in vec_idx are added. therefore make sure
		 * that it is initialized with ZERO. the following num_suppvec, IDX,
		 * alphas arguments are the number of support vectors, their indices
		 * and weights
		 */
		virtual void compute_batch(
			int32_t num_vec, int32_t* vec_idx, float64_t* target,
			int32_t num_suppvec, int32_t* IDX, float64_t* alphas,
			float64_t factor=1.0);

		/** get combined kernel weight
		 *
		 * @return combined kernel weight
		 */
		inline float64_t get_combined_kernel_weight() { return combined_kernel_weight; }

		/** set combined kernel weight
		 *
		 * @param nw new combined kernel weight
		 */
		inline void set_combined_kernel_weight(float64_t nw) { combined_kernel_weight=nw; }

		/** get number of subkernels
		 *
		 * @return number of subkernels
		 */
		virtual int32_t get_num_subkernels();

		/** compute by subkernel
		 *
		 * @param vector_idx index
		 * @param subkernel_contrib subkernel contribution
		 */
		virtual void compute_by_subkernel(
			int32_t vector_idx, float64_t * subkernel_contrib);

		/** get subkernel weights
		 *
		 * @param num_weights number of weights will be stored here
		 * @return subkernel weights
		 */
		virtual const float64_t* get_subkernel_weights(int32_t& num_weights);

		/** get subkernel weights (swig compatible)
		 *
		 * @return subkernel weights
		 */
		virtual SGVector<float64_t> get_subkernel_weights();

		/** set subkernel weights
		 *
		 * @param weights new subkernel weights
		 */
		virtual void set_subkernel_weights(SGVector<float64_t> weights);

		/** return derivative with respect to specified parameter
		 *
		 * @param param the parameter
		 * @param index the index of the element if parameter is a vector
		 *
		 * @return gradient with respect to parameter
		 */
		virtual SGMatrix<float64_t> get_parameter_gradient(
				const TParameter* param, index_t index=-1)
		{
			SG_ERROR("Can't compute derivative wrt %s parameter\n", param->m_name)
			return SGMatrix<float64_t>();
		}

		/** Obtains a kernel from a generic SGObject with error checking. Note
		 * that if passing NULL, result will be NULL
		 * @param kernel Object to cast to CKernel, is *not* SG_REFed
		 * @return object casted to CKernel, NULL if not possible
		 */
		static CKernel* obtain_from_generic(CSGObject* kernel);
	protected:
		/** set property
		 *
		 * @param p kernel property to set
		 */
		inline void set_property(EKernelProperty p)
		{
			properties |= p;
		}

		/** unset property
		 *
		 * @param p kernel property to unset
		 */
		inline void unset_property(EKernelProperty p)
		{
			properties &= (properties | p) ^ p;
		}

		/** set is initialized
		 *
		 * @param p_init if optimization shall be set to initialized
		 */
		inline void set_is_initialized(bool p_init) { optimization_initialized=p_init; }

		/** compute kernel function for features a and b
		 * idx_{a,b} denote the index of the feature vectors
		 * in the corresponding feature object
		 *
		 * abstract base method
		 *
		 * @param x index a
		 * @param y index b
		 * @return computed kernel function at indices a,b
		 */
		virtual float64_t compute(int32_t x, int32_t y)=0;

		/** compute row start offset for parallel kernel matrix computation
		 *
		 * @param offs offset
		 * @param n number of columns
		 * @param symmetric whether matrix is symmetric
		 */
		int32_t compute_row_start(int64_t offs, int32_t n, bool symmetric)
		{
			int32_t i_start;

			if (symmetric)
				i_start=(int32_t) CMath::floor(n-CMath::sqrt(CMath::sq((float64_t) n)-offs));
			else
				i_start=(int32_t) (offs/int64_t(n));

			return i_start;
		}

		/** helper for computing the kernel matrix in a parallel way
		 *
		 * @param p thread parameters
		 */
		template <class T> static void* get_kernel_matrix_helper(void* p);

		/** Can (optionally) be overridden to post-initialize some member
		 *  variables which are not PARAMETER::ADD'ed.  Make sure that at
		 *  first the overridden method BASE_CLASS::LOAD_SERIALIZABLE_POST
		 *  is called.
		 *
		 *  @exception ShogunException Will be thrown if an error
		 *                             occurres.
		 */
		virtual void load_serializable_post() throw (ShogunException);

		/** Can (optionally) be overridden to pre-initialize some member
		 *  variables which are not PARAMETER::ADD'ed.  Make sure that at
		 *  first the overridden method BASE_CLASS::SAVE_SERIALIZABLE_PRE
		 *  is called.
		 *
		 *  @exception ShogunException Will be thrown if an error
		 *                             occurres.
		 */
		virtual void save_serializable_pre() throw (ShogunException);

		/** Can (optionally) be overridden to post-initialize some member
		 *  variables which are not PARAMETER::ADD'ed.  Make sure that at
		 *  first the overridden method BASE_CLASS::SAVE_SERIALIZABLE_POST
		 *  is called.
		 *
		 *  @exception ShogunException Will be thrown if an error
		 *                             occurres.
		 */
		virtual void save_serializable_post() throw (ShogunException);

		/** Separate the function of parameter registration
		 *	This can be the first stage of a *general* framework for
		 *	cross-validation or other parameter-based operations
		 */
		virtual void register_params();

	private:
		/** Do basic initialisations like default settings
		 * and registering parameters */
		void init();



		//@}

	protected:
		/// cache_size in MB
		int32_t cache_size;



		/// this *COULD* store the whole kernel matrix
		/// usually not applicable / necessary to compute the whole matrix
		KERNELCACHE_ELEM* kernel_matrix;

		/// feature vectors to occur on left hand side
		CFeatures* lhs;
		/// feature vectors to occur on right hand side
		CFeatures* rhs;

		/// lhs
		bool lhs_equals_rhs;

		/// number of feature vectors on left hand side
		int32_t num_lhs;
		/// number of feature vectors on right hand side
		int32_t num_rhs;

		/** combined kernel weight */
		float64_t combined_kernel_weight;

		/** if optimization is initialized */
		bool optimization_initialized;
		/** optimization type (currently FASTBUTMEMHUNGRY and
		 * SLOWBUTMEMEFFICIENT)
		 */
		EOptimizationType opt_type;

		/** kernel properties */
		uint64_t  properties;

		/** normalize the kernel(i,j) function based on this normalization
		 * function */
		CKernelNormalizer* normalizer;
};

}
#endif /* _KERNEL_H__ */