This file is indexed.

/usr/include/shogun/kernel/PyramidChi2.h is in libshogun-dev 3.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2008-2009 Alexander Binder
 * Copyright (C) 2008-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef PYRAMIDCHI2_H_
#define PYRAMIDCHI2_H_

#include <shogun/lib/common.h>
#include <shogun/kernel/DotKernel.h>
#include <shogun/features/Features.h>
#include <shogun/features/DenseFeatures.h>

namespace shogun
{
	template <class T> class CDenseFeatures;

/** @brief Pyramid Kernel over Chi2 matched histograms.
 *
 *
 *
 */
class CPyramidChi2 : public CDotKernel
{
public:
	/** default constructor protected to avoid its usage */
	CPyramidChi2();

	/** constructor
	 *
	 * @param size cache size in MB
	 * @param num_cells2 - the number of pyramid cells
	 * @param weights_foreach_cell2 the vector of weights for each cell with which the Chi2 distance gets weighted
	 * @param width_computation_type2 - 0 use the following parameter as fixed
	 *	width, 1- use mean of inner distances
	 *	in cases 1 and 2 the value of parameter width is still important, see parameter width2
	 * @param width2 - in case of width_computation_type ==0 it is the
	 *	width, in case of width_computation_type > 0 its value determines
	 *	the how many random features are used for determining the width
	 *	in case of width_computation_type > 0 set width2 <=1 to use all
	 *	LEFT HAND SIDE features for width estimation
	 */
	CPyramidChi2(int32_t size, int32_t num_cells2,
		float64_t* weights_foreach_cell2,
		int32_t width_computation_type2,
		float64_t width2);

	/** constructor
	 *
	 * @param l features lhs
	 *	convention: concatenated features along all cells, i.e. [feature for cell1, feature for cell2, ... feature for last cell] , the dimensionality of the base feature is equal to dividing the total feature length by the number ofcells
	 * @param r features rhs
	 *	the same convention as for param l applies here
	 * @param size cache size
	 * @param num_cells2 - the number of pyramid cells
	 * @param weights_foreach_cell2 the vector of weights for each cell with which the Chi2 distance gets weighted
	 * @param width_computation_type2 - 0 use the following parameter as fixed
	 *	width, 1- use mean of inner distances
	 *	in case 1 the value of parameter width is important!!!
	 * @param width2 - in case of width_computation_type ==0 it is the
	 *	width, in case of width_computation_type > 0 its value determines
	 *	the how many random features are used for determining the width
	 *	in case of width_computation_type > 0 set width2 <=1 to use all
	 *	LEFT HAND SIDE features for width estimation
	 */
	CPyramidChi2(
		CDenseFeatures<float64_t>* l, CDenseFeatures<float64_t>* r,
		int32_t size, int32_t num_cells2,
		float64_t* weights_foreach_cell2,
		int32_t width_computation_type2,
		float64_t width2 );

	/** init
	 *
	 * @param l features lhs
	 * @param r reatures rhs
	 */
	virtual bool init(CFeatures* l, CFeatures* r);


	virtual ~CPyramidChi2();

	/** cleanup */
	virtual void cleanup();

	/** return what type of kernel we are Linear,Polynomial, Gaussian,... */
	virtual EKernelType get_kernel_type()
	{
		return K_PYRAMIDCHI2;
	}

	/** return the name of a kernel */
	virtual const char* get_name() const { return "PyramidChi2"; }


	/** sets parameters, see also constructor
	 *
	 * @param num_cells2 - the number of pyramid cells
	 * @param weights_foreach_cell2 the vector of weights for each cell with which the Chi2 distance gets weighted
	 * @param width_computation_type2 - 0 use the following parameter as fixed
	 *	width, 1- use mean of inner distances
	 *	in cases 1 and 2 the value of parameter width is still important, see parameter width2
	 * @param width2 - in case of width_computation_type ==0 it is the
	 *	width, in case of width_computation_type > 0 its value determines
	 *	the how many random features are used for determining the width
	 *	in case of width_computation_type > 0 set width2 <=1 to use all
	 *	LEFT HAND SIDE features for width estimation
	 */
	virtual void setparams_pychi2(int32_t num_cells2,
		float64_t* weights_foreach_cell2,
		int32_t width_computation_type2,
		float64_t width2);

protected:
	/** compute kernel function for features a and b
	 *
	 * @param idx_a index of feature vector a
	 * @param idx_b index of feature vector b
	 * @return computed kernel function
	 */
	virtual float64_t compute(int32_t idx_a, int32_t idx_b);

protected:

	/** number of pyramidcells across all pyramidlevel */
	int32_t num_cells;

	/** vector of weights for each pyramid cell*/
	float64_t* weights;

	/** width_computation_type */
	int32_t width_computation_type;
		/** width */
	float64_t width;
	/** in case of adaptive width computation: how many features to use */
	int32_t num_randfeats_forwidthcomputation;




};
}
#endif /*PYRAMIDCHI2_H_*/