/usr/include/shogun/machine/DirectorKernelMachine.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Copyright (C) 2012 Evgeniy Andreev (gsomix)
*/
#ifndef _DIRECTORKERNELMACHINE_H___
#define _DIRECTORKERNELMACHINE_H___
#ifdef USE_SWIG_DIRECTORS
#include <shogun/lib/common.h>
#include <shogun/lib/DataType.h>
#include <shogun/machine/Machine.h>
#include <shogun/machine/KernelMachine.h>
namespace shogun
{
#define IGNORE_IN_CLASSLIST
IGNORE_IN_CLASSLIST class CDirectorKernelMachine : public CKernelMachine
{
public:
/* default constructor */
CDirectorKernelMachine()
: CKernelMachine()
{
}
/** Convenience constructor to initialize a trained kernel
* machine
*
* @param k kernel
* @param alphas vector of alpha weights
* @param svs indices of examples, i.e. i's for x_i
* @param b bias term
*/
CDirectorKernelMachine(CKernel* k, const SGVector<float64_t> alphas, const SGVector<int32_t> svs, float64_t b)
: CKernelMachine(k, alphas, svs, b)
{
}
/* destructor */
virtual ~CDirectorKernelMachine()
{
}
/** train machine
*
* @param data training data (parameter can be avoided if distance or
* kernel-based classifiers are used and distance/kernels are
* initialized with train data).
* If flag is set, model features will be stored after training.
*
* @return whether training was successful
*/
virtual bool train(CFeatures* data=NULL)
{
return CKernelMachine::train(data);
}
virtual bool train_function(CFeatures* data=NULL)
{
SG_ERROR("Train function of Director Kernel Machine needs to be overridden.\n")
return false;
}
/** apply machine to data
* if data is not specified apply to the current features
*
* @param data (test)data to be classified
* @return classified labels
*/
virtual CLabels* apply(CFeatures* data=NULL)
{
return CKernelMachine::apply(data);
}
/** apply machine to data in means of binary classification problem */
virtual CBinaryLabels* apply_binary(CFeatures* data=NULL)
{
return CKernelMachine::apply_binary(data);
}
/** apply machine to data in means of regression problem */
virtual CRegressionLabels* apply_regression(CFeatures* data=NULL)
{
return CKernelMachine::apply_regression(data);
}
/** apply machine to data in means of multiclass classification problem */
using CKernelMachine::apply_multiclass;
/** apply kernel machine to one example
*
* @param num which example to apply to
* @return classified value
*/
virtual float64_t apply_one(int32_t num)
{
return CKernelMachine::apply_one(num);
}
/** set labels
*
* @param lab labels
*/
virtual void set_labels(CLabels* lab)
{
CKernelMachine::set_labels(lab);
}
/** get labels
*
* @return labels
*/
virtual CLabels* get_labels()
{
return CKernelMachine::get_labels();
}
/** get classifier type
*
* @return classifier type NONE
*/
virtual EMachineType get_classifier_type() { return CT_DIRECTORKERNEL; }
/** Setter for store-model-features-after-training flag
*
* @param store_model whether model should be stored after
* training
*/
virtual void set_store_model_features(bool store_model)
{
CKernelMachine::set_store_model_features(store_model);
}
/** Trains a locked machine on a set of indices. Error if machine is
* not locked
*
* NOT IMPLEMENTED
*
* @param indices index vector (of locked features) that is used for training
* @return whether training was successful
*/
virtual bool train_locked(SGVector<index_t> indices)
{
return CKernelMachine::train_locked(indices);
}
/** Applies a locked machine on a set of indices. Error if machine is
* not locked
*
* @param indices index vector (of locked features) that is predicted
*/
virtual CLabels* apply_locked(SGVector<index_t> indices)
{
return CKernelMachine::apply_locked(indices);
}
virtual CBinaryLabels* apply_locked_binary(SGVector<index_t> indices)
{
return CKernelMachine::apply_locked_binary(indices);
}
virtual CRegressionLabels* apply_locked_regression(
SGVector<index_t> indices)
{
return CKernelMachine::apply_locked_regression(indices);
}
using CKernelMachine::apply_locked_multiclass;
/** Applies a locked machine on a set of indices. Error if machine is
* not locked
*
* @param indices index vector (of locked features) that is predicted
* @return raw output of machine
*/
virtual SGVector<float64_t> apply_locked_get_output(
SGVector<index_t> indices)
{
return CKernelMachine::apply_locked_get_output(indices);
}
/** Locks the machine on given labels and data. After this call, only
* train_locked and apply_locked may be called
*
* Only possible if supports_locking() returns true
*
* @param labs labels used for locking
* @param features features used for locking
*/
virtual void data_lock(CLabels* labs, CFeatures* features)
{
CKernelMachine::data_lock(labs, features);
}
/** Unlocks a locked machine and restores previous state */
virtual void data_unlock()
{
CKernelMachine::data_unlock();
}
/** @return whether this machine supports locking */
virtual bool supports_locking() const
{
return CKernelMachine::supports_locking();
}
//TODO change to pure virtual
virtual EProblemType get_machine_problem_type() const
{
return CKernelMachine::get_machine_problem_type();
}
virtual const char* get_name() const { return "DirectorKernelMachine"; }
protected:
/** train machine
*
* @param data training data (parameter can be avoided if distance or
* kernel-based classifiers are used and distance/kernels are
* initialized with train data)
*
* NOT IMPLEMENTED!
*
* @return whether training was successful
*/
virtual bool train_machine(CFeatures* data=NULL)
{
return train_function(data);
}
};
}
#endif /* USE_SWIG_DIRECTORS */
#endif /* _DIRECTORKERNELMACHINE_H___ */
|