This file is indexed.

/usr/include/shogun/machine/OnlineLinearMachine.h is in libshogun-dev 3.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 1999-2009 Soeren Sonnenburg
 * Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef _ONLINELINEARCLASSIFIER_H__
#define _ONLINELINEARCLASSIFIER_H__

#include <shogun/lib/common.h>
#include <shogun/labels/Labels.h>
#include <shogun/labels/RegressionLabels.h>
#include <shogun/features/streaming/StreamingDotFeatures.h>
#include <shogun/machine/Machine.h>

#include <stdio.h>

namespace shogun
{
/** @brief Class OnlineLinearMachine is a generic interface for linear
 * machines like classifiers which work through online algorithms.
 *
 * A linear classifier computes
 *
 *  \f[
 *		f({\bf x})= {\bf w} \cdot {\bf x} + b
 *	\f]
 *
 * where \f${\bf w}\f$ are the weights assigned to each feature in training
 * and \f$b\f$ the bias.
 *
 * To implement a linear classifier all that is required is to define the
 * train() function that delivers \f${\bf w}\f$ above.
 *
 * Note that this framework works with linear classifiers of arbitrary feature
 * type, e.g. dense and sparse and even string based features. This is
 * implemented by using CStreamingDotFeatures that may provide a mapping function
 * \f$\Phi({\bf x})\mapsto {\cal R^D}\f$ encapsulating all the required
 * operations (like the dot product). The decision function is thus
 *
 *  \f[
 *		f({\bf x})= {\bf w} \cdot \Phi({\bf x}) + b.
 *	\f]
 *
 * */
class COnlineLinearMachine : public CMachine
{
	public:
		/** default constructor */
		COnlineLinearMachine();
		virtual ~COnlineLinearMachine();

		/** get w
		 *
		 * @param dst_w store w in this argument
		 * @param dst_dims dimension of w
		 */
		virtual void get_w(float32_t*& dst_w, int32_t& dst_dims)
		{
			ASSERT(w && w_dim>0)
			dst_w=w;
			dst_dims=w_dim;
		}

		/**
		 * Get w as a _new_ float64_t array
		 *
		 * @param dst_w store w in this argument
		 * @param dst_dims dimension of w
		 */
		virtual void get_w(float64_t*& dst_w, int32_t& dst_dims)
		{
			ASSERT(w && w_dim>0)
			dst_w=SG_MALLOC(float64_t, w_dim);
			for (int32_t i=0; i<w_dim; i++)
				dst_w[i]=w[i];
			dst_dims=w_dim;
		}

		/** get w
		 *
		 * @return weight vector
		 */
		virtual SGVector<float32_t> get_w()
		{
			float32_t * dst_w = SG_MALLOC(float32_t, w_dim);
			for (int32_t i=0; i<w_dim; i++)
				dst_w[i]=w[i];
			return SGVector<float32_t>(dst_w, w_dim);
		}

		/** set w
		 *
		 * @param src_w new w
		 * @param src_w_dim dimension of new w
		 */
		virtual void set_w(float32_t* src_w, int32_t src_w_dim)
		{
			SG_FREE(w);
			w=SG_MALLOC(float32_t, src_w_dim);
			memcpy(w, src_w, size_t(src_w_dim)*sizeof(float32_t));
			w_dim=src_w_dim;
		}

		/**
		 * Set weight vector from a float64_t vector
		 *
		 * @param src_w new w
		 * @param src_w_dim dimension of new w
		 */
		virtual void set_w(float64_t* src_w, int32_t src_w_dim)
		{
			SG_FREE(w);
			w=SG_MALLOC(float32_t, src_w_dim);
			for (int32_t i=0; i<src_w_dim; i++)
				w[i] = src_w[i];
			w_dim=src_w_dim;
		}

		/** set bias
		 *
		 * @param b new bias
		 */
		virtual void set_bias(float32_t b)
		{
			bias=b;
		}

		/** get bias
		 *
		 * @return bias
		 */
		virtual float32_t get_bias()
		{
			return bias;
		}

		/** set features
		 *
		 * @param feat features to set
		 */
		virtual void set_features(CStreamingDotFeatures* feat)
		{
			SG_REF(feat);
			SG_UNREF(features);
			features=feat;
		}

		/** apply linear machine to data
		 * for regression problems
		 *
		 * @param data (test)data to be classified
		 * @return classified labels
		 */
		virtual CRegressionLabels* apply_regression(CFeatures* data=NULL);

		/** apply linear machine to data
		 * for binary classification problems
		 *
		 * @param data (test)data to be classified
		 * @return classified labels
		 */
		virtual CBinaryLabels* apply_binary(CFeatures* data=NULL);

		/// get output for example "vec_idx"
		virtual float64_t apply_one(int32_t vec_idx)
		{
			SG_NOTIMPLEMENTED
			return CMath::INFTY;
		}

		/**
		 * apply linear machine to one vector
		 *
		 * @param vec feature vector
		 * @param len length of vector
		 *
		 * @return classified label
		 */
		virtual float32_t apply_one(float32_t* vec, int32_t len);

		/**
		 * apply linear machine to vector currently being processed
		 *
		 * @return classified label
		 */
		virtual float32_t apply_to_current_example();

		/** get features
		 *
		 * @return features
		 */
		virtual CStreamingDotFeatures* get_features() { SG_REF(features); return features; }

		/** Returns the name of the SGSerializable instance.  It MUST BE
		 *  the CLASS NAME without the prefixed `C'.
		 *
		 * @return name of the SGSerializable
		 */
		virtual const char* get_name() const { return "OnlineLinearMachine"; }

		/** Start training of the online machine, sub-class should override
		 * this if some preparations are to be done
		 */
		virtual void start_train() { }

		/** Stop training of the online machine, sub-class should override
		 * this if some clean up is needed
		 */
		virtual void stop_train() { }

		/** train on one example
		 * @param feature the feature object containing the current example. Note that get_next_example
		 *        is already called so relevalent methods like dot() and dense_dot() can be directly
		 *        called. WARN: this function should only process ONE example, and get_next_example()
		 *        should NEVER be called here. Use the label passed in the 2nd parameter, instead of
		 *		  get_label() from feature, because sometimes the features might not have associated
		 *		  labels or the caller might want to provide some other labels.
		 * @param label label of this example
		 */
		virtual void train_example(CStreamingDotFeatures *feature, float64_t label) { SG_NOTIMPLEMENTED }

	protected:
		/**
		 * Train classifier
		 *
		 * @param data Training data, can be avoided if already
		 * initialized with it
		 *
		 * @return Whether training was successful
		 */
		virtual bool train_machine(CFeatures* data=NULL);

		/** get real outputs
		 *
		 * @param data features to compute outputs
		 * @return outputs
		 */
		SGVector<float64_t> apply_get_outputs(CFeatures* data);

		/** whether train require labels */
		virtual bool train_require_labels() const { return false; }

	protected:
		/** dimension of w */
		int32_t w_dim;
		/** w */
		float32_t* w;
		/** bias */
		float32_t bias;
		/** features */
		CStreamingDotFeatures* features;
};
}
#endif