/usr/include/shogun/machine/OnlineLinearMachine.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 1999-2009 Soeren Sonnenburg
* Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
*/
#ifndef _ONLINELINEARCLASSIFIER_H__
#define _ONLINELINEARCLASSIFIER_H__
#include <shogun/lib/common.h>
#include <shogun/labels/Labels.h>
#include <shogun/labels/RegressionLabels.h>
#include <shogun/features/streaming/StreamingDotFeatures.h>
#include <shogun/machine/Machine.h>
#include <stdio.h>
namespace shogun
{
/** @brief Class OnlineLinearMachine is a generic interface for linear
* machines like classifiers which work through online algorithms.
*
* A linear classifier computes
*
* \f[
* f({\bf x})= {\bf w} \cdot {\bf x} + b
* \f]
*
* where \f${\bf w}\f$ are the weights assigned to each feature in training
* and \f$b\f$ the bias.
*
* To implement a linear classifier all that is required is to define the
* train() function that delivers \f${\bf w}\f$ above.
*
* Note that this framework works with linear classifiers of arbitrary feature
* type, e.g. dense and sparse and even string based features. This is
* implemented by using CStreamingDotFeatures that may provide a mapping function
* \f$\Phi({\bf x})\mapsto {\cal R^D}\f$ encapsulating all the required
* operations (like the dot product). The decision function is thus
*
* \f[
* f({\bf x})= {\bf w} \cdot \Phi({\bf x}) + b.
* \f]
*
* */
class COnlineLinearMachine : public CMachine
{
public:
/** default constructor */
COnlineLinearMachine();
virtual ~COnlineLinearMachine();
/** get w
*
* @param dst_w store w in this argument
* @param dst_dims dimension of w
*/
virtual void get_w(float32_t*& dst_w, int32_t& dst_dims)
{
ASSERT(w && w_dim>0)
dst_w=w;
dst_dims=w_dim;
}
/**
* Get w as a _new_ float64_t array
*
* @param dst_w store w in this argument
* @param dst_dims dimension of w
*/
virtual void get_w(float64_t*& dst_w, int32_t& dst_dims)
{
ASSERT(w && w_dim>0)
dst_w=SG_MALLOC(float64_t, w_dim);
for (int32_t i=0; i<w_dim; i++)
dst_w[i]=w[i];
dst_dims=w_dim;
}
/** get w
*
* @return weight vector
*/
virtual SGVector<float32_t> get_w()
{
float32_t * dst_w = SG_MALLOC(float32_t, w_dim);
for (int32_t i=0; i<w_dim; i++)
dst_w[i]=w[i];
return SGVector<float32_t>(dst_w, w_dim);
}
/** set w
*
* @param src_w new w
* @param src_w_dim dimension of new w
*/
virtual void set_w(float32_t* src_w, int32_t src_w_dim)
{
SG_FREE(w);
w=SG_MALLOC(float32_t, src_w_dim);
memcpy(w, src_w, size_t(src_w_dim)*sizeof(float32_t));
w_dim=src_w_dim;
}
/**
* Set weight vector from a float64_t vector
*
* @param src_w new w
* @param src_w_dim dimension of new w
*/
virtual void set_w(float64_t* src_w, int32_t src_w_dim)
{
SG_FREE(w);
w=SG_MALLOC(float32_t, src_w_dim);
for (int32_t i=0; i<src_w_dim; i++)
w[i] = src_w[i];
w_dim=src_w_dim;
}
/** set bias
*
* @param b new bias
*/
virtual void set_bias(float32_t b)
{
bias=b;
}
/** get bias
*
* @return bias
*/
virtual float32_t get_bias()
{
return bias;
}
/** set features
*
* @param feat features to set
*/
virtual void set_features(CStreamingDotFeatures* feat)
{
SG_REF(feat);
SG_UNREF(features);
features=feat;
}
/** apply linear machine to data
* for regression problems
*
* @param data (test)data to be classified
* @return classified labels
*/
virtual CRegressionLabels* apply_regression(CFeatures* data=NULL);
/** apply linear machine to data
* for binary classification problems
*
* @param data (test)data to be classified
* @return classified labels
*/
virtual CBinaryLabels* apply_binary(CFeatures* data=NULL);
/// get output for example "vec_idx"
virtual float64_t apply_one(int32_t vec_idx)
{
SG_NOTIMPLEMENTED
return CMath::INFTY;
}
/**
* apply linear machine to one vector
*
* @param vec feature vector
* @param len length of vector
*
* @return classified label
*/
virtual float32_t apply_one(float32_t* vec, int32_t len);
/**
* apply linear machine to vector currently being processed
*
* @return classified label
*/
virtual float32_t apply_to_current_example();
/** get features
*
* @return features
*/
virtual CStreamingDotFeatures* get_features() { SG_REF(features); return features; }
/** Returns the name of the SGSerializable instance. It MUST BE
* the CLASS NAME without the prefixed `C'.
*
* @return name of the SGSerializable
*/
virtual const char* get_name() const { return "OnlineLinearMachine"; }
/** Start training of the online machine, sub-class should override
* this if some preparations are to be done
*/
virtual void start_train() { }
/** Stop training of the online machine, sub-class should override
* this if some clean up is needed
*/
virtual void stop_train() { }
/** train on one example
* @param feature the feature object containing the current example. Note that get_next_example
* is already called so relevalent methods like dot() and dense_dot() can be directly
* called. WARN: this function should only process ONE example, and get_next_example()
* should NEVER be called here. Use the label passed in the 2nd parameter, instead of
* get_label() from feature, because sometimes the features might not have associated
* labels or the caller might want to provide some other labels.
* @param label label of this example
*/
virtual void train_example(CStreamingDotFeatures *feature, float64_t label) { SG_NOTIMPLEMENTED }
protected:
/**
* Train classifier
*
* @param data Training data, can be avoided if already
* initialized with it
*
* @return Whether training was successful
*/
virtual bool train_machine(CFeatures* data=NULL);
/** get real outputs
*
* @param data features to compute outputs
* @return outputs
*/
SGVector<float64_t> apply_get_outputs(CFeatures* data);
/** whether train require labels */
virtual bool train_require_labels() const { return false; }
protected:
/** dimension of w */
int32_t w_dim;
/** w */
float32_t* w;
/** bias */
float32_t bias;
/** features */
CStreamingDotFeatures* features;
};
}
#endif
|