/usr/include/shogun/machine/gp/InferenceMethod.h is in libshogun-dev 3.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2013 Roman Votyakov
* Written (W) 2013 Heiko Strathmann
* Copyright (C) 2012 Jacob Walker
* Copyright (C) 2013 Roman Votyakov
*/
#ifndef CINFERENCEMETHOD_H_
#define CINFERENCEMETHOD_H_
#include <shogun/lib/config.h>
#ifdef HAVE_EIGEN3
#include <shogun/base/SGObject.h>
#include <shogun/kernel/Kernel.h>
#include <shogun/features/Features.h>
#include <shogun/labels/Labels.h>
#include <shogun/machine/gp/LikelihoodModel.h>
#include <shogun/machine/gp/MeanFunction.h>
#include <shogun/evaluation/DifferentiableFunction.h>
namespace shogun
{
/** inference type */
enum EInferenceType
{
INF_NONE=0,
INF_EXACT=10,
INF_FITC=20,
INF_LAPLACIAN=30,
INF_EP=40
};
/** @brief The Inference Method base class.
*
* The Inference Method computes (approximately) the posterior distribution for
* a given Gaussian Process.
*
* It is possible to sample the (true) log-marginal likelihood on the base of
* any implemented approximation. See log_ml_estimate.
*/
class CInferenceMethod : public CDifferentiableFunction
{
public:
/** default constructor */
CInferenceMethod();
/** constructor
*
* @param kernel covariance function
* @param features features to use in inference
* @param mean mean function
* @param labels labels of the features
* @param model likelihood model to use
*/
CInferenceMethod(CKernel* kernel, CFeatures* features,
CMeanFunction* mean, CLabels* labels, CLikelihoodModel* model);
virtual ~CInferenceMethod();
/** return what type of inference we are, e.g. exact, FITC, Laplacian, etc.
*
* @return inference type
*/
virtual EInferenceType get_inference_type() const { return INF_NONE; }
/** get negative log marginal likelihood
*
* @return the negative log of the marginal likelihood function:
*
* \f[
* -log(p(y|X, \theta))
* \f]
*
* where \f$y\f$ are the labels, \f$X\f$ are the features, and \f$\theta\f$
* represent hyperparameters.
*/
virtual float64_t get_negative_log_marginal_likelihood()=0;
/** Computes an unbiased estimate of the log-marginal-likelihood,
*
* \f[
* log(p(y|X,\theta)),
* \f]
* where \f$y\f$ are the labels, \f$X\f$ are the features (omitted from in
* the following expressions), and \f$\theta\f$ represent hyperparameters.
*
* This is done via an approximation to the posterior
* \f$q(f|y, \theta)\approx p(f|y, \theta)\f$, which is computed by the
* underlying CInferenceMethod instance (if implemented, otherwise error),
* and then using an importance sample estimator
*
* \f[
* p(y|\theta)=\int p(y|f)p(f|\theta)df
* =\int p(y|f)\frac{p(f|\theta)}{q(f|y, \theta)}q(f|y, \theta)df
* \approx\frac{1}{n}\sum_{i=1}^n p(y|f^{(i)})\frac{p(f^{(i)}|\theta)}
* {q(f^{(i)}|y, \theta)},
* \f]
*
* where \f$ f^{(i)} \f$ are samples from the posterior approximation
* \f$ q(f|y, \theta) \f$. The resulting estimator has a low variance if
* \f$ q(f|y, \theta) \f$ is a good approximation. It has large variance
* otherwise (while still being consistent).
*
* @param num_importance_samples the number of importance samples \f$n\f$
* from \f$ q(f|y, \theta) \f$.
* @param ridge_size scalar that is added to the diagonal of the involved
* Gaussian distribution's covariance of GP prior and posterior
* approximation to stabilise things. Increase if Cholesky factorization
* fails.
*
* @return unbiased estimate of the log of the marginal likelihood function
* \f$ log(p(y|\theta)) \f$
*/
float64_t get_marginal_likelihood_estimate(int32_t num_importance_samples=1,
float64_t ridge_size=1e-15);
/** get log marginal likelihood gradient
*
* @return vector of the marginal likelihood function gradient with respect
* to hyperparameters (under the current approximation to the posterior
* \f$q(f|y)\approx p(f|y)\f$:
*
* \f[
* -\frac{\partial log(p(y|X, \theta))}{\partial \theta}
* \f]
*
* where \f$y\f$ are the labels, \f$X\f$ are the features, and \f$\theta\f$
* represent hyperparameters.
*/
virtual CMap<TParameter*, SGVector<float64_t> >* get_negative_log_marginal_likelihood_derivatives(
CMap<TParameter*, CSGObject*>* parameters);
/** get alpha vector
*
* @return vector to compute posterior mean of Gaussian Process:
*
* \f[
* \mu = K\alpha
* \f]
*
* where \f$\mu\f$ is the mean and \f$K\f$ is the prior covariance matrix.
*/
virtual SGVector<float64_t> get_alpha()=0;
/** get Cholesky decomposition matrix
*
* @return Cholesky decomposition of matrix:
*
* \f[
* L = cholesky(sW*K*sW+I)
* \f]
*
* where \f$K\f$ is the prior covariance matrix, \f$sW\f$ is the vector
* returned by get_diagonal_vector(), and \f$I\f$ is the identity matrix.
*/
virtual SGMatrix<float64_t> get_cholesky()=0;
/** get diagonal vector
*
* @return diagonal of matrix used to calculate posterior covariance matrix:
*
* \f[
* Cov = (K^{-1}+sW^{2})^{-1}
* \f]
*
* where \f$Cov\f$ is the posterior covariance matrix, \f$K\f$ is the prior
* covariance matrix, and \f$sW\f$ is the diagonal vector.
*/
virtual SGVector<float64_t> get_diagonal_vector()=0;
/** returns mean vector \f$\mu\f$ of the Gaussian distribution
* \f$\mathcal{N}(\mu,\Sigma)\f$, which is an approximation to the
* posterior:
*
* \f[
* p(f|y) \approx q(f|y) = \mathcal{N}(\mu,\Sigma)
* \f]
*
* in case if particular inference method doesn't compute posterior
* \f$p(f|y)\f$ exactly, and it returns covariance matrix \f$\Sigma\f$ of
* the posterior Gaussian distribution \f$\mathcal{N}(\mu,\Sigma)\f$
* otherwise.
*
* @return mean vector
*/
virtual SGVector<float64_t> get_posterior_mean()=0;
/** returns covariance matrix \f$\Sigma\f$ of the Gaussian distribution
* \f$\mathcal{N}(\mu,\Sigma)\f$, which is an approximation to the
* posterior:
*
* \f[
* p(f|y) \approx q(f|y) = \mathcal{N}(\mu,\Sigma)
* \f]
*
* in case if particular inference method doesn't compute posterior
* \f$p(f|y)\f$ exactly, and it returns covariance matrix \f$\Sigma\f$ of
* the posterior Gaussian distribution \f$\mathcal{N}(\mu,\Sigma)\f$
* otherwise.
*
* @return covariance matrix
*/
virtual SGMatrix<float64_t> get_posterior_covariance()=0;
/** get the gradient
*
* @param parameters parameter's dictionary
*
* @return map of gradient. Keys are names of parameters, values are values
* of derivative with respect to that parameter.
*/
virtual CMap<TParameter*, SGVector<float64_t> >* get_gradient(
CMap<TParameter*, CSGObject*>* parameters)
{
return get_negative_log_marginal_likelihood_derivatives(parameters);
}
/** get the function value
*
* @return vector that represents the function value
*/
virtual SGVector<float64_t> get_value()
{
SGVector<float64_t> result(1);
result[0]=get_negative_log_marginal_likelihood();
return result;
}
/** get features
*
* @return features
*/
virtual CFeatures* get_features() { SG_REF(m_features); return m_features; }
/** set features
*
* @param feat features to set
*/
virtual void set_features(CFeatures* feat)
{
SG_REF(feat);
SG_UNREF(m_features);
m_features=feat;
}
/** get kernel
*
* @return kernel
*/
virtual CKernel* get_kernel() { SG_REF(m_kernel); return m_kernel; }
/** set kernel
*
* @param kern kernel to set
*/
virtual void set_kernel(CKernel* kern)
{
SG_REF(kern);
SG_UNREF(m_kernel);
m_kernel=kern;
}
/** get mean
*
* @return mean
*/
virtual CMeanFunction* get_mean() { SG_REF(m_mean); return m_mean; }
/** set mean
*
* @param m mean function to set
*/
virtual void set_mean(CMeanFunction* m)
{
SG_REF(m);
SG_UNREF(m_mean);
m_mean=m;
}
/** get labels
*
* @return labels
*/
virtual CLabels* get_labels() { SG_REF(m_labels); return m_labels; }
/** set labels
*
* @param lab label to set
*/
virtual void set_labels(CLabels* lab)
{
SG_REF(lab);
SG_UNREF(m_labels);
m_labels=lab;
}
/** get likelihood model
*
* @return likelihood
*/
CLikelihoodModel* get_model() { SG_REF(m_model); return m_model; }
/** set likelihood model
*
* @param mod model to set
*/
virtual void set_model(CLikelihoodModel* mod)
{
SG_REF(mod);
SG_UNREF(m_model);
m_model=mod;
}
/** get kernel scale
*
* @return kernel scale
*/
virtual float64_t get_scale() const { return m_scale; }
/** set kernel scale
*
* @param scale scale to be set
*/
virtual void set_scale(float64_t scale) { m_scale=scale; }
/** whether combination of inference method and given likelihood function
* supports regression
*
* @return false
*/
virtual bool supports_regression() const { return false; }
/** whether combination of inference method and given likelihood function
* supports binary classification
*
* @return false
*/
virtual bool supports_binary() const { return false; }
/** whether combination of inference method and given likelihood function
* supports multiclass classification
*
* @return false
*/
virtual bool supports_multiclass() const { return false; }
/** update all matrices */
virtual void update();
protected:
/** check if members of object are valid for inference */
virtual void check_members() const;
/** update alpha vector */
virtual void update_alpha()=0;
/** update cholesky matrix */
virtual void update_chol()=0;
/** update matrices which are required to compute negative log marginal
* likelihood derivatives wrt hyperparameter
*/
virtual void update_deriv()=0;
/** update train kernel matrix */
virtual void update_train_kernel();
/** returns derivative of negative log marginal likelihood wrt parameter of
* CInferenceMethod class
*
* @param param parameter of CInferenceMethod class
*
* @return derivative of negative log marginal likelihood
*/
virtual SGVector<float64_t> get_derivative_wrt_inference_method(
const TParameter* param)=0;
/** returns derivative of negative log marginal likelihood wrt parameter of
* likelihood model
*
* @param param parameter of given likelihood model
*
* @return derivative of negative log marginal likelihood
*/
virtual SGVector<float64_t> get_derivative_wrt_likelihood_model(
const TParameter* param)=0;
/** returns derivative of negative log marginal likelihood wrt kernel's
* parameter
*
* @param param parameter of given kernel
*
* @return derivative of negative log marginal likelihood
*/
virtual SGVector<float64_t> get_derivative_wrt_kernel(
const TParameter* param)=0;
/** returns derivative of negative log marginal likelihood wrt mean
* function's parameter
*
* @param param parameter of given mean function
*
* @return derivative of negative log marginal likelihood
*/
virtual SGVector<float64_t> get_derivative_wrt_mean(
const TParameter* param)=0;
/** pthread helper method to compute negative log marginal likelihood
* derivatives wrt hyperparameter
*/
static void* get_derivative_helper(void* p);
private:
void init();
protected:
/** covariance function */
CKernel* m_kernel;
/** mean function */
CMeanFunction* m_mean;
/** likelihood function to use */
CLikelihoodModel* m_model;
/** features to use */
CFeatures* m_features;
/** labels of features */
CLabels* m_labels;
/** alpha vector used in process mean calculation */
SGVector<float64_t> m_alpha;
/** upper triangular factor of Cholesky decomposition */
SGMatrix<float64_t> m_L;
/** kernel scale */
float64_t m_scale;
/** kernel matrix from features (non-scalled by inference scalling) */
SGMatrix<float64_t> m_ktrtr;
};
}
#endif /* HAVE_EIGEN3 */
#endif /* CINFERENCEMETHOD_H_ */
|