This file is indexed.

/usr/include/shogun/transfer/multitask/LibLinearMTL.h is in libshogun-dev 3.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2011-2012 Christian Widmer
 * Written (W) 2007-2010 Soeren Sonnenburg
 * Copyright (c) 2007-2009 The LIBLINEAR Project.
 * Copyright (C) 2007-2012 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef _LIBLINEARMTL_H___
#define _LIBLINEARMTL_H___

#include <shogun/lib/config.h>

#include <shogun/lib/common.h>
#include <shogun/base/Parameter.h>
#include <shogun/machine/LinearMachine.h>
#include <shogun/optimization/liblinear/shogun_liblinear.h>
#include <shogun/lib/SGSparseMatrix.h>

#include <map>

namespace shogun
{

#ifdef HAVE_LAPACK


/** @brief mapped sparse matrix for
 * representing graph relations of tasks
 */
class MappedSparseMatrix
{

    public:

    /** operator overload for matrix read only access
     * @param i_row
     * @param i_col
     */
    inline const float64_t operator()(index_t i_row, index_t i_col) const
    {

		// lookup complexity is O(log n)
		std::map<index_t, float64_t>::const_iterator it = data[i_row].find(i_col);

		if (it != data[i_row].end())
		{
			// use mapping for lookup
			return it->second;
		} else {
			return 0.0;
		}
	}

    /** set matrix from SGSparseMatrix
     * @param sgm
     */
    void set_from_sparse(const SGSparseMatrix<float64_t> &sgm)
    {
        data.clear();

        // deep copy sparse matrix
        for (int32_t i=0; i!=sgm.num_vectors; i++)
        {

            SGSparseVector<float64_t> ts_row = sgm.sparse_matrix[i];
            data.push_back(std::map<index_t, float64_t>());

            for (int32_t k=0; k!=ts_row.num_feat_entries; k++)
            {
				// get data from sparse matrix
				SGSparseVectorEntry<float64_t> e = ts_row.features[k];
                data[i][e.feat_index] = e.entry;
            }

        }
    }

	/** under-the-hood data structure  */
    std::vector< std::map<index_t, float64_t> > data;

};


/** @brief class to implement LibLinear */
class CLibLinearMTL : public CLinearMachine
{
	public:
		/** default constructor  */
		CLibLinearMTL();


		/** constructor (using L2R_L1LOSS_SVC_DUAL as default)
		 *
		 * @param C constant C
		 * @param traindat training features
		 * @param trainlab training labels
		 */
		CLibLinearMTL(
			float64_t C, CDotFeatures* traindat,
			CLabels* trainlab);

		/** destructor */
		virtual ~CLibLinearMTL();


		/** get classifier type
		 *
		 * @return the classifier type
		 */
		virtual EMachineType get_classifier_type() { return CT_LIBLINEAR; }

		/** set C
		 *
		 * @param c_neg C1
		 * @param c_pos C2
		 */
		inline void set_C(float64_t c_neg, float64_t c_pos) { C1=c_neg; C2=c_pos; }

		/** get C1
		 *
		 * @return C1
		 */
		inline float64_t get_C1() { return C1; }

		/** get C2
		 *
		 * @return C2
		 */
		inline float64_t get_C2() { return C2; }

		/** set epsilon
		 *
		 * @param eps new epsilon
		 */
		inline void set_epsilon(float64_t eps) { epsilon=eps; }

		/** get epsilon
		 *
		 * @return epsilon
		 */
		inline float64_t get_epsilon() { return epsilon; }

		/** set if bias shall be enabled
		 *
		 * @param enable_bias if bias shall be enabled
		 */
		inline void set_bias_enabled(bool enable_bias) { use_bias=enable_bias; }

		/** check if bias is enabled
		 *
		 * @return if bias is enabled
		 */
		inline bool get_bias_enabled() { return use_bias; }

		/** @return object name */
		virtual const char* get_name() const { return "LibLinearMTL"; }

		/** get the maximum number of iterations liblinear is allowed to do */
		inline int32_t get_max_iterations()
		{
			return max_iterations;
		}

		/** set the maximum number of iterations liblinear is allowed to do */
		inline void set_max_iterations(int32_t max_iter=1000)
		{
			max_iterations=max_iter;
		}

		/** set number of tasks */
		inline void set_num_tasks(int32_t nt)
		{
			num_tasks = nt;
		}

		/** set the linear term for qp */
		inline void set_linear_term(SGVector<float64_t> linear_term)
		{
			if (!m_labels)
				SG_ERROR("Please assign labels first!\n")

			int32_t num_labels=m_labels->get_num_labels();

			if (num_labels!=linear_term.vlen)
			{
				SG_ERROR("Number of labels (%d) does not match number"
						" of entries (%d) in linear term \n", num_labels,
						linear_term.vlen);
			}

			m_linear_term = linear_term;
		}

		/** set task indicator for lhs */
		inline void set_task_indicator_lhs(SGVector<int32_t> ti)
		{
			task_indicator_lhs = ti;
		}

		/** set task indicator for rhs */
		inline void set_task_indicator_rhs(SGVector<int32_t> ti)
		{
			task_indicator_rhs = ti;
		}

		/** set task similarity matrix */
		inline void set_task_similarity_matrix(SGSparseMatrix<float64_t> tsm)
		{
			task_similarity_matrix.set_from_sparse(tsm);
		}

		/** set graph laplacian */
		inline void set_graph_laplacian(SGMatrix<float64_t> lap)
		{
			graph_laplacian = lap;
		}

		/** get V
		 *
		 * @return matrix of weight vectors
		 */
		inline SGMatrix<float64_t> get_V()
		{
			return V;
		}

		/** get W
		 *
		 * @return matrix of weight vectors
		 */
		inline SGMatrix<float64_t> get_W()
		{

            int32_t w_size = V.num_rows;

            SGMatrix<float64_t> W = SGMatrix<float64_t>(w_size, num_tasks);
            for(int32_t k=0; k<w_size*num_tasks; k++)
            {
                W.matrix[k] = 0;
            }

            for (int32_t s=0; s<num_tasks; s++)
            {
                float64_t* v_s = V.get_column_vector(s);
                for (int32_t t=0; t<num_tasks; t++)
                {
                    float64_t sim_ts = task_similarity_matrix(s,t);
                    for(int32_t i=0; i<w_size; i++)
                    {
                        W.matrix[t*w_size + i] += sim_ts * v_s[i];
                    }
                }
            }

			return W;
		}

		/** get alphas
		 *
		 * @return matrix of example weights alphas
		 */
		inline SGVector<float64_t> get_alphas()
		{
			return alphas;
		}

		/** compute primal objective
		 *
		 * @return primal objective
		 */
		virtual float64_t compute_primal_obj();

		/** compute dual objective
		 *
		 * @return dual objective
		 */
		virtual float64_t compute_dual_obj();

		/** compute duality gap
		 *
		 * @return duality gap
		 */
		virtual float64_t compute_duality_gap();


	protected:
		/** train linear SVM classifier
		 *
		 * @param data training data (parameter can be avoided if distance or
		 * kernel-based classifiers are used and distance/kernels are
		 * initialized with train data)
		 *
		 * @return whether training was successful
		 */
		virtual bool train_machine(CFeatures* data=NULL);

	private:
		/** set up parameters */
        void init();

		void solve_l2r_l1l2_svc(
			const liblinear_problem *prob, double eps, double Cp, double Cn);


	protected:
		/** C1 */
		float64_t C1;
		/** C2 */
		float64_t C2;
		/** if bias shall be used */
		bool use_bias;
		/** epsilon */
		float64_t epsilon;
		/** maximum number of iterations */
		int32_t max_iterations;

		/** precomputed linear term */
		SGVector<float64_t> m_linear_term;

		/** keep track of alphas */
		SGVector<float64_t> alphas;

		/** set number of tasks */
        int32_t num_tasks;

		/** task indicator left hand side */
		SGVector<int32_t> task_indicator_lhs;

		/** task indicator right hand side */
		SGVector<int32_t> task_indicator_rhs;

		/** task similarity matrix */
		//SGMatrix<float64_t> task_similarity_matrix;
		//SGSparseMatrix<float64_t> task_similarity_matrix;
		MappedSparseMatrix task_similarity_matrix;

		/** task similarity matrix */
		SGMatrix<float64_t> graph_laplacian;

		/** parameter matrix n * d */
		SGMatrix<float64_t> V;

        /** duality gap */
        float64_t duality_gap;

};

#endif //HAVE_LAPACK

} /* namespace shogun  */

#endif //_LIBLINEARMTL_H___