This file is indexed.

/usr/share/libsigrokdecode/decoders/dcf77/pd.py is in libsigrokdecode1 0.2.0-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2012 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
##

# DCF77 protocol decoder

import sigrokdecode as srd
import calendar

# Return the specified BCD number (max. 8 bits) as integer.
def bcd2int(b):
    return (b & 0x0f) + ((b >> 4) * 10)

class Decoder(srd.Decoder):
    api_version = 1
    id = 'dcf77'
    name = 'DCF77'
    longname = 'DCF77 time protocol'
    desc = 'European longwave time signal (77.5kHz carrier signal).'
    license = 'gplv2+'
    inputs = ['logic']
    outputs = ['dcf77']
    probes = [
        {'id': 'data', 'name': 'DATA', 'desc': 'DATA line'},
    ]
    optional_probes = [
        {'id': 'pon', 'name': 'PON', 'desc': 'Power on'},
    ]
    options = {}
    annotations = [
        ['Text', 'Human-readable text'],
        ['Warnings', 'Human-readable warnings'],
    ]

    def __init__(self, **kwargs):
        self.state = 'WAIT FOR RISING EDGE'
        self.oldpins = None
        self.oldval = None
        self.oldpon = None
        self.samplenum = 0
        self.bit_start = 0
        self.bit_start_old = 0
        self.bitcount = 0 # Counter for the DCF77 bits (0..58)
        self.dcf77_bitnumber_is_known = 0

    def start(self, metadata):
        self.samplerate = metadata['samplerate']
        # self.out_proto = self.add(srd.OUTPUT_PROTO, 'dcf77')
        self.out_ann = self.add(srd.OUTPUT_ANN, 'dcf77')

    def report(self):
        pass

    # TODO: Which range to use? Only the 100ms/200ms or full second?
    def handle_dcf77_bit(self, bit):
        c = self.bitcount
        a = self.out_ann
        ss = es = 0 # FIXME

        # Create one annotation for each DCF77 bit (containing the 0/1 value).
        # Use 'Unknown DCF77 bit x: val' if we're not sure yet which of the
        # 0..58 bits it is (because we haven't seen a 'new minute' marker yet).
        # Otherwise, use 'DCF77 bit x: val'.
        s = '' if self.dcf77_bitnumber_is_known else 'Unknown '
        self.put(ss, es, a, [0, ['%sDCF77 bit %d: %d' % (s, c, bit)]])

        # If we're not sure yet which of the 0..58 DCF77 bits we have, return.
        # We don't want to decode bogus data.
        if not self.dcf77_bitnumber_is_known:
            return

        # Output specific "decoded" annotations for the respective DCF77 bits.
        if c == 0:
            # Start of minute: DCF bit 0.
            if bit == 0:
                self.put(ss, es, a, [0, ['Start of minute (always 0)']])
            else:
                self.put(ss, es, a, [0, ['ERROR: Start of minute != 0']])
        elif c in range(1, 14 + 1):
            # Special bits (civil warnings, weather forecast): DCF77 bits 1-14.
            if c == 1:
                self.tmp = bit
            else:
                self.tmp |= (bit << (c - 1))
            if c == 14:
                self.put(ss, es, a, [0, ['Special bits: %s' % bin(self.tmp)]])
        elif c == 15:
            s = '' if (bit == 1) else 'not '
            self.put(ss, es, a, [0, ['Call bit is %sset' % s]])
            # TODO: Previously this bit indicated use of the backup antenna.
        elif c == 16:
            s = '' if (bit == 1) else 'not '
            self.put(ss, es, a, [0, ['Summer time announcement %sactive' % s]])
        elif c == 17:
            s = '' if (bit == 1) else 'not '
            self.put(ss, es, a, [0, ['CEST is %sin effect' % s]])
        elif c == 18:
            s = '' if (bit == 1) else 'not '
            self.put(ss, es, a, [0, ['CET is %sin effect' % s]])
        elif c == 19:
            s = '' if (bit == 1) else 'not '
            self.put(ss, es, a, [0, ['Leap second announcement %sactive' % s]])
        elif c == 20:
            # Start of encoded time: DCF bit 20.
            if bit == 1:
                self.put(ss, es, a, [0, ['Start of encoded time (always 1)']])
            else:
                self.put(ss, es, a,
                         [0, ['ERROR: Start of encoded time != 1']])
        elif c in range(21, 27 + 1):
            # Minutes (0-59): DCF77 bits 21-27 (BCD format).
            if c == 21:
                self.tmp = bit
            else:
                self.tmp |= (bit << (c - 21))
            if c == 27:
                self.put(ss, es, a, [0, ['Minutes: %d' % bcd2int(self.tmp)]])
        elif c == 28:
            # Even parity over minute bits (21-28): DCF77 bit 28.
            self.tmp |= (bit << (c - 21))
            parity = bin(self.tmp).count('1')
            s = 'OK' if ((parity % 2) == 0) else 'INVALID!'
            self.put(ss, es, a, [0, ['Minute parity: %s' % s]])
        elif c in range(29, 34 + 1):
            # Hours (0-23): DCF77 bits 29-34 (BCD format).
            if c == 29:
                self.tmp = bit
            else:
                self.tmp |= (bit << (c - 29))
            if c == 34:
                self.put(ss, es, a, [0, ['Hours: %d' % bcd2int(self.tmp)]])
        elif c == 35:
            # Even parity over hour bits (29-35): DCF77 bit 35.
            self.tmp |= (bit << (c - 29))
            parity = bin(self.tmp).count('1')
            s = 'OK' if ((parity % 2) == 0) else 'INVALID!'
            self.put(ss, es, a, [0, ['Hour parity: %s' % s]])
        elif c in range(36, 41 + 1):
            # Day of month (1-31): DCF77 bits 36-41 (BCD format).
            if c == 36:
                self.tmp = bit
            else:
                self.tmp |= (bit << (c - 36))
            if c == 41:
                self.put(ss, es, a, [0, ['Day: %d' % bcd2int(self.tmp)]])
        elif c in range(42, 44 + 1):
            # Day of week (1-7): DCF77 bits 42-44 (BCD format).
            # A value of 1 means Monday, 7 means Sunday.
            if c == 42:
                self.tmp = bit
            else:
                self.tmp |= (bit << (c - 42))
            if c == 44:
                d = bcd2int(self.tmp)
                dn = calendar.day_name[d - 1] # day_name[0] == Monday
                self.put(ss, es, a, [0, ['Day of week: %d (%s)' % (d, dn)]])
        elif c in range(45, 49 + 1):
            # Month (1-12): DCF77 bits 45-49 (BCD format).
            if c == 45:
                self.tmp = bit
            else:
                self.tmp |= (bit << (c - 45))
            if c == 49:
                m = bcd2int(self.tmp)
                mn = calendar.month_name[m] # month_name[1] == January
                self.put(ss, es, a, [0, ['Month: %d (%s)' % (m, mn)]])
        elif c in range(50, 57 + 1):
            # Year (0-99): DCF77 bits 50-57 (BCD format).
            if c == 50:
                self.tmp = bit
            else:
                self.tmp |= (bit << (c - 50))
            if c == 57:
                self.put(ss, es, a, [0, ['Year: %d' % bcd2int(self.tmp)]])
        elif c == 58:
            # Even parity over date bits (36-58): DCF77 bit 58.
            self.tmp |= (bit << (c - 50))
            parity = bin(self.tmp).count('1')
            s = 'OK' if ((parity % 2) == 0) else 'INVALID!'
            self.put(ss, es, a, [0, ['Date parity: %s' % s]])
        else:
            raise Exception('Invalid DCF77 bit: %d' % c)

    def decode(self, ss, es, data):
        for (self.samplenum, pins) in data:

            # Ignore identical samples early on (for performance reasons).
            if self.oldpins == pins:
                continue
            self.oldpins, (val, pon) = pins, pins

            # Always remember the old PON state.
            if self.oldpon != pon:
                self.oldpon = pon

            # Warn if PON goes low.
            if self.oldpon == 1 and pon == 0:
                self.pon_ss = self.samplenum
                self.put(self.samplenum, self.samplenum, self.out_ann,
                         [1, ['Warning: PON goes low, DCF77 reception '
                         'no longer possible']])
            elif self.oldpon == 0 and pon == 1:
                self.put(self.samplenum, self.samplenum, self.out_ann,
                         [0, ['PON goes high, DCF77 reception now possible']])
                self.put(self.pon_ss, self.samplenum, self.out_ann,
                         [1, ['Warning: PON low, DCF77 reception disabled']])

            # Ignore samples where PON == 0, they can't contain DCF77 signals.
            if pon == 0:
                continue

            if self.state == 'WAIT FOR RISING EDGE':
                # Wait until the next rising edge occurs.
                if not (self.oldval == 0 and val == 1):
                    self.oldval = val
                    continue

                # Save the sample number where the DCF77 bit begins.
                self.bit_start = self.samplenum

                # Calculate the length (in ms) between two rising edges.
                len_edges = self.bit_start - self.bit_start_old
                len_edges_ms = int((len_edges / self.samplerate) * 1000)

                # The time between two rising edges is usually around 1000ms.
                # For DCF77 bit 59, there is no rising edge at all, i.e. the
                # time between DCF77 bit 59 and DCF77 bit 0 (of the next
                # minute) is around 2000ms. Thus, if we see an edge with a
                # 2000ms distance to the last one, this edge marks the
                # beginning of a new minute (and DCF77 bit 0 of that minute).
                if len_edges_ms in range(1600, 2400 + 1):
                    self.put(ss, es, self.out_ann, [0, ['New minute starts']])
                    self.bitcount = 0
                    self.bit_start_old = self.bit_start
                    self.dcf77_bitnumber_is_known = 1
                    # Don't switch to 'GET BIT' state this time.
                    continue

                self.bit_start_old = self.bit_start
                self.state = 'GET BIT'

            elif self.state == 'GET BIT':
                # Wait until the next falling edge occurs.
                if not (self.oldval == 1 and val == 0):
                    self.oldval = val
                    continue

                # Calculate the length (in ms) of the current high period.
                len_high = self.samplenum - self.bit_start
                len_high_ms = int((len_high / self.samplerate) * 1000)

                # If the high signal was 100ms long, that encodes a 0 bit.
                # If it was 200ms long, that encodes a 1 bit.
                if len_high_ms in range(40, 160 + 1):
                    bit = 0
                elif len_high_ms in range(161, 260 + 1):
                    bit = 1
                else:
                    bit = -1 # TODO: Error?

                # There's no bit 59, make sure none is decoded.
                if bit in (0, 1) and self.bitcount in range(0, 58 + 1):
                    self.handle_dcf77_bit(bit)
                    self.bitcount += 1

                self.state = 'WAIT FOR RISING EDGE'

            else:
                raise Exception('Invalid state: %s' % self.state)

            self.oldval = val