This file is indexed.

/usr/include/tbb/parallel_scan.h is in libtbb-dev 4.2~20130725-1.1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
/*
    Copyright 2005-2013 Intel Corporation.  All Rights Reserved.

    This file is part of Threading Building Blocks.

    Threading Building Blocks is free software; you can redistribute it
    and/or modify it under the terms of the GNU General Public License
    version 2 as published by the Free Software Foundation.

    Threading Building Blocks is distributed in the hope that it will be
    useful, but WITHOUT ANY WARRANTY; without even the implied warranty
    of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Threading Building Blocks; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

    As a special exception, you may use this file as part of a free software
    library without restriction.  Specifically, if other files instantiate
    templates or use macros or inline functions from this file, or you compile
    this file and link it with other files to produce an executable, this
    file does not by itself cause the resulting executable to be covered by
    the GNU General Public License.  This exception does not however
    invalidate any other reasons why the executable file might be covered by
    the GNU General Public License.
*/

#ifndef __TBB_parallel_scan_H
#define __TBB_parallel_scan_H

#include "task.h"
#include "aligned_space.h"
#include <new>
#include "partitioner.h"

namespace tbb {

//! Used to indicate that the initial scan is being performed.
/** @ingroup algorithms */
struct pre_scan_tag {
    static bool is_final_scan() {return false;}
};

//! Used to indicate that the final scan is being performed.
/** @ingroup algorithms */
struct final_scan_tag {
    static bool is_final_scan() {return true;}
};

//! @cond INTERNAL
namespace internal {

    //! Performs final scan for a leaf 
    /** @ingroup algorithms */
    template<typename Range, typename Body>
    class final_sum: public task {
    public:
        Body my_body;
    private:
        aligned_space<Range,1> my_range;
        //! Where to put result of last subrange, or NULL if not last subrange.
        Body* my_stuff_last;
    public:
        final_sum( Body& body_ ) :
            my_body(body_,split())
        {
            poison_pointer(my_stuff_last);
        }
        ~final_sum() {
            my_range.begin()->~Range();
        }     
        void finish_construction( const Range& range_, Body* stuff_last_ ) {
            new( my_range.begin() ) Range(range_);
            my_stuff_last = stuff_last_;
        }
    private:
        /*override*/ task* execute() {
            my_body( *my_range.begin(), final_scan_tag() );
            if( my_stuff_last )
                my_stuff_last->assign(my_body);
            return NULL;
        }
    };       

    //! Split work to be done in the scan.
    /** @ingroup algorithms */
    template<typename Range, typename Body>
    class sum_node: public task {
        typedef final_sum<Range,Body> final_sum_type;
    public:
        final_sum_type *my_incoming; 
        final_sum_type *my_body;
        Body *my_stuff_last;
    private:
        final_sum_type *my_left_sum;
        sum_node *my_left;
        sum_node *my_right;     
        bool my_left_is_final;
        Range my_range;
        sum_node( const Range range_, bool left_is_final_ ) : 
            my_left_sum(NULL), 
            my_left(NULL), 
            my_right(NULL), 
            my_left_is_final(left_is_final_), 
            my_range(range_)
        {
            // Poison fields that will be set by second pass.
            poison_pointer(my_body);
            poison_pointer(my_incoming);
        }
        task* create_child( const Range& range_, final_sum_type& f, sum_node* n, final_sum_type* incoming_, Body* stuff_last_ ) {
            if( !n ) {
                f.recycle_as_child_of( *this );
                f.finish_construction( range_, stuff_last_ );
                return &f;
            } else {
                n->my_body = &f;
                n->my_incoming = incoming_;
                n->my_stuff_last = stuff_last_;
                return n;
            }
        }
        /*override*/ task* execute() {
            if( my_body ) {
                if( my_incoming )
                    my_left_sum->my_body.reverse_join( my_incoming->my_body );
                recycle_as_continuation();
                sum_node& c = *this;
                task* b = c.create_child(Range(my_range,split()),*my_left_sum,my_right,my_left_sum,my_stuff_last);
                task* a = my_left_is_final ? NULL : c.create_child(my_range,*my_body,my_left,my_incoming,NULL);
                set_ref_count( (a!=NULL)+(b!=NULL) );
                my_body = NULL; 
                if( a ) spawn(*b);
                else a = b;
                return a;
            } else {
                return NULL;
            }
        }
        template<typename Range_,typename Body_,typename Partitioner_>
        friend class start_scan;

        template<typename Range_,typename Body_>
        friend class finish_scan;
    };

    //! Combine partial results
    /** @ingroup algorithms */
    template<typename Range, typename Body>
    class finish_scan: public task {
        typedef sum_node<Range,Body> sum_node_type;
        typedef final_sum<Range,Body> final_sum_type;
        final_sum_type** const my_sum;
        sum_node_type*& my_return_slot;
    public:
        final_sum_type* my_right_zombie;
        sum_node_type& my_result;

        /*override*/ task* execute() {
            __TBB_ASSERT( my_result.ref_count()==(my_result.my_left!=NULL)+(my_result.my_right!=NULL), NULL );
            if( my_result.my_left )
                my_result.my_left_is_final = false;
            if( my_right_zombie && my_sum ) 
                ((*my_sum)->my_body).reverse_join(my_result.my_left_sum->my_body);
            __TBB_ASSERT( !my_return_slot, NULL );
            if( my_right_zombie || my_result.my_right ) {
                my_return_slot = &my_result;
            } else {
                destroy( my_result );
            }
            if( my_right_zombie && !my_sum && !my_result.my_right ) {
                destroy(*my_right_zombie);
                my_right_zombie = NULL;
            }
            return NULL;
        }

        finish_scan( sum_node_type*& return_slot_, final_sum_type** sum_, sum_node_type& result_ ) : 
            my_sum(sum_),
            my_return_slot(return_slot_), 
            my_right_zombie(NULL),
            my_result(result_)
        {
            __TBB_ASSERT( !my_return_slot, NULL );
        }
    };

    //! Initial task to split the work
    /** @ingroup algorithms */
    template<typename Range, typename Body, typename Partitioner=simple_partitioner>
    class start_scan: public task {
        typedef sum_node<Range,Body> sum_node_type;
        typedef final_sum<Range,Body> final_sum_type;
        final_sum_type* my_body;
        /** Non-null if caller is requesting total. */
        final_sum_type** my_sum; 
        sum_node_type** my_return_slot;
        /** Null if computing root. */
        sum_node_type* my_parent_sum;
        bool my_is_final;
        bool my_is_right_child;
        Range my_range;
        typename Partitioner::partition_type my_partition;
        /*override*/ task* execute();
    public:
        start_scan( sum_node_type*& return_slot_, start_scan& parent_, sum_node_type* parent_sum_ ) :
            my_body(parent_.my_body),
            my_sum(parent_.my_sum),
            my_return_slot(&return_slot_),
            my_parent_sum(parent_sum_),
            my_is_final(parent_.my_is_final),
            my_is_right_child(false),
            my_range(parent_.my_range,split()),
            my_partition(parent_.my_partition,split())
        {
            __TBB_ASSERT( !*my_return_slot, NULL );
        }

        start_scan( sum_node_type*& return_slot_, const Range& range_, final_sum_type& body_, const Partitioner& partitioner_) :
            my_body(&body_),
            my_sum(NULL),
            my_return_slot(&return_slot_),
            my_parent_sum(NULL),
            my_is_final(true),
            my_is_right_child(false),
            my_range(range_),
            my_partition(partitioner_)
        {
            __TBB_ASSERT( !*my_return_slot, NULL );
        }

        static void run( const Range& range_, Body& body_, const Partitioner& partitioner_ ) {
            if( !range_.empty() ) {
                typedef internal::start_scan<Range,Body,Partitioner> start_pass1_type;
                internal::sum_node<Range,Body>* root = NULL;
                typedef internal::final_sum<Range,Body> final_sum_type;
                final_sum_type* temp_body = new(task::allocate_root()) final_sum_type( body_ );
                start_pass1_type& pass1 = *new(task::allocate_root()) start_pass1_type(
                    /*my_return_slot=*/root,
                    range_,
                    *temp_body,
                    partitioner_ );
                task::spawn_root_and_wait( pass1 );
                if( root ) {
                    root->my_body = temp_body;
                    root->my_incoming = NULL;
                    root->my_stuff_last = &body_;
                    task::spawn_root_and_wait( *root );
                } else {
                    body_.assign(temp_body->my_body);
                    temp_body->finish_construction( range_, NULL );
                    temp_body->destroy(*temp_body);
                }
            }
        }
    };

    template<typename Range, typename Body, typename Partitioner>
    task* start_scan<Range,Body,Partitioner>::execute() {
        typedef internal::finish_scan<Range,Body> finish_pass1_type;
        finish_pass1_type* p = my_parent_sum ? static_cast<finish_pass1_type*>( parent() ) : NULL;
        // Inspecting p->result.left_sum would ordinarily be a race condition.
        // But we inspect it only if we are not a stolen task, in which case we
        // know that task assigning to p->result.left_sum has completed.
        bool treat_as_stolen = my_is_right_child && (is_stolen_task() || my_body!=p->my_result.my_left_sum);
        if( treat_as_stolen ) {
            // Invocation is for right child that has been really stolen or needs to be virtually stolen
            p->my_right_zombie = my_body = new( allocate_root() ) final_sum_type(my_body->my_body);
            my_is_final = false;
        }
        task* next_task = NULL;
        if( (my_is_right_child && !treat_as_stolen) || !my_range.is_divisible() || my_partition.should_execute_range(*this) ) {
            if( my_is_final )
                (my_body->my_body)( my_range, final_scan_tag() );
            else if( my_sum )
                (my_body->my_body)( my_range, pre_scan_tag() );
            if( my_sum ) 
                *my_sum = my_body;
            __TBB_ASSERT( !*my_return_slot, NULL );
        } else {
            sum_node_type* result;
            if( my_parent_sum ) 
                result = new(allocate_additional_child_of(*my_parent_sum)) sum_node_type(my_range,/*my_left_is_final=*/my_is_final);
            else
                result = new(task::allocate_root()) sum_node_type(my_range,/*my_left_is_final=*/my_is_final);
            finish_pass1_type& c = *new( allocate_continuation()) finish_pass1_type(*my_return_slot,my_sum,*result);
            // Split off right child
            start_scan& b = *new( c.allocate_child() ) start_scan( /*my_return_slot=*/result->my_right, *this, result );
            b.my_is_right_child = true;    
            // Left child is recycling of *this.  Must recycle this before spawning b, 
            // otherwise b might complete and decrement c.ref_count() to zero, which
            // would cause c.execute() to run prematurely.
            recycle_as_child_of(c);
            c.set_ref_count(2);
            c.spawn(b);
            my_sum = &result->my_left_sum;
            my_return_slot = &result->my_left;
            my_is_right_child = false;
            next_task = this;
            my_parent_sum = result; 
            __TBB_ASSERT( !*my_return_slot, NULL );
        }
        return next_task;
    } 
} // namespace internal
//! @endcond

// Requirements on Range concept are documented in blocked_range.h

/** \page parallel_scan_body_req Requirements on parallel_scan body
    Class \c Body implementing the concept of parallel_scan body must define:
    - \code Body::Body( Body&, split ); \endcode    Splitting constructor.
                                                    Split \c b so that \c this and \c b can accumulate separately
    - \code Body::~Body(); \endcode                 Destructor
    - \code void Body::operator()( const Range& r, pre_scan_tag ); \endcode
                                                    Preprocess iterations for range \c r
    - \code void Body::operator()( const Range& r, final_scan_tag ); \endcode 
                                                    Do final processing for iterations of range \c r
    - \code void Body::reverse_join( Body& a ); \endcode
                                                    Merge preprocessing state of \c a into \c this, where \c a was 
                                                    created earlier from \c b by b's splitting constructor
**/

/** \name parallel_scan
    See also requirements on \ref range_req "Range" and \ref parallel_scan_body_req "parallel_scan Body". **/
//@{

//! Parallel prefix with default partitioner
/** @ingroup algorithms **/
template<typename Range, typename Body>
void parallel_scan( const Range& range, Body& body ) {
    internal::start_scan<Range,Body,__TBB_DEFAULT_PARTITIONER>::run(range,body,__TBB_DEFAULT_PARTITIONER());
}

//! Parallel prefix with simple_partitioner
/** @ingroup algorithms **/
template<typename Range, typename Body>
void parallel_scan( const Range& range, Body& body, const simple_partitioner& partitioner ) {
    internal::start_scan<Range,Body,simple_partitioner>::run(range,body,partitioner);
}

//! Parallel prefix with auto_partitioner
/** @ingroup algorithms **/
template<typename Range, typename Body>
void parallel_scan( const Range& range, Body& body, const auto_partitioner& partitioner ) {
    internal::start_scan<Range,Body,auto_partitioner>::run(range,body,partitioner);
}
//@}

} // namespace tbb

#endif /* __TBB_parallel_scan_H */