This file is indexed.

/usr/include/terralib/kernel/TeCoverageImport.h is in libterralib-dev 4.0.0-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
/************************************************************************************
TerraLib - a library for developing GIS applications.
Copyright © 2001-2007 INPE and Tecgraf/PUC-Rio.

This code is part of the TerraLib library.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

You should have received a copy of the GNU Lesser General Public
License along with this library.

The authors reassure the license terms regarding the warranties.
They specifically disclaim any warranties, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose.
The library provided hereunder is on an "as is" basis, and the authors have no
obligation to provide maintenance, support, updates, enhancements, or modifications.
In no event shall INPE and Tecgraf / PUC-Rio be held liable to any party for direct,
indirect, special, incidental, or consequential damages arising out of the use
of this library and its documentation.
*************************************************************************************/
/*!
  \file TeCoverageImport.h

  \par This file contains algorithms for importing Coverage data
       to a TerraLib database.
*/
#ifndef  __TERRALIB_INTERNAL_COVERAGEIMPORT_H
#define  __TERRALIB_INTERNAL_COVERAGEIMPORT_H

#include <sstream>

#include "TeCoverageParams.h"
#include "TeCoverageUtils.h"
#include "TeCoverageImportUtils.h"
#include <TeQuerier.h>
#include <TeQuerierParams.h>
//#include "TeDriverSHPDBF.h"

/*!
  \def WRITE
  \brief Write a value of some type in a block of raw data.
*/
#define WRITE(data, t, v) *((t*)(data)) = v;  data += sizeof(t)


/*!
  \struct SerializedGeomValuePair
  \brief A geometry and raw data that is the serialization of a geometry-value pair.
*/
template <class T>
struct SerializedPair {
    T geom;
    unsigned char* data;
    unsigned long size;
};

template <class T>
struct CmpSerializedX {
    bool operator() (SerializedPair<T>* s1, SerializedPair<T>* s2)
    {
        return s1->geom.box().center().x() < s2->geom.box().center().x();
    }
};

template <class T>
struct CmpSerializedY {
    bool operator() (SerializedPair<T>* s1, SerializedPair<T>* s2)
    {
        return s1->geom.box().center().y() < s2->geom.box().center().y();
    }
};

template <class T>
void
splitSerialized(std::vector<SerializedPair<T>* >& src,
                typename std::vector<SerializedPair<T>* >::iterator& begin,
                typename std::vector<SerializedPair<T>* >::iterator& end,
                std::vector<std::vector<SerializedPair<T> > >& clusters)
{
    const int CLUSTER_CAPACITY = 300;
    if ((end - begin) <= CLUSTER_CAPACITY)
    {
        std::vector<SerializedPair<T> >& cluster = std::vector<SerializedPair<T> >();
        for (std::vector<SerializedPair<T>* >::iterator it = begin; it != end; it++)
        {
            SerializedPair<T>* pair = *it;
            cluster.push_back(*pair);
        }
        clusters.push_back(cluster);
        return;
    }

    TeBox box = TeBox();
    for (std::vector<SerializedPair<T>* >::iterator it = begin; it != end; it++)
    {
        SerializedPair<T>* pair = (*it);
        updateBox(box, pair->geom.box());
    }

    // split geom set horizontaly if width is larger than height
    if ((box.x2_ - box.x1_) > (box.y2_ - box.y1_))
    {
        sort(begin, end, CmpSerializedX<T>());
    }
    // split verticaly otherwise
    else
    {
        sort(begin, end, CmpSerializedX<T>());
    }

    std::vector<SerializedPair<T> *>::iterator mid = begin + (((end - begin) + 1) / 2);
    splitSerialized(src, mid, end, clusters);
    splitSerialized(src, begin, mid, clusters);
}

template <class T>
void
clusterSerialized(std::vector<SerializedPair<T> >& srcGroup, std::vector<std::vector<SerializedPair<T> > >& clusters)
{
    std::vector<SerializedPair<T>* >& pairs = std::vector<SerializedPair<T>* >();

    for (std::vector<SerializedPair<T> >::iterator it = srcGroup.begin(); it != srcGroup.end(); it++)
    {
        SerializedPair<T>& pair = *it;
        pairs.push_back(&pair);
    }
    splitSerialized(pairs, pairs.begin(), pairs.end(), clusters);
}

template <class T>
void
populateDatabase(TeLayer* layer, const std::string& coverageId, std::vector<std::vector<SerializedPair<T> > >& groups)
{
    TeDatabase* db = layer->database();

    std::string& tableName = TeDefaultCoverageTable(layer, coverageId);
    if (!db->tableExist(tableName))
    {
        createCoverageTable(layer, tableName);
    }

    // Bounding box of the coverage, to be calculated
    TeBox coverageBox = TeBox();

    // Iterate over the  collection of grouped points
    std::vector<std::vector<SerializedPair<T> > >::iterator itGroups = groups.begin();
    std::vector<std::vector<SerializedPair<T> > >::iterator endGroups = groups.end();
    int count = 0;
    while (itGroups != endGroups)
    {
        std::vector<SerializedPair<T> >& group = *(itGroups++);
        std::vector<SerializedPair<T> >::iterator itPoints = group.begin();
        std::vector<SerializedPair<T> >::iterator endPoints = group.end();

        // Calculate block size, according to sizes of serialized points
        unsigned long blockSize = 0;
        while (itPoints != endPoints)
        {
            blockSize += itPoints->size;
            itPoints++;
        }

        // Allocate enough memory for the block data
        unsigned char* blockData = NULL;
        blockData = (unsigned char*)malloc(blockSize);

        unsigned char* dest = blockData;

        // Create bounding box of the group
        TeBox blockBox = TeBox();

        // Reset iterator and iterate over the serialized points in the group
        itPoints = group.begin();
        while (itPoints != endPoints)
        {
            // Join chunks to the block data
            unsigned char* src = itPoints->data;
            for (unsigned int i = 0; i < itPoints->size; i++)
            {
                *dest++ = *src++;
            }

            // Update block bounding box
            updateBox(blockBox, itPoints->geom.box());

            itPoints++;
        }

        // Update coverage bounding box
        updateBox(coverageBox, blockBox);

        count++;

        // Insert block data as an entry in the coverage block table
        insertToCoverageTable(layer, tableName, count, blockBox, group.size(), blockData, blockSize);
    }

    // Create coverage layer, if it does not exist
    std::string& layerTableName = TeDefaultCoverageLayerTable(layer);
    if (!db->tableExist(layerTableName))
    {   
        createCoverageLayerTable(layer, layerTableName);
    }
    insertToCoverageLayerTable(layer, layerTableName, tableName, coverageId, coverageBox);

    // Check if this coverage layer is in the representations table
    TeRepresentation* rep = layer->getRepresentation(TeCOVERAGE, layerTableName);
    if (rep != NULL)
    {
        // Update bounding box of the representation
        updateBox(rep->box_, coverageBox);
        
        if (!db->updateRepresentation(layer->id(), *rep))
        {
            std::string errorMsg = "Couldn't update representation on layer '" + Te2String(layer->id()) + "'. DB error: \"" + db->errorMessage() + "\"";
            throw TeException(UNKNOWN_ERROR_TYPE, errorMsg, false);
        }
    }
    else
    {
        // Insert entry in the representations table
        TeRepresentation* rep = new TeRepresentation();
        rep->box_ = coverageBox;
        rep->geomRep_ = TeCOVERAGE;
        rep->tableName_ = layerTableName;
        layer->addVectRepres(rep);

        if (!db->insertRepresentation(layer->id(), *rep))
        {
            std::string errorMsg = "Couldn't insert representation on layer '" + Te2String(layer->id()) + "'. DB error: \"" + db->errorMessage() + "\"";
            throw TeException(UNKNOWN_ERROR_TYPE, errorMsg, false);
        }
    }

    // Update bounding box of the layer
    layer->updateLayerBox(coverageBox);
    if (!db->updateLayer(layer))
    {
        std::string errorMsg = "Couldn't update layer '" + Te2String(layer->id()) + "'. DB error: \"" + db->errorMessage() + "\"";
        throw TeException(UNKNOWN_ERROR_TYPE, errorMsg, false);
    }
}

//! Specialization for decoding a point layer
bool
decodeLayer(TeLayer* srcLayer, const std::vector<std::string>& columns, std::vector<SerializedPair<TePoint> >& serializedVector, std::vector<TeCoverageDimension>& dimensions)
{
    TeQuerierParams querierParams(true, columns);
    querierParams.setParams(srcLayer);
    TeQuerier querier(querierParams);
    querier.loadInstances();

    // Set information about the coverage dimensions
    TeAttributeList attList = querier.getAttrList();
    attributeListToCoverageDimensions(attList, dimensions);
    
    // Size of (x, y) pair
    int chunkSize = (2 * sizeof(double)) + TeCoverageDimensionsSize(dimensions);

    // Extract coverage data
    unsigned int instanceCount = 0;
    TeSTInstance sti;
    while(querier.fetchInstance(sti))
    {
        if(!sti.hasPoints())
        {
            // If it doesn't have a point, proceed to the next instance
            continue;
        }

        SerializedPair<TePoint> serialized;
        serialized.size = chunkSize;

        // Get only the first point
        TePointSet pointSet;
        sti.getGeometry(pointSet);
        TePoint point = *(pointSet.begin());
    
        serialized.geom = point;

        serialized.data = (unsigned char*)malloc(serialized.size);

        unsigned char* temp = serialized.data;

        // Write coordinates
        WRITE(temp, double, point.location().x_);
        WRITE(temp, double, point.location().y_);

        // Write dimensions values
        TePropertyVector vec = sti.getPropertyVector();
        for(unsigned int i = 0; i < vec.size(); i++)
        {
            if (dimensions[i].type == TeINTEGER)
            {
                std::stringstream buf;
                buf << vec[i].value_;
                int val;
                buf >> val;
                WRITE(temp, int, val);
                buf.clear();
            }
            else
            {
                std::stringstream buf;
                buf << vec[i].value_;
                double val;
                buf >> val;
                WRITE(temp, double, val);
                buf.clear();
            }
        }
        serializedVector.push_back(serialized);

    }
    return true;
}

bool
decodeLayer(TeLayer* srcLayer, const std::vector<std::string>& columns, std::vector<SerializedPair<TeLine2D> >& serializedVector, std::vector<TeCoverageDimension>& dimensions)
{
    TeQuerierParams querierParams(true, columns);
    querierParams.setParams(srcLayer);
    TeQuerier querier(querierParams);
    querier.loadInstances();

    // Set information about the coverage dimensions
    TeAttributeList attList = querier.getAttrList();
    attributeListToCoverageDimensions(attList, dimensions);

    int dimensionsSize = TeCoverageDimensionsSize(dimensions);
    
    // Extract coverage data
    unsigned int instanceCount = 0;
    TeSTInstance sti;
    while(querier.fetchInstance(sti))
    {
        if(!sti.hasLines())
        {
            // If it doesn't have a line, proceed to the next instance
            continue;
        }

        SerializedPair<TeLine2D> serialized;

        // Get only the first line
        TeLineSet lineSet;
        sti.getGeometry(lineSet);
        TeLine2D line = *(lineSet.begin());

        serialized.geom = line;

        int pointSize = (2 * sizeof(double));
        serialized.size = sizeof(unsigned int) + (line.size() * pointSize) + dimensionsSize;

        serialized.data = (unsigned char*)malloc(serialized.size);

        unsigned char* temp = serialized.data;

        WRITE(temp, unsigned int, line.size());

        // Write point coordinates
        for (unsigned int i = 0; i < line.size(); ++i)
        {
            TePoint point = line[i];
            WRITE(temp, double, point.location().x_);
            WRITE(temp, double, point.location().y_);
        }

        // Write dimensions values
        TePropertyVector vec = sti.getPropertyVector();
        for(unsigned int i = 0; i < vec.size(); i++)
        {
            if (dimensions[i].type == TeINTEGER)
            {
                std::stringstream buf;
                buf << vec[i].value_;
                int val;
                buf >> val;
                WRITE(temp, int, val);
                buf.clear();
            }
            else
            {
                std::stringstream buf;
                buf << vec[i].value_;
                double val;
                buf >> val;
                WRITE(temp, double, val);
                buf.clear();
            }
        }
        serializedVector.push_back(serialized);

    }
    return true;
}

bool
decodeLayer(TeLayer* srcLayer, const std::vector<std::string>& columns, std::vector<SerializedPair<TePolygon> >& serializedVector, std::vector<TeCoverageDimension>& dimensions)
{
    TeQuerierParams querierParams(true, columns);
    querierParams.setParams(srcLayer);
    TeQuerier querier(querierParams);
    querier.loadInstances();

    // Set information about the coverage dimensions
    TeAttributeList attList = querier.getAttrList();
    attributeListToCoverageDimensions(attList, dimensions);

    int dimensionsSize = TeCoverageDimensionsSize(dimensions);
    
    // Extract coverage data
    unsigned int instanceCount = 0;
    TeSTInstance sti;
    while(querier.fetchInstance(sti))
    {
        if(!sti.hasPolygons())
        {
            // If it doesn't have a polygon, proceed to the next instance
            continue;
        }

        SerializedPair<TePolygon> serialized;

        // Get only the first polygon
        TePolygonSet polySet;
        sti.getGeometry(polySet);
        TePolygon poly = *(polySet.begin());

        serialized.geom = poly;
        
        // Count number of lines and points that make this polygon
        unsigned int numLines = 0;
        unsigned int numPoints = 0;
        for(unsigned int i = 0; i < poly.size(); ++i)
        {
            numLines += 1;
            numPoints += poly[i].size();
        }

        int coordSize = (2 * sizeof(double));
        serialized.size = sizeof(unsigned int) + (numLines * sizeof(unsigned int)) + (numPoints * coordSize) + dimensionsSize;

        serialized.data = (unsigned char*)malloc(serialized.size);

        unsigned char* temp = serialized.data;

        // Write Polygon serialization
        WRITE(temp, unsigned int, numLines);
        for (unsigned int i = 0; i < numLines; ++i)
        {
            TeLine2D line = poly[i];
            WRITE(temp, unsigned int, line.size());

            // Write point coordinates
            for (unsigned int j = 0; j < line.size(); ++j)
            {
                TePoint point = line[j];
                WRITE(temp, double, point.location().x());
                WRITE(temp, double, point.location().y());
            }
        }

        // Write dimensions serialization
        TePropertyVector vec = sti.getPropertyVector();
        for(unsigned int i = 0; i < vec.size(); i++)
        {
            if (dimensions[i].type == TeINTEGER)
            {
                std::stringstream buf;
                buf << vec[i].value_;
                int val;
                buf >> val;
                WRITE(temp, int, val);
                buf.clear();
            }
            else
            {
                std::stringstream buf;
                buf << vec[i].value_;
                double val;
                buf >> val;
                WRITE(temp, double, val);
                buf.clear();
            }
        }
        serializedVector.push_back(serialized);

    }
    return true;
}

//! Import Coverage from a layer of geometries, creating a new layer
/*!
  \par Import a Coverage from an existing layer of geometries in
       a TerraLib database, creating a new layer where the coverage is stored.
  \param database a pointer to the database to where the coverage will be imported
  \param layerName name of the layer to be created
  \param srcLayer pointer to the existing layer of geometries
  \param srcAttrTableName name of an existing attributes table
  \param columns columns of the attributes table to be imported
  \param coverageId identifier of the coverage to be imported
  \return a pointer to the generated layer
*/
template <class T>
bool
TeCoverageImportLayer(TeLayer* layer, TeLayer* srcLayer, const std::vector<std::string>& columns, const std::string& coverageId)
{
    if (!layer || !srcLayer)
    {
        std::string errorMsg = "Couldn't import Point Coverage. Illegal parameters.";
        throw TeException(UNKNOWN_ERROR_TYPE, errorMsg, false);
    }

    // Check if the layer has a coverage with the same coverage id
    std::vector<std::string> coverageIds;
    TeRetrieveCoverageIds(layer, coverageIds);
    if (find(coverageIds.begin(), coverageIds.end(), coverageId) != coverageIds.end())
    {
        std::string errorMsg = "Couldn't import Coverage. Coverage ID already in use.";
        throw TeException(UNKNOWN_ERROR_TYPE, errorMsg, false);
    }
    
    std::vector<SerializedPair<T> > serialized;
    std::vector<TeCoverageDimension> dimensions;

    // Get data (geometry-value pairs) and metadata (dimensions) from the source layer
    if (!decodeLayer(srcLayer, columns, serialized, dimensions))
    {
        std::string errorMsg = "Couldn't import Coverage. Error decoding source layer.";
        throw TeException(UNKNOWN_ERROR_TYPE, errorMsg, false);
    }

    // Set metadata table with dimensions information
    std::string& metadataTableName = TeDefaultCoverageMetadataTable(layer);
    fillCoverageMetadataTable(layer, metadataTableName, coverageId, dimensions);

    // Partition geometries in clusters
    std::vector<std::vector<SerializedPair<T> > > clusterGroups;
    clusterSerialized<T>(serialized, clusterGroups);

    // Add clusters to the database and update layer and representations info
    populateDatabase<T>(layer, coverageId, clusterGroups);

    return true;
}

//! Import Coverage from a layer of geometries
/*!
  \par Import a Coverage from an existing layer of geometries in
       a TerraLib database to an existing layer of a TerraLib database.
  \param layer pointer to a layer already created
  \param srcLayer pointer to the existing layer of geometries
  \param srcAttrTableName name of an existing attributes table
  \param columns columns of the attributes table to be imported
  \param coverageId identifier of the coverage to be imported
  \return a pointer to the generated layer
*/
template <class T>
TeLayer*
TeCoverageImportLayer(TeDatabase* database, const std::string& layerName, TeLayer* srcLayer, const std::vector<std::string>& columns, const std::string& coverageId)
{
    if (!database || layerName.empty() || !srcLayer)
    {
        std::string errorMsg = "Couldn't import Point Coverage. Illegal parameters.";
        throw TeException(UNKNOWN_ERROR_TYPE, errorMsg, false);
    }

    TeLayer* newLayer = createNewCoverageLayer(database, layerName, srcLayer->projection());
    try {
        TeCoverageImportLayer<T>(newLayer, srcLayer, columns, coverageId);
    }
    catch (TeException e)
    {
	    database->deleteLayer(newLayer->id());
        throw e;
    }

	return newLayer;
}

//! Import Point Coverage from a Shape File, creating a new layer.
/*!
  \par Import a Point Coverage from a Shape File to a TerraLib
       database, creating a new layer where the coverage is stored.
  \param database a pointer to the database to where the coverage will
         be imported
  \param layerName name of the layer to be created
  \param projection projection used in shape file
  \param fileName name of the shape file to be read
  \param columns columns of the shape file to be imported
  \param coverageId identifier of the coverage to be imported
  \return a pointer to the generated layer
*/
//TeLayer* TePointCoverageImportSHP(TeDatabase* database, const std::string& layerName, TeProjection* projection, const std::string& fileName, const std::vector<std::string>& columns, const std::string& coverageId = "0");

//! Import Point Coverage from a Shape File.
/*!
  \par Import a Point Coverage from a Shape File to an existing
       layer of a TerraLib database.
  \param layer pointer to a layer already created
  \param fileName name of the shape file to be read
  \param columns columns of the shape file to be imported
  \param coverageId identifier of the coverage to be imported
  \return whether the coverage was imported successfully
*/
//bool TePointCoverageImportSHP(TeLayer* layer, const std::string& fileName, const std::vector<std::string>& columns, const std::string& coverageId = "0");


/*
bool
TePointCoverageImportSHP(TeLayer* layer, const std::string& fileName, const std::vector<std::string>& columns, const std::string& coverageId)
{
    if (!layer || fileName.empty())
    {
        std::string errorMsg = "Couldn't import Point Coverage. Illegal parameters.";
        throw TeException(UNKNOWN_ERROR_TYPE, errorMsg, false);
    }

    // Check if the layer has a coverage with the same coverage id
    std::vector<std::string> coverageIds;
    TeRetrieveCoverageIds(layer, coverageIds);
    if (find(coverageIds.begin(), coverageIds.end(), coverageId) != coverageIds.end())
    {
        std::string errorMsg = "Couldn't import Point Coverage. Coverage ID already in use.";
        throw TeException(UNKNOWN_ERROR_TYPE, errorMsg, false);
    }
    
    SerializedPointVector serializedPoints;
    std::vector<TeCoverageDimension> dimensions;

    // Get data (point-value pairs) and metadata (dimensions) from a ShapeFile
    if (!decodeSHPFile(fileName, columns, serializedPoints, dimensions))
    {
        std::string errorMsg = "Couldn't import Point Coverage. Error decoding Shape File.";
        throw TeException(UNKNOWN_ERROR_TYPE, errorMsg, false);
    }

    // Set metadata table with dimensions information
    std::string& metadataTableName = TeDefaultCoverageMetadataTable(layer);
    fillCoverageMetadataTable(layer, metadataTableName, coverageId, dimensions);

    // Partition points in clusters
    std::vector<SerializedPointVector> clusterGroups;
    clusterSerializedPoints(serializedPoints, clusterGroups);

    // Add clusters to the database and update layer and representations info
    populateDatabase(layer, coverageId, clusterGroups);

    return true;
}

TeLayer*
TePointCoverageImportSHP(TeDatabase* database, const std::string& layerName, TeProjection* projection, const std::string& fileName, const std::vector<std::string>& columns, const std::string& coverageId)
{	
    if (!database || !projection || layerName.empty() || fileName.empty())
    {
        std::string errorMsg = "Couldn't import Point Coverage. Illegal parameters.";
        throw TeException(UNKNOWN_ERROR_TYPE, errorMsg, false);
    }

    TeLayer* newLayer = createNewCoverageLayer(database, layerName, projection);
    try {
        TePointCoverageImportSHP(newLayer, fileName, columns, coverageId);
    }
    catch (TeException e)
    {
	    database->deleteLayer(newLayer->id());
        throw e;
    }

	return newLayer;
}
*/

#endif // __TERRALIB_INTERNAL_COVERAGEIMPORT_H